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ABSTRACT. We prove that a positive proportion of hypersurfaces in products of projective spaces
over Q are everywhere locally soluble, for almost all multidegrees and dimensions, as a generalization
of a theorem of Poonen and Voloch [PV04]. We also study the specific case of genus 1 curves
in P! x P' defined over Q, represented as bidegree (2, 2)-forms, and show that the proportion of
everywhere locally soluble such curves is approximately 87.4%. As in the case of plane cubics
[BCF16], the proportion of these curves in P* x P! soluble over Q, is a rational function of p for each
finite prime p. Finally, we include some experimental data on the Hasse principle for these curves.

1. INTRODUCTION

Let V be a variety defined over Q. The study of rational points on V often involves determining
the local points V(Q,) for completions Q, of Q. We say that V is (globally) soluble if the set V(Q)
of rational points is nonempty, and V' is everywhere locally soluble if the set V(Q,) is nonempty for
all places v < oo of Q.

Poonen and Voloch [PV04]| show that a positive proportion of all hypersurfaces in P" of fixed
degree d are everywhere locally soluble for n,d > 2 and (n,d) # (2,2). In particular, they prove
that this proportion (as a limit) is exactly the product ¢ = [[, ¢, > 0 of local factors ¢,, where ¢, is
the proportion of hypersurfaces that have a Q,-point. In [BBL16]|, Bright, Browning, and Loughran
generalized this theorem to other families of varieties. Poonen and Voloch also conjecture that the
proportion of globally soluble hypersurfaces is ¢ when 2 < d < n, and is 0 when d > n + 1. This
conjecture implies that the Hasse principle is true for 100% and for 0% of the everywhere locally
soluble hypersurfaces in the two cases, respectively. Browning, Le Boudec, and Sawin [BLS19]| have
recently proved this conjecture for n > d + 2, i.e., that the Hasse principle is true 100% of the time
for Fano hypersurfaces of degree d in P" with n > d + 2.

However, Poonen and Voloch [PV04] do not make any conjectures about local versus global
solubility in the boundary (Calabi-Yau) case where d = n + 1; this case is perhaps the most
interesting and the most mysterious. The simplest of these cases, that of plane cubics (d = 3 and
n = 2), has been studied by Bhargava, Cremona, and the first author [BCF16], in which the authors
explicitly compute the proportion ¢ of everywhere locally soluble plane cubics; the same authors
[BCF] also study the proportion of everywhere locally soluble hyperelliptic curves. In addition,
Bhargava [Bhal4| shows that a positive proportion of plane cubics fail the Hasse principle and a
positive proportion satisfy the Hasse principle.

In this paper, we are interested in answering the analogous questions and computing the explicit
proportion of everywhere local soluble curves defined in products of projective spaces. We also study
a specific family of genus one curves over Q (analogous to the plane cubics studied in [BCF16]) and
determine the proportion of such curves that are everywhere locally soluble. In forthcoming work,
Bhargava and the second author show that the Hasse principle fails for a positive proportion of
curves in this family [BH19a|. In this paper, we include some data on the success and failure of the
Hasse principle for randomly selected sets of these curves with bounded coeflicients.
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In Section 2, we begin by proving the analogue of the theorem of Poonen and Voloch for
hypersurfaces in products of projective spaces:

Theorem 1.1. Letdy,...,dg,n1,...,ng be positive integers. The proportion of multidegree (dy, . . ., dy)
hypersurfaces over Q in P™ x ... x P that are everywhere locally soluble tends to a real number
c > 0, where c is the product [ [, ¢, over all places v and c, is the proportion of such multidegree
homogeneous polynomials with a nontrivial zero over Q,, as long as one of the following holds:
(i) k=1 and n1,dy > 2 but not (n1,dy) = (2,2);
(i1)) k =2 and if ny = ng =1, then di,ds > 2;
(i1i) k > 3.

We also predict the success or failure of the Hasse principle for families of hypersurfaces in products
of projective spaces in many cases, depending on the multidegree of the hypersurfaces:

Conjecture 1.2. For any positive integers d;, n; for i € {1,...,k}, consider the family of multidegree
(di,...,dg)-hypersurfaces in P™ x --- x P™ over Q. Then

(i) If d; > n; + 1 for all i = 1,...,k, then 100% of everywhere locally soluble (di,...,d)-
hypersurfaces fail the Hasse principle.

(ii)) If d; < n; + 1 for some i = 1,...,k, except if (k,ni,na,d1,d2) = (2,1,2,> 2,2) or
(2,2,1,2,> 2), then 100% of everywhere locally soluble (dy, ..., dy)-hypersurfaces satisfy the
Hasse principle. With these conditions, we have that the proportion of soluble hypersurfaces
equals the product of local factors ¢ =[], c,.

Note that the numerical conditions in Conjecture 1.2(ii) are significantly more general than just
requiring the hypersurface to be Fano, which is equivalent to having d; < n; + 1 for all i (not just
some 7). Still, as in the original Poonen—Voloch heuristic, there are some remaining boundary cases,
namely when d; > n; + 1 for all ¢ with equality for at least one i. In this paper, we compute the
explicit probability of everywhere local solubility for the simplest such case with &k > 1, namely
the family of bidegree (2,2) curves in P! x P!. Explicitly, these are the curves defined by the
bihomogeneous bidegree (2, 2)-polynomials of the form

F(Xo, X1,Y0, Y1) = aoo X3 Y5 + an X5 YoY1 + ap2 XGY7
+a10XoX1Yg + a1 XoX1YoY1 + a12Xo X1 Y7 (1.3)
+ a0 XYy + ann X7YoY1 + anX7YY
where a;; € Q for 7,5 € {0,1,2}. Smooth curves of this form have genus one. We show:

Theorem 1.4. For a finite prime p, the probability a bidegree (2, 2)-form with coefficients in Z,, is
soluble over Q, is

pp—1)(»* - 1)f(p)
p(p) =1- 8 9
8(p® —1)(p? — 1)
where f(p) = 4p't — 4p'° + 4p°® — p8 + 5p7 — 2p8 + 5p® — p* 4 2p3 — 2p? + 6p — 2.

The probability a (2,2)-form is soluble over the reals (when we choose the coefficients uniformly
at random in [—B,..., B] with B large) appears to be about 96.46%, based on a Monte Carlo
simulation. Note that the probability of solubility over R is greater than 7/8, since for insolubility
a00, 402, G20, 22 Must all have the same sign.

Theorem 1.4 gives [[,_, p(p) ~ 0.90592. Combining this with the estimate of the previous
paragraph, we have

H p(p) ~ 0.8739,
p=<o0
thereby giving the following theorem:



Theorem 1.5. The probability that a random (2, 2)-form with coefficients in Q is p-locally soluble for
all p < oo is approzimately 90.592%; assuming the truth of the Monte Carlo experiment, the probability
that a random (2, 2)-form with coefficients in Q is everywhere locally soluble is approximately 87.39%.

A heuristic similar to that in [Bhal4| suggests that of the (2, 2)-forms that are everywhere locally
soluble, exactly 1/4 should be globally soluble. In Section 6, we report on an experiment to test this
prediction numerically.
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2. GENERALIZATION OF POONEN—VOLOCH’S THEOREM AND CONJECTURE

In this section, we generalize the main result and conjectures of [PV04] to hypersurfaces in
products of projective spaces. The main idea of the proof of the theorem is identical to that of
[PV04] but relies on a more general combinatorial inequality. We work over the field Q for this
section.

