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193–204. It is designed for the interested nonspecialist, by which I mean nonspe-
cialist Set Theorist; it was written for a HOL conference and assumes familiarity
with HOL. Although it doesn’t contain any proofs of novel results, it does contain
announcements (of novel unpublished results) and proofs (of frequently underre-
garded trivialities). For the reader who wishes to take this material further the
chief advantage of this essay will be the bibliography, which would be very hard
for a naı̈ve reader to assemble from scratch. I would like to thank my friend and
colleague Juanito Camilleri for the invitation which led me to write this essay.
I recompiled and copy-edited it in the southern winter of 2023.
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1 HOL and TST
In virtue of theorem 1 all the set theories that are related to HOL are related to it via a
type system called ‘TST’. This system is descended from the type system of Russell
and Whitehead [22] and is due in its present form to Ramsey1 [20]. Traditionally the
initials spell Theory of Simple Types, but Typed Set Theory would be better.

TST is expressed in a language with a type for each non-negative integer, an equal-
ity relation at each type, and between each pair of consecutive types n and n + 1 a
relation ∈n. The axioms are an axiom of extensionality at each type

∀xn+1∀yn+1 (xn+1 = yn+1 ←→ ∀zn(zn ∈n xn+1 ←→ zn ∈n yn+1))

and (at each type) an axiom scheme of comprehension

∀~x∃yn+1∀zn (zn ∈n yn+1 ←→ φ(~x, zn))

with ‘yn+1’ not free in ‘φ’.2

TSTk is like TST except that there are only k types, labelled 0,. . . , k−1. The “theory
of negative types”3 (TZT4 ([29]) and its language are defined analogously, except that
the types are indexed by Z. TZT is in some ways a more convenient theory to deal with
than TST—there is no danger of falling off the bottom as it were—and the two theories
are equiconsistent by a simple compactness argument. For the purposes of this paper
all theories will be assumed to have the axiom of infinity as an axiom.

TSTI is TST with the axiom of infinity for the bottom level. (We have to make
explicit that we mean the bottom level, for it is possible to have a Dedekind-finite set
whose power set has a countably infinite subset, so we can have models of type theory
which are infinite above some level but Dedekind-finite below it.) Similarly we will
have TSTIk. In general, the result of appending an ‘I’ to the name of a theory denotes
the result of adding the axiom of infinity to that theory. If x is a set in a model of
some minimal sensible set theory (Zermelo set theory will do), 〈〈x〉〉 is the structure
(x,P(x),P2(x), . . .) thought of as a model of TST.

The syntax of TST is evidently much simpler than that of HOL. TST is what one
gets from HOL if one decides to implement ordered pairs and functinos as sets: a lot
of the type structure collapses. It doesn’t even matter very much how one interprets
functions and ordered pairs as sets: any implementation of functions and pairs as sets
will result in an interpretation of HOL into TST. Accordingly we have the following:

THEOREM 1 HOL and TST can be interpreted in one another.

Proof:
It is very easy to interpret TST in HOL because we can interpret type 0 of TST as

being any type we please and thereafter type n + 1 is interpreted as type α → :bool
1Hence Sheffer’s joke about ramified set theory becoming Ramsified set theory
2I have written ‘~x’ to avoid writing ‘x1 . . . xn: writing a list of variables in the latter style would cause

confusion between subscripts that pertain to types and subscripts that denote position in a list. We have to
have the first, so we should avoid the second if possible.

3This is actually a misnomer: strictly he should have called it the theory of positive and negative types.
4In 2023 I changed this notation from ‘TNT’ to conform to modern practice.
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where α is the HOL type that interprets type n of TST. The other direction is equally
elementary but much more complicated. First we must take note that any level of a
model of TST can be embedded in all higher levels by means of an iteration of the
singleton functioon. For notational convenience we will sometimes write singletons
functionally, using the function letter ι so that ι(x) = {x}. ι2(x) = {{x}} and ι“x =

{{y} : y ∈ x}. Then one can embed type m into type m + n by the function λx.ιn“x. In
fact we have to reinterpret the membership relation as well. If we let5 RUS C(R) be
{〈{x}, {y}〉 : 〈x, y〉 ∈ R} we interpret ∈ by RUS Cn(∈) composed with a suitable iterate of
ι

For the other direction we need to interpret HOL in TST. We embed :ind and
:bool in type 0. We embed :num in the smallest type containing an interpretation of
the naturals. Even tho’ we are assuming the axiom of infinity (and therefore that type 0
is infinite) this does not mean that type 0 is the smallest type in which we can interpret
the naturals, since there will not be interpretations for the definite descriptions of the
numerals in type 0. Frege-Russell numerals are to be found in types 2 and above.

