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Abstract. We prove that a positive proportion of hypersurfaces in products of projective spaces
over Q are everywhere locally soluble, for almost all multidegrees and dimensions, as a generalization
of a theorem of Poonen and Voloch [PV04]. We also study the specific case of genus 1 curves
in P1 × P1 defined over Q, represented as bidegree (2, 2)-forms, and show that the proportion of
everywhere locally soluble such curves is approximately 87.4%. As in the case of plane cubics
[BCF16], the proportion of these curves in P1×P1 soluble over Qp is a rational function of p for each
finite prime p. Finally, we include some experimental data on the Hasse principle for these curves.

1. Introduction

Let V be a variety defined over Q. The study of rational points on V often involves determining
the local points V (Qν) for completions Qν of Q. We say that V is (globally) soluble if the set V (Q)
of rational points is nonempty, and V is everywhere locally soluble if the set V (Qν) is nonempty for
all places ν ≤ ∞ of Q.

Poonen and Voloch [PV04] show that a positive proportion of all hypersurfaces in Pn of fixed
degree d are everywhere locally soluble for n, d ≥ 2 and (n, d) 6= (2, 2). In particular, they prove
that this proportion (as a limit) is exactly the product c =

∏
ν cν > 0 of local factors cν , where cν is

the proportion of hypersurfaces that have a Qν-point. In [BBL16], Bright, Browning, and Loughran
generalized this theorem to other families of varieties. Poonen and Voloch also conjecture that the
proportion of globally soluble hypersurfaces is c when 2 ≤ d ≤ n, and is 0 when d > n + 1. This
conjecture implies that the Hasse principle is true for 100% and for 0% of the everywhere locally
soluble hypersurfaces in the two cases, respectively. Browning, Le Boudec, and Sawin [BLS19] have
recently proved this conjecture for n ≥ d+ 2, i.e., that the Hasse principle is true 100% of the time
for Fano hypersurfaces of degree d in Pn with n ≥ d+ 2.

However, Poonen and Voloch [PV04] do not make any conjectures about local versus global
solubility in the boundary (Calabi-Yau) case where d = n + 1; this case is perhaps the most
interesting and the most mysterious. The simplest of these cases, that of plane cubics (d = 3 and
n = 2), has been studied by Bhargava, Cremona, and the first author [BCF16], in which the authors
explicitly compute the proportion c of everywhere locally soluble plane cubics; the same authors
[BCF] also study the proportion of everywhere locally soluble hyperelliptic curves. In addition,
Bhargava [Bha14] shows that a positive proportion of plane cubics fail the Hasse principle and a
positive proportion satisfy the Hasse principle.

In this paper, we are interested in answering the analogous questions and computing the explicit
proportion of everywhere local soluble curves defined in products of projective spaces. We also study
a specific family of genus one curves over Q (analogous to the plane cubics studied in [BCF16]) and
determine the proportion of such curves that are everywhere locally soluble. In forthcoming work,
Bhargava and the second author show that the Hasse principle fails for a positive proportion of
curves in this family [BH19a]. In this paper, we include some data on the success and failure of the
Hasse principle for randomly selected sets of these curves with bounded coefficients.
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In Section 2, we begin by proving the analogue of the theorem of Poonen and Voloch for
hypersurfaces in products of projective spaces:

Theorem 1.1. Let d1, . . . , dk, n1, . . . , nk be positive integers. The proportion of multidegree (d1, . . . , dk)
hypersurfaces over Q in Pn1 × · · · × Pnk that are everywhere locally soluble tends to a real number
c > 0, where c is the product

∏
ν cν over all places ν and cν is the proportion of such multidegree

homogeneous polynomials with a nontrivial zero over Qν , as long as one of the following holds:
(i) k = 1 and n1, d1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k = 2 and if n1 = n2 = 1, then d1, d2 ≥ 2;
(iii) k ≥ 3.

We also predict the success or failure of the Hasse principle for families of hypersurfaces in products
of projective spaces in many cases, depending on the multidegree of the hypersurfaces:

Conjecture 1.2. For any positive integers di, ni for i ∈ {1, . . . , k}, consider the family of multidegree
(d1, . . . , dk)-hypersurfaces in Pn1 × · · · × Pnk over Q. Then

(i) If di > ni + 1 for all i = 1, . . . , k, then 100% of everywhere locally soluble (d1, . . . , dk)-
hypersurfaces fail the Hasse principle.

(ii) If di < ni + 1 for some i = 1, . . . , k, except if (k, n1, n2, d1, d2) = (2, 1, 2,≥ 2, 2) or
(2, 2, 1, 2,≥ 2), then 100% of everywhere locally soluble (d1, . . . , dk)-hypersurfaces satisfy the
Hasse principle. With these conditions, we have that the proportion of soluble hypersurfaces
equals the product of local factors c =

∏
ν cν .