Fix an integer k > 1 and positive integers n;, d; for 1 < i < k. We consider multidegree (d1, - - - , d)
hypersurfaces in the product space & :=P™ x ... x P™. In particular, let Z[{z;;}]a denote the set
of multihomogeneous polynomials in Z[{z;; :1 <1 < k,0<j < n;}] of multidegree d = (dy, ..., dy).
ni+d;

d; )

There are m; := ( monomials of degree d; in (n;+ 1) variables, so the total number of monomials

of multidegree d in Z[{z;;}|q is m = Hle m;.
Define the height h(f) of f € Z[{x;;}]a to be the maximum of the absolute values of the coefficients
of f. Let Mg be the set of places of Q. We define the following counts for H > 0 and v € Mg:

Niot(H) = #{f € Z[{zij}la: h(f) < H} = (2|H] +1)™

k
N(H) := #{f € Z[{zi;}|a : b(f) < H and Ix = {x;;} € [[ 2"+ \ {0} with f(x) = 0}
=1

k
N, (H) = #{f € Zl{w;j})a: h(f) < H and 3x = {a;} € [[ Q2+ \ {0} with f(x) = 0}

=1

k
Nioo(H) := #{f € Z[{xi;}a : h(f) < H and Vv € Mg, 3Ix € [JQp*'\ {0} with f(x) = 0}.
i=1
In other words, Nio(H) is the total number of multidegree d polynomials in & of height at most
H,and N(H), N,(H), and Nj,.(H) are the number of such polynomials that are globally soluble,
soluble over Q,, and everywhere locally soluble, respectively. The limits
. N (H ) . N loc(H )
lim ———— d lim ———=
Hovoo Neoo(H) ¢ HS00 Neog (H)
if they exist, will be called the proportion of globally soluble and everywhere locally soluble multidegree
d hypersurfaces, respectively. Note that for any place v, the local proportion limg oo Ny (H)/Niot (H)

exists. Indeed, as explained in Remark 2.3 of [PV04], after normalizing the Haar measure (or Lebesgue
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measure for v = 00) on the space Z]' of the multihomogeneous polynomials of degree d in the
variables {z;; : 1 < i < k,0 < j < n;}, we see that this local proportion is the measure of the
v-adically closed subset of Z" corresponding to the multihomogeneous polynomials with a nontrivial
zero over Q. We restate Theorem 1.1 using this language:

Theorem 2.1. Let ¢, = limpyg 00 Ny(H)/Niot(H). As H — oo, the proportion Nioe(H)/Nyot (H)
tends to ¢ :=[], ¢, > 0, if one of the following conditions holds:
(i) k=1 and ny,d; > 2 but not (n1,d1) = (2,2);
(1)) k =2, and if ny = ng = 1, then dy,ds > 2;
(iii) k > 3.

Proof. 1f f is absolutely irreducible modulo p, then for sufficiently large p, the Lang-Weil estimate
guarantees a smooth point on the hypersurface f = 0 modulo p, which may be lifted to a Q,-point
by Hensel’s lemma. By Lemmas 20 and 21 of [PS99], it suffices to show that the space of reducible
polynomials is of codimension at least 2 in the space of all polynomials in Z[{x;;}]a. This follows from

Lemma 2.2 below, which shows that the product of the projective spaces of multidegree (r1,--- ,7g)
polynomials and of multidegree (d; — r1,--- ,dr — ) polynomials has dimension at most m — 3,
where m — 1 is the dimension of the projective space of multidegree (di,--- ,dy) polynomials. [J

Lemma 2.2. Fiz a positive integer k. Given positive integers n;, d;,r; for 1 < i < k such that
0<r; <d; forall i but 0 <) ;7 < ,d;, we have

i n; + i i n, +d; —r; i n; + d;

if one of the following conditions holds:
(i) k=1 and ny,dy > 2 but not (n1,dy) = (2,2);
(ii) k=2, and if ng = ng = 1, then dy,dy > 2;
(iii) k > 3.
Proof. We define
S={(A1,..., ) : A; C {1,2,...,n; + d;} with |A;| =n;}
and subsets
S1={(A41,...,4p) e S:A,n{1,...,r;} =0 forall 1 <i <k},
Sy ={(A1,...,Ap) e S Ain{ri+1,....,d;} =0 forall 1 <i<k}.
Then |[S1 N S2| = 1. To prove |Si| + |S2| < |S] it suffices to show that |S\ (51 U S2)| > 2.
(i) If £ =1 then by choosing A; with
|[AyN{l,...,m}=1 and JAiN{r+1,....,d1}|=1
we have S\ (S1 U S2)| > r1(di — r1)("y), which is at least 2 under the stated hypotheses.
(ii) If £ = 2 then by choosing (A;, A2) with
|[A1NA{L,...,m}| =9, [Ain{ri+1,...,d1} =1-4,
[Ao N {1,...,m} =14, [Ao N {ro+1,...,d2}| =9,
for § = 0,1, we have |5\ (51 US2)| > (r1(d2 — r2) + r2(d1 — 71))ning, which is at least 2

under the stated hypotheses.
(111) If £ > 3 then |S\ (Sl U SQ)| > Zi#j Ti(dj - Tj) > 2. ]

We also discuss the analogue of the conjecture of Poonen—Voloch in our setting:
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Conjecture 2.4. For any positive integers d;, n; for i € {1,...,k}, consider the family of multidegree
(di,...,dg)-hypersurfaces in P™ x --- x P™ over Q. Then

(i) If d; > n; + 1 for all i = 1,...,k, then 100% of everywhere locally soluble (di,...,d)-
hypersurfaces fail the Hasse principle.

(ii) If d; < n; + 1 for some i = 1,...,k, except if (k,ni,ng,d1,d2) = (2,1,2,> 2,2) or
(2,2,1,2,> 2), then 100% of everywhere locally soluble (dy, ..., di)-hypersurfaces satisfy
the Hasse principle.

Combining Conjecture 2.4(ii) with Theorem 2.1 implies that the proportion of globally soluble
hypersurfaces in & is a product of local densities for many cases, i.e., the last part of Conjecture
1.2: If djy <n; + 1 for some i = 1,..., k, except for the cases (2,1,2,> 2,2), or (2,2,1,2,> 2), we
have that

. N(H)
f}gnoo Nooe () =c= 1:10,,. (2.5)

Remark 2.6. If d; < n; + 1 for some ¢, and yet the hypotheses of Theorem 2.1 are not satisfied then
either some d; =1 or (k,n1,d1) = (1,2,2). In the first case both sides of (2.5) are 1. In the second
p

case concerning plane conics, see, e.g., Theorem 2 of [BCFT16], which states that ¢, =1 — )2

for p a prime; one concludes immediately that both sides of (2.5) are 0 in this case.

Motivation for Conjecture 2.4(i). Fix a point a = (ay,...,a;) € ZM+ x ... x Z" ! with each
a; # 0 and having coprime coordinates, and consider the set of multidegree (dy, ..., dj)-polynomials
vanishing on a. The set of these polynomials form a hyperplane in Z™, and to count the multidegree
(di,...,dy) polynomials up to height H vanishing on a is to count the set of integral points contained
in this hyperplane, whose coordinates are bounded by H. As in [PV04], the number of integral
points of height at most H in this hyperplane is given by

c(a)H™ !
¢(a)
where ¢(a) denotes the covolume of the lattice of integer points on the hyperplane of polynomials
vanishing on a, and c(a) denotes the (m — 1)-dimensional volume of the part of the hyperplane inside
[—1,1]™.
Ignoring the error term, we get that

+O(H™?),

s < iy )

where the sum ranges over a € Z™Mt! x ... x Z™*t! excluding the zero vectors in each of the
components. Since c(a) is bounded by definition, it remains to understand the convergence of
Y @ Lemma 3.1 of [PV04]| shows that ¢(a) equals the norm of the vector b formed by the
monomials of degree (di,...,dy) in the coordinates of (ai,...,ax) (the coprime condition in that
lemma is not needed). Let ¢;(a;) denote the norm of the vector formed by plugging in the coordinates

of a; into each of the degree d; monomials in n; + 1 variables. Because ¢(a) = Hle oi(a;), we have

1 1 1
> -\ 2 sl X G| @D

a€(ZmH1\{0})x-x (Zh +1\{0}) a1€ZM+1\ {0} ar €L\ {0}

We claim that each of the sums ZaiezniJrl\ {0} ﬁ converges.

We decompose Z™ 1\ {0} = T, 41 UT,, U---UT, where T} consists of the vectors in Z" ! with
exactly j nonzero coordinates. Let a; = (ajp, . .., @in,). Then by applying the AM-GM inequality to
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the definition of ¢;(a;), we have

(2.8)

In fact, for a; € T}, the product over £ on the right side of (2.8) may be taken to be the product of
only the j nonzero a; if we replace m; with m;; := (J+di) and n; by 7. We thus have

d;
1 1
Zl ¢i(a;) Z Z ¢i(ai)
acZ™iT1\{0} Jj=1 a;€Tj
di
n;+1 T
—-1/2
<> > mp Il aw
j=1 a; €T} £: a;p7#0
The above sum converges if d; > j for all j =1,...,n; + 1, so it converges if d; > n; + 1. Thus, the

original quantity (2.7) converges if d; >n; + 1 for all i = 1,... k.
This heuristic therefore predicts N(H) ~ O(H™~!). Combining this with the estimate Nyo(H) ~
(2H)™ gives Conjecture 2.4(i).

Motivation for Conjecture 2.4(ii). We may restrict ourselves to only consider polynomials f for
which f = 0 defines a smooth geometrically integral hypersurface X in & (see also |[PV04, Remark
2.1]). We use a well known conjecture of Colliot-Théléne (see, e.g., [CT03]):

Conjecture 2.9 (Colliot-Théléne). Let X be a smooth proper geometrically integral variety over a
number field. If X is (geometrically) rationally connected, then the Brauer-Manin obstruction to
the Hasse principle for X is the only obstruction.

