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Abstract. Let C be a smooth plane cubic curve with Jacobian E. We
give a formula for the action of the 3-torsion of E on C, and explain how
it is useful in studying the 3-Selmer group of an elliptic curve defined
over a number field.

We work over a field K of characteristic zero, with algebraic closure K.

1 The Invariants of a Ternary Cubic

Let X5 = A0 be the space of all ternary cubics

U(X,Y,Z) = aX3 +bY3 + 73 + o X2Y + a3X2Z

01 XY2 4 03Y2Z + 1 X224+ oY Z2 + mXY Z .

The co-ordinate ring of X3 is the polynomial ring
K[X3] = K[a7 b7 C, a2,as, bla b3a C1, C2, m] .

There is a natural action of GL3s on X3 given by

GU)X,Y, Z) =U(guX + g21Y + 9312, ..., 13X + g23Y + g33Z) .

The ring of invariants is
K[X3)" = {F € K[X3]: Fog=F for all g € SL3(K)} .
A homogeneous invariant F' satisfies

Fog=x(g)F

(1)

for all ¢ € GL3(K), for some rational character x : GL3 — Gy,. But the only
rational characters of GL3 are of the form x(g) = (det g)* for k an integer. We
say that F' is an invariant of weight k. Taking g a scalar matrix in (1) shows
that F' has weight equal to its degree. The following facts are well known: see

[1], [10], [15].



Theorem 1.1. There are invariants cq, cg and A of weights 4, 6 and 12, related
by ¢ — ¢ = 1728 A, with the following properties:
(i) The invariants of

Up(X,Y,2)=Y?*Z4+a XY Z +a3Y 72> — X3 —axX?Z — ay X Z* — ag Z*

are given by the standard formulae: see [14, Chap. III].

(ii) The ring of invariants is a polynomial ring in two variables, generated by cy4
and cg.

(iii) A ternary cubic U is non-singular if and only if A(U) # 0.

(iv) If the plane cubic {U = 0} C P? is non-singular then it has Jacobian

y? =2 — 27cy(U)x — 5deg(U) .
The Hessian of U(X,Y, Z) is

8°U d*U_ d*U

0X2 0X0Y 0X0Z

o U 2°U  d*U
H(X,Y,Z) = (-1/2) X | 35557 §v2 ovoz
92U 9°U_ d*U

0X0Z 0Y0Z 0Z2

The factor —1/2, although not standard, is a choice we find convenient. The
Hessian is a polynomial map H : X3 — X3 satisfying

Hog=(detg)’go H
for all g € GL3(K). We say it is a covariant of weight 2. Putting ¢y = c4(U),
ce = cs(U) and H = H(U) we find

HU + pH) = 3(ca N’ + 2c6 > + A p)U + (N3 = 3eadp? — 2c6p)H .

This formula is classical: see [7], [11]. It is easily verified by restricting to any
family of plane cubics covering the j-line. It also gives a convenient way of
computing the invariants ¢4 and cg.

2 The 3-Selmer Group

Definition 2.1. Let Uy and Us be ternary cubics over K.

(i) Uy and Uy are equivalent if Us = X(gU;) for some A € K* and g € GL3(K).
(ii) Uy and Uy are properly equivalent if Uy = (detg)~1(gU1) for some g €
GL3(K).

Lemma 2.2. Let Uy and Uz be non-singular ternary cubics over K. If Uy and
Us are properly equivalent then they have the same invariants. If K = K then
the converse is also true.



Proof. The first statement follows from the fact that a homogeneous invariant
has weight equal to its degree. For the second statement we may assume

Ui(X,Y,Z) =Y2Z — (X3 + a1 X Z2 + b, Z)
Us(X,Y,Z) = Y2Z — (X3 + ;X Z2 + by Z3)

for some a1, b1, as,bs € K. Since U; and U, have the same invariants, it follows
by Theorem 1.1(i) that U; = Us. O

We consider pairs (C — S,w) where C — S is a morphism from a smooth
curve of genus one C to a Brauer-Severi variety S, and w is a regular 1-form
on C. An isomorphism between (Cy; — Sj,w;) and (Co — Sa,ws) is a pair of
isomorphisms ¢ : ¢y =2 C5 and ¥ : S1 = S5 such that ¢*wy = wy and the diagram

01*>51

of

CQHSQ

commutes.

