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Abstract. Let C be a smooth plane cubic curve with Jacobian E. We
give a formula for the action of the 3-torsion of E on C, and explain how
it is useful in studying the 3-Selmer group of an elliptic curve de�ned
over a number �eld.

We work over a �eld K of characteristic zero, with algebraic closure K.

1 The Invariants of a Ternary Cubic

Let X3 = A10 be the space of all ternary cubics

U(X,Y, Z) = aX3 + bY 3 + cZ3 + a2X
2Y + a3X

2Z
+ b1XY

2 + b3Y
2Z + c1XZ

2 + c2Y Z
2 +mXY Z .

The co-ordinate ring of X3 is the polynomial ring

K[X3] = K[a, b, c, a2, a3, b1, b3, c1, c2,m] .

There is a natural action of GL3 on X3 given by

(gU)(X,Y, Z) = U(g11X + g21Y + g31Z, . . . , g13X + g23Y + g33Z) .

The ring of invariants is

K[X3]SL3 = {F ∈ K[X3] : F ◦ g = F for all g ∈ SL3(K)} .

A homogeneous invariant F satis�es

F ◦ g = χ(g)F (1)

for all g ∈ GL3(K), for some rational character χ : GL3 → Gm. But the only
rational characters of GL3 are of the form χ(g) = (det g)k for k an integer. We
say that F is an invariant of weight k. Taking g a scalar matrix in (1) shows
that F has weight equal to its degree. The following facts are well known: see
[1], [10], [15].
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Theorem 1.1. There are invariants c4, c6 and ∆ of weights 4, 6 and 12, related
by c34 − c26 = 1728∆, with the following properties:
(i) The invariants of

UE(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3

are given by the standard formulae: see [14, Chap. III].
(ii) The ring of invariants is a polynomial ring in two variables, generated by c4
and c6.
(iii) A ternary cubic U is non-singular if and only if ∆(U) 6= 0.
(iv) If the plane cubic {U = 0} ⊂ P2 is non-singular then it has Jacobian

y2 = x3 − 27c4(U)x− 54c6(U) .

The Hessian of U(X,Y, Z) is

H(X,Y, Z) = (−1/2)×

∣∣∣∣∣∣∣∣
∂2U
∂X2

∂2U
∂X∂Y

∂2U
∂X∂Z

∂2U
∂X∂Y

∂2U
∂Y 2

∂2U
∂Y ∂Z

∂2U
∂X∂Z

∂2U
∂Y ∂Z

∂2U
∂Z2

∣∣∣∣∣∣∣∣ .

The factor −1/2, although not standard, is a choice we �nd convenient. The
Hessian is a polynomial map H : X3 → X3 satisfying

H ◦ g = (det g)2g ◦H

for all g ∈ GL3(K). We say it is a covariant of weight 2. Putting c4 = c4(U),
c6 = c6(U) and H = H(U) we �nd

H(λU + µH) = 3(c4λ2µ+ 2c6λµ2 + c24µ
3)U + (λ3 − 3c4λµ2 − 2c6µ3)H .

This formula is classical: see [7], [11]. It is easily veri�ed by restricting to any
family of plane cubics covering the j-line. It also gives a convenient way of
computing the invariants c4 and c6.

2 The 3-Selmer Group

De�nition 2.1. Let U1 and U2 be ternary cubics over K.
(i) U1 and U2 are equivalent if U2 = λ(gU1) for some λ ∈ K× and g ∈ GL3(K).
(ii) U1 and U2 are properly equivalent if U2 = (det g)−1(gU1) for some g ∈
GL3(K).