In particular, we show in Proposition 2.10 that if X is a multidegree (di, ..., dy)-hypersurface
in & =P" x--- x P% with d; < n; + 1 for some ¢, then X is rationally connected. We will
show in Proposition 2.11 below that the Brauer-Manin obstruction is vacuous for smooth complete
intersections (of dimension at least 3) in & over number fields. Thus, conditional on Conjecture 2.9,
we see that the Hasse principle is satisfied for these X of dimension > 3.

In almost all cases with d; < n; + 1 for some i where X has dimension 1 or 2, either some d; = 1
(and so X has a rational point) or X is a quadric hypersurface (and so is known to satisfy the Hasse
principle). For the case of bidegree (2, dz)-surfaces in P2 x P! with dy > 2, however, it is possible for
the Hasse principle to not be satisfied (e.g., the famous example of Iskovskikh [Isk71] where dy = 4),
so we exclude this case. The other nontrivial case is handled in the proof of [PV04, Proposition 3.4,
which shows, under Conjecture 2.9, that the Hasse principle holds for a density 1 set of cubic surfaces
in P2.

Proposition 2.10. Fiz an integer k > 1 and positive integers d;,n; fori € {1,...,k}. Let X be a
smooth integral multidegree (dy, . .., dy)-hypersurface in P™ x - .- x P over C. Then X is rationally
connected if and only if di < n; + 1 for some .

Proof. One direction is easy: if d; > n; for all 4, then H°(X,wx) is nonzero, hence X is not rationally
connected. For the reverse direction, without loss of generality, suppose di < n1 + 1. Then consider
the projection m : X — P" x ... x P™ (note that this codomain is a point if £k = 1). The fibers of
this projection 7 are degree d; hypersurfaces in P™'; the general ones are smooth and, by assumption,
Fano and thus rationally connected [Cam92, KMM92].
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We apply a theorem of Graber—Harris—Starr [GHS03], which states that if X — Y is a dominant
morphism of complex varieties where the general fiber and Y are both rationally connected, then X
is rationally connected as well. Here the projection map m is surjective by a dimension count, and
the codomain P"2 x --- x P™ is rationally connected, so X itself is rationally connected. O

In the following proposition, the notation Br Y refers to the cohomological Brauer group HZ (Y, Gy;,)
for a scheme Y.

Proposition 2.11. Let K be a number field. Let X be a smooth complete intersection in a product
P =P" x - x P gatisfying dim X > 3. Then the natural map Br K — Br X is an isomorphism,
hence the Brauer-Manin obstruction for X is vacuous.

Proof. We need only slightly modify the proof in [PV04, Appendix A and B] for the same result where
X is a smooth complete intersection in a single projective space P" (see also [Sch16, Proposition
2.6] for a smooth complete intersection in the product of two projective spaces). We summarize the
argument here. We use the low degree exact sequence from the Leray spectral sequence

0 — Pic X — (Pic X7)9% — BrK — ker(Br X — Br X%) — H'(K, Pic X%) (2.12)

where Gx = Gal(K/K). We need to check that PicX — (PicX%)“K is an isomorphism,
H'(K,Pic X%) = 0, and Br X7 = 0.

The restriction map Pic &7 — Pic X4 is an isomorphism since X is a smooth complete intersec-
tions of dimension at least 3 [Har70, Corollary 3.3]. Then since Pic & — Pic % is an isomorphism,
we find that the injections

Pic X < (Pic Xz)9% < Pic X%

are isomorphisms and H'(K, Pic X7) = 0.
To show that Br X4 = 0 here, we use the Kummer sequence to obtain, for any prime /,

0 — (Pic Pg)/l —= H*( P, 7/{T)

| |

0 —— (Pic X3%)/l —— HQ(X?, Z/07) — (Br X&) [{] — 0.

The top horizontal injection is in fact an isomorphism, since both groups are rank k over Z/(Z
(using the Kunneth formula to compute H?(Z,7/(Z)). By a version of Weak Lefschetz (see, e.g.,
[PVO04, Corollary B.5] with V' = &), the vertical map 1 is an isomorphism, so we have (Br X5)[(] = 0
for all £. Since Br X4 is torsion, it is in fact 0.

Thus, from (2.12), the map Br K — Br X is an isomorphism, so no elements of Br X obstruct
rational points on X. O

3. COUNTING POLYNOMIALS OVER FINITE FIELDS

Our strategy for proving Theorems 1.4 and 1.5 can be viewed as an extension of Hensel’s lemma.
If the reduction of the (2,2)-form mod p has a smooth Fp-point, then Hensel’s lemma implies that
this can be lifted to a Qp,-point; conversely, if the reduction of the (2, 2)-form has no F,-points, then
clearly it has no Q,-points. The p-adic solubility of many (2, 2)-forms can be determined in this way,
so it is crucial to understand (2,2)-forms over finite fields. We work over a finite field F,, where ¢ is
a power of a prime p, for this section, since it is no extra work to do so, though we will only need
these results over I, for the later sections.
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3.1. Preliminaries. Many (2, 2)-forms modulo p contain binary quadratic forms as one of its factors,
so we collect some relevant calculations here. These are easy to check.

Lemma 3.1. Of the ¢* monic quadratic polynomials f € Fq[X],

e ¢(q —1)/2 have two distinct roots in Fy;
e (¢> — q)/2 have conjugate roots in Fo2;
e q have a double root in F,.

Lemma 3.2. Of the ¢3 binary quadratic forms f € F [X,Y],

(¢ —1)(g + 1)q/2 have two distinct roots in Fy;

(g —1)(¢® — q)/2 have two conjugqte roots in ¥ ;
(¢ —1)(g + 1) have a double root in Fy;

1 is the zero form.

3.2. Reducible (2,2)-forms. Now we look at the bihomogeneous polynomials of bidegree (dy, dz) in
Fq[Xo, X1; Y0, Y] for 0 < dp,d; < 2, starting with the irreducible (dy, d2)-forms with (di, d2) # (2, 2).
These correspond to (dy,ds)-curves in P! x P!, where we assume that (Xg, X7) corresponds to the
coordinates in the first factor of P* and (Yp, Y1) corresponds to the coordinates in the second P!.

Lemma 3.3. The number of irreducible bihomogeneous polynomials in Fq[Xo, X1; Y0, Y1] (with
bidegrees as indicated) are as follows:

Bidegree ‘ Number of forms up to scaling by ]F;
(1,0) mip =q+1

mao = (¢° — q)/2

mi =q¢* —q

mo = ¢° — ¢

2,0
1,1
2,1

)

~~
~— — —

Proof. There are ¢ — 1 nonzero (1,0)-forms, and so ¢ + 1 up to scaling. The number of irreducible
(2,0)-forms is taken from Lemma 3.2, taking into account scaling. Each irreducible (1,1)-form is the
graph of a Mobius map, and so m1; = | PGLa(F,)| = ¢* — ¢. Finally we compute

ma1 = (¢% —1)/(q — 1) — myom11 — migmag — mig(mio +1)/2 = ¢° — ¢°. 0

We now consider all the different ways in which a (2,2)-form can factor. We use the notation
(a1,b1)¢ - - - (ar, by)°" to denote the bidegrees of the irreducible factors, with multiplicity. For example,
the factorization type (1,0)%(0,1)(0,1) indicates that the (2, 2)-form factors as a product FoFo1 Gor,
where Fig, Fp1, and Go; are irreducible polynomials in F,[Xo, X1; Y0, Y1] with bidegrees (1,0), (0,1),
and (0, 1), respectively, and that Fp; is not an Fy-multiple of Gos.

Lemma 3.4. The number of reducible (2,2)-forms over Fq with each factorization type are as follows.
Moreover, the curve C C P! x P! defined by such a form either always has a smooth Fy-point, or
never has a smooth Fy-point, as indicated in the right hand column.
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Factorization type Number of forms up to scaling by F*  Smooth point?