Let n > 2 be an integer. Let E/K be an elliptic curve with invariant differ-
ential wg. We map E — P"! via the complete linear system |n.0gz|. We recall
that objects defined over K are called twists if they are isomorphic over K.

Lemma 2.3. The twists of (E — P" Y wg), up to K-isomorphism, are param-
etrised by H' (K, E[n)).

Proof. The automorphisms « of E with a*wg = wgp are the translation maps.
If 7p : E — E is translation by P € E(K), we know that 75(n.0g) ~ n.0g
if and only if nP = 0g. So Aut(E — P"! wg) & E[n]. An injective map
from the isomorphism classes of twists to H'(K, E[n]) is given by comparing
an isomorphism defined over K with its Galois conjugates. It remains to prove
surjectivity. This follows from the well known facts that the twists of E are
parametrised by H!(K,Isom(FE)) and the twists of P"~! are parametrised by

H'(K,PGL,). O

Remark 2.4. This interpretation of H!(K, E[n]) is a variant of one given in
[4], [9]. If ¢ : C — E is an isomorphism of curves defined over K with ¢*wp = w
then we make C a torsor under E via (P,Q) — ¢ (P + ¢(Q)). This action
depends on w but not on ¢.

The obstruction map, defined in [9], is
Ob: HY(K, E[n]) — Br(K)
(C— S w)—[9] .

In general this map is not a group homomorphism. Nevertheless we write ker(Ob)
for the inverse image of the identity. We specialise to the case n = 3.



Theorem 2.5. Let Uy = 0 be a Weierstrass equation for E. Then the ternary
cubics with the same invariants as Ug, up to proper K -equivalence, are param-
etrised by ker(Ob) C H' (K, E[3]).

Proof. A ternary cubic U determines a plane cubic C = {U = 0} C P? and a
regular 1-form on C

Z%d(Y/)Z)

= 37 .

X (Xa Y, Z)
Conversely, every twist (C' — S,w) of (E — P2, wg) with S = P? arises in this
way. In view of Lemmas 2.2 and 2.3 it only remains to show that ternary cubics
Uy and U, are properly equivalent if and only if they determine isomorphic pairs
(C1 — P?%w;) and (Cy — P2, wy). This is immediate from the next lemma, or
more precisely the special case of it where g € GL3(K). O

Lemma 2.6. Let Uy and Uz be non-singular ternary cubics, determining pairs
(C1 — P2 wy) and (Cy — P2 wy). If gUy = Us for some g € GL3(K) then the
isomorphism induced by g, namely

’}/ZCQ—>01; (XYZ)H(gllX-FngY-nglZ),
satisfies v w1 = (det g)ws.
Proof. If the lemma is true for g;,g> € GL3(K) then it is true for g;go. So it

suffices to let g run over a set of generators for GL3(K). The result is already
clear for matrices of the form

Then for
100 010
g=1001 and ¢g=[100
010 001
we use the identities

and

O

Remark 2.7. The subset ker(Ob) C H'(K, E[3]) contains the identity and is
closed under taking inverses. A ternary cubic U represents the identity if and
only if it has a K-rational point of inflection. The inverse of U is —U.



Remark 2.8. We claim that if K is a number field then the everywhere lo-
cally soluble ternary cubics with the same invariants as Ug, up to proper K-
equivalence, are parametrised by the 3-Selmer group S®)(E/K). It is shown in
[9] that S®)(E/K) C ker(Ob), so this claim is a special case of Theorem 2.5.

This interpretation of S®)(E/K) becomes more useful if we can find algo-
rithms for performing the following tasks. We write [U] for the proper equivalence
class of U.

1. Given U test whether [U] = 0.

2. Given Uy, Us test whether [U] = [Us]. If so find the change of co-ordinates
that relates them.

3. Given Uy, Us, Us test whether [U;] 4 [Us] = [Us].

4. Given Uy, Us determine whether there exists Us with [U;] + [Us] = [Us]. If
so compute Us.

The analogues of these problems for the 2-Selmer group have been solved in [3].