For the recursion we assume that we have interpreted two types α and β into two
types m and n repectively where m < n. We compose this interpretation of α into m
with an iterated singleton map to get them both interpreted into type n. Then by means
of Wiener-Kuratowski pairs one interprets α × β into6 type n + 2 and therefore α → β
into n + 3 (or n + 1 using Quine pairs).

The equiconsistency of HOL and TST is one of two results central to the programme
of this paper. Theorem 1 is the bridge between type theories and set theories and
provides the context in which all the rest of the paper operates.

Retaining the type-structure of HOL enables one to reason in a way that is indepen-
dent of decisions about how to implement natural numbers and ordered pairs. Type
theory captures what can be done in all implementations; Set Theory captures what
can be done if one is allowed to choose one’s implementation.

2 Predicativity, truth definitions and consistency proofs
What do we mean by the ‘strength’ of a system? Because of the second incompleteness
theorem no recursively axiomatisable system can prove its own consistency7: if T `
Con(S ) then S 0 Con(T ) so T ` Con(S ) is clearly a relation we will want to look at.
Another relation of interest is “S can be interpreted in T”. This relation in contrast is
not asymmetrical.

Much of the early work on interpreting theories in other theories dates from the
time when the canonical work on set theory was Russell-Whitehead and is therefore
informed by a type-theoretical intuition that is, once again, the flavour of the hour.

If we can interpret T1 into T2 in such a way that we can prove in T2 that every
theorem of T1 is true then clearly T2 ` con(T1). What sort of conditions on T2 are
sufficient for this to be possible? For a start, we must be able to define in T2 a truth

5This notation is Rosser’s
6Or, by means of Quine ordered pairs, into type n
7We are not going to study systems that are not recursively axiomatisable!
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predicate for the expressions in the range of the interpretation. Now a truth predicate
is an inductively defined set of ordered pairs, and we can illustrate the complications
which arise here by reference to the simplest case, namely the natural numbers IN. If
we are working in a theory that has a concept of cardinal number and we know what 0
is and what Succ is , we can say x is a natural number iff

(∀Y)([0 ∈ Y ∧ (∀y ∈ Y)(Succ(y) ∈ Y)]→ x ∈ Y)

This molecular formula capturing a property of cardinal number contains a quantifier
over sets of cardinals (not merely cardinals!). This is an example of an impredicative8

definition. This particular example is not terribly impredicative (it involves quantifying
only over sets of cardinals not sets of sets of cardinals) but its impredicativity is a re-
curring and central theme. This is because the declaration of IN as a recursive datatype
is merely one of many, and so all recursive datatype declarations involve impredicative
set-existence axioms like this. In particular—as we shall see in the next section—the
satisfaction relation on which truth-definitions and consistency proofs rely is an induc-
tively defined set (recursive datatype) in exactly the same was as IN.

2.1 Truth definitions
We will assume that our variables, rather than being x, y, z etc, are all x’s with numerical
subscripts. This clearly makes no difference to us, qua language users, since it is a
trivial relettering, but it does make life a lot easier for us qua students of the language.
The subscripts are quite important. We call them indices. The purpose of this change in
notation is to make visible to the naked eye the fact that we can enumerate the variables:
it is much clearer that this is the case if they are written as “x1, x2 . . . ” than if they are
written as “x, y . . . ” In fact I think we will also have to assume that no variable is
bound more than once in any formula, and that there are no occurrences of any variable
outside the scope of any quantifier that binds some other occurrence of that variable.
Thus we will outlaw

((∀x)F(x)) ∨ ((∀x)G(x))

and
F(x) ∨ (∀x)(Gx)

even though they are perfectly good wffs. It will make life easier later.
Naturally you expect that a notion of interpretation will crop up if we are trying

to define what it is for a sentence to be true in a structure. There are actually two
gadgets we need here which the reader should keep distinct in her mind. A finite
assignment function is a function that assigns elements of M to finitely many indices.
Computer scientists will recognise this immediately as the logician’s version of their
concept of state. They will also recognise that the partial assignment functions form
a chain-complete CPO. I have (see above) carefully arranged that all our variables are

8‘Impredicative’ is a word coined by Russell to describe definitions of properties of widgets that make
reference to objects of higher type: sets of widgets, sets of sets of widgets and so on. The word is unevocative
to modern ears, and to understand why he coined it we need to know that—at the time—Russell thought that
such definitions were not legitimate, did not define predicates and so were—impredicative.
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orthographically of the form xi for some index i, so we can think of our assignment
function f as being defined either on variables or on indices, since they are identical
up to 1-1 correspondence. It is probably better practice to think of the assignment
functions as assigning elements of M to the indices and write “ f (i) = . . . ”, since any
notation that involved the actual variables would invite confusion with the much more
familiar “ f (xi) = . . . ” where f would have to be a function defined on the things the
variables range over.

