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1. ANALYTIC FUNCTIONS

A domain in the complex plane C is an open, connected subset of C. For example, every open disc:

D(w, r) = {z ∈ C : |z − w| < r}

is a domain. Throughout this course we will consider functions defined on domains.

Suppose that D is a domain and f : D → C a function. This function is complex differentiable at
a point z ∈ D if the limit

lim
h→0

f(z + h)− f(z)
h

exists. The value of the limit is the derivative f ′(z). The function f : D → C is analytic if it is complex
differentiable at each point z of the domain D. (The terms holomorphic and regular are more commonly
used in place of analytic.)

For example, f : z 7→ zn is analytic on all of C with f ′(z) = nzn−1 but g : z 7→ z is not complex
differentiable at any point and so g is not analytic.

It is important to observe that asking for a function to be complex differentiable is much stronger
than asking for it to be real differentiable. To see this, first recall the definition of real differentiability.

Let D be a domain in R2 and write the points in D as x =
(

x1

x2

)
. Let f : D → R2 be a function. Then

we can write

f(x) =
(

f1(x)
f2(x)

)
with f1, f2 : D → R as the two components of f . The function f is real differentiable at a point a ∈ D
if there is a real linear map T : R2 → R2 with

||f(a + h)− f(a)− T (h)|| = o(||h||) as h → 0 .

This means that
||f(a + h)− f(a)− T (h)||

||h||
→ 0 as h → 0 .

We can write this out in terms of the components. Let T be given by the 2 × 2 real matrix
(

a b
c d

)
.

Then ∣∣∣∣∣∣∣∣( f1(a + h)
f2(a + h)

)
−
(

f1(a)
f2(a)

)
−
(

a b
c d

)(
h1

h2

)∣∣∣∣∣∣∣∣ = o(||h||) as h → 0 .

This means that
|f1(a + h)− f1(a)− (ah1 + bh2)| = o(||h||) and
|f2(a + h)− f2(a)− (ch1 + dh2)| = o(||h||)

as h → 0. By taking one of the components of h to be 0 in this formula, we see that the matrix for T
must be (

a b
c d

)
=

(
∂f1
∂x1

(a) ∂f1
∂x2

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a)

)
.

We can identify R2 with the complex plane C by letting x =
(

x1

x2

)
correspond to x1 + ix2. Then

f gives a map f : D → C. This is complex differentiable if it is real differentiable and the map T
is linear over the complex numbers. The complex linear maps T : C → C are just multiplication by a
complex number w = w1 + iw2, so T must be(

a b
c d

)
=
(

w1 −w2

w2 w1

)
.
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In particular, this shows that a complex differentiable function must satisfy the Cauchy – Riemann
equations:

∂f1

∂x1
(a) =

∂f2

∂x2
(a) and

∂f1

∂x2
(a) = − ∂f2

∂x1
(a) .

There are also more direct ways to obtain the Cauchy – Riemann equations. For example, if
f : D → C is complex differentiable at a point a with derivative f ′(a), then we can consider the
functions

x1 7→ f(a + x1) and x2 7→ f(a + ix2)

for real values of x1 and x2. These must also be differentiable and so

f ′(a) =
∂f

∂x1
(a) =

∂f1

∂x1
(a) + i

∂f2

∂x1
(a) and f ′(a) =

1
i

∂f

∂x2
(a) = −i

∂f1

∂x2
(a) +

∂f2

∂x2
(a) .
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2. POWER SERIES

A power series is an infinite sum of the form
∑∞

n=0 an(z−zo)n. Recall that a power series converges
on a disc.

Proposition 2.1 Radius of convergence
For the sequence of complex numbers (an) define R = sup{r : anrn → 0 as n → ∞}. Then the power
series

∑
anzn converges absolutely on the open disc D(zo, R) and diverges outside the corresponding

closed disc D(zo, R). Indeed, the power series converges uniformly on each disc B(zo, r) with r strictly
less than R.

We call R the radius of convergence of the power series
∑

an(z − zo)n. It can take any value from 0 to
+∞ including the extreme values. The series may converge or diverge on the circle ∂D(zo, R).

Proof:
It is clear that if

∑
an(z−zo)n converges then the terms an(z−zo)n must tend to 0 as n →∞.

Therefore, anrn → 0 as n → ∞ for each r 6 |z − zo|. Hence R > |z − zo| and we see that the power
series diverges for |z − zo| > R.

Suppose that |z − zo| < R. Then we can find r with |z − zo| < r < R and anrn → 0 as n → ∞.
This means that there is a constant K with |an|rn 6 K for each n ∈ N. Hence

∑
|an||z − zo|n 6

∑
K

(
|z − zo|

r

)n

.

The series on the right is a convergent geometric series, and
∑

anzn converges, absolutely, by comparison
with it. Also, this convergence is uniform on D(zo, r). �

We wish to prove that a power series can be differentiated term-by-term within its disc of conver-
gence.

Proposition 2.2 Power series are differentiable.

Let R be the radius of convergence of the power series
∑

an(z − zo)n. The sum s(z) =
∞∑

n=0

an(z − zo)n

is complex differentiable on the disc D(zo, R) and has derivative t(z) =
∞∑

n=1

nan(z − zo)n−1.

Proof:
We may assume that zo = 0. For a fixed point w with |w| < R, we can choose r with

|w| < r < R. We will consider h satisfying |h| < r − |w| so that |w + h| < r.

Consider the function (curve):

γ : [0, 1] → C ; t 7→ n(n− 1)(w + th)n−2h2 .

Straightforward integration shows that∫ s

0

γ(t) dt = n(w + th)n−1h

∣∣∣∣s
0

= n(w + sh)n−1h− nwn−1h

and ∫ 1

0

∫ s

0

γ(t) dt ds = (w + sh)n − nwn−1sh

∣∣∣∣1
0

= (w + h)n − wn − nwn−1h .
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For each t ∈ [0, 1] we have |w + th| < r, so |γ(t)| 6 n(n− 1)rn−2|h|2. This implies that

|(w + h)n − wn − nwn−1| 6
∫ 1

0

∫ s

0

n(n− 1)rn−2|h|2 dt ds = 1
2n(n− 1)rn−2|h|2

Hence,

|s(w + h)− s(w)− t(w)h| =

∣∣∣∣∣
∞∑

n=0

an

(
(w + h)n − wn − nwn−1h

)∣∣∣∣∣
6

∞∑
n=0

|an||(w + h)n − wn − nwn−1h|

6
1
2

( ∞∑
n=0

n(n− 1)|an|rn−2

)
|h|2 .

The series
∑

n(n − 1)|an|rn−2 converges by comparison with
∑
|an|sn for any s with r < s < R.

Therefore, s is differentiable at w and s′(w) = t(w). �

The derivative of the power series s is itself a power series, so s is twice differentiable. Repeating
this shows that s is infinitely differentiable, that is we can differentiate it as many times as we wish.

Corollary 2.3 Power series are infinitely differentiable
Let R be the radius of convergence of the power series

∑
an(z − zo)n. Then the sum

s(z) =
∞∑

n=0

an(z − zo)n

is infinitely differentiable on B(zo, R) with

s(k)(z) =
∞∑

n=k

n!
(n− k)!

an(z − zo)n−k .

In particular, s(k)(zo) = k!ak, so the power series is the Taylor series for s.

�

The Exponential Function

One of the most important applications of power series is to the exponential function. This is
defined as

exp(z) =
∞∑

n=0

1
n!

zn .

The ratio test shows that the series converges for all complex numbers z. Hence, it defines a function

exp : C → C .

We know, from Proposition 2.1 , that the exponential function is differentiable with

exp′(z) =
∞∑

n=0

n
1
n!

zn−1 =
∞∑

n=1

1
(n− 1)!

zn−1 = exp(z) .

This is the key property of the function and we will use it to establish the other properties.

Proposition 2.4 Products of exponentials
For any complex numbers w, z we have

exp(z + w) = exp(z) exp(w) .
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Proof:
Let a be a fixed complex number and consider the function

g(z) = exp(z) exp(a− z) .

This is differentiable and its derivative is

g′(z) = exp(z) exp(a− z)− exp(z) exp(z − a) = 0 .

This implies that g is constant. (For consider the function γ : t 7→ g(tz) defined on the unit interval
[0, 1] ⊂ R. This has derivative 0 and so the mean value theorem shows that it is constant. Therefore,
g(z) = g(0) for each z.) The value of g at 0 is exp(0) exp(a) = exp(a), so we see that

exp(z) exp(a− z) = exp(a) .

�

This Proposition allows us to establish many of the properties of the exponential function very
easily.

Corollary 2.5 Properties of the exponential

(a) The exponential function has no zeros.

(b) For any complex number z we have exp z = exp z.

(c) e : x 7→ expx is a strictly increasing function from R onto (0,∞).

(d) For real numbers y, the map f : y 7→ exp iy traces out the unit circle, at unit speed, in the positive
direction.

Proof:

(a) For exp(z) exp(−z) = exp(0) = 1.

(b) Is an immediate consequence of the power series.

(c) For x ∈ R it is clear from the power series that expx is real. Moreover expx =
(
exp 1

2x
)2

> 0. This
shows that e′(x) = e(x) > 0 and so e is a strictly increasing positive function. The power series
also shows that

e(x) = exp x > x for x > 1

so e(x) ↗ +∞ as x ↗ +∞. Finally,

e(x) =
1

e(−x)
↘ 0 as x ↘ −∞ .

(d) Part (b) shows that | exp iy|2 = exp iy exp−iy = 1, so f maps into the unit circle. Moreover, f
is differentiable with f ′(y) = i exp iy, so f traces out the unit circle at unit speed in the positive
direction. �
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Any complex number w can be written as r(cos θ + i sin θ) for some modulus r > 0 and some
argument θ ∈ R. The modulus r = |z| is unique but the argument is only determined up to adding an
integer multiple of 2π (and is completely arbitrary when w = 0).

Part (a) of the Corollary shows that exp z is never 0. Suppose that w 6= 0. Then (c) shows that we
can find a unique real number x with expx = |w|. Part (d) shows that exp iθ = cos θ + i sin θ. Hence

w = |w| exp iθ = expx exp iθ = exp(x + iθ) .

So there is a complex number zo = x + iθ with exp zo = w. Furthermore, parts (c) and (d) show that
the only solutions of exp z = w are z = zo + 2nπi for an integer n ∈ Z.

Logarithms

Corollary 2.5(c) shows that the exponential function on the real line gives a strictly increasing
map e : R → (0,∞) from R onto (0,∞). This map must then be invertible and we call its inverse the
natural logarithm and denote it by ln : (0,∞) → R. We want to consider analogous complex logarithms
that are inverse to the complex exponential function.

We know that exp z is never 0, so we can not hope to define a complex logarithm of 0. For
any non-zero complex number w we have seen that there are infinitely many complex numbers z with
exp z = w and any two differ by an integer multiple of 2πi. Therefore, the exponential function can not
be invertible.

However, if we restrict our attention to a suitable domain D in C \ {0}, then we can try to find a
continuous function λ : D → C with expλ(z) = z for each z ∈ D. Such a map is called a branch of the
logarithm on D. If one branch λ exists, then z 7→ λ(z) + 2nπi is another branch of the logarithm.

Consider, for example, the domain

D = {z = r exp iθ : 0 < r and α < θ < α + 2π}

that is obtained by removing a half-line from C. The map

λ : D → C ; r exp iθ 7→ ln r + iθ

for r > 0 and α < θ < α + 2π is certainly continuous and satisfies expλ(z) = z for each z ∈ D. Hence
it is one of the branches of the logarithm on D.

As remarked above, the point 0 is special and there is no branch of the logarithm defined at 0. We
call 0 a logarithmic singularity. Many authors abuse the notation by writing log z for λ(z). However, it
is important to remember that there are many branches of the logarithm and that there is none defined
on all of C \ {0}.

The branches of the logarithm are important and we will use them throughout this course. Note
that, for any branch λ of the logarithm, we have

λ(z) = ln |z|+ iθ

where θ is an argument of z. The real part is unique and clearly continuous. However, the imaginary
part is only determined up to an additive integer multiple of 2π. The choice of a branch of the logarithm
on D corresponds to a continuous choice of the argument θ : D → R.

Since the branch λ : D → C is inverse to the exponential function, the inverse function theorem
shows that λ is differentiable with

λ′(w) =
1

exp′ λ(w)
=

1
expλ(w)

=
1
w

.
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To do this more carefully, let w be a point of D. Choose k 6= 0 so small that w + k ∈ D. Then set
z = λ(w) and z + h = λ(w + k). Since λ is continuous, h → 0 as k → 0. Hence

λ(w + k)− λ(w)
k

=
(z + h)− z

expλ(w + k)− expλ(w)
=

h

exp(z + h)− exp z

tends to 1
exp′ z as K → 0. This shows that λ is complex differentiable at w with

λ′(w) =
1

exp z
=

1
w

.

Thus every branch of the logarithm is analytic.

Let Ω be the complex plane cut along the negative real axis: Ω = C \ (−∞, 0]. Every z ∈ Ω can be
written uniquely as

r exp iθ with r > 0 and − π < θ < π.

We call this θ the principal branch of the argument of z and denote it by Arg(z). In a similar way, the
principal branch of the logarithm is:

Log : Ω → C ; z 7→ ln |z|+ iArg(z) .

Powers

We can also define branches of powers of complex numbers. Suppose that n ∈ Z, z a complex
number and λ : D → C any branch of the complex logarithm defined at z. Then

zn = (expλ(z))n = exp(nλ(z))

and the value of the right side does not depend on which branch λ we choose. When α is a complex
number but not an integer, we may define a branch of the αth power on D by

pα : D → C ; z 7→ (expαλ(z)) .

This behaves as we would expect an αth power to, for example,

pα(z)pβ(z) = pα+β(z)

analogously to zαzβ = zα+β for integers α and β. Moreover, pα is analytic on D since exp and λ are
both analytic with

p′α(z) = exp′(αλ(z))αλ′(z) = (expαλ(z))
α

z
= α exp((α− 1)λ(z)) = αpα−1(z) .

However, there are many different branches of the αth power coming from different branches of the
logarithm.

For example, on the cut plane Ω = C \ (−∞, 0] the principal branch of the αth power is given by

z 7→ exp(α Log z) = exp(α(ln |z|+ iArg(z))) .

When α = 1
2 this is

r exp iθ 7→ r1/2 exp 1
2 iθ for r > 0 and − π < θ < π.

Note that none of these branches of powers is defined at 0 since no branch of the logarithm is
defined there. The point 0 is called a branch point for the power. The only powers that can be defined
to be analytic at 0 are the non-negative integer powers.

If we set e = exp 1 = 2.71828 . . ., then exp z is one of the values for the zth power of e. Despite
the fact that there are other values (unless z ∈ Z) we often write this as ez. In particular, it is very
common to write eiθ for exp iθ.