Lemma 2.2. Let U1 and U2 be non-singular ternary cubics over K. If U1 and
U2 are properly equivalent then they have the same invariants. If K = K then
the converse is also true.
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Proof. The �rst statement follows from the fact that a homogeneous invariant
has weight equal to its degree. For the second statement we may assume

U1(X,Y, Z) = Y 2Z − (X3 + a1XZ
2 + b1Z

3)
U2(X,Y, Z) = Y 2Z − (X3 + a2XZ

2 + b2Z
3)

for some a1, b1, a2, b2 ∈ K. Since U1 and U2 have the same invariants, it follows
by Theorem 1.1(i) that U1 = U2. ut

We consider pairs (C → S, ω) where C → S is a morphism from a smooth
curve of genus one C to a Brauer-Severi variety S, and ω is a regular 1-form
on C. An isomorphism between (C1 → S1, ω1) and (C2 → S2, ω2) is a pair of
isomorphisms φ : C1

∼= C2 and ψ : S1
∼= S2 such that φ∗ω2 = ω1 and the diagram

C1
//

φ

��

S1

ψ

��
C2

// S2

commutes.
Let n ≥ 2 be an integer. Let E/K be an elliptic curve with invariant di�er-

ential ωE . We map E → Pn−1 via the complete linear system |n.0E |. We recall
that objects de�ned over K are called twists if they are isomorphic over K.

Lemma 2.3. The twists of (E → Pn−1, ωE), up to K-isomorphism, are param-
etrised by H1(K,E[n]).

Proof. The automorphisms α of E with α∗ωE = ωE are the translation maps.
If τP : E → E is translation by P ∈ E(K), we know that τ∗P (n.0E) ∼ n.0E
if and only if nP = 0E . So Aut(E → Pn−1, ωE) ∼= E[n]. An injective map
from the isomorphism classes of twists to H1(K,E[n]) is given by comparing
an isomorphism de�ned over K with its Galois conjugates. It remains to prove
surjectivity. This follows from the well known facts that the twists of E are
parametrised by H1(K, Isom(E)) and the twists of Pn−1 are parametrised by
H1(K,PGLn). ut

Remark 2.4. This interpretation of H1(K,E[n]) is a variant of one given in
[4], [9]. If φ : C → E is an isomorphism of curves de�ned over K with φ∗ωE = ω
then we make C a torsor under E via (P,Q) 7→ φ−1(P + φ(Q)). This action
depends on ω but not on φ.

The obstruction map, de�ned in [9], is

Ob : H1(K,E[n]) → Br(K)
(C → S, ω) 7→ [S] .

In general this map is not a group homomorphism. Nevertheless we write ker(Ob)
for the inverse image of the identity. We specialise to the case n = 3.
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Theorem 2.5. Let UE = 0 be a Weierstrass equation for E. Then the ternary
cubics with the same invariants as UE, up to proper K-equivalence, are param-
etrised by ker(Ob) ⊂ H1(K,E[3]).

Proof. A ternary cubic U determines a plane cubic C = {U = 0} ⊂ P2 and a
regular 1-form on C

ω =
Z2d(Y/Z)
∂U
∂X (X,Y, Z)

.

Conversely, every twist (C → S, ω) of (E → P2, ωE) with S ∼= P2 arises in this
way. In view of Lemmas 2.2 and 2.3 it only remains to show that ternary cubics
U1 and U2 are properly equivalent if and only if they determine isomorphic pairs
(C1 → P2, ω1) and (C2 → P2, ω2). This is immediate from the next lemma, or
more precisely the special case of it where g ∈ GL3(K). ut

Lemma 2.6. Let U1 and U2 be non-singular ternary cubics, determining pairs
(C1 → P2, ω1) and (C2 → P2, ω2). If gU1 = U2 for some g ∈ GL3(K) then the
isomorphism induced by g, namely

γ : C2 → C1 ; (X : Y : Z) 7→ (g11X + g21Y + g31Z : . . .),

satis�es γ∗ω1 = (det g)ω2.

Proof. If the lemma is true for g1, g2 ∈ GL3(K) then it is true for g1g2. So it
su�ces to let g run over a set of generators for GL3(K). The result is already
clear for matrices of the form

g =

λ1 0 0
0 λ2 0
0 µ λ3

 .