Next we define what it is for a partial assignment function to satisfy a sentence p,
(written “ f sat p”). We define sat first of all on atomic sentences. First a word on use
and mention. Notice that in

f sat xi = x j

we have a relation between a function and an expression, not a relation between f and
xi and x j. This is usually made clear by putting quotation marks of some kind round
the expressions to make it clear that we are mentioning them not using them. Now
precisely what kind of quotation mark is a good question. Our first clause will in fact
be something like

f sat ‘xi = x j’ iffdf f (i) = f ( j)

But how like? Notice that, as it stands, it contains a name of the expression which
follows the next colon:

xi = x j

Once we have put quotation marks round this, the i and j have ceased to behave like
variables (they were variables taking indices as values) because quotation is a refer-
entially opaque context. But we still want them to be variables, because we want the
content of this clause to read, in English, something like: “for any variables i and j,
we will say that f sat the expression whose first and fourth letters are ‘x’, whose third
and fifth are i and j respectively (whatever i and j are in this case) and whose middle
letter is ‘=’, iff f (i) = f ( j)”. Notice (and this is absolutely crucial) that in the piece of
quoted English text ‘x’ and ‘=’ appear with single quotes round them and ‘i’ and ‘ j’
do not. Now to achieve this, ordinary single quotes will not do. Quine invented a new
notational device in [18], which he modestly calls “corners” and which are nowadays
known more usually as “Quine quotes” (or “quasi-quotes”) which operate as follows:
The expression after the next colon:

pxi = x jq

being an occurrence of ‘xi = x j’ enclosed in quine quotes is an expression which does
not, as it stands, name anything. However, i and j are variables taking integers as
values, so that whenever we put constants (numerals) in place of i and j it turns into an
expression which will name the result of deleting the quasi-quotes. This could also be
put by calling it a variable name.

SLOGAN:

Putting quine-quotes round a compound of names of wffs gives you a name
of the compound of the wffs named.
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A good way to think of quine quotes is not as a funny kind of quotation mark, for quo-
tation is referentially opaque and quine quotation referentially transparent, but rather
as a kind of diacritic, not unlike the LATEXcommands I am using to write this paper.
Within a body of text enclosed by a pair of quine quotes, the symbols ‘∧’ ‘∨’ etc. do
not have their normal function of composing expressions but instead compose names
of expressions. This also means that Greek letters within the scope of quine quotes are
being used to range over expressions (not sets, or integers). Otherwise, if we think of
them as a kind of funny quotation mark, it is a bit disconcerting to find that, as Quine
points out, pµq is just µ. The reader is advised to read pages 33-37 of Quine [18] where
this gadget is introduced. Let α and β be variables taking expressions as values. We
say

f sat α iffdf
f R α for every R satisfying (i) - (vii)

(i) f R p xi = x jq iffdf f (i) = f ( j)

(ii) f R p xi ∈ x jqiffdf f (i) ∈ f ( j)

(iii) if f Rα and f R β then f R pα ∧ βq

(iv) if f Rα or f R β then f R pα ∨ βq

(v) if for no g extending f does g R pαq hold then f R p¬αq

(vi) if there is some g extending f such that g R pF(xi)q then f R p(∃xi)(F(xi))q

(vii) if for every g extending f with i ∈ dom(g), g R pF(xi)q then f R p(∀xi)(F(xi))q

Then we say that φ is true inM iff the empty partial assignment function sat φ.

3 Consistency Proofs
Once we have a formal notion of truth-in-a-structureM and a formal notion of theorem-
of-T we have the possibility of formally proving (or refuting) assertions like “All the-
orems of T are true in M”. The obvious way to prove such assertions is by structural
induction on the recursive datatype of theorems of T . There are in fact very many
proofs of this kind. Now consider two typed set theories T1 and T2 both with exten-
sionality and both with an axiom scheme of comprehension at each type. T1’s axiom
scheme is

∀~x∃y∀z(z ∈ y←→ φ(z, ~x))

where no bound variables may appear in φ that are of higher type than ‘y’, and the
axiom scheme for T2 lacks this restriction.

One would expect that T2 should be able to prove the consistency of T1 , and this
is in fact the case.

