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Abstract

We show that the proportion of plane cubic curves over Qp that have a Qp-rational point is
a rational function in p, where the rational function is independent of p, and we determine this
rational function explicitly. As a consequence, we obtain the density of plane cubic curves over Q
that have points everywhere locally; numerically, this density is shown to be ≈ 97.3%.

1 Introduction
Any plane cubic curve over Q may be defined by the vanishing of a ternary cubic form

C(X, Y, Z) = aX3 + bX2Y + cX2Z + dXY 2 + eXY Z + fXZ2 + gY 3 +hY 2Z + iY Z2 + jZ3 (1)

where all coefficients a, . . . , j lie in Z. We say that a ternary cubic formC is everywhere locally soluble
if it has a nontrivial zero over every completion of Q, i.e., if the corresponding plane cubic curve has
a point everywhere locally. In this paper, we wish to determine the probability that a random such
integral ternary cubic form is everywhere locally soluble.

More precisely, define the height h(C) of the cubic formC in (1) by h(C) := max{|a|, . . . , |j|}.
Then, as in the work of Poonen and Voloch [11], we define the probability that a random plane cubic
curve over Q has a point everywhere locally (equivalently, the probability that a random integral ternary
cubic form is everywhere locally soluble) by

ρ = lim
B→∞

#{C(X, Y, Z) : C is everywhere locally soluble and h(C) < B}
#{C(X, Y, Z) : h(C) < B}

.

It is proven in [11, Thm. 3.6], using the sieve of Ekedahl [7], that this limit exists and is given by

ρ =
∏
p

ρ(p), (2)

where the product is over all primes p; here ρ(p) denotes the probability (with respect to the usual
additive Zp-measure) that a random ternary cubic form over Zp is soluble over Qp, i.e., has a nontrivial
zero over Qp. There is no contribution from the infinite place because a plane cubic curve over R
always has real points.
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While the methods of [11] prove the existence of ρ, the equality (2), and the inequality 0 <
ρ < 1, they do not indicate how to compute the values ρ(p) or what form these values might take. The
purpose of this article is to develop a method to determine the probabilities ρ(p) for all primes p, and
thus ρ, explicitly. Specifically, we will prove that ρ(p) is a rational function in p, where the rational
function is independent of p:

Theorem 1 The probability that a random plane cubic curve over Qp has a Qp-rational point is given
by

ρ(p) = 1− f(p)

g(p)

where f and g are the following integer coefficient polynomials of degrees 9 and 12:

f(p) = p9 − p8 + p6 − p4 + p3 + p2 − 2p+ 1,

g(p) = 3(p2 + 1)(p4 + 1)(p6 + p3 + 1).

Note that 1 − ρ(p) = f(p)/g(p) ∼ 1/(3p3), so ρ(p) → 1 rapidly as p → ∞; for small p, we
have ρ(2) ≈ 0.98319, ρ(3) ≈ 0.99259, ρ(5) ≈ 0.99795, and ρ(7) ≈ 0.99918.

From Theorem 1, we conclude:

Theorem 2 The probability that a random plane cubic curve over Q has a point locally everywhere is
given by

ρ =
∏
p

ρ(p) =
∏
p

(
1− f(p)

g(p)

)
.

Numerically, we have ρ ≈ 97.256%. Thus the probability that a random plane cubic curve over Z has
a point everywhere locally is very high.

Although we have stated Theorem 2 for plane cubic curves ordered by their height, we note
that the same result also holds for more general orderings, as we now explain. Let D be a piecewise
smooth rapidly decaying function on the vector space R10 of real ternary cubic forms (i.e. D(x) and
all its partial derivative are o(|x|−N) for all N > 0), and assume that

∫
D(C)dC = 1; we call such a

function D a nice distribution on the space of real ternary cubic forms. Then we define the probability,
with respect to the distribution D, that a random ternary cubic form C is everywhere locally soluble
(ELS) to be

ρD = lim
X→∞

∑
C integral, ELSD(C/X)∑
C integralD(C/X)

.