Then for

g =

1 0 0
0 0 1
0 1 0

 and g =

0 1 0
1 0 0
0 0 1


we use the identities

Z

Y
d

(
Y

Z

)
+
Y

Z
d

(
Z

Y

)
= 0

and
1
Z2

∂U

∂X
(X,Y, Z)d

(
X

Z

)
+

1
Z2

∂U

∂Y
(X,Y, Z)d

(
Y

Z

)
= 0 .

ut

Remark 2.7. The subset ker(Ob) ⊂ H1(K,E[3]) contains the identity and is
closed under taking inverses. A ternary cubic U represents the identity if and
only if it has a K-rational point of in�ection. The inverse of U is −U .
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Remark 2.8. We claim that if K is a number �eld then the everywhere lo-
cally soluble ternary cubics with the same invariants as UE , up to proper K-
equivalence, are parametrised by the 3-Selmer group S(3)(E/K). It is shown in
[9] that S(3)(E/K) ⊂ ker(Ob), so this claim is a special case of Theorem 2.5.

This interpretation of S(3)(E/K) becomes more useful if we can �nd algo-
rithms for performing the following tasks. We write [U ] for the proper equivalence
class of U .

1. Given U test whether [U ] = 0.
2. Given U1, U2 test whether [U1] = [U2]. If so �nd the change of co-ordinates

that relates them.
3. Given U1, U2, U3 test whether [U1] + [U2] = [U3].
4. Given U1, U2 determine whether there exists U3 with [U1] + [U2] = [U3]. If

so compute U3.

The analogues of these problems for the 2-Selmer group have been solved in [3].

3 The Etale Algebra

Let R be the étale algebra of E[3]. It is a product of �eld extensions of K, one
for each orbit for the action of Gal(K/K) on E[3]. It is shown in [6], [12] that
there is an injective group homomorphism

w1 : H1(K,E[3]) → R×/(R×)3 .

According to [4, Paper I, Corollary 3.12] the restriction to ker(Ob) is given by

(C → P2, ω) 7→ α = detM

where M ∈ GL3(R) = MapK(E[3],GL3(K)) describes the action of E[3] on
C → P2. (Recall that C is a torsor under E.)

In joint work [4] we describe a method for converting elements of ker(Ob)
represented by α ∈ R× to elements of ker(Ob) represented by a ternary cubic
U(X,Y, Z). In this article we work in the opposite direction. We start with a
ternary cubic U(X,Y, Z) and convert it to α ∈ R×. We also give a formula for
the matrix M ∈ GL3(R). This enables us to solve the problems listed at the end
of Sect. 2.

4 The Hesse Family

Let C be a smooth plane cubic with Jacobian E. Let ζ ∈ K be a primitive cube
root of unity. Let S, T be a basis for E[3] with e3(S, T ) = ζ, where e3 is the Weil
pairing. Making a suitable choice of co-ordinates over K we may assume

MS =

1 0 0
0 ζ 0
0 0 ζ2

 , MT =

0 0 1
1 0 0
0 1 0

 .
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Then C has equation

U(X,Y, Z) = a(X3 + Y 3 + Z3)− 3bXY Z .

The invariants of this ternary cubic are

c4(a, b) = 34(8a3 + b3)b
c6(a, b) = 36(8a6 + 20a3b3 − b6)
∆(a, b) = −39a3(a3 − b3)3 .

The Hessian is

H(X,Y, Z) = 27ab2(X3 + Y 3 + Z3)− 27(4a3 − b3)XY Z .

Taking 0C = (0 : 1 : −1) the elliptic curve (C, 0C) has Weierstrass equation

y2z = x3 − 27c4(a, b)xz2 − 54c6(a, b)z3 .

An explicit isomorphism is given by

x = −27(4a3 − b3)X − 81ab2(Y + Z)
y = 972a(a3 − b3)(Y − Z)
z = bX + a(Y + Z) .