(1L, 1)(1,1) (M) =@ -9 —q—1)/2 yes

(Za 1)((]’ 1) or (17 2)(17 O) 27”21777'10 = 2q3(q + 1)2((1 - 1) yes
(1,1)(1,0)(0,1) mumiy = qlg+1)*(¢—1) yes
(1,0)(1,0)(0,1)(0,1) "0) = q*(g+1)%/4 yes
(2,0)(0,1)(0,1) or (072)(170)(170) 2m20(m210) = q2(q+1)(q_ 1)/2 yes
(2,0)(0,2) mzy = ¢°(q—1)%/4 no
(1,0)%(0,1)(0,1) or (0,1)*(1,0)(1,0) 2mao("y°) = q(g + 1) yes
(270)(07 1)2 or (07 2)(17 )2 27”20777'10 = Q(q + 1)((] - 1) no
(1,1)2 m1 = q(qg+1)(g—1) no

(1,0)2(0,1) miy = (q+1)? no

Proof. The counts all follow from Lemma 3.3 as indicated. In each of the cases listed as having
smooth F,-points, there is an irreducible factor of multiplicity 1 with bidegree (1,0), (0,1), (1,1),
(2,1) or (1,2). Each such factor defines a smooth curve of genus 0 which, by projection to one of the
factors, is isomorphic to P!. Moreover a case-by-case analysis shows that this curve meets the other
components of C' in at most 2 points. Since #P! (Fq) = g + 1 > 2 this shows that C has a smooth
Fg-point. In the remaining cases each irreducible factor is either repeated or has bidegree (2,0) or
(0,2). So in these cases there are no smooth F,-points. O

3.3. Irreducible (2,2)-forms. We now consider the irreducible (2, 2)-forms over F,. We distinguish
between those that are absolutely irreducible (i.e., do not factor over F,) and those that factor over
IF,2 as the product of a bidegree (1,1)-form and its conjugate. In the latter case, we say the form

has factorization type (1,1)(1,1).

Lemma 3.5. Let C C P! x P! be a curve defined by an absolutely irreducible (2,2)-form F €
Fq[Xo, X1;Y0,Y1]. Then C has a smooth Fq-point.

Proof. If C' is smooth then it has genus 1, and the lemma follows by the Hasse-Weil bound. If C' is
singular, then it has geometric genus 0. The normalization is a smooth genus 0 curve, in fact P!
itself (e.g., by the Hasse-Weil bound), and thus has (¢ + 1) Fs-points. Since the preimage of the
singular point is at most length 2, the curve C' must have at least one smooth [F-point. g

Remark 3.6. The numbers of irreducible (2, 2)-forms are as follows:

Factorization type Number of forms up to scaling by F
smooth ¢ g+ 1)2%(g—1)?
absolutely irreducible yet singular @lg+1)2%(g—1)?
(1,1)(1,1) (@ —a)(¢®+q-1)/2

In the case (1,1)(1,1) the (1,1)-forms are irreducible over F ., since the original (2, 2)-form was
irreducible over IF,;. Each is therefore the graph of a Mobius map, and so the count in the last row is
(# PGL2(F,2) — # PGL2(F,))/2. We omit the details of the other two counts since these are not
needed for the proof of Theorem 1.4. However, as a check on our calculations, we note that these
counts, together with those in Lemma 3.4, do indeed add up to (¢° —1)/(g — 1).

If F has factorization type (1,1)(1,1) then C' is geometrically the union of two rational curves.
We subdivide into cases according as these meet in

(i) a pair of points defined over F,,
(ii) a pair of conjugate points defined over [z,
(iii) a single point defined over Fj,.
9



Lemma 3.7. The number of (2,2)-forms over Fy (up to scaling by ¥ ) in cases (i), (ii) and (iii)
above are, respectively,

ni = q*(q+1)%(g— 1)/4,
nz = ¢*(¢+1)(g —1)*(¢ — 2)/4,
nis = q(q+1)*(q — 1)%/2.

Proof.

(i) The singular points can be any pair of points in P!(F,) x P1(F,) that remain distinct under
both projection maps. This last condition comes from the fact, noted in Remark 3.6, that
each (1,1)-form is the graph of a Mobius map. We make a change of coordinates to move
the singular points to ((0 : 1),(0 : 1)) and ((1 : 0),(1 : 0)). By hypothesis F' factors as the
product of two (1, 1)-forms over F 2, and these are now linear combinations of XoY; and X Y.
Therefore F' = f(XoY7, X1Yp) for some irreducible binary quadratic form f. We compute n1; as
the product of the (¢ — q)/2 choices for f (up to scaling), and the ¢%(¢ + 1)2/2 choices for the
(unordered) pair of singular points.

(ii) We write F2 = Fy() where o® + ra + s = 0 for some r, s € F;. As noted in (i), the singular
points remain distinct under both projection maps. After a change of coordinates, defined
over F,, we may therefore assume that the singular points are ((« : 1), (o : 1)) and its Galois
conjugate. Then F' = f(XoYy + rXoY1 + sX1Y7, XoY1 — X1Y)) for some irreducible binary
quadratic form f. There are (¢®> — ¢)/2 choices for f (up to scaling), but one of these gives
F = (Xg+rXoX1+sX?)(YZ +1YeY1 + sY?). Therefore nys is the product of (¢ + 1)(g —2)/2
and the (¢? — q)?/2 choices for the singular points.

(iii) We make a change of coordinates to move the singular point to ((0: 1),(0 : 1)). Then F is
the product of aXoYy + 8XoY1 +~vX1Yp, and its Galois conjugate, for some «, 8,7 € F 2 with
B,y # 0. If 8 and vy are a basis for F 2 as an Fg-vector space, then by substitutions of the form
X1+ X1+ AXp and Y7 < Yy + pYy with A, 4 € Fy we may reduce to the case o = 0. But then
the two components also meet at ((1:0), (1 :0)), which cannot happen in case (iii). Therefore
F = f(XoYy, XoY1 + c¢X1Y)) for some irreducible binary quadratic form f and constant ¢ € Fy.
We compute 113 as the product of the (¢> — ¢)/2 choices for f (up to scaling), the ¢ — 1 choices
for ¢, and the (g + 1)? choices for the singular point.

As a final check, we note that n11 +n12 +n13 = (¢ — ¢)(¢® + ¢ —1)/2. O

4. LOCAL SOLUBILITY FOR BIDEGREE (2,2)-FORMS

Fix a prime p, and consider the space of all (2,2)-forms F' € Z,[Xo, X1; Yo, Y1] with its natural
product Haar measure when viewed as a copy of Zg. In this section, we determine the density of
Qp-soluble forms in this space.

In order to determine the solubility of a given form F, it will often suffice to look at its reduction
mod p, denoted F € F,[Xo, X1; Y0, Y1), and look for a smooth Fp-point on the curve C defined by
F, so that we may apply Hensel’s lemma. As seen in the tables of Section 3 (where we now take
q = p), it is easy to see that most of the factorization types for F have a smooth F,-point on C'.
According to the results of Section 3, only five cases require further consideration, which we analyze
in Section 4.3.

4.1. Preliminaries. Let v(a) = v,(a) denote the p-adic valuation of a € Q,,.
10



We will often keep track of the valuations of the coefficients of the (2,2)-form (1.3) as a 3 x 3
table:
v(ago) v(ap1) v(ap2)
v(a) v(air) wv(aiz) (4.1)
v(azo) v(az) wv(az),

where each entry is the valuation of the coefficient of the corresponding monomial term in

X3P XpNvi o XyP
XoX1YZ XoX1YoV1 XoXiY{ (4.2)
XE  Xhoyr XAR

4.2. A useful lemma. Before analyzing the cases where Hensel’s lemma does not directly apply,
we note that the following lemma will be used several times in the next section, and is, in some
sense, typical of the arguments we use. In fact, we use it once in the analysis of Case 3 and twice in
the analysis of Case 5 (in Lemmas 4.11 and 4.15).

Lemma 4.3. Let ago, ao1, ao2, a10, @11, a2 be any fived elements of Z, satisfying

v(ago) > 2, wv(ao1) >2, wv(an)=1,
v(ap) > 1, wv(an) >1,
U((Igo) = 0.

Let
2 . .
$:=19 > ayXg ' XIY{Y s ary € ply,ar € Zp,an € Z,
i,j=0
Then the proportion of the polynomials in 8 that have Qp-solutions for which p{ X1Y7 is 1/2.

Proof. Let o(ago, ao1,aoz2, a0, a11, az0) be the desired probability (that a polynomial in 8§ has a
Qp-solution with p + X;Y7), and let 7(ago, @o1, @02, @10, @11, azp) be the corresponding probability
when § is replaced by its subset

2
2—iviv2—ivJ
T = E aino X{Y'O JYY 1 a19,021,0922 € pr
i,j=0

If F €8, then F(0,1;Yp,1) reduces mod p to a quadratic polynomial in Y, i.e., the coefficient of

Y02 is nonzero mod p. Furthermore, all such quadratic polynomials occur with equal probability. By
Lemma 3.1, this quadratic splits into distinct factors over IF,, with probability %(1 — %) In this case,

the point ((0: 1), (a : 1)), where « is one of the roots of the quadratic, is a smooth Fy-point, so by

Hensel’s lemma, the curve defined by F' = 0 has a Q,-point of the form ((0: 1), (a : 1)) for some lift

a € Zp. If the quadratic is instead irreducible, as happens with probability %(1 — %), then there are

no Q,-points with p{ X;. It remains to consider the case F' = a0 XYy — cY7)? (mod p), for some
0 < ¢ < p—1. Transforming F' by the substitution Yy < Yy + cY; we find

app  Gopl @02 1 1 1 p—1 ago 2capo + a1 c*ago + capr + aps
o|aypg an = 3 (1 — > +— Z 7| ag 2caig+ ai . (4.4)
a20 p P a0

We note in particular that the arguments of 7 satisfy the conditions in the statement of the lemma.