In the case D is the indicator function for the box [−1/2, 1/2]10, this is the same as the probability ρ
defined above. The arguments in [3, Section 2], stated there for quadratic forms, carry over immediately
to cubic forms. Since for cubic forms the probability of solubility over the reals is always 1, it follows
that ρD =

∏
p ρ(p) for all nice distributions D. In particular ρD is independent of D.

Our result that ρ(p) is a rational function of p independent of p is special to plane cubic curves,
as it does not always occur in other contexts. For example, for the genus one models y2 = f(x, z),
where f is a binary quartic form over Z (or more generally, a binary form of degree 2g + 2 yielding
a hyperelliptic curve of genus g), we show in [4] that the analogue of ρ(p) is not any fixed rational
function of p. Nonetheless our approach in [4] to computing the probabilities ρ(p) for the genus one
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models y2 = f(x, z) follows that of this paper, and it is an interesting question to determine in what
generality our methods apply.

Our strategy for proving Theorem 1 is based on that for testing solubility of a smooth plane
cubic over Zp (equivalently, Qp) as described, for example, in [8, Section 2]; the arguments are also
related to those used for minimising ternary cubics, as in [5], and of those used to determine the density
of isotropic integral quadratic forms, as in [3]. Namely, we consider the reductions modulo p of these
ternary cubic forms; cubics whose reductions have smooth Fp-points are soluble by Hensel’s Lemma,
while those that have no Fp-points are insoluble. In order to determine the probabilities of solubility
in the more difficult remaining cases, we develop certain recursive formulae, involving these and other
suitable related quantities, that allow us to solve and obtain exact algebraic expressions for the desired
probabilities.

The result of Theorem 2 also plays an important role in [1], where it is shown that a positive
proportion of locally soluble plane cubic curves over Q do not possess a rational point (i.e., fail the
Hasse principle), while a positive proportion do possess a rational point. It is also conjectured there
(using Theorem 2, along with other considerations from the geometry of numbers) that the probabililty
that a random plane cubic has a rational point is (1/3)

∏
p ρ(p) ≈ 32.419%.

We remark that the analogue of Theorem 1 holds (with the same proof) over any finite extension
of Qp; we simply replace p by a uniformiser when making substitutions in the proofs, and replace p
by the order of the residue field when computing probabilities. The analogue of Theorem 2 then also
holds with any number field in place of Q (where we define the relevant probability following [11, §4]).

This paper is organized as follows. In Section 2, we provide basic counts of some polynomials
and forms over finite fields that are required in the proof of Theorem 1. In Section 3, we then develop
the recursive formulae described above, and use these formulae to prove Theorem 1. In Section 4, we
give an extension of Theorem 1 where we determine the probability that a random plane cubic curve
over Qp has a point over some unramified extension of Qp. We find that the answer takes a particularly
simple form in this case, and we outline the necessary changes required for the proof. Finally, in
Section 5, we give some concluding remarks and describe some related problems of interest.

2 Some counting over finite fields
We work over the finite field Fq with q elements, where q is a prime power.

2.1 Cubic polynomials and binary cubic forms over Fq.
Lemma 3 Of the q3 monic cubics g ∈ Fq[X],

• q2(q − 1) have distinct roots, of which

· 1
6
q(q − 1)(q − 2) have distinct roots in Fq;

· 1
2
q2(q − 1) have one root in Fq and two conjugate roots in Fq2;

· 1
3
q(q2 − 1) have three conjugate roots in Fq3;

• q(q − 1) have a simple root and a double root (both in Fq);

• q have a triple root (in Fq).
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Corollary 4 The probability that a random monic cubic over Fq has a simple root in Fq is σ1 =
2
3
(q2 − 1)/q2, and the probability that it has a triple root is τ1 = 1/q2.

Lemma 5 Of the q4 binary cubic forms g ∈ Fq[X, Y ],

• q(q2 − 1)(q − 1) have distinct roots, of which

· 1
6
q(q2 − 1)(q − 1) have all three roots in Fq;

· 1
2
q(q2 − 1)(q − 1) have one root in Fq and two conjugate roots in Fq2;

· 1
3
q(q2 − 1)(q − 1) have three conjugate roots in Fq3;

• q(q2 − 1) have a simple and a double root (both in Fq);

• q2 − 1 have a triple root (in Fq);

• 1 is the zero form.