7



Conformal Maps

A conformal map is an analytic map f : D → Ω between two domains D,Ω that has an analytic
inverse g : Ω → D. This certainly implies that f is a bijection and that f ′(z) is never 0, since the chain
rule gives g′(f(z))f ′(z) = 1. When there is a conformal map f : D → Ω then the complex analysis on
D and Ω are the same, for we can transform any analytic map h : D → C into a map h ◦ g : Ω → C and
vice versa.

You have already met Möbius transformations as examples of conformal maps. For instance,

z 7→ 1 + z

1− z
is a conformal map from the unit disc D onto the right half-plane H = {x + iy : x > 0}. Its

inverse is w 7→ w − 1
w + 1

. Powers also give useful examples, for instance:

{x + iy : x, y > 0} → {u + iv : v > 0} ; z 7→ z2

is a conformal map. Its inverse is a branch of the square root. Similarly, the exponential map gives us
examples. The map

{x + iy : − 1
2π < y < 1

2π} → {u + iv : u > 0} ; z 7→ exp z

is conformal. Its inverse is the principal branch of the logarithm.

Conformal maps preserve the angles between curves. For consider the straight line β : t 7→ zo + tω
where |ω| = 1. The analytic map f sends this to the curve

f ◦ β : t 7→ f(zo + tω) .

The tangent to this curve at t = 0 is in the direction of

lim
t→0

f(zo + tω)− f(zo)
|f(zo + tω)− f(zo)|

=
f ′(zo)ω
|f ′(zo)ω|

.

Provided that f ′(zo) 6= 0, this shows that f ◦β is a curve through f(zo) in the direction of f ′(zo)ω. Con-
sequently, such a function f preserves the angle between two curves, in both magnitude and orientation.
This shows that conformal maps preserve the angles between any two curves.
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3. INTEGRATION ALONG CURVES

We have seen that it is a much stronger condition on a function to be complex differentiable than
to be real differentiable. The reason for this is that we can apply the fundamental theorem of calculus
when we integrate f along a curve in D that starts and ends at the same point. This will show that,
for suitable curves, the integral is 0 — a result we call Cauchy’s theorem. This theorem has many
important consequences and is the key to the rest of the course.

We therefore wish to integrate functions along curves in D. First recall some of the properties of
integrals along intervals of the real line. If φ : [a, b] → C is a continuous function, then the Riemann
integral

I =
∫ b

a

φ(t) dt

exists. For any angle θ, we have

Ieiθ = <

(∫ b

a

φ(t)eiθ dt

)
=
∫ b

a

<
(
φ(t)eiθ

)
dt 6

∫ b

a

|φ(t)| dt

so we have the inequality ∣∣∣∣∣
∫ b

a

φ(t) dt

∣∣∣∣∣ 6
∫ b

a

|φ(t)| dt .

A continuously differentiable curve in D is a map γ : [a, b] → D defined on a compact interval
[a, b] ⊂ R that is continuously differentiable at each point of [a, b]. (At the endpoints a, b we demand a
one-sided derivative.) The image γ([a, b]) will be denoted by [γ]. We think of the parameter t as time
and the point z = γ(t) traces out the curve as time increases. The direction that we move along the
curve is important and is often denoted by an arrow.

As the time increases by a small amount δt, so the point z = γ(t) on the curve moves by δz =
γ(t+ δt)− γ(t) ≈ γ′(t) δt. Hence, it is natural to define the integral of a continuous function f : D → C
along γ to be ∫

γ

f(z) dz =
∫ b

a

f(γ(t))γ′(t) dt .

We can also define integrals with respect to the arc-length s along γ where ds
dt = |γ′(t)|. This is

usually denoted by: ∫
γ

f(z) |dz| =
∫ b

a

f(γ(t)) |γ′(t)| dt .

In particular, the length of γ is:

L(γ) =
∫

γ

|dz| =
∫ b

a

|γ′(t)| dt .

Then we have the important inequality:

Proposition 3.1
Let γ : [a, b] → D be a continuously differentiable curve in the domain D and let f : D → C be a
continuous function. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ 6
∫ b

a

|f(γ(t))||γ′(t)| dt 6 L(γ). sup{|f(z)| : z ∈ [γ]} .

9



�

Example: The straight-line curve [w0, w1] between two points of C is given by

[0, 1] → C ; t 7→ (1− t)wo + tw1 .

This has length |w1 − w0|. The unit circle c is given by

c : [0, 2π] → C ; t 7→ zo + r exp it

and has length 2π. For any integer n we have∫
c

zn dz =
∫ 2π

0

exp int i exp it dt =
{ 0 if n 6= −1;

2πi if n = −1.

It is possible to re-parametrise a curve γ : [a, b] → D. Suppose that h : [c, d] → [a, b] is a continuously
differentiable, strictly increasing function with a continuously differentiable inverse h−1 : [a, b] → [c, d].
Then γ ◦ h : [c, d] → D is a curve and the substitution rule for integrals shows that∫

γ◦h
f(z) dz =

∫ d

c

f(γ(h(s))γ′(h(s))h′(s) ds =
∫ b

a

f(γ(t))γ′(t) dt =
∫

γ

f(z) dz

and similarly that L(γ ◦ h) = L(γ). Sometimes it is useful to reverse the orientation of the curve. For
any curve γ : [a, b] → D, the reversed curve −γ is given by

−γ : [−b,−a] → D ; t 7→ γ(−t) .

This traces out the same image as γ but in the reverse direction.

It is useful to generalise the definition of a curve slightly. A piecewise continuously differentiable
curve is a map γ : [a, b] → D for which there is a subdivision

a = t0 < t1 < t2 < . . . < tN−1 < tN = b

with each of the restrictions γ| : [tn, tn+1] → D (n = 0, 1, . . . , N) being a continuously differentiable
curve. The integral along γ is then∫

γ

f(z) dz =
N−1∑
n=0

∫ tn+1

tn

f(γ(t))γ′(t) dt

and ∫
γ

f(z) |dz| =
N−1∑
n=0

∫ tn+1

tn

f(γ(t))|γ′(t)| dt .

We clearly have ∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ 6 ∫
γ

|f(z)| |dz| 6 L(γ). sup{|f(z)| : z ∈ [γ]} .

From now on, we will suppose, tacitly, that all the curves we consider are piecewise continuously differ-
entiable.

Proposition 3.2 Fundamental Theorem of Calculus
Let f : D → C be an analytic function. If f is the derivative of another analytic function F : D → C,
then ∫

γ

f(z) dz = F (γ(b))− F (γ(a))

for any piecewise continuously differentiable curve γ : [a, b] → D.
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We call F : D → C an antiderivative of f if F ′(z) = f(z) for all z ∈ D.

Proof:
The fundamental theorem of calculus show that∫

γ

f(z) dz =
∫ b

a

f(γ(t))γ′(t) dt =
∫ b

a

F ′(γ(t))γ′(t) dt =
∫ b

a

(F ◦ γ)′(t) dt = F (γ(b))− F (γ(a))

for any continuously differentiable curve γ. The result follows for piecewise continuously differentiable
curves by adding the results for each continuously differentiable section. �

A curve γ : [a, b] → D is closed if γ(b) = γ(a). In this case, the Proposition shows that∫
γ

f(z) dz = 0

provided that f is the derivative of a function F : D → C. This is our first form of Cauchy’s theorem.

For the sake of variety, we use many different names for curves, such as paths or routes. Closed
curves are sometimes called contours.

Example: Let A be the domain C \ {0} and γ the closed curve

γ : [0, 2π] → A ; t 7→ exp it

that traces out the unit circle in a positive direction. Let f(z) = zn for n ∈ Z. Then∫
γ

zn dz =
∫ 2π

0

exp int (2πi exp it) dt =
{ 2πi when n = −1;

0 otherwise.

For each function f(z) = zn with n 6= −1 there is a function F (z) = zn+1/(n + 1) with F ′(z) = f(z)
on A, so the integral around γ should be 0. However, for n = −1 the Proposition shows that there can
be no such function F : A → C with F ′(z) = 1

z . This means that there is no branch of the logarithm f
defined on all of A.

Winding Numbers

Let γ : [a, b] → C be a curve that does not pass through 0. A continuous choice of the argument on
γ is a continuous map θ : [a, b] → R with γ(t) = |γ(t)| exp iθ(t) for each t ∈ [a, b]. The change θ(b)−θ(a)
measures the angle about 0 turned through by γ. We call (θ(b)− θ(a))/2π the winding number n(γ, 0)
of γ about 0. Suppose that φ is another continuous choice of the argument on γ. Then θ(t)− φ(t) must
be an integer multiple of 2π. Since θ−φ is continuous on the connected interval [a, b], we see that there
is an integer k with φ(t)− θ(t) = 2kπ for all t ∈ [a, b]. Hence θ(b)− θ(a) = φ(b)− φ(a) and the winding
number is well defined.

When γ is a piecewise continuously differentiable curve, we can give a continuous choice of θ(t)
explicitly and hence find an expression for the winding number. Let

h(t) =
∫

γ|[a,t]

1
z

dz =
∫ t

a

γ′(t)
γ(t)

dt

for t ∈ [a, b]. The chain rule shows that

d

dt
(γ(t) exp−h(t)) = γ′(t)(exp−h(t))− γ(t)h′(t)(exp−h(t)) =

(
γ′(t)− γ(t)

γ′(t)
γ(t)

)
exp−h(t) = 0 .

11



Hence γ(t) exp−h(t) is constant. Therefore,

γ(t) = γ(a) exph(t) = γ(a) exp<h(t) exp i=h(t) .

This means that θ(t) = arg γ(a)+=h(t) gives a continuous choice of the argument of γ(t). Consequently,
the total angle turned through by γ is

=
(∫

γ

1
z

dz

)
.

If γ is piecewise continuously differentiable, we can apply this argument to each section of γ and so find
that the final formula still holds.

The formula is particularly important when γ is a closed curve. Then γ(b) = γ(a), so exph(b) = 1
and we must have h(b) = 2Nπi for some integer N . The number N counts the number of times γ winds
positively around 0. We have the formula:

N =
h(b)
2πi

=
1

2πi

∫
γ

1
z

dz .

We can also consider how many times a closed curve γ winds around any point wo that does not
lie on γ. By translating wo to 0 we see that this is

n(γ;wo) =
1

2πi

∫
γ

1
z − wo

dz ,

which is called the winding number of γ about wo.

Example: The curve γ : [0, 1] → C; t 7→ zo + re2πit has winding number

n(γ;wo) =
{

1 when |wo − zo| < r;
0 when |wo − zo| > r.

It is not defined when |wo − zo| = r.

Lemma 3.3
Let γ be a piecewise continuously differentiable closed curve taking values in the disc B(zo, R). Then
n(γ;wo) = 0 for all points wo /∈ B(zo, R).

Proof:
By translating and rotating the curve, we may assume that wo = 0 and zo is a positive real

number no smaller than R. For z in the disc B(zo, R), we can find an unique real number φ(z) ∈ (−π, π)
with z = |z|eiφ(z). (This is the principal branch of the argument of z.) The map φ : B(1, 1) → R is then
continuous. Hence, t 7→ φ(γ(t)) is a continuous choice of the argument on γ. So

n(γ; 0) =
φ(γ(b))− φ(γ(a))

2π
.

Since γ(b) = γ(a), this winding number must be 0. �

The winding number n(γ;w) is unchanged if we perturb γ by a sufficiently small amount.

Proposition 3.4 Winding numbers under perturbation
Let α, β : [a, b] → C be two closed curve and w a point not on [α]. If

|β(t)− α(t)| < |α(t)− w| for each t ∈ [a, b]

then n(β;w) = n(α;w).
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Proof:
By translating the curves, we may assume that w = 0. Then |β(t)−α(t)| < |α(t)| for t ∈ [a, b].

This certainly implies that β(t) 6= 0, so the winding number n(β; 0) exists. Write

β(t) = α(t)
(

1 +
β(t)− α(t)

α(t)

)
= α(t)γ(t) .

Since the argument of a product is the sum of the arguments, this implies that

n(β; 0) = n(α; 0) + n(γ; 0) .

However the inequality in the proposition shows that γ takes values in the disc B(1, 1) so the lemma
proves that n(γ; 0) = 0. �

Proposition 3.5 Winding number constant on each component
Let γ be a piecewise continuously differentiable closed curve in C. The winding number n(γ;w) is
constant for w in each component of C \ [γ] and is 0 on the unbounded component.

Proof:
The image [γ] is a compact subset of C, so it is bounded, say [γ] ⊂ B(0, R). The complement

U = C \ [γ] is open, so each component of the complement is also open. One component contains
C \ B(0, R), so it is the unique unbounded component that contains all points of sufficiently large
modulus.

Let wo ∈ U = C \ [γ]. Then there is a disc B(wo, r) ⊂ U . For w with |w − wo| < r we have

|(γ(t)− w)− (γ(t)− wo)| = |w − wo| < r 6 |γ(t)− wo| .

Proposition 3.4 then shows that n(γ;w) = n(γ;wo). So the function w 7→ n(γ;w) is continuous (indeed
constant) at wo. It follows that w 7→ n(γ;w) is a continuous integer-valued function on U . It must
therefore be constant on each component of U .

Lemma 3.3 shows that n(γ;w) = 0 for w outside the disc B(0, R). So the winding number must
be 0 on the unbounded component of U . �

Homotopy

Let γ0, γ1 : [a, b] → D be two piecewise continuously differentiable closed curves in the domain
D. A homotopy from γ0 to γ1 is a family of piecewise continuously differentiable closed curves γs for
s ∈ [0, 1] that vary continuously from γ0 to γ1. This means that the map

h : [0, 1]× [a, b] → D ; (s, t) 7→ γs(t)

is continuous. More formally, we define a homotopy to be a continuous map h : [0, 1]× [a, b] → D with

hs : [a, b] → D ; t 7→ h(s, t)

being a piecewise continuously differentiable closed curve in D for each s ∈ [0, 1]. We then say that the
curves h0 and h1 are homotopic and write h0 ' h1. This gives an equivalence relation between closed
curves in D.

Example: Suppose that γ0, γ1 : [0, 1] → D are closed paths in the domain D and that, for each t ∈ [0, 1],
the line segment [γ0(t), γ1(t)] lies within D. Then the map

h : [0, 1]× [0, 1] → D ; (s, t) 7→ (1− s)γ0(t) + sγ1(t)
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is continuous and defines a homotopy from γ0 to γ1. We sometimes call such a homotopy a linear
homotopy.

A closed curve γ in D is null-homotopic if it is homotopic in D to a constant curve. The domain
D is simply-connected if every closed curve in D is null-homotopic. For example, a disc B(zo, r) is
simply-connected since there is a linear homotopy from any curve γ in the disc to zo.

A domain D ⊂ C is called a star with centre zo if, for each point w ∈ D the entire line segment
[zo, w] lies within D. A domain D is a star domain if it is a star with some centre zo. Clearly every disc
is a star domain but such domains as C \ {0} are not. Every star domain is simply-connected because
a curve is linearly homotopic to the constant curve at the centre.