This is illustrated beautifully by the results in McNaughton [15] and the general
treatment in Wang [28]. Another standard result with the same flavour was proved
by Shoenfield [24] and by Novak [17] . The set theory GB is obtained from ZF by
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adding a scheme of class existence (so that the class of all x such that φ exists as long
as φ contains no bound class variables) and substituting for the replacement scheme
an axiom that says that the image of a set in a class is a set. GB is consistent if ZF
is. In fact Shoenfield shows that there is a primitive recursive function that will accept
the Gödel number of a proof of a theorem-about-sets (in GB) and return the Gödel
number of a ZF proof of the same theorem. However, if we allow bound class variables
to appear in the class existence scheme we obtain a new theory, nowadays commonly
called Morse-Kelly, which is stronger than ZF. Quine [19] is good on this point. See
also Wang [27]. One consequence of this is that, for any sensible system of type theory,
one is liable to find that one can prove the consistency of any proper initial segment of it
in some larger initial segment. Let us go into a little detail on this, and take the example
of the construction in TST of a truth-definition for the theory of the bottom three types
of a model of TST. By means of iterating the singleton relation (as in section 1) we can
represent the first three types all as sets of the same level (probably level 5), and the
satisfaction predicate will be a set of ordered pairs a few levels higher. Thus we have
the theorem

THEOREM 2 For all k and all sufficiently large n, TSTk+n ` Con(TSTk)

This gives rise to interesting complications when we introduce polymorphism,
which is the subject of the next section.

3.1 More quantifiers
Before we leave the subject of truth-definitions altogether we should mention Levy
[13]. In this beautiful monograph Levy makes inter alia the point that if we are trying
to define a satisfaction relation on a set of formulæ that is not itself a recursive datatype,
then the satisfaction relation we are trying to define is not itself an inductively defined
set of ordered pairs, and so can be defined without appeal to a comprehension principle
using quantification over objects of higher type. What he shows is the following. Let
Σn be the class of formulæ with no more than n unrestricted quantifiers. Then a truth
definition for Σn formulæ belongs to Σn+1. This has the important consequence that if
we increase the number of (unrestricted) quantifiers we allow to appear in instances
of the comprehension scheme of our theory, we increase its consistency strength. See
Levy [13].

3.2 Polymorphism
Polymorphism is more general than we tend to think. It is really the phenomenon of
theories and languages with endomorphisms and automorphisms. There are several
forms polymorphism can take. People who can read German should read Specker [25],
which is the best introduction to this topic.9 He starts with the example of duality
between points and lines in projective geometry. There is an automorphism (in fact an
involution) of the language of projective geometry that swaps quantifiers over points
with quantifiers over lines, and swaps “x and y intersect at z” with “z goes through x

9Those who can’t could consult Scott’s review of it in Mathematical Reviews. [23]
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and y”. Let us write this automorphism as Specker does, with an asterisk. Clearly if
φ is an axiom of projective geometry, so is φ∗. Indeed * extends to a endomorphism
defined on the recursive datatype of proofs, and this enables us to prove by induction on
that datatype that φ∗ is a theorem of projective geometry iff φ is. The important point
is that this is not the same as saying that φ ←→ φ∗ is a theorem. Specker says that
this scheme of biconditionals is actually the same as adopting Pappus’s theorem as an
axiom).10. Another example of an automorphism of a language is the automorphism
of the language of first-order predicate calculus obtained by replacing every atomic
formula by its negation. Like the projective geometry example this automorphism is
an involution.

In general a theory T can have an automorphism σ (so that T ` φ iff T ` σ(φ)
without this implying T ` σ(φ) ←→ φ. Specker gives some examples which won’t be
covered here but the involution mentioned in the last paragraph (“negate all atomics and
negatomics”) is an easy example which is to hand. These are all examples of Specker’s
first kind of typical ambiguity: and automorphism σ of the language giving rise to a
theorem scheme to the effect that ` φ iff ` σ(φ).

Elegant though these examples are, they is a little remote from our concerns here.
Closer to HOL is the theory TZT, which is defined above. The language in which it
is expressed has an automorphism too, like the language of projective geometry. In
fact it has an infinite group of them, all generated by one which we will notate with
an asterisk and which arises as follows. Simply raise every type index attached to a
variable in a formula φ by one to obtain a new formula φ∗. For example, asterisk of

(∀x2y2)(x2 = y2 ←→ (∀z1)(z1 ∈ x2 ←→ z1 ∈ y2))

is
(∀x3y3)(x3 = y3 ←→ (∀z2)(z2 ∈ x3 ←→ z2 ∈ y3))

(The reason for working with TZT rather than TST at this point is to ensure that
* is not an endomorphism but an automorphism, as with projective geometry). As
with projective geometry we notice that φ is a theorem of TZT iff φ∗ is. As before we
prove this by induction of the recursive datatype of proofs. (indeed * gives rise to an
automorphism of this datatype, though this automorphism is of infinite order and is not
an involution as it was with projective geometry). This form of polymorphism, which
is the kind we find in HOL and in the type theory of Russell and Whitehead was called
by them “Typical Ambiguity”11: since the axioms (and therefore the theorems) are the
same at each type, there is no need to put in the type indices.