Corollary 6 The probability that a random binary cubic form over Fq has a simple root in P1(Fq) is
σ = 1

3
(q2 − 1)(2q + 1)/q3, and the probability that it has a triple root is τ = (q2 − 1)/q4.

2.2 Ternary cubic forms over Fq.
We count the numbers of ternary cubic forms over Fq, separating out all the different possible cases:
smooth, irreducible but singular, or reducible in various ways.

We first count forms up to scaling by elements of F×q ; these counts are then multiplied by q− 1,
and after adding 1 for the zero form, the counts for cubics add up to q10.

2.2.1 Lines

The number of lines in P2 over Fqk is n(k)
1 = (q3k − 1)/(qk − 1). We write n1 = n

(1)
1 = q2 + q + 1.

2.2.2 Conics

The total number of conics Q over Fq is (q6 − 1)/(q − 1). Reducible conics are of three types, up
to scaling: Q = L2 with L a line over Fq, or Q = L1L2 with lines Lj either both defined over Fq or
conjugate over Fq2 . The counts for these types are, up to scaling;

• #{Q = L2} = n1 = q2 + q + 1.

• #{Q = L1L2 over Fq} = n1(n1 − 1)/2 = 1
2
q(q + 1)(q2 + q + 1).

• #{Q = L1L2 conjugate over Fq2} = (n
(2)
1 − n1)/2 = 1

2
q(q − 1)(q2 + q + 1).

Summing, we find that the number of absolutely reducible conics is (q2 + 1)(q2 + q + 1). Hence the
number of absolutely irreducible conics is q5 − q2 = q2(q − 1)(q2 + q + 1), up to scaling.
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2.2.3 Plane cubic curves

The number of plane cubic curves over Fq, up to scaling, is (q10 − 1)/(q − 1).
Reducible cubics are of the form C = L3, C = L2

1L2, or C = L1L2L3 (with all lines Lj defined
over Fq) or C = L1L2L3 (three lines conjugate over Fq3), or C = LL1L2 (with L over Fq and L1, L2

conjugate over Fq2), or C = LQ with Q an absolutely irreducible conic. The counts for these are, up
to scaling:

• #{C = L3} = n1 = q2 + q + 1.

• #{C = L1L
2
2} = n1(n1 − 1) = q(q + 1)(q2 + q + 1).

• #{C = L1L2L3 over Fq} = n1(n1 − 1)(n1 − 2)/6 = 1
6
q(q + 1)(q2 + q − 1)(q2 + q + 1).

• #{C = L1L2L3 conjugate over Fq3} = (n
(3)
1 − n1)/3 = 1

3
q(q2 − 1)(q3 + q + 1).

Of these, we will later need to know the number that are concurrent (forming a “star”) and the
number that are not (forming a “triangle”), which are

– (star) 1
3
q(q2 − 1)(q2 + q + 1);

– (triangle) 1
3
q3(q2 − 1)(q − 1).

• #{C = LL1L2 conjugate over Fq2} = n1(n
(2)
1 − n1)/2 = 1

2
q(q − 1)(q2 + q + 1)2.

• #{C = LQ} = n1(q
5 − q2) = q2(q − 1)(q2 + q + 1)2.

Adding, we find that the number of absolutely reducible cubics is (q + 1)(q6 + q5 + q4 + q2 + 1), and
hence the number of absolutely irreducible cubics is

q5(q + 1)(q − 1)(q2 + q + 1) = Nq2/(q − 1)

where N = |PGL(3,Fq)|. Although it will not be needed for the proof of Theorem 1, we remark
that Nq of these are smooth, with exactly N for each of the q possible j-invariants. Of the remaining
cubics, N have a node and N/(q − 1) have a cusp.

3 Proof of Theorem 1
In this section, we prove Theorem 1 giving the density of plane cubic curves over Qp that have a
Qp-rational point.

3.1 Outline of the proof
Let C be a ternary cubic form with coefficients in Zp that is primitive, meaning that not all of its
coefficients are divisible by p. We say that C is soluble if there exist x, y, z ∈ Qp, not all zero, such
that C(x, y, z) = 0, or in other words, if the associated cubic curve has a Qp-rational point.