If F €T then F = aX3?Y{ (mod p). For a solution with p{ X; we need p | Y. This suggests

making the substitution Yy < pYy. Dividing through by p, and then swapping the X’s and Y’s we
11



find

Qoo Aol Qo2 bapo  paio Pazo
T 1| a0 ai =0 apl ail . (4.5)
azo p~tage
Using (4.4) and (4.5) to solve for o and 7, we find that o =7 = 1/2. O

4.3. The cases without smooth F,-points. As remarked before, these are the factorization types
of the (2,2)-form F' over F,, which do not immediately yield a smooth Fj-point in the reduction of
the corresponding curve.

Case number Factorization type Number of forms up to scaling by IF;;
1 (1,1)(1,1) ni: (p —p)(p +p—1)/2
2 (2,0)(0,2) ng = p*(p —1)*/4
3 (270)(07 1)2 or (07 2)(170)2 ns —p(p+ 1)(p )
4 (1,1)2 ng = p(p + 1)(p 1)
D (1a0)2(071)2 ns - (p+ 1)

Let ng = (p° —1)/(p—1) — (n1 +na + n3 +ny +ns) be the number of forms lying in none of the 5
cases, and let &; be the probability of solubility in case i. Then the overall probability of solubility is

_ "o 4+ n1&1 + neo + n3és + naéy + nsés
' -1)/(p—1)
In this section we compute &1, ..., & and hence obtain the final answer stated in Theorem 1.4. In

the context of computing &s, it is helpful to make the following definition for £, and to compute the
¢! alongside the &;:

Definition 4.6. For 1 < i < 4, we let £/ be the probability of solubility given the following conditions:
we are in case 4, the point ((0:1),(0: 1)) is a singular point on the reduction mod p, and v(agg) > 2.
We write £;; for 1 < j <3 for the same probability in cases 1(i), 1(ii), and 1(iii), as defined below.
We define £ in the same way, except that we require that the singular point ((0:1),(0: 1)) is not
the point where the two lines meet.

We compute the values of & and £, in the next sections.

4.3.1. Case 1. In this case the reduction of our curve mod p is geometrically the union of two
rational curves. We subdivide into the cases (i), (ii), (iii) as defined immediately before Lemma 3.7,
and note that n; = ny1; + nio + ni3. Writing £11, £12, 13 for the probabilities of solubility in cases
1(i), 1(ii) and 1(iii), respectively, we have

& = (nui&i + ni2éiz + niséiz) /na.

Case 1(i). In this case, the two components meet at a pair of points defined over F,. We begin
by computing £11. As in the proof of Lemma 3.7(i) we may assume that F' = f(XoY1, X1Yp) for
some irreducible binary quadratic form f. The only F,-points on the reduction are the singular
points ((0:1),(0:1)) and ((1:0),(1:0)). We must decide if they lift to Q,-points. Let o be the
probability that the singular point ((0:1),(0: 1)) lifts.

Since ((0 : 1),(0 : 1)) is a singular point on the curve defined by F, we deduce that all the
valuations v(a12), v(ag1),v(aze) are > 1. If v(age) = 1, then the singular point ((0:1),(0: 1)) does
not lift. Otherwise (with probability 1/p), we have v(age) > 2. Then the valuations of the coefficients
of F' satisfy

>1 >1 =0

>1 >0 >1

=0 >1 >2
12



where the equalities follow from f being irreducible. Making the substitutions Xy < pXg, Yy < pYo
and dividing through by p?, we obtain a (2, 2)-form G(Xo, X1, Yy, Y1) whose coefficients b;; have
valuations satisfying

>3 >2 =0
>2 >0 >0
=0 >0 >0.

We now investigate whether G € F,[Xo, X1; Y, Y1] is absolutely irreducible. Define a ternary
quadratic form Q(Xo, Yo, Zo) by G(Xo,1,Yp, 1) = Q(Xo, Yo, 1), so that the zero-set of @ in A?XO,YO C
P? coincides with the zero-set of G in Aﬁ(o X A%/O C P! x P, Then the curve defined by @ (and thus,

the curve defined by G) is geometrically irreducible if and only if the discriminant of @ is nonzero,
equivalently

622 diSC(f) — f(bgl, —b12) §é 0 (mod p).

(This argument still works in characteristic 2 provided that the formula for the discriminant of a
ternary quadratic form is scaled by appropriate powers of 2.)

If the curve defined by G is geometrically irreducible, then the argument in Lemma 3.5 shows that
it has a smooth Fp,-point. Otherwise (with probability 1/p), the reduction mod p is geometrically the
union of two rational curves meeting at ((1:0),(1:0)) and an Fp,-point of the form ((A: 1), (u: 1)).
The two rational curves are not defined over [F),, since the binary quadratic form f is irreducible. We
make the substitutions Xy < Xg+ AX1 and Yy < Y + pY7 to move the second point of intersection
to ((0:1),(0:1)), and start over again considering whether this singular point lifts. The probability
that it lifts is again a. We thus obtain the recursive formula

((5) )
a=—(|1-=-)+-a],
p p p
and so a = 1/(p+1).

We are interested in the probability that at least one of the singular points lifts. Since these
events depend on different coefficients of the (2,2)-form they are independent. Therefore

1 \?* 2p+1
—1-(1- - .
o < p+1) (p+1)>

A small modification of this argument (as required by Definition 4.6) gives

1 2 1
) - -2
p+1 p+1 (p+1)
Case 1(ii). The two components meet at a pair of conjugate points defined over [F,2. There are no
[F,-points on the reduction. Therefore 12 = 0 and &}, is not defined.

Case 1(iii). The two components meet at a single point defined over F,. As in the proof of
Lemma 3.7(iii) we may assume that F' = f(XoYp, XoY1+ X1Yp) for some irreducible binary quadratic
form f. The only Fp-point on the reduction is the singular point ((0 : 1), (0 : 1)). If this lifts to
a Q,-point then we must have v(agz) > 2. Since this is exactly the condition in Definition 4.6 it
follows that £13 = (1/p)&ls.

We show in Section 5, using results from [BCF], that

frs = 2910 +3p7 —pd +2pt —2p2 —3p—1
v 2(p+12(° — 1)

As noted in the last paragraph, we have {3 = p&3.
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4.3.2. Case 2. This is the case (2,0)(0,2). There are no Fp-points on the reduction. Therefore
& =0 and & is not defined.

4.3.3. Case 3. This is the case (2, 0)(0, 1)2 or (0,2)(1,0)%. We may assume without loss of generality
that F' = f(Xo, X1)YZ for some irreducible binary quadratic form f. The coefficients satisfy

=0 >1 >1
>0 >1 >1
=0 >1 >1

where the equalities follow from f being irreducible. Making the substitution Yy + pY; and dividing
through by p gives

The reduction mod p is now g(Xo, X1)Y;? for some binary quadratic form g. If g is irreducible,
splits, or has repeated roots, then the probability of solubility is 0, 1, or 1/2, respectively. In the
last of these cases, we are using Lemma 4.3: more specifically, we assume the double root is at
(X0 : X7) = (0 : 1), make the substitution Xy < pXy, divide through by p, and then apply the
lemma. Note that the lemma applies as v(agp) = 0, and there are no solutions with p | X1Y] in view
of the substitutions we made to reach this situation.

If g is identically zero, then we divide through by p, to obtain a (2,2)-form H satisfying the line
condition, by which we mean that H(Xo, X;;1,0) (mod p) is an irreducible binary quadratic form.
Writing e for the probability of solubility in this case, we have

1 (PP p(p — 1) 5 1
53 = p3 ( 5 1+ B 0+ (p - 1) 9 + 511ne (47)
and 1 1
fé:pz<p(p—1)1—|—(p—1)2+5hne) (48)

Lemma 4.9. There are (up to scaling by F\) ezactly p"(p—1)/2 forms over F,, satisfying the line
condition. The numbers of these in Cases 1 to 3 are

r2 =p*(p+1)(p—1)*(p — 2)/4
)(p—1)%/2

ro = 2 p— )2/4
)

There are none in Cases 4 and 5.