3 The Etale Algebra

Let R be the étale algebra of E[3]. It is a product of field extensions of K, one
for each orbit for the action of Gal(K/K) on E[3]. It is shown in [6], [12] that
there is an injective group homomorphism

wy : HY(K, E[3]) — R*/(R*)* .
According to [4, Paper I, Corollary 3.12] the restriction to ker(Ob) is given by
(C —P?w)—a=det M

where M € GL3(R) = Mapg (E[3], GL3(K)) describes the action of E[3] on
C — P2. (Recall that C' is a torsor under E.)

In joint work [4] we describe a method for converting elements of ker(Ob)
represented by @ € R* to elements of ker(Ob) represented by a ternary cubic
U(X,Y, Z). In this article we work in the opposite direction. We start with a
ternary cubic U(X,Y, Z) and convert it to o € R*. We also give a formula for
the matrix M € GL3(R). This enables us to solve the problems listed at the end
of Sect. 2.

4 The Hesse Family

Let C be a smooth plane cubic with Jacobian E. Let ¢ € K be a primitive cube
root, of unity. Let S, T be a basis for E[3] with e3(S,T) = ¢, where e3 is the Weil
pairing. Making a suitable choice of co-ordinates over K we may assume

0 00
Mg = 0, Mr=|[10
01

4-2

OO =
Sy O
S O =



Then C has equation
UX,Y,Z)=a(X*+Y>+ 2% - 3bXYZ .
The invariants of this ternary cubic are

ca(a,b) = 3*(8a® + b3)b
co(a,b) = 35(8a8 + 20433 — 1)
A(a,b) = —3%3(a — b*)3 .

The Hessian is
H(X.,Y,Z)=27ab*(X® +Y® + Z°) — 27(4a® - b*)XY Z .
Taking 0c = (0: 1 : —1) the elliptic curve (C,0¢) has Weierstrass equation
vz = 23 — 27cq(a, b)xz? — 5dcg(a, b)2® .
An explicit isomorphism is given by

r = —27(4a® — b3 X — 81ab*(Y + Z)
y =972a(a® — b3)(Y — Z) (2)
z=bX+aY+2) .

5 The Syzygetic Triangles

Let U(X,Y, Z) be a non-singular ternary cubic with Jacobian E. The pencil of
cubics spanned by U and its Hessian is a twist of the Hesse family. So there are
exactly 4 singular fibres, and each singular fibre is a triangle. The sides of each
triangle are the fixed lines for the action of My on P? for some 0 # T € E[3].
So there is a Galois equivariant bijection between the syzygetic triangles and

p(ep) =

Lemma 5.1. Let U be a non-singular ternary cubic with invariants cy, cg and
Hessian H. Let T = (z7,yr) be a non-zero 3-torsion point on the Jacobian

E y2 =22 — 27cqx — Hdcg .
Then the syzygetic triangle corresponding to =T has equation
T=3%a;U+H
and this equation satisfies H(T) = 2—17y%T

Proof. We may assume that U belongs to the Hesse family with 7" the image of
(0: ¢ : —¢?) under (2). The lemma follows by direct calculation. O

Remark 5.2. The Hessian of a triangle is a non-zero multiple of the triangle.
So in Lemma 5.1 we have yp # 0. This is no surprise, since a non-zero 3-torsion
point on E cannot also be a 2-torsion point.



6 The Invariants of a Triangle

Let S5 act on Q[ay, s, as, 1, B2, 8] by simultaneously permuting the «; and
the ;. The ring of invariants has Hilbert series

1624 26° +t* +4°
(1—1)2(1 —12)2(1 —13)2 ~

h(t) =

Let s1, 592,53 (respectively tq,t2,t3) be the elementary symmetric polynomials
in the «; (respectively ;). According to MAGMA the primary invariants are
S1, 82, 3,11, to, t3. The remaining coefficients of

3
L(X.Y.Z) = [[(X + aiY + 5,2)
=1
are
u = o (B2 + f3) + a2(Bs + B1) + as(fr + B2)
v = a3 + a1 foaz + fragsas
w = a1 0203 + frazfBz + B1fas .