The reduction of C modulo p is a cubic curve C over Fp. If C has no Fp-rational points then
certainly C is not soluble. Since lines, smooth conics, and absolutely irreducible cubics over Fp always
have smooth points, inspection of the cases enumerated in the previous section shows that C always
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has smooth Fp-points (even when p = 2) unless it is a product of three lines conjugate over Fp3 or a
triple line; and in the former case, if the three lines are not concurrent then there are no Fp-rational
points at all.

It follows that C is not soluble when the reduction C consists of three non-concurrent lines
conjugate over Fp3 (the triangle configuration); it may or may not be soluble whenC is three concurrent
lines conjugate over Fp3 (the star configuration) or a triple line; and in all other cases C is soluble. It
remains to determine the density of soluble cubics whose reduction is either a star or a triple line. The
density will not depend on which Fp-rational point is the common point in the first case, or which
Fp-line is the triple line in the second, so in Sections 3.3 and 3.4 we take them to be P0 = [1 : 0 : 0]
and X = 0, respectively. We will then develop recursions in order to solve for the densities of soluble
cubics among those whose reductions lie in the star and triple line configurations.

3.2 Preliminaries
We now compute the probabilities of certain configurations occurring, including the ones already men-
tioned and two others which will arise in the course of the proof.

Let β1 denote the probability of a ternary cubic over Zp having a reduction which is a star
as defined above, β2 the probability of the reduction being a triple line, and β3 the probability of the
reduction being a triangle, again as defined above. Additionally, let β4 be the probability of the line
condition, defined to be the property that the reduction of the cubic meets the line X = 0 in three
distinct points conjugate over Fp3 , and let β5 be the probability of the point condition, defined to be the
property that the reduction of the cubic does not contain the point P0 = [1 : 0 : 0].

We will need to know the density of cubics over Zp satisfying each of these conditions, as
well as the relative density of those satisfying the star, triple line, and triangle conditions among those
satisfying each of the line and point conditions. These relative densities will be denoted by β′j and β′′j ,
respectively, for j = 1, 2, 3.

Proposition 7 The probabilities of a random plane cubic over Fp satisfying each of these five condi-
tions are as follows:

1. (star: all; relative to line condition; relative to point condition)

β1 =
(p2 − 1)(p3 − 1)

3p9
; β′1 =

1

p4
; β′′1 =

(p+ 1)2(p− 1)

3p7
;

2. (triple line: all; relative to line condition; relative to point condition)

β2 =
p3 − 1

p10
; β′2 = 0; β′′2 =

1

p7
;

3. (triangle: all; relative to line condition; relative to point condition)

β3 =
(p+ 1)(p− 1)3

3p7
; β′3 =

p− 1

p4
; β′′3 =

(p+ 1)(p− 1)2

3p6
;

4. (line condition)

β4 =
(p+ 1)(p− 1)2

3p3
;
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5. (point condition)

β5 =
p− 1

p
.

Proof: We refer to the previous section for the numbers of stars, triple lines and triangles, up to scaling.
Multiplying by (p− 1)/p10 gives βj for j = 1, 2, 3.

1. The probability of satisfying the star condition centred at a given point in P2(Fp) is

γ =
1

3
p(p2 − 1) · p− 1

p10
.

We have already computed β1 = (p2 + p + 1)γ. The probability of satisfying both the line and
star condition is p2γ. Dividing by β4 gives β′1. Similarly, the probability of satisfying both the
point and star condition is (p2 + p)γ which on dividing by β5 gives β′′1 .

2. The triple line and line conditions cannot occur together, so β′2 = 0. The triple line and point
conditions together have probability p2(p− 1)/p10, and dividing by β5 gives β′′2 .

3. Since the triangle condition implies both the line and point conditions, β′3 = β3/β4 = (p−1)/p4,
and β′′3 = β3/β5 = (p+ 1)(p− 1)2/3p6.

4. The line condition holds with the same probability that a binary cubic form over Zp is irreducible
modulo p, which by Lemma 5 is

β4 =
1

3
p(p2 − 1) · p− 1

p4
.