One reaction to the fact that the theorems are the same at each type is to omit the
type indices on the grounds that no information is provided by putting them in. Another
is to quantify universally over the type indices. We can do this conservatively only if
the type indices are variables of the language. For Russell and Whitehead [22] and for
Church [2] they were not. Nor are they for any of the systems we consider here.

10Specker even shows how to express the conjunction of finitely many expressions of the form φ ←→ φ∗

as another expression of that form. This depends on * being an involution and doesn’t apply in the cases
below.

11I know of no good reason for this term to have been replaced by ‘polymorphism’: people who study
TST continue to use the old word. I assume this is another example of a neologism arising because people
are unfamiliar with the literature. The original reference is Russell and Whitehead vol 1 end of ch 2.
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In some ways the situation is a bit like that with regard to first-order predicate
calculus. In that language we cannot quantify over predicates, and so expressions like

(∀F)((∀x)F(x)→ (∃y)(F(y)))

simply do not make sense. However they can be given a sense: the expression
(∀x)(F(x)∨¬F(x)) is a valid wff of first order logic. That means that (∀x)(F(x)∨¬F(x))
for all choices of F . One could, if one felt like it, hang a ‘(∀F)’ in front of the formula
to express this fact.

We can distinguish between polymorphisms of theories and polymorphisms of
models. What we have considered so far is polymorphism of theories. We can also
consider the following. Consider a model M of TZT. Ask yourself: if we alight on a
type, can we tell which type we have alighted on? This is equivalent to the question: is
there a sentence true at a unique type? For suppose there is a sentence φ which is true
only at type n, say. Then φ∗ is true only at type n − 1, φ∗∗ is true only at type n − 2 and
so on. The lack of any sentence true at a unique type is a kind of polymorphism: i tried
calling it “ergopdic ambiguity” but it never caught on. This is because it is too weak to
be interesting. It is not a first-order property ofM, and standard model-theoretic tech-
niques will allow us to construct models that satisfy this without adding any axioms to
TZT. We will be able to do this even if T proves φ←→ ¬φ∗!

Returning again to typical ambiguity of theories, a much stronger kind of polymor-
phism/typical ambiguity is the assertion that all types look the same. If Γ is a class
of formulæ in LT NT , the language of TZT, we call the scheme φ ←→ φ∗, for φ ∈ Γ,
“Γ-ambiguity, Amb(Γ). Ambiguity for all formulæ is just Amb. The full scheme Amb is
strong, and is not known to be consistent. We can prove Amb(Γ) consistent for various
natural classes Γ. I will mention only three of these, and only one of those three will
be pursued here.

Finally there is a much stronger kind of ambiguity, which is considered by Specker
[1958]. A theory T is ambiguous in this strong sense if every model of T has an
automorphism that respects *. Projective geometry plus Pappus’s theorem has this
property: every model of this theory has an automorphism that exchanges points and
lines.) I know of no consistent version of TZT has this feature and it is not of any
concern to us here.

In Set theory/Type Theory the historically earliest example found by anyone of an
instance of the second kind of typical ambiguity is the class of all formulæ that mention
only two types (Grishin [7]). The background to this is that all one can say in a typed
set theory with two types can be said in the first-order theory of infinite atomic boolean
algebras, and this is known to be a complete theory.

For us the most important example of a Γ for which Amb(Γ) is known to be consis-
tent relative to TZT is the class of all formulæ of the form (∀x1 . . . xn)φ where φ is built
up from atomics by the usual quantifiers and connectives and restricted quantifiers in
the style of Levy [13] and quantifiers (∀x ∈ P(y) and (∃x ∈ P(y) (where P(y) is the
power set of y). This is in Kaye-Forster [5]. In the terminology of that paper, Γ is ΣP1 .
This result leads us directly to the material of the next section. This section concludes
with three tangential minor topics which can be safely skipped. In the next section we
will see how schemes of typical ambiguity give rise to consistency results for untyped

9



set theories.

3.3 Extensionality
Interestingly, in view of the way in which extensionality is proof-theoretically prob-
lematic, one can show that if the axiom of extensionality is weakened to allow lots of
empty sets (or urelemente) but retained for nonempty sets (so that distinct nonempty
sets have distinct members) to obtain a system which we call TSTU, then the axiom
scheme φ ←→ φ∗ can be added without any extra consistency strength being gained.
This is in Jensen’s revolutionary paper [9].