Proposition 3.6 Winding number and homotopy
If two closed curves γ0 and γ1 are homotopic in a domain D and w ∈ C \D, then n(γ0;w) = n(γ1;w).

Proof:
By translating the curves and the domain, we may assume that w = 0.

Let h : [0, 1] × [a, b] → D be the homotopy with γ0 = h0 and γ1 = h1. Since [0, 1] × [a, b] is a
compact subset of D, there is an ε > 0 with |hs(t)| > ε for each (s, t) ∈ [0, 1]× [a, b]. The homotopy h
is uniformly continuous. Hence there is a δ > 0 with

|hs(t)− hu(t)| < ε whenever |s− u| < δ .

This means that
|hs(t)− hu(t)| < |hu(t)| whenever |s− u| < δ .

Hence Proposition 3.4 shows that

n(hs; 0) = n(hu; 0) whenever |s− u| < δ .

This clearly establishes the result. �

Chains and Cycles

Let D be a domain in C. A chain in D is a finite collection γn : [an, bn] → D (for n = 1, 2, 3, . . . , N)
of piecewise continuously differentiable curves in D. We will write Γ = γ1 + γ2 + . . . + γN for this
collection. The empty chain will be written as 0. We can add two chains and obtain another chain. The
integral of a continuous function f : D → C around Γ is then defined to be the sum∫

Γ

f(z) dz =
N∑

n=1

∫
γn

f(z) dz .

In particular, the winding number n(Γ;w) of a chain Γ about any point w /∈ [Γ] is

n(Γ;w) =
N∑

n=1

n(γn;w) =
1

2πi

∫
Γ

1
z − w

dz .

A cycle in D is a chain Γ = γ1 + γ2 + . . . + γN where each point w ∈ C occurs the same number of
times as an initial point γn(an) as it does as an final point γn(bn). This means that a cycle consists of
a finite number of closed curves, each of which may be made up from a number of the curves γn. The
winding number n(Γ;w) of a cycle Γ is therefore an integer.

Proposition 3.2 shows that any analytic function f : D → C that has an antiderivative on D must
satisfy ∫

Γ

f(z) dz = 0

for every cycle Γ in the domain D.
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4 CAUCHY’S THEOREM

Let T be a closed triangle that lies inside the domain D. Let v0, v1, v2 be the vertices labelled in
anti-clockwise order around T . Then the edges [v0, v1], [v1, v2], [v2, v0] are straight-line paths in D. The
three sides taken in order give a closed curve [v0, v1] + [v1, v2] + [v2, v0]in D that we denote by ∂T .

Proposition 4.1 Cauchy’s theorem for triangles
Let f : D → C be an analytic function and T a closed triangle that lies within D. Then∫

∂T

f(z) dz = 0 .

This proof is due to Goursat and relies on repeated bisection. It underlies all the stronger versions of
Cauchy’s theorem that we will prove later.

Proof:

Set I =
∫

∂T

f(z) dz .

v0

v1

v2

T1

T2 T3

T4

Subdivide T into four similar triangles T1, T2, T3, T4 as shown. Then we have

4∑
k=1

∫
∂Tk

f(z) dz =
∫

∂T

f(z) dz

because the integrals along the sides of Tk in the interior of T cancel. At least one the integrals∫
∂Tk

f(z) dz

must have modulus at least 1
4 |I|. Choose one of the triangles with this property and call it T ′. Repeating

this procedure we obtain sequence of triangles (T (n)) nested inside one another with∣∣∣∣∫
∂T (n)

f(z) dz

∣∣∣∣ > |I|
4n

.
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Let L(γ) denote the length of a path γ and set L = L(∂T ). Then each Tk has L(∂Tk) = 1
2L.

Therefore, L(∂T (n)) = L/2n.

The triangle T is a compact subset of C with T (n) closed subsets. If the intersection
⋂

n∈N T (n)

of these sets were empty, then the complements T \ T (n) would form an open cover of T with no finite
subcover. Therefore, we must have

⋂
n∈N T (n) non-empty. Choose a point zo ∈

⋂
n∈N T (n).

The function f is differentiable at zo. So, for each ε > 0, there is a δ > 0 with∣∣∣∣f(z)− f(zo)
z − zo

− f ′(zo)
∣∣∣∣ < ε

whenever z ∈ B(zo, δ). This means that

f(z) = f(zo) + f ′(zo)(z − zo) + η(z)(z − zo)

with |η(z)| < ε for z ∈ B(zo, δ). For n sufficiently large, we have T (n) ⊂ B(zo, δ), so∣∣∣∣∫
∂T (n)

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂T (n)

f(zo) + f ′(zo)(z − zo) + η(z)(z − zo) dz

∣∣∣∣ .

The integrals ∫
∂T (n)

f(zo) dz and
∫

∂T (n)
f ′(zo)(z − zo) dz

can be evaluated explicitly and are both zero, so∣∣∣∣∫
∂T (n)

f(z) dz

∣∣∣∣ 6 ∫
∂T (n)

ε|z − zo| dz 6 εL(∂T (n)) sup{|z − zo| : z ∈ ∂T (n)} 6 εL(∂T (n))2 = ε
L2

4n
.

This gives

|I| =
∣∣∣∣∫

∂T

f(z) dz

∣∣∣∣ 6 4n

∣∣∣∣∫
∂T (n)

f(z) dz

∣∣∣∣ 6 εL2 .

This is true for all ε > 0, so we must have I = 0. �

We can use this proposition to prove Cauchy’s theorem for discs. The proof actually works for any
star domain.

Theorem 4.2 Cauchy’s theorem for a star domain
Let f : D → C be an analytic function on a star domain D ⊂ C and let γ be a piecewise continuously
differentiable closed curve in D. Then ∫

γ

f(z) dz = 0 .

Proof:
Let D be the star domain with centre zo then each line segment [zo, z] to a point z ∈ D lies

within D. By Proposition 3.1 we need only show that there is an antiderivative F of f , that is a
function with F ′(z) = f(z) for z ∈ D. Define F : D → C by

F (w) =
∫

[zo,w]

f(z) dz .

Since D is open, each w ∈ D is contained in a disc D(w, r) that lies within D. This implies that the
triangle with vertices zo, w, w + h lies within the star domain D provided that |h| < r. Then Cauchy’s
theorem for this triangle gives

F (w + h)− F (w) =
∫

[w,w+h]

f(z) dz .

Consequently,

|F (w + h)− F (w)− f(w)h| =

∣∣∣∣∣
∫

[w,w+h]

f(z)− f(w) dz

∣∣∣∣∣ 6 |h|. sup{|f(z)− f(w)| : z ∈ [w,w + h]} .

The continuity of f at w shows that sup{|f(z) − f(w)| : z ∈ [w,w + h]} tends to 0 as h tends to 0.
Hence F is differentiable at w and F ′(w) = f(w). �
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We wish to apply Theorem 4.2 under slightly weaker conditions on f . We want to allow there to
be a finite number of exceptional points in D where f is not necessarily differentiable but is continuous.
Later we will see that such a function must, in fact, be differentiable at each exceptional point.

Proposition 4.1′ Cauchy’s theorem for triangles
Let f : D → C be a continuous function that is complex differentiable at every point except wo ∈ D.
Let T be a closed triangle that lies within D. Then∫

∂T

f(z) dz = 0 .

Proof:
If wo /∈ T , then this result is simply Proposition 4.1 . Hence, we may assume that wo ∈ T .

Let T ε be the triangle obtained by enlarging T with centre wo by a factor ε < 1. Then we can divide
T \ T ε into triangles that lie entirely within T \ {wo}. The integral around each of these triangles is 0
by Proposition 4.1. Adding these results we see that∫

∂T

f(z) dz =
∫

∂T ε

f(z) dz .

wo

Since f is continuous on D, there is a constant K with |f(z)| 6 K for every z ∈ T . Therefore,∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂T ε

f(z) dz

∣∣∣∣ 6 L(∂T ε)K = εL(∂T )K .

This is true for every ε > 0, so we must have
∫

∂T

f(z) dz = 0 as required. �

This proposition allows us to extend Cauchy’s Theorem 4.2 to functions that fail to be differentiable
at one point (or, indeed, at a finite number of points).

Theorem 4.2′ Cauchy’s theorem for a star domain
Let f : D → C be a continuous function on a star domain D ⊂ C that is complex differentiable at every
point except wo ∈ D. Let γ be a piecewise continuously differentiable closed curve in D. Then∫

γ

f(z) dz = 0 .
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Proof:
We argue exactly as in the proof of Theorem 4.2 . Let zo be a centre for the star domain D

and define F (z) to be the integral of f along the straight line path [zo, z] from zo to z. The previous
proposition shows that

F (z + h)− F (z) =
∫

[z,z+h]

f(z) dz .

So F is differentiable with F ′(z) = f(z) for each z ∈ D. Now Proposition 3.1 gives the result. �

The crucial application of this corollary is the following. Suppose that f : D → C is an analytic
function on a disc D = B(zo, R) ⊂ C and wo ∈ D. Then we can define a new function g : D → C by

g(z) =


f(z)− f(wo)

z − wo
for z 6= wo;

f ′(wo) for z = wo.

This is certainly complex differentiable at each point of D except wo. At wo we know that f is differ-
entiable, so g is continuous. We can now apply Theorem 4.2′ to g and obtain

0 =
∫

γ

g(z) dz =
∫

γ

f(z)− f(wo)
z − wo

dz

for any closed curve γ in D that does not pass through wo. Now

0 =
∫

γ

g(z) dz =
∫

γ

f(z)− f(wo)
z − wo

dz =
∫

γ

f(z)
z − wo

dz − f(wo)
∫

γ

1
z − wo

dz .

So we obtain

f(wo)n(γ;wo) =
1

2πi

∫
γ

f(z)
z − wo

dz . (∗)

This applies, in particular, when γ is the boundary of a circle contained in D.

Theorem 4.3 Cauchy’s Representation Formula
Let f : D → C be an analytic function on a domain D ⊂ C and let B(zo, R) be a closed disc in D. Then

f(w) =
1

2πi

∫
C(zo,R)

f(z)
z − w

dz for w ∈ D(zo, R)

when C(z0, R) is the circular path C(z0, R) : [0, 2π] → C ; t 7→ zo + Reit.

Proof:
This follows immediately from formula (∗) above since the winding number of C(zo, R) about

any w ∈ B(zo, R) is 1. �

Cauchy’s representation formula is immensely useful for proving the local properties of analytic
functions. These are the properties that hold on small discs rather then the global properties that
require we study a function on its entire domain. The next chapter will use the representation formula
frequently but, as a first example:

Example: Let f : D → C be an analytic function on a domain D. For zo ∈ D there is a closed disc
B(zo, R) within D and Cauchy’s representation formula gives

f(zo) =
1

2πi

∫
C(zo,R)

f(z)
z − zo

dz =
∫ 2π

0

f(zo + Reiθ)
dθ

2π
.

So the value of f at the centre of the circle is the average of the values on the circle C.

Theorem 4.4 Liouville’s theorem
Any bounded analytic function f : C → C defined on the entire complex plane is constant.
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Proof:
Let w,w′ be any two points of C and let M be an upper bound for |f(z)| for z ∈ C. Then

Cauchy’s representation formula gives

f(w) =
1

2πi

∫
C(0,r)

f(z)
z − w

dz for each r > |w| .

Hence,

f(w)− f(w′) =
1

2πi

∫
C(0,r)

f(z)
z − w

− f(z)
z − w′

dz =
1

2πi

∫
C(0,r)

f(z)(w − w′)
(z − w)(z − w′)

for r > max{|w|, |w′|}. Consequently,

|f(w)− f(w′)| 6 L(C(0, r))
2π

sup
{
|f(z)||w − w′|
|z − w||z − w′|

: |z| = r

}
6 r

(
M |w − w′|

(r − |w|)(r − |w′|)

)
.

The right side tends to 0 as r ↗ +∞, so the left side must be 0. Thus f(w) = f(w′). �

Exercise: Show that an analytic function f : C → C that never takes values in the disc D(wo, R) is
constant.

For the function

g : C → C ; z 7→ 1
f(z)− wo

is bounded by 1/R and so is constant by Liouville’s theorem.

Corollary 4.5 The Fundamental Theorem of Algebra
Every non-constant polynomial has a zero in C.

Proof:
Suppose that p(z) = zN +aN−1z

N−1 + . . . a1z+a0 is a polynomial that has no zero in C. Then
f(z) = 1/p(z) is an analytic function. As z → ∞ so f(z) → 0. Hence f is bounded. By Liouville’s
theorem, p must be constant. �

By dividing a polynomial by z− zo for each zero zo we see that the total number of zeros of p, counting
multiplicity, is equal to the degree of p.

Homotopy form of Cauchy’s Theorem.

Let f : D → C be an analytic function on a domain D. We wish to study how the integral∫
γ

f(z) dz

varies as we vary the closed curve γ in D. Recall that two closed curves β, γ : [a, b] → D are linearly
homotopic in D if, for each t ∈ [a, b] the line segment [β(t), γ(t)] is a subset of D.

Theorem 4.6 Homotopy form of Cauchy’s Theorem.
Let f : D → C be an analytic map on a domain D ⊂ C. If the two piecewise continuously differentiable
closed curves α, β are homotopic in D, then∫

α

f(z) dz =
∫

β

f(z) dz .
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Proof:
Let h : [0, 1] × [a, b] → D be the homotopy. So each map hs : [a, b] → D ; t 7→ h(s, t) is

a piecewise continuously differentiable closed curve in D, h0 = α and h1 = β. This means that h is
piecewise continuously differentiable on each “vertical” line {s} × [a, b]. Initially we will assume that h
is also continuously differentiable on each “horizontal” line [0, 1]× {t}. For any rectangle

Q = {(s, t) ∈ [0, 1]× [a, b] : s1 6 s 6 s2 and t1 6 t 6 t2}
let ∂Q denote the boundary of Q positively oriented. Then h is piecewise continuously differentiable
on each segment of the boundary, so h(∂Q) is a piecewise continuously differentiable closed curve in D.
If we divide Q into two smaller rectangles Q1, Q2 by drawing a horizontal or vertical line ` then the

segments of the integrals
∫

h(∂Q1)

f(z) dz and
∫

h(∂Q2)

f(z) dz along ` cancel, so∫
h(∂Q)

f(z) dz =
∫

h(∂Q1)

f(z) dz +
∫

h(∂Q2)

f(z) dz .

For the original rectangle R = [0, 1]× [a, b] the image of the horizontal sides [0, 1]× {a} and [0, 1]× {b}
are the same since each hs is closed. Hence∫

h(∂R)

f(z) dz =
∫

β

f(z) dz −
∫

α

f(z) dz .

We need to show that this is 0.