5. The point condition is equivalent to the condition that the coefficient of X3 in the cubic form is
not divisible by p, so occurs with probability β5 = 1− 1/p.

�

For 1 ≤ j ≤ 5, let αj denote the probability of solubility for ternary cubics whose reduction is
a star, a triple line, a triangle, or which satisfy the line or point conditions, respectively. We know that
α3 = 0. In the next two subsections, we compute α1, α4, α2, and α5.

3.3 The star case: computation of α1 (together with α4)
We derive two linear equations linking α1 and α4, from which their values may be determined.

Lemma 8 1− α4 = β′1(1− α1) + β′2(1− α2) + β′3. Hence α4 = (p4 − p+ α1)/p
4.

Proof: For the first equation, we combine the probablities of insolubility in the star, triple line, and
triangle cases, the latter being 1. Using the values of β′j from Proposition 7 allows us to solve for α4 in
terms of α1 alone, since the coefficient of α2 is conveniently β′2 = 0. �

We write v(f) for the valuation of a form f with coefficients in Zp, that is, the minimum of the
valuations of the coefficients.

7



Lemma 9 α1 = (p3 − p+ α4)/p
4.

Proof: Without loss of generality the centre of the star is at P0 = [1 : 0 : 0], so the cubic has the form

C = c0X
3 + c1(Y, Z)X

2 + c2(Y, Z)X + c3(Y, Z)

where each cj is a binary form of degree j and the valuations of c0, c1, c2, c3 satisfy

≥ 1 ≥ 1 ≥ 1 = 0

respectively, with c3 irreducible modulo p. Solubility of C means that there exist x, y, z ∈ Zp, not all
in pZp, satisfying C(x, y, z) = 0. Here, for any such solution, irreducibility of c3 modulo p implies
that y, z ≡ 0 (mod p).

If v(c0) = 1 (which has probability 1 − 1/p), then C is insoluble since the first term has
valuation 1 while the other terms have valuation at least 2. So we may assume that v(c0) ≥ 2 (which
has probability 1/p), substitute pY, pZ for Y, Z, and divide by p2. The valuations of the binary forms
now satisfy

≥ 0 ≥ 0 ≥ 1 = 1.

If v(c1) = 0 (which has probability 1 − 1/p2 since c1 has two coefficients), then C (mod p)
has a simple linear factor over Fp and hence is soluble. Otherwise, we have v(c1) ≥ 1 (which has
probability 1/p2), and the valuations of the binary forms satisfy

≥ 0 ≥ 1 ≥ 1 = 1.

We must have x 6≡ 0 (mod p) by primitivity, since we have already forced y ≡ z ≡ 0 (in
the original coordinates). Hence for solubility we must have c0 ≡ 0 (mod p); that is, v(c0) ≥ 1.
Assuming this, which has probability 1/p, we may divide through by p to obtain valuations satisfying

≥ 0 ≥ 0 ≥ 0 = 0.

Recalling that c3 is irreducible modulo p, we see that this is an arbitrary cubic satisfying the line
condition, so the probability of solubility is α4.

Tracing through the above steps, we see that

α1 = (1− 1/p) · 0 + (1/p) ·
(
(1− 1/p2) · 1 + (1/p2) · ((1− 1/p) · 0 + (1/p) · α4)

)
,

which simplifies to the equation stated. �

Solving for α1 now gives

Proposition 10

α1 =
p7 − p5 + p4 − p

p8 − 1
=
p(p− 1)(p5 + p4 + p2 + p+ 1)

p8 − 1
.
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3.4 The triple line case: computation of α2 (together with α5)
Recall that α2 and α5 denote the probabilities of solubility given the triple line and point conditions,
respectively. We derive two equations linking these quantities (and α1), from which they may be
determined.

First, we have the analogue of Lemma 8:

Lemma 11 1− α5 = β′′1 (1− α1) + β′′2 (1− α2) + β′′3 .