Proof. Tt is easy to check that forms in Cases 1(ii) and 2 always satisfy the line condition, and those
in Cases 4 and 5 never satisfy the line condition. By double counting pairs consisting of (2, 2)-forms
and (0, 1)-forms (both up to scalars) that meet in a pair of conjugate points over 2, we find that
(p+1)r11 = (p—1)n11 and (p+1)r13 = pnis. In Case 3 we must count the forms f(Xo, X1)g(Yo, Y1)?
where f is an irreducible binary quadratic form, and g is a linear form with g(1,0) # 0. We find
that r3 is the product of the (p? — p)/2 choices for f and the p choices for g. O

Let ro = p"(p — 1)/2 — (r11 + r12 + 713 + r2 + r3) be the number of forms satisfying the line
condition not in Cases 1 to 3. Then

5. T + & + ri2éi2 + ri3éiz + b + 1363
line = = (4.10)
p(p—1)/2
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Using the values of 11, 12, {13 and & already computed, we can now solve (4.7) and (4.10) for &3
and djine. We then use (4.8) to compute &4. We find that

¢ Pt +2p° +p% —2p° +2p® +p? —3p— 2
3:
2+ D 1)

and
2p" +p° +p" —2p% +2p" +p° —2p* —2p -1

2(p+D(p° - 1)
4.3.4. Case 4. This is the case (1,1)2. By a change of coordinates we may assume
F = (Xo¥1 — X1Yp)?  (mod p).
We show in Section 5, using results from [BCF], that
~ 5pt0 +8p% +p® — pT +2p5 — 3p® + 4p® — 10p — 6
- 8(p+1)(p" — 1) ’

&=

&4

and

¢ = 4p'0 + 3p? — p” +2p° — 2p° 4 2p® — p? — 5p — 2
e Ap+1)(p° - 1) '
4.3.5. Case 5. This is the case (1,0)%(0,1)2. By a change of coordinates we may assume
F=X2Y¢ (mod p).
The coeflicients of F' have valuations satisfying
=0 >1 >1

>1 >1 >1
>1 >1 >1.

Let @ and @’ be the binary quadratic forms over F,, determined by the last row and column, i.e.,
Q(Yo, Y1) = LF(0,1;Yp,Y1) (mod p)
Q' (X0, X1) = %F(X07X1;0, 1) (mod p)

Note that these forms have the same last coefficient ¢ € ), as they share one entry in the coefficient
matrix corresponding to X?Y2. Writing &51 and &59 for the probabilities of solubility in the cases
¢ # 0 and ¢ = 0, respectively, we have

& = (1—1/p)&s1 + (1/p)&s2.
Lemma 4.11. We have &51 = 3/4.
Proof. The coefficients satisfy

=0 >1 >1
>1 >1 >1
>1 >1 =1

The reduction mod p is the union of two double lines, meeting at a single point. Any Q,-point has
p | Xo or p | Yy, but not both since v(agz) = 1. In other words, any Q,-point must reduce to lie on
exactly one of the lines.

To investigate whether there are solutions with p | Xy we make the substitution Xy < pXy and
divide by p to get

(AVAAVANT
O ==
— VIV IV
S =N
1V Iv
S =N

ot



We then apply Lemma 4.3 (with Yy <> Y7). The probability of a solution with p | Xy and the
probability of a solution with p | Y are each 1/2. The lemma also implies that these two events are
independent of each other, so the probability of insolubility of these polynomials is 1/4. Hence, the

probability of solubility is 3/4. O
Definition 4.12. Let §; and d2 be the probabilities of solubility in the cases

>1 >21 >0 >1 >1 =0

>1 >0 >0 >1 >0 >0

=0 >0 >0 =0 >0 >0

(The subscript is the number of equalities in the matrix.) Let 67 and §5 be the probabilities when
we change the top left > 1 to = 1. Let €1 and €5 be the probabilities when we change the top left

>1to > 2.
Clearly we have
01 =(1—=1/p)dF + (1/p)e
1 ( /p) 1 ( /p) 1 (4-1?))
0o = (1—1/p)d5 + (1/p)e2

Lemma 4.14. We have

1 1 (1 1\? 1 1 1\2
p p?> \p P P P p

Proof. 1f at least one of the forms @ and @’ has distinct roots in I, then the (2, 2)-form is soluble
over Q,. This happens with probability 1 — 1/p®. Otherwise (with probability 1/p?) the coefficients
satisfy

VIV
—_ =
VIV IV
DO = =
VIV IV
N DN

(The bottom right > 2 comes from the assumption that ¢ = 0, and the two adjacent > 2 entries
arise from assuming that neither @ nor @’ has distinct roots in F,,.) We split into 3 cases:
(i) Suppose v(apg2) = v(ag) = 1. If v(azz) = 2 then the (2,2)-form is insoluble over Q.
Otherwise, we find by substituting Xy < pXo, Yo « pYp, and dividing through by p3, that
the probability of solubility is d5.

(ii) Suppose v(ap2) = 1 and v(ag) > 2. We find by substituting Xy < pXp, and dividing
through by p?, that the probability of solubility is ;. The case where v(ag2) > 2 and
v(agp) = 1 works in exactly the same way via the substitution Yy < pYp.

(iii) Suppose v(agz2) > 2 and v(agp) > 2. Via either of the substitutions in (ii), the probability of
solubility is e7.
Combining these gives the desired expression for &xs. ([l

Lemma 4.15. We have

()3 G0 ()

Proof. According to Definition 4.6, we may suppose the coefficients of F' satisfy

=0 >1 >2

>1 >1 >1

>1 >1 >1
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If v(a12) = 1, then Q" has distinct roots in F, and so F is soluble over Q,. Otherwise (with
probability 1/p), we have v(ai2) > 2.

If v(age2) = 1, then by an argument similar to Lemma 4.11, the probability of solubility is 3/4.
(The solutions with p | X are analysed in exactly the same way as before, whereas to analyse those
with p | Yy we substitute Yy « pYp and then X; < pXj.)

Otherwise (with probability 1/p), we have v(age) > 2. If v(ag1) = 1, then @ has distinct roots in
[F,, and so F' is soluble over Q,. Otherwise (with probability 1/p), we have v(az1) > 2. We find by
substituting Yy < pYy and then dividing through by p? that the probability of solubility is §;. [

Lemma 4.16. There are p° possibilities for F (up to scaling by IF;) satisfying the conditions in the
definition of §1. The number of these in Cases 1 to 5 are

S11 = p3(p - 1)/27

s12 =0,
s13=p(p—1)%/2,
sy =0,
s3=pp—1)/2,
sa=pp—1)

S5 = P.

In Cases 1(i), 1(iii), and 4, these forms also satisfy the conditions in the definition of d2. In Cases
3 and 5, they do not.

Proof. The conditions in the definition of §; are that F' = 0 is singular at ((1: 0),(1: 0)) but does
not contain the line Y7 = 0. We have (p + 1)?s11 = 2n11 and (p + 1)2s13 = ni3. In Cases 1(ii)
and 2, there are no F,-points so s13 = s = 0. In Cases 3, 4, and 5, we count the forms X7 f(Yp, Y1),
(aX1Yy + BXoY: + vX1Y1)?, and XZg(Yp, Y1)? where f is an irreducible binary quadratic form,
o, B,y € F)f with af # 0, and g is a linear form with g(1,0) # 0. Finally, it is only in Cases 3 and 5
that the reduction mod p contains the line X; = 0. U

For the final computation of &5, let sg = p5—(811—|—813—|—53+54—|—85) and tg = p4(p—1)—(511+813—|—34)
so that
so + s11811 + $13813 + 8383 + 8484 + 8585
5
p
_ to+ 5118 + 513813 + 5484
pip—1)
Replacing each & by &' (see Definition 4.6) we have
s0 + 511811 + 513813 + 8385 + 5484 + 8585
o
_ totsugy + 513813 + $a€)
pip—1)
Putting together all the equations derived in this section, together with the previously computed &’s,
we are now able to solve for &. We find & = f(p)/g(p) where
f(p) — 6p18 + 8p17 + 2p16 _ 8p15 + 16p].4 _ 12p13 _ 4p12 + 3p].1 + 9p10 _ 35p9
+8p° — 11p7 +3p° — p° + 8p" — 6p° — 4p” + 10p +38,
9(p) =8+ (" - 1)(° — 1).