Define ρ(z) = inf{|z − w| : w ∈ C \ D} to be the distance from z ∈ D to the complement of D.
Since D is open, ρ(z) > 0 for each z ∈ D. Moreover, ρ is continuous since |ρ(z) − ρ(z′)| 6 |z − z′|.
Hence, ρ attains a minimum value on the compact set h(R), say

ρ(h(s, t)) > r > 0 for every s ∈ [0, 1], t ∈ [a, b] .

This means that each disc B(h(s, t), r) is contained in D.

Furthermore, we know that h is uniformly continuous on the compact set [0, 1]× [a, b]. So there is
a δ > 0 with

|h(u, v)− h(s, t)| 6 r whenever ||(u, v)− (s, t)|| < δ . (∗)
Suppose that Q is a rectangle in R with diameter less than δ and Po a point in Q. Then h(Q) ⊂
B(h(Po), r) and the disc B(h(Po), r) is a subset of D. Cauchy’s theorem for star domains (4.2) can now
be applied to this disc to see that ∫

h(∂Q)

f(z) dz = 0 .

We can divide R into rectangles (Qn)N
n=1 each with diameter less than δ. So∫

h(∂R)

f(z) dz =
N∑

n=1

∫
h(∂Qn)

f(z) dz = 0

as required.

It remains to deal with the case where the homotopy h is not continuously differentiable on each
horizontal line. Choose a subdivision

0 = s(0) < s(1) < . . . < s(N − 1) < s(N) = 1

of [0, 1] with |s(k + 1) − s(k)| < δ for k = 0, 1, . . . , N − 1. Then equation (∗) above shows that
|h(s(k), t)−h(s(k + 1), t)| < r for each t ∈ [a, b]. Hence the entire line segment [h(s(k), t), h(s(k + 1), t)]
lies in the disc B(h(s(k), t), r) and hence in D. So hs(k) and hs(k+1) are LINEARLY homotopic in D.
We can certainly apply the above argument to linear homotopies, so we see that∫

hs(k)

f(z) dz =
∫

hs(k+1)

f(z) dz .

Adding these results gives ∫
α

f(z) dz =
∫

β

f(z) dz .

�
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Corollary 4.7 Cauchy’s Theorem for null-homotopic curves
Let f : D → C be an analytic map on a domain D and γ a piecewise continuously differentiable closed
curve in D that is null-homotopic in D. Then∫

γ

f(z) dz = 0 .

�

If the domain D is simply connected, then any closed curve in D is null-homotopic, so Cauchy’s theorem
will apply.
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5. CONSEQUENCES OF CAUCHY’S THEOREM

Cauchy Transforms

Let γ : [a, b] → C be a piecewise continuously differentiable path in C and φ : [γ] → C a continuous
function on [γ]. Then the integral

Φ(w) =
1

2πi

∫
γ

φ(z)
z − w

dz

exists for each w ∈ C \ [γ]. This is the Cauchy transform of φ. We will show that it defines a function
analytic everywhere except on [γ].

Proposition 5.1 Cauchy transforms have power series
Let Φ be the Cauchy transform of a continuous function φ : [γ] → C. For zo ∈ C \ [γ] let R be the
radius of the largest disc B(zo, R) that lies within C \ [γ]. Then

Φ(w) =
∞∑

n=0

an(w − zo)n for |w − zo| < R

where the coefficients an are given by

an =
1

2πi

∫
γ

φ(z)
(z − zo)n+1

dz .

Proof:
We may assume, by translating γ, that zo = 0. The formula for the sum of a geometric series

shows that
1

z − w
=

1
z

+
w

z2
+ . . . +

wN−1

zN
+

wN

zN (z − w)
.

Integrating this gives
Φ(w) = a0 + a1w + . . . + aN−1w

N−1 + EN (w)

where

ak =
1

2πi

∫
γ

φ(z)
zk+1

dz and EN (w) =
1

2πi

∫
γ

φ(z)wN

zN (z − w)
dz .

Let ||φ||∞ = sup{|φ(z)| : z ∈ [γ]}. For z ∈ [γ] we have |z| > R and |z − w| > R− |w|, so

|EN (w)| 6 L(γ)
2π

||φ||∞
(R− |w|)

(
|w|
R

)N

.

This shows that, for |w| < R,∣∣∣∣∣Φ(w)−
N−1∑
n=0

anwn

∣∣∣∣∣ = |EN (w)| → 0 as N →∞ .

Therefore the power series
∑

anwn converges on B(0, R) to Φ. �

Corollary 5.2 Cauchy transforms are infinitely differentiable
The Cauchy transform Φ of a continuous function φ : [γ] → C is infinitely differentiable on C \ [γ] with

Φ(n)(zo) =
n!
2πi

∫
γ

φ(z)
(z − zo)n+1

dz .
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Proof:
We know that Φ is given by a power series Φ(z) =

∑∞
n=0 an(z− zo)n on the disc B(zo, R). By

Corollary 2.3 this power series is infinitely differentiable. Moreover,

Φ(n)(zo) = n!an =
n!
2πi

∫
γ

φ(z)
(z − zo)n+1

dz

as required. �

If we apply these results to the Cauchy representation formula we obtain the following theorem.

Theorem 5.3 Analytic functions have power series
Let f : D → C be an analytic function on a domain D ⊂ C. For each point zo ∈ D, let R be the radius
of the largest disc B(zo, R) that lies within D. Then

f(z) =
∞∑

n=0

an(z − zo)n for |z − zo| < R

where the coefficients an are given by

an =
1

2πi

∫
Cr

f(z)
(z − zo)n+1

dz

for Cr the circle of radius r (0 < r < R) about zo. Therefore, f is infinitely differentiable on D and we
have representation formulae

f (n)(w) =
n!
2πi

∫
Cr

f(z)
(z − w)n+1

dz

for w with |w − zo| < r.

Proof:
For 0 < r < R, let Cr be the circle of radius r with centre zo. The Cauchy representation

formula ( Theorem 4.3 ) shows that f is the Cauchy transform

f(w) =
1

2πi

∫
Cr

f(z)
z − w

dz

for w ∈ B(zo, r). Hence, f must be given by a power series
∑∞

n=0 an(w− zo)n on this disc B(zo, r). The
coefficients an must be

an =
f (n)(zo)

n!
,

which is independent of r. This holds for all r < R, so the series
∑∞

n=0 an(w − zo)n must converge on
all of B(zo, R).

Also Corollary 5.2 shows that the Cauchy transform satisfies

f (n)(w) =
n!
2πi

∫
Cr

f(z)
(z − w)n+1

dz .

�

Note that the expression for the nth derivative clearly implies that

|f (n)(w)| 6 n!r
(r − |w|)n+1

sup{|f(z)| : |z| = r}

for each w ∈ D(0, r). These are Cauchy’s inequalities.

This theorem has many useful consequences. Our first will be a partial converse of Cauchy’s
theorem.

Proposition 5.4 Morera’s theorem
Let f : D → C be a continuous function on a domain D ⊂ C. If, for every closed triangle T ⊂ D, the

integral

∫
∂T

f(z) dz is 0, then f is analytic.
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Proof:
Let zo ∈ D and choose R > 0 so that B(zo, R) ⊂ D. Then we can define a function F :

B(zo, R) → C by

F (z) =
∫

[zo,z]

f(z) dz .

Since f is continuous, the fundamental theorem of calculus shows that F is complex differentiable at each
point of B(zo, R) with F ′(z) = f(z) (compare Theorem 4.2 ). Now F is analytic on the disc B(zo, R)
and so the previous theorem shows that it is twice continuously differentiable. Thus f ′(z) = F ′′(z)
exists. �

Note that the result fails if we do not insist that f is continuous. For example the function f : C → C
that is 0 except at at a single point is not analytic.

The Local Behaviour of Analytic Functions

The power series expansion for an analytic function is very useful for describing the local behaviour
of analytic functions. A key result is that the zeros of an non-constant analytic function are isolated.
This means that if f : D → C is a non-constant analytic function and f(zo) = 0, then there is a
neighbourhood V of zo on which f has no other zeros.

Theorem 5.5 Isolated Zeros
The zeros of a non-constant analytic function are isolated.

Proof:
Let f : D → C be an analytic function. For each z ∈ D we know that there is a power series

f(w) =
∞∑

n=0

an(w − z)n

that converges to f(w) on some disc B(z,R). The coefficients an are given by f (n)(z)/n!. If all
the coefficients an are 0, then f is zero on the entire disc B(z,R). Conversely, if f is zero on some
neighbourhood V of z, then each derivative f (n)(z) is 0 and so each coefficient an is 0.

Let A be the set: {z ∈ D : there is a neighbourhood V of z with f(w) = 0 for all w ∈ V }. This
is clearly open. However, we have shown that A = {z ∈ D : f (n)(z) = 0 for all n = 0, 1, 2, . . . }. If
z ∈ B = D \A, then there is a natural number n with f (n)(z) 6= 0. Since f (n) is continuous, f (n)(w) 6= 0
on some neighbourhood of z. Therefore, B is also open. Since D is connected, one of the two sets A,B
must be empty. If B is empty, then f is constantly 0 on D. If A is empty, we will show that the zeros
of f are isolated.

Let f : D → C be a non-constant analytic function with f(z) = 0 for some z ∈ D. Since f is not
constant, the set B can not be all of D and must therefore be empty. This means that at least one of
the coefficients of the power series

f(w) =
∞∑

n=0

an(w − z)n for w ∈ B(z, r)

is non-zero. Let aN be the first such coefficient. Then

f(w) = (w − z)N

( ∞∑
n=N

an(w − z)n−N

)
.

Since the power series
∑

an(w − z)n converges on B(z, r), so does
∑

an(w − z)n−N and it gives an
analytic function F : B(z, r) → C. Note that F (z) = aN 6= 0. Since F is continuous, there is an r with
0 < r < R and F (w) 6= 0 for w ∈ B(zo, r). This means that f(w) = (w− zo)NF (w) is not 0 on B(zo, r)
except at zo. Thus zo is an isolated zero. �
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Corollary 5.6 Identity Theorem
Let f, g : D → C be two analytic functions on a domain D. If the set E = {z ∈ D : f(z) = g(z)}
contains a non-isolated point, then f = g everywhere on D.

Proof:
E is the set of zeros of the analytic function f − g. �

This corollary gives us the principle of analytic continuation: If f : D → C is an analytic function
on a (non-empty) domain D and f extends to an analytic function F : Ω → C on some larger domain
Ω, then F is unique. For, if F̃ : Ω → C were another extension of f , then F and F̃ would agree on D
and hence on all of Ω. However, there may not be any extension of f to a larger domain.

Let f : D → C be a non-constant analytic function on a domain D ⊂ C. For any point zo ∈ D, we
know that f(z) is represented by a power series

f(w) =
∞∑

n=0

an(w − zo)n

on some disc B(zo, R). Clearly a0 = f(zo). Since the zeros of f−f(zo) are isolated, there must be a first
coefficient (after a0) that is non-zero, say aN . We call N the degree of f at zo and write it deg(f ; zo).
We can write f as

f(w) = f(zo) + (w − zo)Ng(w)

for w ∈ B(zo, R) and some analytic function g : B(zo, R) → C with g(zo) 6= 0. Indeed, we can define a
function F on all of D by

F (w) =
{

f(w)−f(zo)
(w−zo)N when w ∈ D \ {zo};

g(w) when w ∈ B(zo, R).

These definitions agree on B(zo, R) \ {zo} and so do define an analytic function F : D → C with
f(w) = f(zo) + (w − zo)NF (w) on all of D.

Locally Uniform Convergence

Let fn and f be functions from a domain D into C. We say that fn → f locally uniformly on D if,
for each zo ∈ D, there is a neighbourhood V of zo in D with fn(z) → f(z) uniformly for z ∈ V .

Example: Let
∑∞

n=0 anzn be a power series with radius of convergence R > 0. Then the partial sums

SN (z) =
N∑

n=0

anzn

converge locally uniformly on B(0, R) to f(z) =
∑∞

n=0 anzn. This was proven in Proposition 2.1 .

Suppose that fn → f on the domain D. Then, for each zo ∈ D, there is an open disc ∆(zo) in
D, centred on zo, with fn(z) → f(z) uniformly on ∆(zo). If K is any compact subset of D, then K
is covered by these sets ∆(zo) for zo ∈ K. Hence, there is a finite subcover. This shows that fn → f
uniformly on the compact set K. We will use this particularly when K is the image [γ] of a curve γ.

Suppose that each of the functions fn is continuous on D. The uniform limit of continuous functions
is continuous, so f is continuous on each ∆(zo) and hence on all of D. We will now prove the the locally
uniform limit of analytic functions is analytic.

Proposition 5.7 Locally uniform convergence of analytic functions
Let fn : D → C be a sequence of analytic functions on a domain D that converges locally uniformly to

a function f . Then f is analytic on D. Moreover, the derivatives f
(k)
n converge locally uniformly on D

to f (k).
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Proof:
Let zo ∈ D. Then there is a disc ∆ = B(zo, r) on which fn converge uniformly to f . The

functions fn are continuous so the uniform limit f is also continuous on ∆. Also, the uniform convergence
implies that ∫

γ

fn(z) dz →
∫

γ

f(z) dz

for any closed curve γ in ∆. Since fn is analytic, Cauchy’s theorem for the disc ∆ implies that∫
γ

fn(z) dz = 0. Therefore,
∫

γ
f(z) dz = 0. Morera’s theorem now shows that f is analytic on ∆.

Since zo is arbitrary, f is analytic on all of D.

Now let C(zo, s) be the circle of radius s < r about zo. For |w| < s Cauchy’s representation formula
( 4.3 ) gives

f (k)
n (w) =

k!
2πi

∫
C(zo,s)

fn(z)
(z − w)k+1

dz

and a similar formula for f , which we now know is analytic. Therefore,

|f (k)
n (w)− f (k)(w)| =

∣∣∣∣∣ k!
2πi

∫
C(zo,s)

fn(z)− f(z)
(z − w)k+1

dz

∣∣∣∣∣
6

k!
2π

L(C(zo, s)) sup
{∣∣∣∣fn(z)− f(z)

(z − w)k+1

∣∣∣∣ : |z − zo| = s

}
6

k!s
(s− |w − zo|)k

sup{|fn(z)− f(z)| : |z − zo| = s}

and we see that f
(k)
n (w) → f (k)(w) uniformly on any disc D(zo, t) with t < s. �

This theorem gives us an alternative proof of Proposition 2.2 , which showed that a power series
could be differentiated term by term inside its radius of convergence. For suppose that s(z) =

∑
an(z−

zo)n is a power series with radius of convergence R > 0. Then the partial sums

SN (z) =
N∑

n=0

an(z − zo)n

converge locally uniformly to s on B(zo, R). Each SN is a polynomial and so is certainly analytic.
Therefore s is analytic on B(zo, R). Moreover,

s′(z) = lim
N→∞

S′N (z) = lim
N→∞

N∑
n=0

nan(z − zo)n−1 =
∞∑

n=0

nan(z − zo)n−1 .