3.4 Automorphisms of type algebras
The idea of polymorphism or typical ambiguity for a type theory is of course tied up
with the idea of an automorphism of what one might call the type algebra of the the-
ory under consideration. The most straightforward case is TZT. Its types are indexed
by Z not by IN, so that the type algebra is the monad Z. Asserting the biconditional
φ ←→ φ∗ for all φ has the same effect as asserting the biconditional φ ←→ φn (where
φn is the result of applying n asterisks to φ) for all φ and all n. This second, more
inclusive scheme is probably what one would naturally think of as an axiom scheme of
polymorphism but it follows from the weaker version because the automorphism group
of the type algebra Z is cyclic.12 The type algebras of even quite simple elaborations of
TST (consider for example the Church-style type theory with only one type construc-
tor (namely function types) and where every type is a function type) are much more
complicated. However it is known that the automorphism group of the type algebra of
this last theory is a finitely generated simple group.13 If we wish to express ambiguity
schemes for theories like Church’s simple type theory we will need to express them in
the second form.

Note that in order to have here a concept of “higher type” which behaves like our
concept of higher type in TST we will need a natural definable partial order of the type
algebra.

3.5 TZT: The theory of (positive and) negative types
Theorem 2 tells us that TST proves the consistency of all its proper initial segments.
This means that TZT proves the consistency of TSTk , for each k. Now we were able
to infer the consistency of TZT from the consistency of TST by a simple compactness
argument (any proof of an inconsistency in TZT can be reproduced inside TSTk for
some k) so we know that TZT 0 Con(TST). If there were such a consistency proof,
we could reproduce the compactness argument inside TZTand TZT would prove its
own consistency. Therefore TZT ` (∀k)Con(TS Tk). Therefore TZT is ω-incomplete.
Although any consistent recursively axiomatisable system extending arithmetic is in-
complete, the ω-incompleteness is not always this apparent. It is even an open question

12Both the type algebra and its automorphism group are naturally called Z!
13R. C. Thompson’s group—Thank you John Conway!
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whether or not TZT + Amb ` (∀k)Con(TS Tk). TZT is a bit odd in other ways. Al-
though (as we have seen) its consistency follows by a compactness argument, it has no
standard model. See Forster [4]. Although TST and TZT are equiconsistent, and TST
can be interpreted in TZT (obviously!) it seems fairly clear that there is no interpreta-
tion of TZT in TSTI. (Certainly none that commute with *!) This shows that a result of
Harvey Friedman [6]) to the effect that two equiconsistent finitely axiomatisable theo-
ries can be interpreted in one another cannot be strengthened by dropping the italicised
condition. We can detour here briefly to have a sketch of a proof that TZT + typical
ambiguity for all formulæ implies the axiom of infinity. We can implement cardinal
arithmetic at each type, and we can make various assertions about the cardinal number
of the universe at each type. One thing we can prove is that |Vn+1| = 2|Vn | at each type
n. Also, for any number k, we can consider the sequence 〈k, log2k, log2(log2k), . . .〉 and
ask how many of this sequence are whole numbers. Let us do this to |Vn|. It turns out
that we need the negation of the axiom of infinity to ensure that the length of this se-
quence is well-defined, preferably in the form “|Vn| is a natural number”. Clearly, since
|Vn+1| = 2|Vn | we know that the length of the sequence we obtain starting at |Vn| is one
less than the length of the sequence starting at |Vn+1|. In particular their lengths are of
different parities (remainder mod 2). Let φ be the assertion that the sequence obtained
in this way is of odd length. So as long as we can express φ within the theory, it looks
as if we should be able to prove φ ←→ ¬φ∗. It turns out that this is indeed the case,
and so complete ambiguity proves the axiom of infinity.

4 Untyped Set Theories: KF, Mac, Z and ZF

4.1 The Kaye-Specker lemma
Recently Richard Kaye has proved a very useful theorem which enables us to infer
the consistency of one sorted theories from typed theories with ambiguity schemes to
which they are related. This is a strengthening of a theorem in Specker [26].

LEMMA 1 Kaye. [10] 1991
Suppose that M = 〈M0,M1,M2 . . .〉 is a structure for the language of TST and that Σ

is the class of formulae of the form “∃~xΦ(~x, ~y)” for Φ in some class ∆ which contains
all atomic formulae and is closed under conjunction and substitution of variables and
contains ψ+(~y) whenever it contains ψ(~x).

Suppose further that M |= Amb(Σ). Then there is a structure for the signature 〈∈,=〉
that satisfies any σ of the form ∀~yΦ(~y), where the result of adding suitable type indices
to Φ is true in M and the LTS T formula corresponding to Φ is in Σ.