To obtain a second equation between α2 and α5, we first need to determine the probability of
solubility given a refinement of the triple line configuration. For j = 1, 2, let νj denote the probability
of solubility for cubics C whose reduction is the triple line Y = 0 and that also satisfy the condition
that the coefficient of X3 has valuation exactly j and the coefficients of X2Y , X2Z have valuations at
least j (in earlier notation: c3 has a triple root modulo p, v(c0) = j, v(c1) ≥ j, and v(c2) ≥ 1).

Lemma 12

ν1 =
2p8 + p6 − 3p5 + 3p4 − p2 − 2

3(p8 − 1)
; ν2 =

3p8 − 3p7 + 3p6 − p4 − 2

3(p8 − 1)
.

Proof: Let σ1 and τ1 denote the probabilities that a monic cubic polynomial over Fp has a simple root
over Fp, or a triple root, respectively, as in Corollary 4.

We arrange the 10 coefficients of the ternary cubic form C in a triangle with the Z3-coefficient
at the top, the X3-coefficient at bottom left and Y 3-coefficient at bottom right, and indicate their valu-
ations using the same equality/inequality notation as before. The condition on a member C in the set
of cubics considered in the definition of ν1 is then expressed by

Z3 ≥ 1
≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1

X3 = 1 ≥ 1 ≥ 1 = 0 Y 3

Any solution must have y ≡ 0 (mod p), so we substitute pY for Y and divide by p to obtain

Z3 ≥ 0
≥ 0 ≥ 1
≥ 0 ≥ 1 ≥ 2

X3 = 0 ≥ 1 ≥ 2 = 2 Y 3

Now the reduction is a binary cubic in X,Z with unit X3 coefficient. If it has a simple root in Fp

(probability σ1), it lifts to a p-adic root and C is soluble with y = 0. Otherwise, C is insoluble unless
there is a triple root (probability τ1), since otherwise we could force x ≡ z ≡ 0 (mod p). Given a
triple root, we can shift the root to 0, so that the binary cubic is a constant timesX3. Now the valuations
are

Z3 ≥ 1
≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 2

X3 = 0 ≥ 1 ≥ 2 = 2 Y 3
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The probability of solubility in this case is ν2. Tracing through the arguments so far we have
ν1 = σ1 + τ1ν2. We replace X by pX and divide through by p:

Z3 ≥ 0
≥ 1 ≥ 0
≥ 2 ≥ 1 ≥ 1

X3 = 2 ≥ 2 ≥ 2 = 1 Y 3

If the coefficient of Y Z2 has valuation 0 (with probability 1−1/p), then the reduction is a binary cubic
in Y, Z with a simple root, so C is soluble. Otherwise, C reduces to a multiple of Z3, but since z ≡ 0
(mod p) is not allowed, solubility requires that the coefficient of Z3 also has valuation at least 1. So
we have insolubility with probability 1/p− 1/p2 and otherwise we can divide through by p to obtain

Z3 ≥ 0
≥ 0 ≥ 0
≥ 1 ≥ 0 ≥ 0

X3 = 1 ≥ 1 ≥ 1 = 0 Y 3

If the coefficients of XY Z and XZ2 are not both zero modulo p (probability 1 − 1/p2), then we
have solubility since the reduction is either absolutely irreducible or has a simple linear factor over Fp.
Otherwise (probability 1/p2) we have

Z3 ≥ 0
≥ 1 ≥ 0
≥ 1 ≥ 1 ≥ 0

X3 = 1 ≥ 1 ≥ 1 = 0 Y 3

where the reduction is a binary cubic in Y, Z with unit Y 3 coefficient. We have solubility if it has
a simple Fp-root (probability σ1), otherwise insolubility unless it has a triple root (probability τ1), in
which case the valuations are exactly as at the start, where solubility has probability ν1.

Tracing through the above, we see that

ν2 = (1− 1/p) · 1 + (1/p2) ·
(
(1− 1/p2) · 1 + (1/p2) · (σ1 + τ1ν1)

)
.

Recalling that ν1 = σ1 + τ1ν2, we may now solve for both ν1 and ν2. �

The second equation linking α5 and α2 will involve the above quantities ν1 and ν2, and uses an
argument similar to the one used in the star case. Let σ and τ denote the probabilities that a binary
cubic over Fp has a simple root over Fp or a triple root, respectively, as in Corollary 6.