(2)

5 The Syzygetic Triangles

Let U(X,Y, Z) be a non-singular ternary cubic with Jacobian E. The pencil of
cubics spanned by U and its Hessian is a twist of the Hesse family. So there are
exactly 4 singular �bres, and each singular �bre is a triangle. The sides of each
triangle are the �xed lines for the action of MT on P2 for some 0 6= T ∈ E[3].
So there is a Galois equivariant bijection between the syzygetic triangles and

P(E[3]) =
E[3] \ {0}
{±1}

.

Lemma 5.1. Let U be a non-singular ternary cubic with invariants c4, c6 and
Hessian H. Let T = (xT , yT ) be a non-zero 3-torsion point on the Jacobian

E : y2 = x3 − 27c4x− 54c6 .

Then the syzygetic triangle corresponding to ±T has equation

T = 1
3xTU +H

and this equation satis�es H(T ) = 1
27y

2
TT .

Proof. We may assume that U belongs to the Hesse family with T the image of
(0 : ζ : −ζ2) under (2). The lemma follows by direct calculation. ut

Remark 5.2. The Hessian of a triangle is a non-zero multiple of the triangle.
So in Lemma 5.1 we have yT 6= 0. This is no surprise, since a non-zero 3-torsion
point on E cannot also be a 2-torsion point.
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6 The Invariants of a Triangle

Let S3 act on Q[α1, α2, α3, β1, β2, β3] by simultaneously permuting the αi and
the βi. The ring of invariants has Hilbert series

h(t) =
1 + t2 + 2t3 + t4 + t6

(1− t)2(1− t2)2(1− t3)2
.

Let s1, s2, s3 (respectively t1, t2, t3) be the elementary symmetric polynomials
in the αi (respectively βi). According to MAGMA the primary invariants are
s1, s2, s3, t1, t2, t3. The remaining coe�cients of

T1(X,Y, Z) =
3∏
i=1

(X + αiY + βiZ)

are
u = α1(β2 + β3) + α2(β3 + β1) + α3(β1 + β2)
v = α1α2β3 + α1β2α3 + β1α2α3

w = α1β2β3 + β1α2β3 + β1β2α3 .

The secondary invariants are 1, u, v, w, u2, vw. So as a Q-algebra, the ring of
invariants is generated by the coe�cients of T1. There are 5 relations. These are
obtained by writing uv, uw, v2, w2, u3 as linear combinations of the secondary
invariants. In fact MAGMA can rewrite any invariant as a Q[s1, s2, s3, t1, t2, t3]-
linear combination of the secondary invariants. For example

(α1 − α2)(α2 − α3)(α3 − α1)

∣∣∣∣∣∣
1 α1 β1

1 α2 β2

1 α3 β3

∣∣∣∣∣∣
= 2s21v − s1s2u− 6s1s3t1 + 2s22t1 − 6s2v + 9s3u .

7 Formulae

Let C be a smooth plane cubic de�ned over K, with Jacobian E. Let L/K
be any �eld extension. Given T ∈ E[3](L) we aim to compute MT ∈ GL3(L)
describing the action of T on C. We start with an equation U = 0 for C. Then
we construct the syzygetic triangle T = 1

3xTU +H as described in Lemma 5.1.
Making a change of co-ordinates if necessary, we may assume T (1, 0, 0) 6= 0.
Then factoring over the algebraic closure gives

T (X,Y, Z) = r
3∏
i=1

(X + αiY + βiZ) . (3)

We put

P =

1 α1 β1

1 α2 β2

1 α3 β3


and ξ = α1 + ζα2 + ζ2α3.
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Theorem 7.1. If ξ 6= 0 then the matrix

MT = rξP−1

1 0 0
0 ζ2 0
0 0 ζ

P

belongs to GL3(L) and describes the action of T (or −T ) on C.

Proof. The required matrix has image in PGL3 of order 3, and acts on P2 with
�xed lines the sides of T = 0. So the second statement is clear. We must check
that MT has coe�cients in L.