Isolated Singularities

Let D be a domain and zo a point of D. We are concerned about an analytic function f : D\{zo} →
C that is not defined at the point zo. We call zo an isolated singularity of f . It is defined and analytic at
every point of some disc B(zo, R) except the centre zo. We will study the behaviour of f as we approach
the singular point.

The simplest possibility for f is that we can extend it to a function analytic on all of D, even at
the point zo. If this is the case, we say that f has a removable singularity at zo. Usually we replace f
by the analytic extension:

F (z) =
{

f(z) when z ∈ D \ {zo};
wo when z = zo.
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Since F is to be continuous, the value wo it takes at zo must be lim
z→zo

f(z) and F is unique. We will now

show that f has a removable singularity at zo if and only if the limit lim
z→zo

f(z) exists.

Example: The function

s : C \ {0} → C ; z 7→ sin z

z

has a removable singularity at 0. For the power series for the sine function shows that

s(z) =
∞∑

k=0

(−1)k z2k

(2k + 1)!
.

So we can extend s to 0 by sending 0 to 1. This extension is given by a power series and so is analytic
on all of C.

Proposition 5.8 Removable singularities
The analytic function f : D \ {zo} → C has a removable singularity at zo ∈ D if and only if there is a
finite limit wo ∈ C with f(z) → wo as z → zo.

Proof:
If f has a removable singularity at zo, then there is an analytic extension F : D → C. This

extension is continuous, so f(z) = F (z) → F (zo) as z → zo.

For the converse, suppose that f(z) → wo as z → zo. Then we can define

F : D → C ; z 7→
{

f(z) when z ∈ D \ {zo};
wo when z = zo.

This is certainly continuous at zo and analytic elsewhere on D. Therefore, we can apply Cauchy’s

theorem to any triangle T within D using Proposition 4.1′ and obtain
∫

∂T

f(z) dz = 0. Morera’s

theorem now shows that F is analytic on all of D. �

When we proved Cauchy’s theorem we considered a function f : D → C that was analytic except
at one point zo where it was continuous. The last proposition shows that such a function is actually
analytic even at zo. So the exceptional point is no different from any other.

It is useful to strengthen the last proposition a little.

Corollary 5.9 Riemann’s Removable Singularity Criterion
The analytic function f : D \ {zo} → C has a removable singularity at zo ∈ D if and only if
lim

z→zo

(z − zo)f(z) = 0.

Note that when f is bounded in a neighbourhood of zo, then the limit lim(z − zo)f(z) certainly exists
and is 0 and so there must be a removable singularity at zo.

Proof:
The function g(z) = (z − zo)f(z) is analytic on D \ {zo} and tends to 0 as z → zo. Hence the

previous proposition tells us that g has a removable singularity at zo. Let G : D → C be the analytic
extension of g. We certainly have G(zo) = limz→zo g(z) = 0. Hence

f(z) =
G(z)−G(zo)

z − zo
→ G′(zo) as z → zo .

Therefore, the previous proposition shows that f has a removable singularity at zo. �
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So far we have only considered functions f : D → C taking values in the finite complex plane C.
However, in the Algebra and Geometry course you considered functions taking values in the Riemann
sphere (or extended complex plane) C∞. The Riemann sphere consists of the complex plane C and one
extra point ∞. You saw that the extra point ∞ behaved in the same way as the finite points in C
and that the Möbius transformations z 7→ (az + b)/(cz + d) permuted the points of C∞. We now wish
to explain what it means for a function f : D → C∞ that takes values in the Riemann sphere to be
analytic.

Let f : D → C∞ be a function defined on a domain D ⊂ C and zo ∈ D. If f(zo) ∈ C, then f is

complex differentiable at zo if the limit lim
z→zo

f(z)− f(zo)
z − zo

exists and is a point of C. If f(zo) = ∞, we

use the Möbius transformation J : w 7→ 1/w to send ∞ to a finite point and then ask if J ◦ f is complex
differentiable at zo. Thus we say that f is complex differentiable at the point zo with f(zo) = ∞ if
z 7→ 1/f(z) is complex differentiable at zo. (It is not useful to define a value for f ′(zo) at points where
f(zo) = ∞.) We call a point zo where f(zo) = ∞ and f is complex differentiable a pole of f . A function
f : D → C∞ that is is not identically ∞ but is complex differentiable at each point of D is meromorphic
on D. Since the zeros of a non-constant analytic function are isolated, the poles of a meromorphic
function are also isolated. Thus a meromorphic function is analytic on its domain except for a set of
poles each of which is isolated. For example, if f : D → C is an analytic function and is not identically
0, then z 7→ 1/f(z) is meromorphic. This implies that each rational function is meromorphic on C.

Suppose that f : D → C is a meromorphic function and has a pole at zo. The function f is
certainly continuous at zo so there is a neighbourhood V of zo with |f(z)| > 1 for z ∈ V . Now the
function g : z 7→ 1/f(z) is complex differentiable and finite at each point of V and it has a zero at zo.
Since f is not identically ∞, g can not be identically 0. Therefore, the zero at zo is isolated. This means
that we can write g(z) = (z − zo)NG(z) for some natural number N > 1 and some function G that is
analytic near zo and has G(zo) 6= 0. Therefore f(z) = (z − zo)−NF (z) where F (z) = 1/G(z) is analytic
near zo and has F (zo) 6= 0,∞. This show how the meromorphic function f behaves near a pole. We
write N = deg(f ; zo) and call zo a pole of order N for f .

We will say that an analytic function f : D\{zo} → C has a pole at zo ∈ D if there is a meromorphic
function F : D → C∞ that extends f and F has a pole at zo. This is similar to f having a removable
singularity at zo except that the correct value to put for f(zo) is ∞.

Proposition 5.10 Poles as isolated singularities
The analytic function f : D \ {zo} → C has a pole at zo if and only if f(z) →∞ as z → zo.

Proof:
If f has an extension F with a pole at zo, then f(z) = F (z) → F (zo) = ∞ as z → zo.

For the converse, suppose that f(z) → ∞ as z → zo. There is a neighbourhood V of zo with
|f(z)| > 1 for z ∈ V \ {zo}. Hence, g : z 7→ 1/f(z) is bounded, analytic on V \ {zo} and has g(z) → 0 as
z → zo. Corollary 5.9 shows that g has a removable singularity at zo so there is a function G : V → C
extending g. Now the function

F : z 7→
{

f(z) when z ∈ D \ {zo};
1/G(z) when z ∈ V .

is well-defined and gives a meromorphic extension of f . �

There remain some isolated singularities that are neither removable singularities nor poles. We call
these essential singularities. Functions behave very dramatically near an essential singularity.

Example: The function f : z 7→ exp(1/z) has an essential singularity at 0. For real values of t we have

exp(1/t) →∞ as t ↘ 0 + while exp(1/t) → 0 as t ↗ 0−
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so the limit limz→0 f(z) can not exist either as a finite complex number or as ∞. Therefore, f can not
have either a removable singularity or a pole at 0.

Exercise: The function g : z 7→ (cos z) exp(1/z) has an essential singularity at 0.

The function cos z is analytic and non-zero near 0. If g had a removable singularity or a pole at 0,
then exp(1/z) = g(z)/ cos z would also have a removable singularity or a pole at 0. We know that
this is not true.

Proposition 5.11 Weierstrass - Casorati Theorem
An analytic function takes values arbitrarily close to any complex number on any neighbourhood of an
essential singularity.

Proof:
Let f : D \ {zo} → C be an analytic function with an isolated singularity at zo. Suppose that

there is some neighbourhood of zo on which f does not take values arbitrarily close to wo ∈ C. Say

|f(z)− wo| > ε for 0 < |z − zo| < R .

Then the function g : z 7→ 1/(f(z) − wo) is bounded by 1/ε for 0 < |z − zo| < R. Therefore, g has a
removable singularity at zo by Corollary 5.9 . Consequently, f(z) = wo + 1/g(z) will have a removable
singularity or a pole at zo.

A similar argument applies for wo = ∞. Suppose that

|f(z)| > K for 0 < |z − zo| < R .

Then g : z 7→ 1/f(z) is bounded by 1/K for 0 < |z − zo| < R. Therefore, g has a removable singularity
at zo and f will have a removable singularity or a pole. �

(In fact much more is true. Picard showed that in every neighbourhood of an essential singularity
the function takes each value w ∈ C∞ with at most two exceptions. The example z 7→ exp(1/z) takes
every value except 0 and ∞.)

Analytic Functions on an Annulus

Let A = {z ∈ C : R1 < |z| < R2} be an annulus or ring-shaped domain and let f : A → C be an
analytic function. We have seen that

∫
γ

f(z) dz can be non-zero, for example when f(z) = 1/z. In this
section we want to study what values the integral can take.

Proposition 5.12 Cauchy’s theorem on an annulus
For each analytic function f : A → C there is a constant Kf with

1
2πi

∫
γ

f(z) dz = n(γ; 0)Kf

for every closed, piecewise continuously differentiable path γ in A.
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Note that this is certainly true when f is analytic on the entire disc {z : |z| < R2} because of Cauchy’s
theorem. In this case Kf = 0. Also, it is true for f(z) = 1/z because of the definition of the winding
number n(γ; 0). In this case, Kf = 1.

Proof:
Let S be the strip {w = u + iv ∈ C : log R1 < u < log R2}, which is a star with any point as

a centre. The exponential mapping exp : S → A; w 7→ ew maps S onto A. Cauchy’s theorem for star
domains ( 4.2 ) shows that the analytic function φ : S → C ; φ(w) = f(ew)ew has an antiderivative Φ.
Now ew+2πi = ew so φ(w + 2πi) = φ(w) and hence Φ′(w + 2πi) = Φ′(w). Hence, there is a constant Kf

with
Φ(w + 2πi) = Φ(w) + 2πiKf .

Let Cr be the circle Cr : [0, 2π] → A, t 7→ reit for R1 < r < R2. Then∫
Cr

f(z) dz =
∫ 2π

0

f(reit)ireit dt = i

∫ 2π

0

φ(log r + it) dt = Φ(log r + 2πi)− Φ(log r) = 2πiKf

so we can determine Kf from this integral.

Consider first the case where Kf = 0. Then we have Φ(w + 2nπi) = Φ(w) for each n ∈ Z. So
we can define a function F : A → C unambiguously by F (z) = Φ(w) for any w with z = ew. The
derivative of this satisfies F ′(ew)ew = Φ′(w) = φ(w)w = f(ew)ew. Hence, F ′(z) = f(z) and f has an
antiderivative on A. Consequently, ∫

γ

f(z) dz = 0

for any closed curve γ in A by Proposition 3.2 .

Now suppose that Kf 6= 0. Then we can replace f by the function

g(z) = f(z)− Kf

z
.

This has

Kg =
1

2πi

∫
Cr

g(z) dz =
1

2πi

∫
Cr

g(z) dz − Kf

2πi

∫
Cr

1
z

dz = Kf − n(Cr; 0)Kf = 0 .

Therefore, we can apply the previous argument to g and obtain

1
2πi

∫
γ

f(z) dz =
1

2πi

∫
γ

g(z) dz +
Kf

2πi

∫
γ

1
z

dz = 0 + n(γ; 0)Kf

as required. �

We can also apply this result to an annulus A = {z ∈ C : R1 < |z − zo| < R2} centred at some
other point zo. Then we have

1
2πi

∫
γ

f(z) dz = n(γ; zo)Kf

for any closed curve γ in A. This result is particularly useful when R1 = 0. Then we call the constant
Kf the residue of f at zo and denote it by Res(f ; zo).

Proposition 5.13 Analytic functions on an annulus
For each analytic function f : A → C there are analytic functions

F1 : {z : |z| > R1} → C and F2 : {z : |z| < R2} → C

with f(z) = F2(z)− F1(z) for each z ∈ A.
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Proof:
We proceed as in the proof of the Cauchy Representation Theorem ( 4.3 ). Let w be a fixed

point in A and set

g(z) =
f(z)− f(w)

z − w
for z ∈ A \ {w} .

Then g(z) → f ′(w) as z → w, so g has a removable singularity at w ( Proposition 5.8 ). If we set
g(w) = f ′(w) then we obtain a function g analytic on all of the annulus A. For any closed curve γ in
A \ {w} we have

1
2πi

∫
γ

f(z)
z − w

dz − f(w)
2πi

∫
γ

1
z − w

dz =
1

2πi

∫
γ

g(z) dz ,

which gives
1

2πi

∫
γ

f(z)
z − w

dz = n(γ; 0)f(w) +
1

2πi

∫
γ

g(z) dz .

We can apply this when γ is the circle Cr for r 6= |w|. For this the previous proposition shows that

1
2πi

∫
γ

g(z) dz = Kg

is independent of r. Hence

1
2πi

∫
Cr

f(z)
z − w

dz = Kg when R1 < r < |w|

1
2πi

∫
Cr

f(z)
z − w

dz = f(w) + Kg when |w| < r < R2 .

(∗)

Let

F1(w) =
1

2πi

∫
Cr

f(z)
z − w

dz for R1 < r < |w| .

Corollary 5.2 shows that F1 is an analytic function of w on {w : r < |w|}. Since f(z)/(z−w) is analytic
on the annulus {z : R1 < |z| < |w|} the value of F1(w) is independent of r ∈ (R1, |w|). This means that
F1 is an analytic function on {w : R1 < |w|}. Similarly,

F2(w) =
1

2πi

∫
Cr

f(z)
z − w

dz for |w| < r < R2

gives an analytic function on {w : |w| < R2}.

Finally, equations (∗) shows that

f(w) = F2(w)− F1(w) .

�

We already know that analytic functions on discs have power series expansions. The last proposition
gives similar expansions for analytic functions on an annulus.

Corollary 5.14 Laurent expansions
For each analytic function f : A = {z ∈ C : R1 < |z − zo| < R2} → C there are coefficients an for n ∈ Z
with

f(w) =
∞∑

n=−∞
an(w − zo)n for w ∈ A .

This series converges locally uniformly on the annulus A. Moreover,

n(γ; 0)an =
1

2πi

∫
γ

f(z)
(z − zo)n+1

dz

for every n ∈ Z and any piecewise continuously differentiable closed curve γ in A.
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Proof:
By translating A we may ensure that zo = 0. Then we know that f(w) = F2(w) − F1(w)

for analytic functions F1 : {w : R1 < |w|} → C and F2 : {w : |w| < R2} → C. The function F2 is

analytic on a disc, so it has a power series expansion F2(w) =
∞∑

n=0

bnwn that converges locally uniformly

on {w : |w| < R2}.

The argument for F1 is similar but the disc is centred on ∞ in C∞ rather than on 0. Hence we
must begin by using a Möbius transformation to move ∞ to 0. First note that

F1(w) =
1

2πi

∫
Cr

f(z)
z − w

dz has |F1(w)| 6 r sup{|f(z)| : |z| = r}
|w| − r

so F1(w) → 0 as w → ∞. Let G(z) = F1(1/z) then G(z) → 0 as z → 0. Therefore G has a removable
singularity at 0 and so gives us an analytic function G : {z : |z| < 1/R1} → C. This has a power series

expansion G(z) =
∞∑

n=1

cnzn that converges locally uniformly on {z : |z| < 1/R1}. (The constant term is 0

since G(0) = 0.) Thus F1(w) =
∞∑

n=1

cnw−n and the series converges locally uniformly on {w : R1 < |w|}.