01 =

)

g1 =

€2
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5. RELATION TO BINARY QUARTICS

We compute some of the probabilities required in Section 4 by reducing them to probabilities
already computed in [BCF|. The basic idea is that a (2, 2)-form determines a binary quartic form, by
writing the (2,2)-form as a binary quadratic form in Yp, Y] and taking the discriminant. However,
since we also want results in the case p = 2, we will in fact work with generalised binary quartics,
defined as follows.

Definition 5.1. A generalised binary quartic (Ga2,Gy4) is a pair of binary forms of degrees 2 and
4. A generalised binary quartic (G, Gy4) is soluble over a field K if for some Xy, X1, 7 € K with
(X0, X1) # (0,0) we have Z2 + G2(Xo, X1)Z = G4(Xo, X1).

We write Zp[Xo,Xl] = @dzp[Xle]d and Zp[Xo,Xl;}/(),}/l] = @d,eZp[Xo,Xl;xfo,n]de for the
gradings of these rings by degree d and by bidegree (d, e), respectively.

Lemma 5.2. Let {,a € IF,, such that Z? + 07 — a is irreducible over Fp, and let
8 := {(Ga, G4) € Zp[Xo, X1]2 X Zy[X0, X1]a : G2 =X (mod p) and G4 = aX§ (mod p)},
T :={(G2,G4) € Zp[ X0, X1]2 X Zp[ X0, X1]a : G2 =0 (mod p) and G4 =0 (mod p)},
and T* := {(G2,G4) € T : G4(0,1) # 0 (mod p?)}. Then the proportions of generalised binary

quartics in 8, T and T* that are soluble over Q, are, respectively,
2p™0 +3p? — p° + 2p* —2p* —3p—1
o= ,
2(p+1)%(p° - 1)
5p'% + 8p° +p° —p" +2p° — 3p° + 4p® —10p — 6
T = )
8(p+1)(p? — 1)

and

e 5pl0 + 5p° — p” 4 3p® — 4p® + 4p® — 8p — 4
8(p+1)(p? — 1)

Proof. These probabilities were computed in [BCF|. The probability o was computed in Lemma
2.12, where it was denoted «; . The probabilities 7 and 7% were computed in Section 2.3, where they
were denoted o4 and 9. O

We define a map
P : Zp| X0, X15 Y0, Y122 = Zyp[Xo, X1]2 % Zp[Xo, X1]4
FoY + FiYoY1 + Y, = (F1, —FoF).
It is easy to check that a (2,2)-form F is soluble over @, if and only if the generalised binary quartic

®(F) is soluble over Q,. We write ®, for the corresponding map on forms with coefficients in F,,.
The cases (i) and (ii) in the following lemma relate to Cases 1(iii) and 4 in Section 4.3.

Lemma 5.3. Let F € Fp[Xo, X1; Yo, Yi]o2 take one of the following forms:

(i) E = f(XoYo, XoY1 + X1Yo) where f is an irreducible binary quadratic form,
(ii) F = (XoY7 — X1Yp)2.

Then ® restricts to a measure-preserving map
{F € Zy[Xo, X1; Y0, Yi]22 : F = F (mod p)}

— {G S Zp[Xo,Xl]Q X Zp[Xo,X1]4 G = (I)p(F) (mod p)}
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Proof. The proof comes down to showing that the derivative of @, at F is a surjective linear map
Fg — IF%. In cases (i) and (ii), this linear map is given by

FO}/O2 + FlYE)Yi + F2Y12 — (Fl, —f((), 1)X3F0 — f(Xo,Xl)Fz), and
FoY§ + RYoYs + BYP s (B, — X3 Fo — XiF),
respectively, which are both surjective. ]

Case 1(iii). We use these lemmas to compute {13, that is, the probability of solubility where F’

mod p is of the form indicated in Lemma 5.3(i). Let f have coefficients a, b, c. Then ®,(F) is the
generalised binary quartic with equation

(Z + cX0X1)? +bXE(Z 4 cXoX1) + acXyi = 0.
From this we see that £&13 = o as defined in Lemma 5.2.

Case 4. We use these lemmas to compute &4, that is, the probability of solubility where F mod
p is of form indicated in Lemma 5.3(ii). Since ®,(F) is identically zero, we see that & = 7 as
defined in Lemma 5.2. To compute &; we must consider (2,2)-forms F that additionally satisfy
v(age) > 2. Under the measure preserving map in Lemma 5.3(ii) these are mapped to T\ T*.

Therefore 7 = (1 — 1/p)7* + (1/p)&} and so
_ Ap'%+3p° — p” +2p5 — 2p° + 2p® — p? — Bp — 2
Ap+ 1) - 1) '

Remark 5.4. The same approach could be used to compute &1, and indeed our answer agrees with
[BCF, Lemma 2.11].

§=pr—(p— 7"

6. CONNECTIONS TO THE HASSE PRINCIPLE

In Theorem 1.5, we determined that the proportion of (2,2)-forms that are everywhere locally
soluble is ¢ &~ 0.8739. A heuristic, similar to [Bhal4, Conjectures 6 and 7| predicts that the proportion

of everywhere locally soluble (2,2)-forms that are globally soluble is %, i.e., in the notation of §2,
. N(H . N(H
that impy_vs ﬁ&) = % and thus limy_, oo ﬁ(&) = ic.
In this section we report on some experiments to test this conjecture numerically. A similar
study in the case of plane cubics was made in [Fisl5]. With the one exception noted below, all

computations were performed using Magma [BCP97] and the data may be found at [FHP19].

6.1. Experiments and results. For each H € {10, 30, 100, 300, 1000}, we chose 1000 (2, 2)-forms
(i.e., polynomials of the form (1.3)), with coefficients chosen uniformly at random from [—H, H| N Z.
The numbers of these that were soluble or everywhere locally soluble (ELS) were as follows:

initial range improved range

H #£soluble #soluble #ELS
10 [753,755] 753 885
30  [640,652] 642 885

100 [536,582] 549 875

300  [378,502] [432, 433] 867

1000  [275,464] (357, 464] 879

The second column gives our initial estimate for the number of soluble (2, 2)-forms out of the 1000.

The lower bound was obtained by searching for rational solutions, with the assistance of 4-descent in

Magma. The upper bound was obtained by computing the Cassels-Tate pairing on the 2-Selmer

group of the Jacobian. For the improved estimates in the third column we used a range of methods,
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described more fully below, that are conditional on standard conjectures and sometimes were only
practical for H sufficiently small.

For the first 4 experiments, we also give the breakdown of these totals by the rank of the Jacobian
elliptic curve E/Q. The annotations + and — in the case H = 300 indicate that we should add or
subtract one if the remaining form whose solubility has not yet been decided turns out to be soluble.

rank F(Q) | singular 0 1 2 3 4 5 6| Total
H =10 #ELS 5) 0 86 344 313 116 21 0| 885
#soluble ) 0 16 285 310 116 21 0| 753
H =230 #ELS 0 0 122 310 291 129 29 4| 885
#£soluble 0 0 1 208 274 126 29 4| 642
H =100 #ELS 0 0 171 321 257 96 25 5| 875
#soluble 0 0 0 205 221 93 25 5| 549
H =300 #ELS 0 0 230— 373 1874+ 58 19 0| 867
#soluble 0 0 0 210 1514 52 19 0| 432+

Although we can see from our first table that the proportion of everywhere locally soluble forms
that are globally soluble is decreasing with H, this hardly amounts to strong evidence that the
limit is 1/4. However, the prediction of 1/4 arises since, in the limit, it is expected that (i) 50% of
the Jacobians have rank 1 and 50% have rank 2 (by, e.g., the Minimalist Conjecture), and (ii) the
proportions of forms that are soluble in these two cases are 0 and 1/2, respectively (as explained
below). Our second table therefore provides much stronger evidence for the conjecture, and indeed
we see that the convergence in (ii) is happening much faster than that in (i).

6.2. The marked point. As we saw in Section 5, if F' € Z[Xy, X1; Y0, Y1] is a (2,2)-form, then
it determines a pair of binary quartics. These binary quartics have the same discriminant, which
is accordingly called the discriminant of F'. We should expect a randomly chosen (2,2)-form to
have nonzero discriminant (and hence define a smooth curve). This was true in all our experiments,
except for 5 cases with H = 10, which were all in any case soluble. From now on we assume that
the discriminant is nonzero, and write E for the Jacobian of C = {F = 0} C P! x P!. Since the
discriminant is a degree 12 polynomial in the coefficients of F', the conductor and discriminant of F
each have size about H'2.

There are two maps C' — P!, given by projection to each factor, and the difference of fibres is a
nonzero marked point Py € E(Q). There is an explicit formula for Py (see [BH16, Section 6.1.2] or
[FR18, Lemma 2.1]) in terms of the coefficients of F. As might be predicted from this formula, we
found in our experiments that Py had canonical height at most log(2H?). The torsion subgroup of
E(Q) was trivial in all but 6 cases with H = 10, when it had order 2. In only one of these cases was
P, a torsion point.