The secondary invariants are 1,u,v,w,u?,vw. So as a Q-algebra, the ring of
invariants is generated by the coefficients of 7;. There are 5 relations. These are
obtained by writing uv, uw, v2, w?, u? as linear combinations of the secondary
invariants. In fact MAGMA can rewrite any invariant as a Q[s1, s2, $3,t1, ta, t3]-

linear combination of the secondary invariants. For example

1o B
(a1 —ag)(ag — az)(as —ay) |1 as B
1 as B3

= 25%1} — S18ou — 6s1s3t1 + 2$§t1 — 659V + 9s3u .

7 Formulae

Let C' be a smooth plane cubic defined over K, with Jacobian E. Let L/K
be any field extension. Given T' € E[3|(L) we aim to compute Mp € GL3(L)
describing the action of 7" on C. We start with an equation U = 0 for C. Then
we construct the syzygetic triangle 7 = %xTU + H as described in Lemma 5.1.
Making a change of co-ordinates if necessary, we may assume 7(1,0,0) # 0.
Then factoring over the algebraic closure gives

3

T(X,Y,2) =r[[(X + .Y +8,2) . (3)
i=1
We put
L ay B
P=11a B
1L ag (s

and & = ag + Cas + (Pas.



Theorem 7.1. If £ # 0 then the matriz

1 00
Mr=réP71[0 20| P
00 ¢

belongs to GL3(L) and describes the action of T (or —T) on C.

Proof. The required matrix has image in PGL3 of order 3, and acts on P? with
fixed lines the sides of 7 = 0. So the second statement is clear. We must check
that My has coefficients in L.

We write r~!(det P)Mr = A + ({ — ¢?)B where A and B are matrices with
entries in Q[ay, as,as, 1, B2, B3]. We find o(A) = sign(o)A and o(B) = B for
all o € S3. So the entries of (det P)A and B are polynomials in the coefficients
of 7, = r~17. As discussed in Sect. 6 we can compute these polynomials using
MAGMA.

By (3) we have H(7') = —r?(det P)*7. Comparing with Lemma 5.1 it follows
that yr = +3(¢ — ¢?)r det P. Therefore

(det P)>Myp = r(det P)A & tyr B
and My has entries in L as required. a
We write
T(X,Y,Z) =rX3+ 5 X%Y +5XY? + 533
+ 01 X2 Z + 4, X 2% 4+ 1327 (4)
+YZ(uX +0Y +wZ) .

Theorem 7.2. det(My) = 2(R+ %5) where

R = 23{’ — 9rs189 + 271255
S = 23%7} — $18ou — 6s183t1 + 28%151 — 6rsov 4+ 9rssu .
Proof. Comparing coefficients in (3) and (4) we find
det(Mr) = r¥(a + az + (*a3)?
= 3(R—=3(¢C—¢*)r’o)
where § = (a1 — ag)(az2 — ag)(as — a1). By the example in Sect. 6 we have

r3§ det P = S. Finally we recall from the proof of Theorem 7.1 that y; =
+3(¢ — ¢?)rdet P. O

Remark 7.3. The formulae of Theorems 7.1 and 7.2 sometimes fail and give
zero. (The situation is analogous to the proof of Hilbert’s theorem 90 using
Lagrange resolvents.) However if they fail for both 7" and —T then

ar + Cag + C2az =0
and
011-1-420424-(0[3 =0 .

From these we deduce det P = 0, contradicting that (3) is the equation of a
syzygetic triangle. So if our formula for Mz fails then we can use (M_7)~*
instead.



8 GGalois Actions

The formulae of Sect. 7 are slightly easier to use in the case F does not admit a
rational 3-isogeny.

Lemma 8.1. If E does not admit a rational 3-isogeny and [U] # 0, then we are
guaranteed that T(1,0,0) # 0.

Proof. We recall that 7 = 27U+ H. By hypothesis 7 ¢ K. Soif 7(1,0,0) =0
then U(1,0,0) = H(1,0,0) = 0. But then (1 : 0 : 0) is a K-rational point of
inflection and [U] = 0. O

Let G C GLy(F3) = Aut(E[3]) be the image of Galois.

Lemma 8.2. If E does not admit a rational 3-isogeny then —I, € G.