Putting these power series together we obtain

f(w) =
∞∑

n=0

bnwn −
∞∑

n=1

cnw−n .

Both parts of this sum converge locally uniformly on the annulus A. This gives the Laurent series we
wanted.

Since the Laurent series for f converges uniformly on the compact set [γ], we see that

1
2πi

∫
γ

f(z)
(z − zo)n+1

dz =
∞∑

k=−∞

ak
1

2πi

∫
γ

(z − zo)k−n−1 dz .

We can easily evaluate the integrals
∫

γ
(z−zo)m dz and see that they are 0 except when m = −1. Hence,

1
2πi

∫
γ

f(z)
(z − zo)n+1

dz = ann(γ; zo) .

�

Laurent Series about isolated singularities

Let zo be a point in the domain D and let f : D \ {zo} → C be an analytic function. So f has
an isolated singularity at zo. There will be a disc B(zo, R) that lies within D. So f is analytic on the
annulus A = {z : 0 < |z − zo| < R} and has a Laurent expansion

f(z) =
∞∑

n=−∞
an(z − zo)n

on this annulus. Corollary 5.14 shows that the residue of f at zo is Res(f ; zo) = a−1.
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Proposition 5.15 Laurent series for isolated singularities
Let f : D \ {zo} → C be an analytic function with an isolated singularity at zo and let

f(z) =
∞∑

n=−∞
an(z − zo)n

be its Laurent expansion that converges for 0 < |z − zo| < R. Then

(a) f has a removable singularity at zo if and only if an = 0 for n < 0.

(b) f has a pole at zo of order N if and only if an = 0 for n < −N and a−N 6= 0.

(c) f has an essential singularity at zo if and only if an 6= 0 for infinitely many negative values of n.

Proof:
(a) Suppose that f has a removable singularity at zo. then there is an analytic function

F : D → C extending f . For γ a closed curve in the annulus A we have

an =
1

2πi

∫
C

F (z)
(z − zo)n+1

dz

and Cauchy’s theorem shows that this is 0 for n < 0. Conversely, if an = 0 for n < 0, then the Laurent
series reduces to a power series and defines an analytic extension of f .

(b) Suppose that f has a pole of order N at zo. Then f(z) = (z − zo)−NG(z) for some function G
analytic near zo and with G(zo) 6= 0. The Laurent series for G is

G(z) =
∞∑

n=−∞
an−N (z − zo)n .

This has a removable singularity at zo, so part (a) implies that an = 0 for n < −N . We also have
a−N = G(zo) 6= 0. Conversely, if an = 0 for n < −N and a−N = 0, then

f(z) = (z − zo)−N
∞∑

n=0

an−N (z − zo)n

so f has a pole of order N at zo.

(c) The singularity is essential if and only if it is neither removable nor a pole. Similarly, the Laurent
series has an 6= 0 for infinitely many negative n if and only if there is no integer N with an = 0 for
n < −N . Thus (a) and (b) imply (c). �

Laurent series give us a quick proof of the Residue theorem at least for simply connected domains.
Suppose that f has an isolated singularity at zo and has Laurent series

∑∞
n=−∞ an(z − zo)n. The part

P (z) =
−1∑

n=−∞
an(z − zo)n

of this series is called the principal part of f at zo. The principal part is a power series in 1/(z− zo) and
converges for z sufficiently close to zo. Therefore, it must converge for all z ∈ C \ {zo}. The difference
f − P is analytic at zo.

The Maximum Modulus Principle

Theorem 5.16 Maximum Modulus Principle
Let f : D → C be an analytic function on a domain D ⊂ C. If the modulus |f | has a local maximum at
a point zo ∈ D, then f is constant on D.
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Proof:
The hypothesis means that there is a disc D(zo, R) ⊂ D with

|f(z)| 6 |f(zo)| for all z ∈ D(zo, R) .

For any r with 0 < r < R let C(r) be the circle of radius r centred on zo. Cauchy’s representation
theorem ( 4.3 ) shows that

f(zo) =
∫

C(r)

f(z) dz =
∫ 2π

0

f(zo + reiθ)
dθ

2π
.

Set M = |f(zo)| and write f(zo) = Meiα. Then we see that

M = <
(
f(zo)e−iα

)
6
∫ 2π

0

<
(
f(zo + reiθ)e−iα

) dθ

2π
6
∫ 2π

0

|f(zo + reiθ)| dθ

2π
6
∫ 2π

0

M
dθ

2π
= M .

There must be equality throughout this and, since the integrand is continuous, this means that

<
(
f(zo + reiθ)e−iα

)
= |f(zo + reiθ)| = M

for all θ. Therefore, f(zo + reiθ) = M .

The function z 7→ f(z) − f(zo) is analytic and has zeros at every point of D(zo, R). So Theorem
5.5 shows that it is constant. �

The maximum modulus principle is very useful indeed. The commonest way to apply it is as
follows. Suppose that K is a compact set and f is analytic on some domain D containing K. Then
|f | is continuous on K and so is bounded above and attains its supremum at some point zo. If zo is
an interior point of K, then the maximum modulus principle tells us that f is constant. In this case,
f achieves its maximum modulus at each point of K. Thus we see that in every case the maximum
modulus of f is achieved on the boundary of K.
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6. THE HOMOLOGY FORM OF CAUCHY’S THEOREM

*The proof of the Homology Form of Cauchy’s Theorem is not examinable.*

The aim of this chapter is to prove the following theorem.

Theorem 6.1 Homology form of Cauchy’s Theorem
Let Γ be a cycle in the domain D ⊂ C and suppose that n(Γ;w) = 0 for each w ∈ C \D. Then, for any
analytic function f : D → C we have ∫

Γ

f(z) dz = 0 .

Note that, for each point w ∈ C \D, the map pw : z 7→ 1/(z − w) is analytic on D and

n(Γ;w) =
1

2πi

∫
Γ

pw(z) dz .

So we must certainly have n(Γ;w) = 0 if the integral of any analytic function around Γ is to vanish.

We will prove the theorem is two stages. First we will prove it for “grid cycles” that are made up of
straight line segments parallel to the axes. Then we will approximate any cycle by such a “grid cycle”.

Fix a number δ > 0 and consider the grid of δ × δ-squares

Q = {x + iy : mδ 6 x 6 (m + 1)δ, nδ 6 y 6 (n + 1)δ}

for m,n ∈ Z. The centre of this square will be denoted by c(Q) and the boundary by ∂Q. The boundary
is made up of the four edges of Q followed anti-clockwise. For simplicity we will call a cycle made up
from the edges of these squares a grid cycle.

Lemma 6.2
Any grid cycle B satisfies B =

∑
n(B; c(Q))∂Q where the sum is over all δ × δ squares Q in the grid.

Proof:
The set [B] of points on the cycle B is compact and so contained in some disc. Lemma

3.3 shows that the winding number n(B; c(Q)) is zero for Q outside this disc. Hence the sum A =∑
n(B; c(Q))∂Q in the lemma has only finitely many non-zero terms and does give a grid cycle.

We can write the cycle B as a sum
∑

k(η)η over all of the edges η of the squares, with the coefficients
k(η) being (positive or negative) integers. A particular edge η separates two squares, say Q+ and Q−

with η having coefficient +1 in ∂Q+ and −1 in ∂Q−.

Suppose that the coefficient k(η) is 0. Then the two points c(Q+) and c(Q−) both lie in the same
component of C \ [B]. So Proposition 3.5 shows that n(B; c(Q+)) = n(B; c(Q−)).

More generally, if k(η) = k, then the coefficient of η in B − k∂Q+ is 0. So

n(B − k∂Q+; c(Q+)) = n(B − k∂Q+; c(Q−)) .

Hence, we have n(B; c(Q+))− k = n(B; c(Q+))− kn(∂Q+; c(Q+)) = n(B; c(Q−)). Therefore,

k(η) = n(B; c(Q+))− n(B; c(Q−)) . (∗)

Exactly the same argument applies to the cycle A.

Consider one of the squares P . For this we have

n(A; c(P )) =
∑

n(B; c(Q))n(∂Q; c(P )) .

Clearly the winding number n(∂Q; c(P )) is zero except when P = Q, when it is 1. Therefore n(A; c(P )) =
n(B; c(P )). Now the identity (∗) shows that the coefficient of each edge η is the same in A as in B. �
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Lemma 6.3 Cauchy’s theorem for grids
Let B be a grid cycle and let f : D → C be an analytic function. If, for each closed square Q that is
not a subset of D, the winding number n(B; c(Q)) is zero, then

∫
B

f(z) dz = 0.

Proof:
The previous lemma shows that B =

∑
n(B; c(Q))∂Q. If the winding number n(B; c(Q)) 6= 0,

then the closed square Q must be a subset of D. Hence, Cauchy’s Theorem for star domains ( 4.2 ),
shows that ∫

∂Q

f(z) dz = 0 .

Summing over all such squares gives the result. �

Let Γ be any cycle. We will show that we can approximate Γ by a grid cycle B. To do this, it is
sufficient to consider each of the component closed curves in Γ. So, let γ be a piecewise continuously
differentiable closed curve.

First, it is useful to introduce some notation. If α is a curve that ends at w and β a curve that
begins at w then β ·α will denote the curve α followed by β. Also, α−1 will denote the curve α reversed.
For each point z = x + iy ∈ C, set

ẑ =
⌊x

δ

⌋
δ + i

⌊y

δ

⌋
δ ,

which is the lower left corner of the square containing z.

Subdivide the closed curve γ into curves γj for j = 1, 2, 3, . . . , J each of length at most δ. Let γj

begin at zj and ends at zj+1. Since γ is a closed curve, we have zJ+1 = z1. For each j, let αj be the
straight line path from zj to ẑj . Then αj has length at most

√
2δ.

Since |zj − zj+1| 6 δ, the points ẑj and ẑj+1 must both be corners of one of the squares Q. Hence
there is a path βj from ẑj to ẑj+1 along the sides of Q with length at most 2δ. Now the path α−1

j+1 ·βj ·αj

goes from zj to zj+1 and lies inside the disc D(zj , 4δ).

Set β = βJ · βJ−1 · . . . · β2 · β1. This is a closed curve along the edges of the grid, so it is a grid
cycle. The following result shows that the integral of an analytic function around γ is the same as the
integral around β.

Lemma 6.4
Let γ be a piecewise continuously differentiable closed curve in the domain D ⊂ C. For δ sufficiently
small, there is a grid cycle β in D with ∫

γ

f(z) dz =
∫

β

f(z) dz

for every analytic function f : D → C.

Proof:
The set [γ] is compact and so

d([γ], C \D) = inf{|z − w| : z ∈ [γ], w ∈ C \D} > 0 .

Choose δ with 10δ < d([Γ], C \D). The grid cycle β we constructed above lies within a distance 4δ of
Γ so it will certainly lie within D.

For each point zj , both of the curves γj and α−1
j+1 · βj ·αj go from zj to zj+1 and lie inside the disc

D(zj , 4δ). Furthermore, we have chosen δ so that this disc lies within D. Hence, Cauchy’s Theorem for
star domains ( 4.2 ) shows that∫

γj

f(z) dz =
∫

αj

f(z) dz +
∫

βj

f(z) dz −
∫

αj+1

f(z) dz .

Adding these over all j gives ∫
γ

f(z) dz =
∫

β

f(z) dz

since the integrals along the paths αj occur in opposing directions and so cancel out. This establishes
the result. �
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These results enable us to prove Theorem 6.1.

Proof of Theorem 6.1

The cycle Γ consists of finitely many closed curves γ. For each of these we can construct a grid
cycle β for which Lemma 6.4 holds. Let B be the grid cycle obtained by adding together these β.

Suppose that Q is one of the closed squares in the δ × δ grid and that Q is not a subset of D, say
wo ∈ Q \D. Recall that 10δ < d([Γ], C \D), so the entire square Q is disjoint from Γ. Furthermore, B
lies within a distance 4δ of Γ so the entire square Q is disjoint from B. This means that Q lies in one
component of C \ [B] and so, by Proposition 3.5 , the winding number n(B;w) is constant on Q. The
hypothesis of Theorem 6.1 shows that n(Γ;wo) = 0, and Lemma 6.4 shows that

n(B;wo) =
1

2πi

∫
B

1
z − wo

dz =
1

2πi

∫
Γ

1
z − wo

dz = n(Γ;wo) = 0 .

Hence, n(B; c(Q)) = 0.

Therefore, the conditions of Lemma 6.2 are satisfied and∫
B

f(z) dz = 0 .

Finally, Lemma 6.3 shows that
∫
Γ

f(z) dz = 0 as required. �

We say that a cycle Γ in the domain D is homologous to 0 in D when the winding number n(Γ;w)
is zero for each point w ∈ C \D. Then Theorem 6.1 shows that∫

Γ

f(z) dz = 0

for any analytic function f : D → C and any cycle Γ that is homologous to 0 in D.

The simplest case, and the one we use most often, is when the cycle Γ is the boundary of a subset
of D. Suppose that U is a subset of D bounded by finitely many disjoint, piecewise continuously
differentiable closed curves in D. We orient these boundary curves so that the set U lies to the left as
we go along the curve. Then ∂U is a cycle in D. The Jordan curve theorem shows that the winding
number n(∂U ;w) is 0 for w /∈ U and 1 for w ∈ U .

A closed curve γ : [a, b] → D is simple if it does not cross itself, so γ(s) = γ(t) for two distinct
points s, t only when s and t are the endpoints a and b. The Jordan curve theorem shows that such a
curve divides the plane into two connected components: the inside and the outside of γ. The winding
number n(γ;w) is 1 for w inside γ and 0 for w outside γ. (We will not prove this.)

It is usual to apply Cauchy’s theorem when the cycle Γ is a simple closed curve bounding a region
in D. However, we will make a slightly more general definition: A cycle Γ bounds a domain Ω if the
winding number n(Γ;w) is 1 for all points w ∈ Ω and either 0 or undefined for all points not in Ω. It is
clear that a cycle Γ in D that bounds a domain Ω ⊂ D is homologous to 0 in D. Hence Theorem 6.1
implies that:

Theorem 6.1’ Cauchy’s Theorem
If f : D → C is an analytic function on a domain D ⊂ C and the cycle Γ bounds a domain Ω ⊂ D, then∫

Γ

f(z) dz = 0 .
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Note that, in most of the cases where this is applied, we can divide the region D into pieces each
of which is a star domain and then deduce the result from Cauchy’s Theorem for star-domains ( 4.2 ).