We write r−1(detP )MT = A+ (ζ − ζ2)B where A and B are matrices with
entries in Q[α1, α2, α3, β1, β2, β3]. We �nd σ(A) = sign(σ)A and σ(B) = B for
all σ ∈ S3. So the entries of (detP )A and B are polynomials in the coe�cients
of T1 = r−1T . As discussed in Sect. 6 we can compute these polynomials using
MAGMA.

By (3) we have H(T ) = −r2(detP )2T . Comparing with Lemma 5.1 it follows
that yT = ±3(ζ − ζ2)r detP. Therefore

(detP )2MT = r(detP )A± 1
3yTB

and MT has entries in L as required. ut
We write

T (X,Y, Z) = rX3 + s1X
2Y + s2XY

2 + s3Y
3

+ t1X
2Z + t2XZ

2 + t3Z
3

+ Y Z(uX + vY + wZ) .
(4)

Theorem 7.2. det(MT ) = 1
2 (R± 27r

yT
S) where

R = 2s31 − 9rs1s2 + 27r2s3
S = 2s21v − s1s2u− 6s1s3t1 + 2s22t1 − 6rs2v + 9rs3u .

Proof. Comparing coe�cients in (3) and (4) we �nd

det(MT ) = r3(α1 + ζα2 + ζ2α3)3

= 1
2 (R− 3(ζ − ζ2)r3δ)

where δ = (α1 − α2)(α2 − α3)(α3 − α1). By the example in Sect. 6 we have
r3δ detP = S. Finally we recall from the proof of Theorem 7.1 that yT =
±3(ζ − ζ2)r detP. ut
Remark 7.3. The formulae of Theorems 7.1 and 7.2 sometimes fail and give
zero. (The situation is analogous to the proof of Hilbert's theorem 90 using
Lagrange resolvents.) However if they fail for both T and −T then

α1 + ζα2 + ζ2α3 = 0

and
α1 + ζ2α2 + ζα3 = 0 .

From these we deduce detP = 0, contradicting that (3) is the equation of a
syzygetic triangle. So if our formula for MT fails then we can use (M−T )−1

instead.
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8 Galois Actions

The formulae of Sect. 7 are slightly easier to use in the case E does not admit a
rational 3-isogeny.

Lemma 8.1. If E does not admit a rational 3-isogeny and [U ] 6= 0, then we are
guaranteed that T (1, 0, 0) 6= 0.

Proof. We recall that T = 1
3xTU+H. By hypothesis xT 6∈ K. So if T (1, 0, 0) = 0

then U(1, 0, 0) = H(1, 0, 0) = 0. But then (1 : 0 : 0) is a K-rational point of
in�ection and [U ] = 0. ut

Let G ⊂ GL2(F3) ∼= Aut(E[3]) be the image of Galois.

Lemma 8.2. If E does not admit a rational 3-isogeny then −I2 ∈ G.

Proof. By hypothesis the image of G in PGL2(F3) ∼= S4 acts on P1(F3) without
�xed points. If this image is A4 or S4 then G contains SL2(F3) by [13, IV, �3.4,
Lemma 2]. Otherwise G is a 2-group, and so conjugate to a subgroup of the
Sylow 2-subgroup generated by

a =
(

1 1
−1 1

)
and b =

(
1 0
0 −1

)
.

The only non-trivial subgroups of 〈a, b〉, not containing −I2, are the conjugates
of 〈b〉. These possibilities for G are again ruled out by the assumption that E
does not admit a rational 3-isogeny. ut

If −I2 ∈ G then our formula for MT works if and only if our formula for
M−T works. According to Remark 7.3 they cannot both fail, so they must both
work.

9 Applications

In our examples we take K = Q. Elliptic curves over Q are referenced by their
labellings in [2].

9.1 Testing Proper Equivalence

We are given non-singular ternary cubics U1 and U2, and must decide whether
they are properly equivalent. First we check that they have the same invariants
c4 and c6. Then the plane cubics U1 = 0 and U2 = 0 each have Jacobian

E : y2 = x3 − 27c4x− 54c6 .