We should expect that for a randomly chosen (2, 2)-form, the associated binary quartics should
not have any rational roots (i.e., linear factors). This was true in all but 69, 9 and 1 of our examples
with H = 10,30 and 100. We should also expect that Py ¢ 2F(Q), and this was true in all but 6
cases when H = 10, and 2 cases when H = 30. If Py ¢ 2E(Q) and the associated binary quartics do
not have any rational roots, then if rank F(Q) = 1, the (2,2)-form is not soluble. We thus expect
that the (2,2)-form is not soluble in general if rank F(Q) = 1.

We now explain why half of the forms with rank 2 Jacobian are expected to be soluble. For an
elliptic curve E of rank 2, we want to estimate the proportion of elements in Sel*(E/Q) that are in
the image of E(Q)/2E(Q). The average size of Sel?(E/Q) is 6 in this family [BH19b], but two of the
2-Selmer group elements correspond to (2, 2)-forms for which one of the associated binary quartics
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has a rational root, which should only happen 0% of the time when we order by height. Now the size
of E(Q)/2E(Q) is 4 for the 100% of elliptic curves E for which there is no 2-torsion, but we also
subtract the same 2 elements corresponding to the (2, 2)-forms for which one of the associated binary
quartics has a rational root. We thus predict that (4 —2)/(6 — 2) = 1/2 of the forms are soluble.

Remark 6.1. Although one of the best methods for finding generators of large height on an elliptic
curve E/Q is to use Heegner points, this only works for curves of rank 1. Since our elliptic curves
all come with a known point of infinite order, this method was of no use to us. We instead relied
almost exclusively on descent methods.

6.3. The initial estimates: computing ranks of elliptic curves. The curve defined by a (2, 2)-
form is isomorphic to the curve defined by either of the associated binary quartics. Our interest is
therefore in deciding the solubility of the genus one curves associated to binary quartics.

Let C'/Q be a genus one curve defined by a binary quartic, and let E/Q be its Jacobian. If C' is
everywhere locally soluble, then it defines a class [C] in the 2-Selmer group Sel?(E/Q). Moreover
C(Q) # 0 if and only if [C] € im(d) where § in the connecting map in the Kummer exact sequence

0 = E(Q)/2E(Q) > Sel?(E/Q) — LI(E/Q)[2] — 0.

Given a point P € F(Q) the Magma function GenusOneModel(2,P) computes a binary quartic
representing d(P). In conjunction with the function IsEquivalent for testing equivalence of binary
quartics, this gives a convenient way of reducing the problem of deciding whether C(Q) # ) to that
of finding generators for E(Q).

An initial upper bound for the rank of E(Q) is obtained by 2-descent, that is, by computing
the 2-Selmer group Sel? (E/Q). This upper bound can sometimes be improved by computing the
Cassels-Tate pairing. Let S,, be the image of the natural map Sel®” (E/Q) — Sel?(E/Q). If &,n € Sy,
say with & +— £ and ' — 7, then there is an alternating pairing

() oS x Sp = Fas (&m) = mer = (€ n)er (6.2)
whose kernel is S,11. We note the inclusions of Fa-vector spaces
im(d) C...C S3C Sy C S =Sel’(E/Q).
The function CasselsTatePairing in Magma, written by S. Donnelly, computes the pairings

(, )or : Sel?(E/Q) x Sel?(E/Q) — Fo, (6.3)
and
(, Vot : Sel?(E/Q) x Sel*(E/Q) — Fy, (6.4)

taking as input either a pair of binary quartics, or a binary quartic and a quadric intersection.
(A variant of his method for computing (6.3) is described in [Fis16].) We may thus compute the
pairing (6.2) for n =1 and n = 2.

A lower bound for the rank of F(Q) may be obtained by searching for points either directly on
E, or better on one of its 4-coverings as computed using FourDescent in Magma. In this way we
obtained generators for a subgroup I' C F(Q) of known points. In all cases where it is possible that
rank I' < rank F(Q) we searched up to height 10'° on the 4-coverings.

Our initial (unconditional) estimate on the number of (2,2)-forms that are soluble was obtained
as follows. First, if the curve C' defined by our (2, 2)-form is not everywhere locally soluble, then
it is obviously not soluble. Otherwise C' (or more precisely one of the associated binary quartics)
determines a class [C] € Sel?(E/Q). If [C] € §(T) then we know that C(Q) # @, and indeed from
the generators for T' we may compute an explicit solution. Otherwise we look for [D] € Sel*(E/Q)
with ([C], [D])cT # 0. If we succeed in finding a binary quartic D with these properties, then it is a
witness to the fact that C(Q) = (.
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6.4. The improved estimates. Both the improved estimates, and the second table (giving the
breakdown by rank of the Jacobian) are conditional on the following two standard conjectures.

e Parity conjecture: This is the parity part of the Birch—Swinnerton-Dyer conjecture, i.e.,
the Mordell-Weil rank of an elliptic curve E/Q is even or odd according as its root number
w(E/Q) is +1 or —1.

e Generalised Riemann Hypothesis (GRH) : This is needed for the class number calculations
for 2-descent (but would be easy to remove for small H) and for the computation of analytic
rank bounds.

For ease of exposition, we will assume (as is the case in all examples of interest) that E(Q) has
trivial torsion subgroup. We write ron = dimg, S, for the upper bound on the rank of F(Q) obtained
by 2™-descent. Thus we have

rank ' <rank F(Q) < ... <rg <ry <rg.

It is a theorem, original due to Monsky [Mon96], that w(E/Q) = (—1)".

We improve our lower bounds on the number of forms that are soluble by using the parity
conjecture. Indeed, if rank ' = ron — 1 for some n, then we may conclude by the parity conjecture
that im(J) = S,,. We mainly used this idea with n = 1, when the conclusion is that binary quartics
with Jacobian FE satisfy the Hasse principle, but also used it with n = 2 in four examples with
H = 1000.

In the two examples where we used the parity conjecture in the case H = 30, we were also able
to find the missing generators using EightDescent in Magma [Sta05]. In particular on the curve
{F =0} Cc P! x P! where

F =21X3Y3 — Xo X Y§ + 17X7YF — 27X3YoY1 + 15X X1 YoY; + 9X7YYy
— 25X2Y? — 12X X1 Y7 — 13X3YE,

we found the solution

Xo = 5998800628516423107297133082973646629266881508307007941326966876023,

X1 = 342294900150114936634770190317380320064921533929615189995360150770683,
Yo = 246468494594162038245191010835877699291643209107952263886240062422805,
Y1 = —206172926328604047309514129427033995615708844556361901784128916991449.

This maps to a point on the Jacobian of canonical height h ~ 644.736, which is well beyond the
range that could be found by 4-descent. Unfortunately it was not practical to run EightDescent
in the experiments with H = 100, 300 and 1000, and so our improved lower bounds in those cases
remain conditional on the parity conjecture.

The main method we used to improve the upper bounds on the number of forms that are soluble
was to compute the Cassels-Tate pairing (6.4). In the experiments with H = 10, 30,100 and 300, we
were left with 0, 1,2 and 5 examples where ro = r4 = rg = 3, yet (despite searching on all 4-coverings
up to height bound 10'Y) we could only find one generator. The elliptic curves in question are
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recorded in the following table.

y? = 2% — 3852162 — 118546643 A =20

y? 4+ zy = 23 — 22 — 21940631z — 10062163381 A=26
v+ zy = 2% — 2% — 1301067862 — 418444299752 A=25

y? = 23 + 2% — 674939767z + 9768411280745 A =35

y? + zy +y = 2> + 13654387242 + 1088450102306 A =30
y? + zy = 2% + 2 4 136469562 + 36868880351052 A =36

y? 4y = 2 + 463718380z — 1653282652263 A=39

v+ zy = 2% + 22 — 6811523942z + 180704627470189

In all but the last of these examples, we were able to prove that the rank is 1 by using Sage [Sag19]
to compute an upper bound on the analytic rank. The parameter A we used for this calculation
(see [Bob13]) is recorded in the right hand column. In the last example we obtained no rank bound
better than 3, despite taking A = 4.0.

Unfortunately it was not practical to compute the pairing (6.4) in the experiment with H = 1000.
So we are left with a large number of unresolved cases. Writing ¢ = rank " for the number of
generators known, there were 90 cases with (rq,74,t) = (3,3, 1), 14 cases with (ro,r4,t) = (4,4, 2),
and one each with (re,74,t) = (4,4,1), (5,3,1) and (5,5, 3).
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