The Residue Theorem

Let D be a domain in C and f a function that is analytic on D except for isolated singularities at
the points z1, z2, . . . , zK . This means that, for each k = 1, 2, 3, . . . ,K, there is a closed disc B(zk, Rk)
that lies within D and contains only the singularity at zk. Then f is analytic on B(zk, Rk) \ {zk} and
has a residue Res(f ; zk) at zk.

Theorem 6.5 Residue theorem
Let D be a domain in C and f a function that is analytic on D except for isolated singularities at the
points z1, z2, . . . , zK . For any cycle Γ in D \ {z1, z2, . . . , zK} that is homologous to 0 in D we have

1
2πi

∫
Γ

f(z) dz =
K∑

k=1

n(Γ; zk)Res(f ; zk) .

Proof:
Let Ck denote the positively oriented circle bounding the disc B(zk, rk). Then n(Ck;w) = 1 if

w ∈ B(zk, rk) and n(Ck;w) = 0 for any w /∈ B(zk, rk). In particular, n(Ck; zk) = 1 but n(Ck; zj) = 0
for any j 6= k. Hence the cycle

∆ = Γ−
K∑

k=1

n(Γ; zk)Ck

is homologous to 0 in D\{z1, z2, . . . , zK}. Now the homology form of Cauchy’s theorem ( Theorem 6.1 )
shows that

0 =
∫

∆

f(z) dz =
∫

Γ

f(z) dz −
K∑

k=1

n(Γ; zk)
∫

Ck

f(z) dz .

Finally, the definition of the residue shows that
∫

Ck

f(z) dz = 2πiRes(f ; zk). �

We can restate the residue theorem for cycles that bound subdomains:

Theorem 6.5’ Residue theorem
Let D be a domain and f a function that is analytic on D except for isolated singularities. Let Γ be a
cycle that bounds a subdomain Ω of D and does not pass through any singularity. Then

1
2πi

∫
Γ

f(z) dz =
∑

Res(f ;w)

where the sum is over all the singularities in Ω.

Proof:
The set Ω is compact since it is bounded by [Γ]. For each w ∈ Ω there is an open neigh-

bourhood that contains at most one singularity of f , because the singularities are isolated. These open
neighbourhoods form an open cover for Ω so there is a finite subcover. Hence there can be only a finite
number of singularities within Ω. Now we can apply Theorem 6.5 . �
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Examples

Example 1
∫ 2π

0

1
5− 4 sin θ

dθ

i/2

Let Γ be the circular curve: Γ : [0, 2π] → C; θ 7→ eiθ. Then we have∫
Γ

f(z) dz =
∫ 2π

0

f(eiθ)ieiθ dθ

so we should choose f with

ieiθf(eiθ) =
1

5− 4 sin θ
=

i

5i− 2e2iθ + 2e−iθ
.

Therefore set
f(z) =

1
−2z2 + 5iz + 2

=
−1

(2z − i)(z − 2i)
.

This is meromorphic on all of C with simple poles at 1
2 i and 2i. Only the pole at 1

2 i lies within Γ, and
there the residue is

Resf( 1
2 i) = lim

z→ 1
2 i

(z − 1
2 i)f(z) = lim

z→ 1
2 i

−(z − 1
2 i)

(2z − i)(z − 2i)
=

−1
2( 1

2 i− 2i)
= − 1

3 i .

Hence the residue theorem gives∫ 2π

0

1
5− 4 sin θ

dθ = 2πiResf( 1
2 i) = 2

3π .
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Example 2
∫ ∞

−∞

1
1 + x4

dx

Note first that this improper integral certainly converges. Hence we know that∫ ∞

−∞

1
1 + x4

dx = lim
R→∞

∫ R

−R

1
1 + x4

dx .

(The following argument only shows that the symmetric integrals
∫ R

−R

1
1 + x4

dx converge to a limit as

R ↗∞. We would need a slightly different argument to show that

lim
R,S→∞

∫ R

S

1
1 + x4

dx

exists and hence that the improper integral we are concerned with converges. However, since we already
know that the improper integral converges, the argument certainly enables us to evaluate it.)

0 R−R

C

eiπ/4e3iπ/4

Let Γ be the semi-circular contour made up of straight line [−R,+R] and the semi-circle C : [0, π] →
C; θ 7→ Reiθ. Let f be the meromorphic function

f : z 7→ 1
1 + z4

.

This has simple poles at the four 4th roots of −1. The residue at one of these, say ω, is

Resf(ω) = lim
z→ω

(z − ω)f(z) = lim
z→ω

z − ω

z4 + 1
= lim

z→ω

1
4z3

= −ω

4
.

Hence the residue theorem gives∫
Γ

1
1 + z4

dz = 2πi
(
Resf(eiπ/4) + Resf(e3iπ/4)

)
= 1

2

√
2π

provided that R > 1.

For z = Reiθ on the semi-circle C we have

|f(z)| 6 1
R4 − 1

so ∣∣∣∣∫
C

f(z) dz

∣∣∣∣ 6 ∫ π

0

|f(Reiθ)|R dθ 6
πR

R4 − 1
→ 0 as R ↗∞ .

Now ∫
Γ

1
1 + z4

dz =
∫ R

−R

1
1 + x4

dx +
∫

C

f(z) dz .

Hence we see that ∫ ∞

−∞

1
1 + x4

dx = lim
R→∞

∫ R

−R

1
1 + x4

dx = 2
√

2π .
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Example 3
∫ ∞

−∞

eitx

1 + x2
dx for t ∈ R.

0 R−R

C

i

It is simple to see that this improper integral converges. For t > 0 take the semi-circular contour
used in Example 2 and set

f(z) =
eitz

1 + z2
.

This has simple poles at ±i with residues Resf(±i) = e∓t/2i. For z = Reiθ = R cos θ + iR sin θ on the
semi-circle C we have

|f(z)| = e−tR sin θ

R2 − 1
so, ∣∣∣∣∫

C

f(z) dz

∣∣∣∣ = ∣∣∣∣∫ π

0

f(Reiθ) iReiθ dθ

∣∣∣∣ 6 ∫ π

0

e−tR sin θ

R2 − 1
R dθ → 0 as R ↗∞ .

Hence we get ∫ ∞

−∞

eitx

1 + x2
dx = lim

R→∞

∫ R

−R

eitx

1 + x2
dx = 2πiResf(i) = πe−t .

For t 6 0 we instead take the semicircle in the lower half-plane so that the integrand is small on
that semi-circle. This gives ∫ ∞

−∞

eitx

1 + x2
dx = πet for t 6 0 .

0 R−R

C

−i
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The argument in this example is very useful, especially when evaluating Fourier transforms. We
can improve it to obtain:

Lemma 6.6 Jordan’s Lemma
Let f : H+ = {x + iy : y > 0} → C be a meromorphic function with f(z) → 0 as z → ∞ in the
half=plane H+. Let C(R) be the semi-circular path C(R) : (0, π) → H+; θ 7→ Reiθ. Then∫

C(R)

f(z)eitz dz → 0 as R ↗∞

provided that t > 0.

0 R−R

C(R)

Proof:
For any ε > 0, we can find Ro so that |f(z)| < ε whenever |z| > Ro. For z = Reiθ on C(R),

with R > Ro we then have
|f(z)eitz| = |f(z)|e−tR sin θ 6 εe−tR sin θ .

Now
sin θ >

2
π

θ for 0 < θ < 1
2π

so

|f(z)eitz| 6
{

εe−2tRθ/π for 0 < θ 6 1
2π;

εe−2tR(π−θ)/π for 1
2π 6 θ < π.

Therefore, ∣∣∣∣∣
∫

C(R)

f(z)eitz dz

∣∣∣∣∣ =
∣∣∣∣∫ π

0

f(Reiθ)eitReiθ

iReiθ dθ

∣∣∣∣
6 2

∫ π/2

0

εe−2tRθ/π R dθ = πε
1− e−tR

t
6

πε

t

This certainly shows that
∫

C(R)
f(z)eitz dz → 0 as R ↗∞. �
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Example 4
∫ ∞

−∞

sinx

x
dx

The integrand is an even function of x, so the integral will converge if and only if the limit

lim
R→∞

∫ R

−R

sinx

x
dx

exists. We will prove that it does using the residue theorem. (Note, we could also prove convergence
using the alternating series test but this would not give the value of the integral.)

0 R−R

C

Let Γ be the semi-circular contour consisting of the straight line [−R,R] and the semi-circle C as
shown. Let f be the map

f : z 7→ eiz − 1
z

.

This has a removable singularity at 0 and so is analytic on all of C. Consequently

0 =
∫

Γ

f(z) dz =
∫ R

−R

f(x) dx +
∫

C

eiz

z
dz −

∫
C

1
z

dz .

Jordan’s lemma shows that
∫

C
eiz

z dz → 0 as R →∞. The final integral is:∫
C

1
z

dz =
∫ π

0

1
Reiθ

iReiθ dθ = πi .

Thus we see that ∫ R

−R

f(x) dx → πi as R →∞ .

Taking the imaginary part of this gives ∫ ∞

−∞

sinx

x
dx = π .
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Example 5 I =
∫ ∞

0

x1/2

1 + x2
dx

Let f(z) =
z1/2

1 + z2
with z1/2 denoting the principal branch of the square root. So (reiθ)1/2 =

r1/2eiθ/2 for 0 < θ < 2π. Let Γ be the “keyhole” contour shown.

0
R

ǫ

Γ

i

−i

This contour consists of an anticlockwise circle C(R) of radius R, a clockwise circle C(ε) of radius ε, a
straight line slightly above the real axis, say [ε + iδ, R + iδ] and a similar line just below the real axis
[R− iδ, ε− iδ]. (The function f is not defined on the positive real axis itself.)

On C(R) we have |f(z)| 6 R1/2

R2 − 1
, so∫

C(R)

f(z) dz → 0 as R →∞ .

On C(ε) we have |f(z)| 6 ε1/2

1− ε2
, so∫

C(ε)

f(z) dz → 0 as ε → 0 .

On [ε + iδ, R + iδ] we have f(x + iδ) ≈ x1/2

1 + x2
, so

∫ R+iδ

ε+iδ

f(z) dz →
∫ ∞

0

x1/2

1 + x2
dx

as R →∞, ε → 0 and δ → 0. Similarly, on [ε− iδ, R− iδ] we have f(x− iδ) ≈ −x1/2

1 + x2
, so

∫ R−iδ

ε−iδ

f(z) dz →
∫ ∞

0

−x1/2

1 + x2
dx
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as R →∞, ε → 0 and δ → 0.

The function f has residues at the two points i and −i with residues 1
2 exp−iπ/4 and 1

2 exp 5iπ/4
respectively. Therefore, the residue theorem gives∫

Γ

f(z) dz = 2πi( 1
2 exp−iπ/4 + 1

2 exp 5iπ/4) =
π√
2

.

Consequently,

2
∫ ∞

0

x1/2

1 + x2
dx =

π√
2

.

So the integral I converges to π/2
√

2.

There are various alternative ways to compute this integral by making a change of variables. These
allow us to avoid the complicated keyhole contour.

For example, the change of variables x = u2 changes the integral I to

I =
∫ ∞

0

2u2

1 + u4
du = 1

2

∫ ∞

−∞

2u2

1 + u4
du .

To evaluate this we take the semi-circular contour:

0 R−R

C

and the function g(z) =
2z2

1 + z4
. This has simple poles at the fourth roots of −1 with the residue at ω

being

Resg(ω) = lim
z→ω

(z − ω)
2z2

1 + z4
=

1
2ω

.

Hence,

I = 1
22πi

(
1

2eiπ/4
+

1
2ei3π/4

)
=

π

2
√

2
.

An alternative is to make the change of variables x = es, which changes the integral I to

I =
∫ ∞

−∞

e3s/2

1 + e2s
ds .

For this we use the rectangular contour

0 R−R

R + 2πi−R + 2πi Γ

and the function h(z) =
e3z/2

1 + e2z
. The contour winds around the two poles at 1

2πi and 3
2πi.
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Example 6
∫ ∞

−∞
e−x2/2 e−itx dx

Note that we already know the normal function integral:∫ ∞

−∞
e−x2/2 dx =

√
2π ,

which gives the value when t = 0.

Take the rectangular contour Γ shown below and the analytic function f(z) = exp− 1
2z2.

0 R−R

R + it−R + it Γ

There are no singularities for this function so Cauchy’s theorem shows that
∫
Γ

f(z) dz = 0. If z = ±R+iy
with 0 6 y 6 |t|, then

|f(z)| = exp− 1
2 (R2 − y2) 6 (exp− 1

2R2)(exp 1
2 t2) .

Hence the integral ∫
[R,R+it]

f(z) dz =
∫ R+it

R

f(R + iy) dy → 0 as R →∞

and ∫
[−R,−R+it]

f(z) dz → 0 as R →∞

similarly. This implies that ∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
f(x + it) dx .

Now
exp− 1

2 (x + it)2 = exp− 1
2 (x2 + 2itx− t2) = e−x2/2eitxet2/2 .

So we see that ∫ ∞

−∞
e−x2/2 e−itx dx =

√
2π e−t2/2 .
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7. THE ARGUMENT PRINCIPLE

Let f : D → C be an analytic map and Γ a cycle in D. Then f ◦Γ is also a cycle. If w ∈ C \ [f ◦Γ]
then the winding number n(f ◦ Γ;w) is given by

n(f ◦ Γ;w) =
1

2πi

∫
f◦Γ

1
z − w

dz =
1

2πi

∫
Γ

f ′(z)
f(z)− w

dz .

The integrand f ′(z)/(f(z)−w) is meromorphic with poles at the points zk where f(zk) = w. Near such
a point we have

f(z) = w + (z − zk)NF (z)

where N = deg(f ; zk) and F is analytic on a neighbourhood of zk with F (zk) 6= 0. Hence,

f ′(z)
f(z)− w

=
N

z − zk
+

F ′(z)
F (z)

and hence there is a simple pole at zk with residue N . Thus the residue theorem ( 6.5 ) gives

Theorem 7.1 Argument Principle
Let f : D → C be a non-constant analytic function and Γ a cycle in D that is homologous to 0 in D.
Suppose that f does not take the value w on [Γ]. Then

n(f ◦ Γ;w) =
∑

z:f(z)=w

deg(f ; z)n(Γ; z)

where the sum is taken over all points z ∈ D with f(z) = w.

Proof:
The points where f(z) = w are isolated in D and the set [Γ]∪{z ∈ D : n(Γ; z) 6= 0} is compact,

so there are only a finite number of non-zero terms in the sum.

The residue theorem shows that

n(f ◦ Γ;w) =
1

2πi

∫
Γ

f ′(z)
f(z)− w

dz =
∑

z:f(z)=w

Res(f ′/(f − w); z)n(Γ; z) =
∑

z:f(z)=w

deg(f ; z)n(Γ; z) .

�

It is usual to apply the argument principle to a cycle Γ that bounds a subdomain of D. Then the
winding numbers are all 0 or 1 and we obtain:

Theorem 7.1’ Argument Principle
Let f : D → C be a non-constant analytic function and Γ a cycle in D that bounds a subdomain Ω of
D. Suppose that f does not take the value w on [Γ]. Then

n(f ◦ Γ;w) =
∑

z∈Ω:f(z)=w

deg(f ; z) .