We compute α1, α2 ∈ R× by using Theorem 7.2 once for each orbit for the action
of Gal(K/K) on E[3]. Then U1 and U2 are properly equivalent if and only if
α1/α2 ∈ (R×)3.
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For example the ternary cubics

U1(X,Y, Z) = X3 − 180Y 3 + 24Z3 + 8X2Y − 3X2Z
+ 3XY 2 − 148Y 2Z + 76XZ2 − 280Y Z2 + 59XY Z

and

U2(X,Y, Z) = 32X3 + 48Y 3 + 32Z3 − 14X2Y − 17X2Z
+ 14XY 2 + 68Y 2Z − 34XZ2 + 34Y Z2 − 91XY Z

each have invariants c4 = 1073512497 and c6 = 35173095391575. The Jacobian
is

2534e2 : y2 + xy + y = x3 − x2 − 22364844x− 40704009937 .

A non-trivial 3-torsion point is T = (xT , yT ) where

xT = 1
12 (289u6 + 765u4 + 24567u2 + 22035)

yT = − 1
312 (239307u7 + 3757u6 + 638911u5 + 9945u4

+ 20357181u3 + 319371u2 + 45909405u+ 286611)

and u is a root of X8 + 78X4 − 36X2 − 507 = 0. We have R = Q × L where
L = Q(u) is a number �eld of degree 8. The �rst factor of Q may be ignored.
Using Theorem 7.2 we compute

α1 = 144
13 (548276415600669u7 − 912344032067546u6

+1459379319052681u5 − 2428439574347826u4

+46650075622210203u3 − 77626752951639190u2

+104433275464300347u− 173779291524426198)

α2 = 1152
13 (23737183831720776u7 + 38664498064205221u6

+63182645951465768u5 + 102915548856548337u4

+2019677284143385464u3 + 3289767129786200531u2

+4521354220053126264u+ 7364643132168529779) .

We �nd α1/α2 = b3 where

b = 1
31499104 (−35980u7 + 9880u6 − 90181u5 + 294515u4

−2820090u3 + 1603888u2 − 6288205u+ 17147429) .

It follows that U1 and U2 are properly equivalent.

Remark 9.1. Suppose we are given non-singular ternary cubics U and U ′ with
invariants c4, c6 and c′4, c

′
6. To test for equivalence we �rst �nd all λ ∈ K×

satisfying c′4 = λ4c4 and c′6 = λ6c6. Then for each such λ we test whether λU
and U ′ are properly equivalent.

9.2 Finding Equivalences

We continue with the example of the last subsection and �nd the change of co-
ordinates relating U1 and U2. Following the proof of Theorem 7.1 we compute
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matrices M1,M2 ∈ GL3(L) describing the action of T on U1 = 0 and U2 = 0.
Since α1/α2 ∈ (L×)3 we may arrange that detM1 = detM2. We are looking for
g ∈ GL3(K) with U2 = (det g)−1(gU1). We must have

M1g
T = cgTM2

for some c ∈ L×. Taking determinants gives c3 = 1. Since L contains no non-
trivial cube roots of unity it follows that c = 1. Solving for g by linear algebra
we �nd

g =

 19 −1 6
−8 −8 0
22 −2 −4

 .

Remark 9.2. If E[3](K) 6= 0 then there will be more than one change of co-
ordinates relating U1 and U2. These will correspond to di�erent choices for the
constant c. Indeed by the Weil pairing there is an inclusion E[3](K) ⊂ µ3(R).

9.3 Addition of Selmer Group Elements

The rank 0 elliptic curve

E = 4343b1 : y2 + y = x3 − 325259x− 71398995

has Tate-Shafarevich group of analytic order 9. The following two elements of
S(3)(E/Q) are visible in the rank 1 elliptic curves 21715a1 and 117261k1. (We
will explain these calculations more fully in subsequent work. The concept of
visibility was introduced in [5].)