This is the second of the two results central to this paper. It means that whenever
we can prove the consistency of Amb(Γ) relative to TZT, we get a consistency result
for a one-sorted set theory: it is the bridge between typed set theories and untyped set
theories. It can now be applied to the positive results we saw in the previous section to
the effect that weak versions of ambiguity were provable or consistent. The first result,
Grishin [7], does not concern us greatly here. Applying Kaye’s lemma to this gives us
the consistency of a funny set theory called NF3, but this is not of much interest. The
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second result (from section 3.1), that we can consistently assume full ambiguity if we
drop extensionality for empty sets, gives rise to a consistency result for a system called
NFU. See Jensen [9]. This is much more interesting than NF3 and is definitely one to
watch. NFU has an able and active researcher and promoter in the form of Randall
Holmes: holmes@math.idbsu.edu.

4.2 KF
For present purposes the most important application of Kaye’s lemma to an ambiguity
scheme is in Forster-Kaye [5]. Starting from a model of TS T + Amb(ΣP1 ) we can obtain
a model of the theory that Kaye and I immodestly called KF. First, some terminology:
A ∆0 formula is one that contains no unrestricted quantifiers. Restricted quantifiers are
quantifiers in the style “(∀x ∈ y)(. . .” and “(∃x ∈ y)(. . .”. A formula of the language
of set theory is stratified if it can become a formula of the language of TST by adding
type indices consistently to the variables in it.

KFI(= KF+ infinity) is a theory in a one sorted language with two primitives, ∈ and
=. It has the following axioms

1. Extensionality: (∀xy)(x = y←→ (∀z)(z ∈ x←→ z ∈ y))

2. Empty set: (∃x)(∀y)(y < x)

3. Pairing: (∀xy)(∃z)(∀w)(w ∈ z←→ (w = x ∨ w = y))

4. Union: (∀x)(∃y)(∀z)(z ∈ y←→ (∃w)(z ∈ w ∧ w ∈ x))

5. Powerset: (∀x)(∃y)(∀z)(z ∈ y←→ z ⊆ x)

6. Infinity: There is an infinite set.

7. Stratified ∆0 separation (Axiom scheme: one instance for each stratified ∆0 φ):

(∀w1 . . .wn)(∀x)(∃y)(∀z)(z ∈ y ←→ (z ∈ x ∧ φ(z))) (where the ‘(∀w1 . . .wn)’
binds all the remaining free variables in φ)

4.3 MacLane Set theory
In fact a refinement extends this to a relative consistency proof of a theory trading under
various names in the literature, but which I was brought up by my Doktorvater Adrian
Mathias to call ‘Mac’ after Saunders MacLane, who advocated it as an adequate basis
for all of mathematics. Mac is like KF except in not having the restiction to stratified φ
in axiom scheme 7. The φ still have to be ∆0 though. The equivalence of Mac and TST
was first proved by Jensen [9] and clarified in Lake [12]. There are also distinct proofs
in Mathias [14] and Kaye-Forster [5] In fact Mathias shows further that all the axioms
of Kripke-Platek set theory (see Barwise [1] for an axiomatisation of Kripke-Platek)
can be added to Mac without gaining extra consistency strength.
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5 Zermelo set theory
It seems that this is as far as one can naturally go without reaching much stronger
systems. The next things to consider are the stronger systems formulated by allowing
more quantifiers in the separation scheme but these systems have not attracted much
attention and do not seem to have any proper names. The next natural step up the
ladder is Zermelo set theory which is the union of all those. To be precise Zermelo is
like KF except in having no restrictions whatever on the formulæ in axiom scheme 6.
Zermelo is of course much stronger than Mac and KF etc. We have just seen that Mac
is precisely as strong as TST and HOL, and it is an old result of Kemeny’s [11] that
we can prove the consistency of TST in Zermelo. Although it is not the first set theory
we meet here, Zermelo was historically the first one-sorted axiomatic set theory (if we
neglect the naı̈ve set theory of Frege), and there are two natural-looking structures that
it can be thought of as axiomatising. We need some definitions to describe them.

i0 = ℵ0;in+1 = 2in

Hκ is the set of things hereditarily of size < κ. Recursively

• The empty set is in Hκ

• If x ∈ Hκ and |x| < κ then x ∈ Hκ

(|x| is the cardinality of x). ZF ` Hκ is a set.

V0 = ∅; Vα = P(
⋃
β<α

Vβ)

A set is wellfounded iff it appears in some Vα. The least α such that x ∈ Vα is
the rank of x. Vω+ω is then the object of interest. Zermelo appears to be the theory
of
⋃

n<ω Hin or Vω+ω in the sense that both these structures are natural models for
it. However there are facts about small sets of low rank that can only be proved by
reasoning about sets of high rank, and Zermelo does not prove the existence of sets of
rank ω + ω or greater. To reason about sets of rank ω + ω or greater we need ZF.