Proof. By hypothesis the image of G in PGLy(F3) = Sy acts on P*(F3) without
fixed points. If this image is A4 or Sy then G contains SLo(F3) by [13, IV, §3.4,
Lemma 2]. Otherwise G is a 2-group, and so conjugate to a subgroup of the
Sylow 2-subgroup generated by

11 10
a= (11) and b= <01>.

The only non-trivial subgroups of {a, b), not containing —I5, are the conjugates
of (b). These possibilities for G are again ruled out by the assumption that FE
does not admit a rational 3-isogeny. a

If —I, € G then our formula for My works if and only if our formula for
M _ 7 works. According to Remark 7.3 they cannot both fail, so they must both
work.

9 Applications

In our examples we take K = Q. Elliptic curves over Q are referenced by their
labellings in [2].

9.1 Testing Proper Equivalence

We are given non-singular ternary cubics U; and Us, and must decide whether
they are properly equivalent. First we check that they have the same invariants
¢4 and cg. Then the plane cubics U; = 0 and Uy = 0 each have Jacobian

E: y?=2%—27cyx — 5dcs .

We compute aq, @z € R* by using Theorem 7.2 once for each orbit for the action
of Gal(K/K) on E[3]. Then U; and U, are properly equivalent if and only if
051/052 S (Rx)g.
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For example the ternary cubics

Uy(X,Y,Z) = X3 —180Y3 + 2473 + 8X?2Y — 3X?Z
+3XY?2 - 148Y2Z + 76X Z% — 280Y Z2 + 59XY Z

and

Us(X,Y, Z) = 32X3 +48Y" 4 327% — 14X?Y — 17X2Z
+14XY2 4+ 68Y2Z — 34X Z% 4 34Y Z2 — 91XY Z

each have invariants ¢y = 1073512497 and cg = 35173095391575. The Jacobian
is
2534€2: Y +ay+y =2 — 2% — 223648442 — 40704009937 .

A non-trivial 3-torsion point is T' = (xr,yr) where

zp = £5(289u’ + 765u* + 24567u? + 22035)

yr = — 315 (2393070 + 3757u’ + 638911u° + 9945u*
+20357181u3 + 319371u? + 45909405u + 286611)

and u is a root of X® + 78X* — 36X2 — 507 = 0. We have R = Q x L where
L = Q(u) is a number field of degree 8. The first factor of Q may be ignored.
Using Theorem 7.2 we compute

o) = %(548276415600669u7 — 9123440320675461°
+1459379319052681u° — 2428439574347826u*
+46650075622210203u® — 77626752951639190u>
+104433275464300347u — 173779291524426198)

oo = %(23737183831720776u7 + 38664498064205221u°
+63182645951465768u5 + 102915548856548337u
+2019677284143385464u> + 3289767129786200531u2
+4521354220053126264u + 7364643132168529779) .

We find oy /as = b® where

b = 37599151 (—35980u” + 9880u’ — 90181u® 4 294515u?

—2820090u3 + 1603888u? — 6288205u + 17147429) .
It follows that U; and U, are properly equivalent.

Remark 9.1. Suppose we are given non-singular ternary cubics U and U’ with
invariants ¢4, ¢g and ¢}, cs. To test for equivalence we first find all A € K*
satisfying ¢}, = Mcy and ¢ = A\°cq. Then for each such A\ we test whether \U
and U’ are properly equivalent.

9.2 Finding Equivalences

We continue with the example of the last subsection and find the change of co-
ordinates relating U; and Us. Following the proof of Theorem 7.1 we compute
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matrices My, My € GL3(L) describing the action of T on U; = 0 and Uy = 0.
Since a;/as € (L*)? we may arrange that det M; = det M. We are looking for
g € GL3(K) with Uy = (det g)~!(gU1). We must have

My gT = chMg
for some ¢ € L*. Taking determinants gives ¢3 = 1. Since L contains no non-

trivial cube roots of unity it follows that ¢ = 1. Solving for g by linear algebra
we find

19 -1 6
g=|-8-8 0
22 —2 -4

Remark 9.2. If E[3](K) # 0 then there will be more than one change of co-
ordinates relating U; and Us. These will correspond to different choices for the
constant c. Indeed by the Weil pairing there is an inclusion E[3](K) C us(R).