U1(X,Y, Z) = X3 + 15Y 3 − 17Z3 − 8X2Y + 4X2Z
+ 15XY 2 − 13Y 2Z + 32XZ2 + 26Y Z2 + 4XY Z

U2(X,Y, Z) = 7X3 − 13Y 3 − 17Z3 + 7X2Y + 3X2Z
− 4XY 2 − 2Y 2Z + 12XZ2 − 15Y Z2 − 30XY Z

We use Theorem 7.2 to compute α1, α2 ∈ R×. We �nd that α1, α2 are indepen-
dent in R×/(R×)3. Applying the work of [4] to α1α2 and α1/α2 we obtain

U3(X,Y, Z) = −5X3 + 12Y 3 + 31Z3 + 3X2Y − 5X2Z
+ 5XY 2 + 2Y 2Z + 4XZ2 + 26Y Z2 + 40XY Z

U4(X,Y, Z) = −11X3 + 8Y 3 − 13Z3 − 9X2Y + 11X2Z
− 15XY 2 − Y 2Z − 16XZ2 − 3Y Z2 − 38XY Z .

Assuming the Birch Swinnerton-Dyer conjecture, we have

X(E/Q) = {0,±[U1],±[U2],±[U3],±[U4]} .

We have found these equations without the need to compute the class group or
unit group of any number �eld.
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9.4 Testing Global Solubility

We show that the ternary cubic

U1(X,Y, Z) = 7X3 + 9Y 3 + 16Z3 + 2X2Y
+ 5Y 2Z + 5XZ2 − 7Y Z2 − 31XY Z

is insoluble over Q. The Jacobian

E = 35882a1 : y2 + xy = x3 − x2 − 156926x− 24991340

has Mordell-Weil group E(Q) ∼= Z/2Z × Z. A point of in�nite order is P =
(693, 13750). Embedding E ⊂ P2 via |2.0E + P | we obtain

U2(X,Y, Z) = 15Y 3 + 1254Z3 +X2Z −XY 2

+ 674Y 2Z + 10XZ2 − 291Y Z2 +XY Z .

We use Theorem 7.2 to compute α1, α2 ∈ R×. We then check that α1, α2 are
independent in R×/(R×)3. Since U2 is soluble over Q and E(Q)/3E(Q) ∼= Z/3Z,
it follows that U1 is insoluble over Q.

Alternatively this could be checked using the explicit formulae for the cover-
ing map given in [1].

9.5 Reduction of Ternary Cubics

It is desirable to be able to replace an integer coe�cient ternary cubic by an
equivalent one with smaller coe�cients. One method, explained to me by Michael
Stoll, �rst computes a certain inner product, and then uses standard lattice
reduction techniques. By an inner product on a complex vector space we mean
a positive de�nite Hermitian form. We recall the Weyl unitary trick.

Lemma 9.3. Let V be an irreducible complex representation of a �nite group G.
Then (up to scalars) there is a unique G-invariant inner product 〈 , 〉 : V ×V →
C.

Proof. Let 〈 , 〉0 be any inner product on V . Then

〈u, v〉 =
∑
g∈G

〈gu, gv〉0

is a G-invariant inner product. By Schur's lemma the complex vector space of
G-invariant sesquilinear forms on V is 1-dimensional. ut

We now take C ⊂ P2 a smooth plane cubic de�ned over Q with Jacobian E.
The action of E[3] on C extends to P2 to give χ : E[3] → PGL3. Lifting to SL3

we obtain a diagram

0 // µ3 // H3

��

// E[3]

χ

��

// 0

0 // µ3 // SL3
// PGL3

// 0 .
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The Heisenberg group H3 is a non-abelian group of order 27. For the reduc-
tion of ternary cubics, we use the unique Heisenberg-invariant inner product.
Theorem 7.1 gives a convenient way of computing this inner product. Indeed
if M1 ∈ SL3(R) and M2 ∈ SL3(C) generate the action of E[3] on C then the
required inner product on C3 has Gram matrix

2∑
r=0

(M2
r
)T

( 2∑
s=0

(Ms
1 )TMs

1

)
Mr

2 .
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