5.1 Zermelo-Fränkel set theory
The difference between Zermelo set theory and Zermelo-Fränkel set theory is the axiom
scheme of replacement. This axiom scheme says that the surjective image of a set is a
set:

(∀x)(∃!y)(R(xy))→ (∀w)(∃z)(∀y)(y ∈ z←→ (∃u ∈ w)(R(u, y)

The motivation behind this is a belief that paradoxes are connected with big col-
lections and so the way to avoid paradox is to ensure that large collections do not turn
out to be sets. If this “limitation of size” doctrine is true, then it should certainly be
safe to suppose that anything the same size as a set is a set. Actually it turns out that
the axiom scheme of replacement has very strong consequences (which rather militates
against the limitation of size doctrine). In particular it has strong consequences of the
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kind mentioned above: in ZF we can prove termination of functions whose termination
cannot be proved in Zermelo set theory. It has been known for many years that ZF
proves the consistency of Zermelo set theory. Nowadays some quite refined informa-
tion is coming to light about the precise strengths of different kinds of replacement. A
variant of replacement is the axiom scheme of collection:

(∀x ∈ X)(∃y)(ψ(x.y))→ (∃Y)(∀x ∈ X)(∃y ∈ Y)(ψ(x, y))

It is easy to show that collection and comprehension together imply replacement.
To show that replacement implies collection assume replacement and the antecedent
of collection, and derive the conclusion. Thus (∀x ∈ X)(∃y)(ψ(x, y)). Let φ(x, y) say
that y is the set of all z such that ψ(x, z) and z is of minimal rank with this property.
Clearly φ is single-valued so we can invoke replacement. The Y we want as witness
to the ‘(∃Y)’ in the collection axiom is the sumset of the Y given us by replacement.
Notice the use of the axiom of foundation here. We use it to get a set of z which are
ψ-related to x. This obstructs the proof of this for stratified formulæ : it is not the case
that stratified replacement implies stratified collection. The following counterexample
is due to Mathias. Consider the assertion: for every natural number n there is a set of
size n consisting of infinite sets all of different sizes. This is provable in Zermelo set
theory. However in, say, Z + V = L we can show that there is no set which collects all
these together, because the sumset of such a set would be an infinite set of infinite sets
of infinitely many different sizes, and we know that Zermelo set theory does not prove
the existence of such a set, since in Z + V = L all sets of infinite cardinals are finite.
So stratified collection is not provable in Zermelo. However Coret [3] has shown that
every stratified instance of the axiom scheme of replacement is provable in Zermelo
set theory. Therefore stratified replacement does not imply stratified collection. The
motivation for Collection is a lot less obvious than the motivation for Replacement, but
it is robust. Recall the concept of ∆n formula. These contain n restricted quantifiers
and as many unrestricted quantifiers as you want. The axiom scheme of collection is
precisely what is need to prove a normal form theorem to the effect that all formulæ
can be manipulated into a normal form where all the quantifiers are out at the front of
the formula (which is standard) and that all the restricted quantifiers come after all the
unrestricted quantifiers. The first thing we notice about replacement is that it enables
us to prove the existence of sets of size iω (the supremum of i1, i2 . . . ). Consider the
following recursively defined function: f (0) = IN; f (n + 1) = P( f (n)). We prove easily
by induction on the natural numbers that f (n) is defined for all n and is of size in. By
replacement, f “IN is a set, and

⋃
f “IN is at least as big as any of the f (n).

Russell and Whitehead remarked in [22] that no construction like this seemed to be
possible in their type theory.

6 Current developments and open problems
Holmes [8] considers variants of TST where the types are partially ordered and when-
ever α < β there is a membership relation defined between objects of type α and objects
of type β (not just when β = α + 1!). By Kaye’s lemma the full scheme of typical am-
biguity is equivalent to the consistency of Quine’s NF. It is open whether this theory
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is consistent. It has already been mentioned that is open whether or not the result of
adding full ambiguity to TZT is a theory that proves (∀k)(Con(TS Tk)). It is also open
whether or not TZT has an ω-model; and open whether or not TZT has a model in
which every set is definable. Those interested in realizability interpretations of intu-
itionistic systems may wish to ponder the following aperçu of Holmes. In situations
where the innocent kind of typical ambiguity (` φ ←→` φ∗) holds one always has a
simply definable bijection between proofs of φ and proofs of φ∗. But in realizability in-
terpretations definable maps from proofs to proof are themselves proofs of conditionals
so this should give us a means of inferring ` φ←→ φ∗.
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