Lemma 13 α2 = σ + τν2 + (1/p4)
(
(1− 1/p3) + (1/p3)(σ + τν1 + (1/p4)α5)

)
.

Proof: We may assume that the triple line modulo p is X = 0. Using the same notation as before, let
us write

C = c0X
3 + c1(Y, Z)X

2 + c2(Y, Z)X + c3(Y, Z)

where each cj is a binary form of degree j; then the valuations of the cj satisfy

= 0 ≥ 1 ≥ 1 ≥ 1.

10



Solutions must have x ≡ 0 (mod p) so we replace X by pX and divide by p to obtain

= 2 ≥ 2 ≥ 1 ≥ 0,

so that C reduces to a binary cubic in Y, Z.
With probability σ this binary cubic has a simple Fp-root and C is soluble. With probability τ

it has a triple root (without loss of generality the reduction is Z3); in this case, C is soluble with
probability ν2. Otherwise, for solubility we require v(c3) ≥ 1, as otherwise solutions would have
y ≡ z ≡ 0 (mod p), which is not allowed since we have already scaled X . So with probability 1/p4

we have the valuations satisfying

= 2 ≥ 2 ≥ 1 ≥ 1

and dividing through by p we obtain

= 1 ≥ 1 ≥ 0 ≥ 0.

Now, with probability 1−1/p3 we have v(c2) = 0 and solubility since the reduction is either absolutely
irreducible or has a simple linear factor over Fp. Otherwise (probability 1/p3), we have v(c2) ≥ 1:

= 1 ≥ 1 ≥ 1 ≥ 0.

As at the start, we have solubility if c3 has a simple Fp-root (probability σ), solubility with probability ν1
if it has a triple root (probability τ ), and otherwise for solubility we require v(c3) ≥ 1 (probability 1/p4)
in which case we divide through by p. The latter gives an arbitrary cubic subject to the point condition,
where the probability of solubility is α5.

Tracing through the above steps, we see that

α2 = σ · 1 + τν2 + (1/p4)
(
(1− 1/p3) · 1 + (1/p3) · (σ · 1 + τν1 + (1/p4)α5)

)
,

which is the equation stated. �

Using the equations given in Lemmas 11 and 13, together with the known value of α1, we can
solve for α2, obtaining the following.

Proposition 14

α2 = 1− p14 + 3p11 + p8 + 2p7 + p5 + p4 + 1

3(p2 + 1)(p2 + p+ 1)(p4 + 1)(p6 + p3 + 1)
.

3.5 Conclusion
The probability of insolubility of a ternary cubic with coefficients in Qp is therefore

1− ρ(p) = p10

p10 − 1
(β1(1− α1) + β2(1− α2) + β3)

= f(p)/g(p),

where f and g are the polynomials given in the statement of Theorem 1.
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4 The probability that a random plane cubic over Qp has points
over the maximal unramified extension of Qp

Let Qnr
p denote the maximal unramified extension of Qp.

Theorem 15 The probability that a random plane cubic curve over Qp has a Qnr
p -rational point is

given by

ρnr(p) = 1− p11(p− 1)(p2 − 1)(p3 − 1)

(p8 − 1)(p9 − 1)(p10 − 1)
.

Note that the formula for the probability in Theorem 15 is much simpler than that in Theorem 1.
The proof of Theorem 1 may be regarded as an algorithm for testing whether a plane cubic

is locally soluble (i.e., has a Qp-point), where we are able to determine explicitly the probability of
entering each step of the algorithm. The algorithm terminates either when there is a smooth Fp-point
on the reduction (in which case it lifts to a Qp-point by Hensel’s lemma) or when we reach one of the
following four situations:

(I3m) The reduction C consists of three non-concurrent lines conjugate over Fp3 (the triangle configu-
ration).

(IV) The cubic is GL3(Zp)-equivalent to a cubic of the form

C = c0X
3 + c1(Y, Z)X

2 + c2(Y, Z)X + c3(Y, Z)

where each cj is a binary form of degree j and the valuations of the cj satisfy

= 1 ≥ 1 ≥ 1 = 0

with c3 irreducible modulo p.