9.3 Addition of Selmer Group Elements

The rank 0 elliptic curve
E =4343b1 :  y? +y = 2 — 3252592 — 71398995

has Tate-Shafarevich group of analytic order 9. The following two elements of
SB)(E/Q) are visible in the rank 1 elliptic curves 21715a1 and 117261k1. (We
will explain these calculations more fully in subsequent work. The concept of
visibility was introduced in [5].)

U(X,Y,Z) = X3 +15Y3 — 1723 - 8X?Y +4X2%Z
+15XY?2 - 13Y%2Z +32X2%24+26Y 2% +4XYZ
Uy(X,Y,Z)=7X3 - 13Y3 - 1723 + 7X?%Y +3X2Z
—4XY? -2Y?2Z +12X 7% - 15YZ%2 - 30XY Z

We use Theorem 7.2 to compute a1, as € R*. We find that a1, as are indepen-
dent in R*/(R*)3. Applying the work of [4] to ajag and a;/as we obtain

Us(X,Y,Z) = —5X3 + 12Y3 + 3123 + 3X2Y — 5X2Z
L 5XY2 4 2Y2Z 44X Z2 + 26V Z2 + 40XY Z

Uy(X,Y,Z) = —11X3 +8Y3 — 1373 — 9X?Y + 11X%Z
—15XY? -Y27Z -16X27% -3YZ? - 38XY Z .

Assuming the Birch Swinnerton-Dyer conjecture, we have
I(E/Q) = {0, £[U1], £[Us], £[Us], £[U4]}

We have found these equations without the need to compute the class group or
unit group of any number field.
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9.4 Testing Global Solubility
We show that the ternary cubic

Ui(X,Y,2) =7X3 +9Y3 + 1623 + 2X2%Y
+5Y2Z 4+5X72 -7V 7% -31XYZ

is insoluble over Q. The Jacobian
E =35882al :  y? +ay =2 — 2% — 1569262 — 24991340

has Mordell-Weil group E(Q) & Z/2Z x Z. A point of infinite order is P =
(693,13750). Embedding E C P? via |2.0p + P| we obtain

Ux(X,Y,Z) = 15Y3 + 125423 + X?Z — XY?
+674Y272 +10X 722 —291Y 722 + XY 7 .

We use Theorem 7.2 to compute aq,as € R*. We then check that aq, as are
independent in R* /(R*)3. Since U is soluble over Q and F(Q)/3E(Q) = Z/3Z,
it follows that U is insoluble over Q.

Alternatively this could be checked using the explicit formulae for the cover-
ing map given in [1].

9.5 Reduction of Ternary Cubics

It is desirable to be able to replace an integer coefficient ternary cubic by an
equivalent one with smaller coefficients. One method, explained to me by Michael
Stoll, first computes a certain inner product, and then uses standard lattice
reduction techniques. By an inner product on a complex vector space we mean
a positive definite Hermitian form. We recall the Weyl unitary trick.

Lemma 9.3. Let V be an irreducible complex representation of a finite group G.
Then (up to scalars) there is a unique G-invariant inner product (, ) : VxV —
C.

Proof. Let (, )o be any inner product on V. Then
(u,0) = (gu, gv)o
geG

is a G-invariant inner product. By Schur’s lemma the complex vector space of
G-invariant sesquilinear forms on V is 1-dimensional. a

We now take C' C P? a smooth plane cubic defined over Q with Jacobian E.
The action of E[3] on C extends to P? to give x : E[3] — PGL3. Lifting to SL3
we obtain a diagram

0 M3 H; E[3] 0

b

0 "3 SL3 PGL3 —0 .
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The Heisenberg group Hj is a non-abelian group of order 27. For the reduc-
tion of ternary cubics, we use the unique Heisenberg-invariant inner product.
Theorem 7.1 gives a convenient way of computing this inner product. Indeed
if My € SL3(R) and My € SL3(C) generate the action of E[3] on C then the
required inner product on C3 has Gram matrix

i(%r)T<ZQ:(Mf)TMf>M§ .

r=0 s=0
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