The sum on the right side is the number of solutions of f(z) = w in Ω, counting multiplicity. �
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We can also apply this argument when f is a meromorphic function, that is a function that is
analytic except for isolated poles. If f has a pole of order N at zo then

f(z) = w + (z − zo)−NF (z)

on a neighbourhood of zo with F analytic and F (zo) 6= 0. Hence

f ′(z)
f(z)− w

=
−N

z − zo
+

F ′(z)
F (z)

and we see that f ′(z)/(f(z)− w) has a simple pole at zo with residue −N . This proves:

Theorem 7.2 Argument Principle for meromorphic functions
Let f : D → C be a non-constant meromorphic function and Γ a cycle in D that bounds a subdomain
Ω of D. Suppose that f takes neither the value w nor ∞ on [Γ]. Then

n(f ◦ Γ;w) =
∑

z∈Ω:f(z)=w

deg(f ; z) −
∑

z∈Ω:f(z)=∞

deg(f ; z) .

�

Exercise: Show that the polynomial p(z) = z4 + 2z2 − 2z + 2 has exactly 2 zeros with positive real
part.

Consider the closed curve Γ obtained by following the imaginary axis from iR to −iR and then the
semi-circle σ : [0, 1] → C ; t 7→ −iReπit. For z = iy we have p(iy) = (y4 − 2y + 2) − 2iy. This
always has strictly positive real part. Moreover, for R large, p(±iR) has small argument. Hence,
the winding number of the curve p([−iR, iR]) about 0 tends to 0 as R ↗ +∞. Also, the term z4

dominates in p(z) on the semi-circle σ. Indeed

p(σ(t)) = R4e4πit

(
1 +

−2R2e2πit + 2iReπit + 2
R4e4πit

)
= R4e4πitφ(t)

and φ(t) ∈ B(1, 1) for R large enough. Hence p ◦ σ winds approximately the same number of times
about 0 as does t 7→ R4e4πit, that is 2 times. Putting these together gives n(p ◦ Γ; 0) = 2 when R
is sufficiently large. So the argument principle shows that there are 2 zeros of p within the half-disc
bounded by Γ. Thus there are 2 zeros with positive real part.

However, we are counting these zeros with multiplicity, so we need to see that there are no multiple
zeros. Suppose that zo were a double zero of p. Then p(zo) = 0 and p′(zo) = 0. This implies that
4p(zo)− zop

′(zo) = 4z2
o − 6zo + 2 = 0. We can solve this quadratic to find that zo = 1

2 or 1. But
neither 1

2 nor 1 is a zero of p, so all the zeros of p are simple. (Alternatively, observe that the zeros
must be in conjugate pairs and that no zero is real.)

Rouché’s theorem formalises this type of argument.

Proposition 7.3 Rouché’s Theorem
Let Γ be a cycle in a domain D that bounds a subdomain Ω. If f, g : D → C are analytic functions with

|f(z)− g(z)| < |g(z)| for all z ∈ [Γ]

then f and g have the same number of zeros within Ω, counting multiplicity.

Proof:
The inequality shows that neither f nor g has a zero on [Γ]. We may therefore apply

Proposition 3.4 to the component curves of f ◦Γ and g ◦Γ to obtain n(f ◦Γ; 0) = n(g ◦Γ; 0). Now the
argument principle ( 7.1’ ) completes the proof. �
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Exercise: Show that all 4 zeros of p(z) = z4 + 2z2 − 2z + 2 have modulus between 2 and 1
2 .

On the circle |z| = 2 we expect the leading term of p to dominate, so take f(z) = p(z) and
g(z) = z4. Then

|f(z)− g(z)| = |2z2 − 2z + 2| 6 2|z|2 + 2|z|+ 2 < 24 = |z|4 for |z| = 2

so Rouché’s theorem shows that p and z4 have the same number of zeros within |z| = 2. This is 4
zeros. Similarly, on |z| = 1

2 the constant term dominates so

|z4 + 2z2 − 2z| < |2| for |z| = 1
2

implies that p and 2 have the same number of zeros within |z| = 1
2 , that is 0.

Local Mapping Theorem

We can now complete our study of the local behaviour of analytic functions.

Theorem 7.4 Local Mapping Theorem
Let f : D → C be a non-constant analytic function, zo ∈ D, wo = f(zo) and K = deg(f ; zo). Then
there are r, s > 0 such that, for each w ∈ B(wo, s) \ {wo} there are exactly K points z ∈ B(zo, r) with
f(z) = w.

Proof:
We know that there is an analytic function F : D → C with f(z) = wo + (z − zo)KF (z) and

F (zo) 6= 0. Hence, we can choose r > 0 so that the closed disc B(zo, r) lies within D and F (z) 6= 0 on
B(zo, r). Let C be the circle ∂B(zo, r). Then [f ◦C] is a compact subset of C that does not contain wo.
Choose s > 0 so that B(wo, s) does not meet [f ◦ C].

The winding number n(f ◦C;w) is constant on each component of C\[f ◦C] and hence it is constant
on B(wo, s). The argument principle shows that n(f ◦ C;w) is the number of solutions of f(z) = w
in B(zo, r), counting multiplicity. For w = wo, this number is K. Therefore, there are K solutions of
f(z) = w in B(zo, r) for each w ∈ B(wo, s).

The derivative of f is f ′(z) = (z − zo)K−1 (KF (z) + (z − zo)F ′(z)), so we can choose r sufficiently
small that f ′(z) 6= 0 on B(zo, r) \ {zo}. Then f − w can not have any multiple zeros in B(zo, r) \ {zo}.
Hence, there are exactly K distinct solutions of f(z) = w in B(zo, r) for each w ∈ B(wo, s) except wo.
For w = wo, the only solution of f(z) = w in B(zo, r) is at zo where it has multiplicity K. �

Corollary 7.5 Open Mapping Theorem
A non-constant analytic function f : D → C maps open sets in D to open sets in C.

Proof:
If U is an open subset of D and zo ∈ U , then we wish to prove that there is a disc about

f(zo) that lies within f(U). The local mapping theorem shows that we can choose r, s > 0 so that
B(zo, r) ⊂ U and B(f(zo), s) ⊂ f(U). �

Note that this certainly implies the maximum modulus principle. For suppose that f : D → C is
a non-constant analytic function with a local maximum for |f(z)| at the point zo. Then there is a disc
D(zo, r) ⊂ D with |f(z)| 6 |f(zo)| for z ∈ D(zo, r). However, the open mapping theorem shows that
f(D(zo, r)) is open, so it contain a disc D(f(zo), s). This disc can not lie inside the set {w : |w| 6 |f(zo)|}.
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8. FOURIER TRANSFORMS

*The results in this section are not proved properly. The comments given are meant to be suggestive
rather than accurate. In particular, the major results rely on reversing the order of integration (Fubini’s
Theorem) which is not proved at all.*

We will wish to consider functions f : R → C with the following properties:

(a) f is continuous with f(x) → 0 as x → ±∞;

(b) the improper Riemann integral
∫ ∞

−∞
|f(x)| dx converges.

When f satisfies these conditions we will say that f ∈ Co ∩ L1.

The Fourier transform f̂ of a function f : R → C is defined by:

f̂(t) =
∫ ∞

−∞
f(x)e−itx dx

for each real number t. For this to make sense, the product f(x)e−itx must be integrable over the entire
real line. This is true, for example, if f ∈ Co ∩ L1.

The value of the Fourier transform at t measures the part of f that has period 2π/t — the same
as eitx. Hence, we might hope that the complete Fourier transform determines f . This is true and the
content of the Inversion Theorem. In this section we will not provide full proofs of the results. This is
partly because the proofs are quite delicate and partly because it is more natural to write the proofs in
terms of the Lebesgue integral rather than the improper Riemann integral.

We begin with a few trivial properties of the Fourier transform.

Proposition 8.1
Let f, f1, f2 ∈ Co ∩ L1. Then

(i) If g = λ1f1 + λ2f2, then ĝ(t) = λ1f̂1(t) + λ2f̂2(t) for each t ∈ R.

(ii) If g(x) = f(−x), then ĝ(t) = f̂(−t).

(iii) If g(x) = f(λx) with λ > 0, then ĝ(t) = λ−1f̂(λ−1t).

(iv) If g(x) = f(x), then ĝ(t) = f̂(−t).

(v) If g(x) = f(x + a) for some a ∈ R, then ĝ(t) = f̂(t)eita.

(vi) If g(x) = f(x)eiax for some a ∈ R, then ĝ(t) = f̂(t− a).

(vii) Suppose that f is differentiable with f ′ ∈ Co ∩ L1. Then f̂ ′(t) = itf̂(t).

Proof:

Parts (i) to (vi) are all simple changes of variables in the integrals. For example, in (v) we have

ĝ(t) =
∫ ∞

−∞
f(x + a)e−itx dx =

∫ ∞

−∞
f(x′)e−it(x′−a) dx′ = f̂(t)eita

by making the change of variables x′ = x + a.

Part (vii) follows from integration by parts:

f̂ ′(t) =
∫ ∞

−∞
f ′(x)e−itx dx = lim

R→∞

(
f(x)e−itx

∣∣∣∣R
−R

+
∫ R

−R

f(x)ite−itx dx

)
=
∫ ∞

−∞
itf(x)e−itx dx

�
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Suppose that X is a real-valued, random variable with density f : R → R. Then the characteristic
function of X is E(eitX). This is

E(eitX) =
∫ ∞

−∞
eitxf(x) dx = f̂(−t) .

So the Fourier transform and the characteristic function are very closely related. As an example, consider
the standard normal distribution N(0, 1). This has distribution

f(x) =
1√
2π

exp
(
− 1

2x2
)

.

So example 6 in Chapter 6 shows that it’s Fourier transform is

f̂(t) = exp
(
− 1

2 t2
)

.

More generally the N(µ, σ2) normal distribution has density

f(x) =
1√

2πσ2
exp

(
− 1

2

(x− µ)2

σ2

)
and this has Fourier transform

f̂(t) = exp
(
− 1

2σ2t2 − iµt
)

.

Suppose that X and Y are two independent random variables with densities f and g respectively.
The sum X + Y has density

h(x) =
∫ ∞

−∞
f(x− u)g(u) du .

The independence of X and Y ensures that

E(eit(X+Y )) = E(eitXeitY ) = E(eitX)E(eitY ) .

So
ĥ(t) = f̂(t)ĝ(t) .

This motivates the following definition and Proposition.

The convolution f ∗ g of two functions f, g : R → C is given by

f ∗ g(x) =
∫ ∞

−∞
f(x− u)g(u) du

whenever this integral converges.

Proposition 8.2 Fourier transform of convolutions
Let f ∗ g be the convolution of two functions f, g ∈ Co ∩ L1. Then

f̂ ∗ g(t) = f̂(t)ĝ(t) .

Proof:
Observe that

f̂ ∗ g(t) =
∫ ∞

−∞
(f ∗ g)(x)e−itx dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− u)g(u) du e−itx dx .

We can switch the order of integration without changing the value of this integral. This is called Fubini’s
Theorem and requires proof, which we will not give here. Hence

f̂ ∗ g(t) =
∫ ∞

−∞

∫ ∞

−∞
f(x− u)g(u)e−itx dx du

=
∫ ∞

−∞

∫ ∞

−∞
f(x− u)e−it(x−u) dx g(u)e−itu du

=
∫ ∞

−∞
f̂(t) g(u)e−itu du = f̂(t)ĝ(t) .

�
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Theorem 8.3 Parseval’s Theorem
For f, g ∈ Co ∩ L1 we have ∫ ∞

−∞
f̂(t)g(t) dt =

∫ ∞

−∞
f(x)ĝ(x) dx .

Proof:
First note that ∫ ∞

−∞
f̂(t)g(t) dt =

∫ ∞

−∞

∫ ∞

−∞
f(x)e−itxg(t) dx dt

Fubini’s theorem allows us to reverse the order of the double integral to obtain:∫ ∞

−∞

∫ ∞

−∞
f(x)e−itxg(t) dt dx =

∫ ∞

−∞
f(x)

∫ ∞

−∞
e−itxg(t) dt dx =

∫ ∞

−∞
f(x)ĝ(x) dx

as required. �

We are now in a position to prove the inversion theorem.

Theorem 8.4 Fourier Inversion Theorem
Let f ∈ Co ∩ L1. Then

f(a) =
1
2π

∫ ∞

−∞
f̂(t)eita dt .

for each a ∈ R.

Proof:

Note first that the function g(t) =
1
2π

exp− 1
2σ2t2 has Fourier transform

ĝ(x) =
1√

2πσ2
exp

(
− 1

2

x2

σ2

)
.

Therefore ĝ is the density for an N(0, σ2) random variable.

Let N be an N(0, σ2) random variable and consider the average value of f at a + N , that is

fσ(a) =
1√

2πσ2

∫ ∞

−∞
f(a + u) exp

(
− 1

2

u2

σ2

)
du .

Since f ∈ Co ∩ L1, we can show that

fσ(a) → f(a) as σ ↘ 0 .

Parseval’s Theorem (Theorem 8.3) shows that

fσ(a) =
∫ ∞

−∞
f(a + u)ĝ(u) du =

∫ ∞

−∞
f̂(t)eitag(t) dt .

Here we have used Proposition 8.1(v) to see that the Fourier transform of h(u) = f(a + u) is ĥ(t) =
f̂(t)eita.

Therefore
fσ(a) =

∫ ∞

−∞
f̂(t)eitag(−t) dt =

∫ ∞

−∞
f̂(t)eita 1

2π
exp− 1

2σ2t2 dt .

Now the function f̂(t)eita is integrable on R and the functions exp− 1
2σ2t2 increase locally uniformly to

1 as σ ↘ 0, so we see that

fσ(a) →
∫ ∞

−∞
f̂(t)eita 1

2π
dt

as σ ↘ 0. �
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The function
ȟ(a) =

1
2π

∫ ∞

−∞
h(t)eita dt

is called the inverse Fourier transform of h. It is very similar to the Fourier transform, with

ȟ(x) =
1
2π

ĥ(−x) .

The Inversion Theorem shows that the inverse Fourier transform of a Fourier transform is the original
function.

Corollary 8.5 Plancherel’s Formula
For f, f̂ ∈ Co ∩ L1 we have ∫ ∞

−∞
|f(x)|2 dx =

1
2π

∫ ∞

−∞
|f̂(t)|2 dt .

Proof:
The Fourier inversion theorem shows that

̂̂
f(x) = 2πf(−x) .

Hence, Plancherel’s theorem gives∫ ∞

−∞
f(x)f(x) dx =

1
2π

∫ ∞

−∞
f(x)̂̂f(x) dx =

1
2π

∫ ∞

−∞
f̂(−t)f̂(−t) dt

which proves the desired result. �
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