(IV∗) As in (IV), except that the valuations satisfy

= 2 ≥ 2 ≥ 1 = 0.

(Cr) The cubic is GL3(Zp)-equivalent to a cubic C whose coefficients have valuations satisfying

Z3 = 2
≥ 2 ≥ 2
≥ 1 ≥ 1 ≥ 2

X3 = 0 ≥ 1 ≥ 1 = 1 Y 3

In the first three cases the cubic is insoluble over Qp but soluble over Qnr
p ; it can be shown

that the Jacobian is an elliptic curve E/Qp with Kodaira symbol I3m, IV, or IV∗ as indicated, and
Tamagawa number divisible by 3. In the final case, the cubic is a critical model, in the terminology of
[5, Definition 5.1]. As noted in [5], critical models are insoluble over Qnr

p .
The probability that a cubic is insoluble over Qp, denoted f(p)/g(p) in Theorem 1, may thus be

written as a sum of four terms, corresponding to the four situations above. This allows us to naturally
adapt the proof of Theorem 1 to a proof also of Theorem 15.
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Proof of Theorem 15: Since the proof of Theorem 15 is similar to that of Theorem 1, we only highlight
the differences. Let α′1, α

′
2, ν ′1, ν

′
2 be the probabilities of insolubility over Qnr

p , in the situations where
we earlier wrote α1, α2, ν1, ν2 for the probabilities of solubility over Qp. The analogue of Lemma 12
gives

ν ′1 =
p4(p− 1)

p8 − 1
, ν ′2 =

p6(p− 1)

p8 − 1
.

We have α′1 = 0. The analogues of Lemmas 11 and 13 give

α′2 = τν ′2 +
1

p7

(
τν ′1 +

1

p4
β′′2α

′
2

)
.

Substituting ν ′1 = ν ′2/p
2 and solving for α′2 gives

α′2 =
p5(p2 − 1)

p9 − 1
ν ′2 =

p11(p− 1)(p2 − 1)

(p8 − 1)(p9 − 1)
.

Finally, the probability of insolubility over Qnr
p is

p10

p10 − 1
β2α

′
2 =

p11(p− 1)(p2 − 1)(p3 − 1)

(p8 − 1)(p9 − 1)(p10 − 1)
.

�

By the same argument as in [11], we see that Theorem 15 implies that the probability ρnr that a
random plane cubic curve over Q has a point over Qnr

p for all primes p is given by

ρnr =
∏
p

ρnr(p) =
∏
p

(
1− p11(p− 1)(p2 − 1)(p3 − 1)

(p8 − 1)(p9 − 1)(p10 − 1)

)
≈ 99.96676%.

By [5, Thm. 3.5], this may be interpreted as the probability that a plane cubic curve over Q has minimal
discriminant the same as that of its Jacobian elliptic curve.

5 Concluding remarks and further questions
We have shown that the density ρ of locally soluble plane cubics over Z is equal to

∏
p ρ(p), where ρ(p),

the density of plane cubics over Zp that have a Qp-point, is a fixed rational function of p independent of
p. We have also proven analogously that the density ρnr of plane cubics over Z having a point locally
over Qnr

p for all p is given by
∏

p ρ
nr(p), where ρnr(p), the density of plane cubics over Zp that have

a Qnr
p -point, is again a fixed rational function of p independent of p. We determined these rational

functions ρ(p) and ρnr(p) explicitly in Theorems 1 and 15.
It follows from the work of Denef and Loeser [6] that quantities such as ρ(p) (and perhaps,

with some work, also ρnr(p)) can be expressed in terms of rational functions of the counts of Fp-points
on a finite number of Z-schemes. But it is only in special situations (such as in the results we have
obtained here) that the answer is a fixed rational function of p, although we know of no results in
the literature from which this could be deduced a priori. It is an interesting problem to determine
general sufficient conditions for when Fp-counts on a Z-scheme (or for local solubility densities ρS(p)
for spaces of forms S over Z) are fixed rational functions of p. For some interesting varieties with
polynomial counts (mod p) for all p or at least for “many p” (e.g., for Chebotarev sets of p) see, e.g.,
[9, Appendix], [12], and [10].
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