Note that the numerical conditions in Conjecture 1.2(ii) are significantly more general than just
requiring the hypersurface to be Fano, which is equivalent to having di < ni + 1 for all i (not just
some i). Still, as in the original Poonen–Voloch heuristic, there are some remaining boundary cases,
namely when di ≥ ni + 1 for all i with equality for at least one i. In this paper, we compute the
explicit probability of everywhere local solubility for the simplest such case with k > 1, namely
the family of bidegree (2, 2) curves in P1 × P1. Explicitly, these are the curves defined by the
bihomogeneous bidegree (2, 2)-polynomials of the form

F (X0, X1, Y0, Y1) = a00X
2
0Y

2
0 + a01X

2
0Y0Y1 + a02X

2
0Y

2
1

+ a10X0X1Y
2
0 + a11X0X1Y0Y1 + a12X0X1Y

2
1 (1.3)

+ a20X
2
1Y

2
0 + a21X

2
1Y0Y1 + a22X

2
1Y

2
1

where aij ∈ Q for i, j ∈ {0, 1, 2}. Smooth curves of this form have genus one. We show:

Theorem 1.4. For a finite prime p, the probability a bidegree (2, 2)-form with coefficients in Zp is
soluble over Qp is

ρ(p) = 1− p(p− 1)(p2 − 1)f(p)

8(p8 − 1)(p9 − 1)

where f(p) = 4p11 − 4p10 + 4p9 − p8 + 5p7 − 2p6 + 5p5 − p4 + 2p3 − 2p2 + 6p− 2.

The probability a (2, 2)-form is soluble over the reals (when we choose the coefficients uniformly
at random in [−B, . . . , B] with B large) appears to be about 96.46%, based on a Monte Carlo
simulation. Note that the probability of solubility over R is greater than 7/8, since for insolubility
a00, a02, a20, a22 must all have the same sign.

Theorem 1.4 gives
∏
p<∞ ρ(p) ≈ 0.90592. Combining this with the estimate of the previous

paragraph, we have ∏
p≤∞

ρ(p) ≈ 0.8739,

thereby giving the following theorem:
2



Theorem 1.5. The probability that a random (2, 2)-form with coefficients in Q is p-locally soluble for
all p <∞ is approximately 90.592%; assuming the truth of the Monte Carlo experiment, the probability
that a random (2, 2)-form with coefficients in Q is everywhere locally soluble is approximately 87.39%.

A heuristic similar to that in [Bha14] suggests that of the (2, 2)-forms that are everywhere locally
soluble, exactly 1/4 should be globally soluble. In Section 6, we report on an experiment to test this
prediction numerically.
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2. Generalization of Poonen–Voloch’s theorem and conjecture

In this section, we generalize the main result and conjectures of [PV04] to hypersurfaces in
products of projective spaces. The main idea of the proof of the theorem is identical to that of
[PV04] but relies on a more general combinatorial inequality. We work over the field Q for this
section.

Fix an integer k ≥ 1 and positive integers ni, di for 1 ≤ i ≤ k. We consider multidegree (d1, · · · , dk)
hypersurfaces in the product space P := Pn1 × · · · × Pnk . In particular, let Z[{xij}]d denote the set
of multihomogeneous polynomials in Z[{xij : 1 ≤ i ≤ k, 0 ≤ j ≤ ni}] of multidegree d = (d1, . . . , dk).
There aremi :=

(
ni+di
di

)
monomials of degree di in (ni+1) variables, so the total number of monomials

of multidegree d in Z[{xij}]d is m =
∏k
i=1mi.

Define the height h(f) of f ∈ Z[{xij}]d to be the maximum of the absolute values of the coefficients
of f . Let MQ be the set of places of Q. We define the following counts for H > 0 and ν ∈MQ:

Ntot(H) := #{f ∈ Z[{xij}]d : h(f) ≤ H} = (2bHc+ 1)m

N(H) := #{f ∈ Z[{xij}]d : h(f) ≤ H and ∃x = {xij} ∈
k∏
i=1

Zni+1 \ {0} with f(x) = 0}

Nν(H) := #{f ∈ Z[{xij}]d : h(f) ≤ H and ∃x = {xij} ∈
k∏
i=1

Qni+1
ν \ {0} with f(x) = 0}

Nloc(H) := #{f ∈ Z[{xij}]d : h(f) ≤ H and ∀ ν ∈MQ,∃x ∈
k∏
i=1

Qni+1
ν \ {0} with f(x) = 0}.

In other words, Ntot(H) is the total number of multidegree d polynomials in P of height at most
H, and N(H), Nν(H), and Nloc(H) are the number of such polynomials that are globally soluble,
soluble over Qν , and everywhere locally soluble, respectively. The limits

lim
H→∞

N(H)

Ntot(H)
and lim

H→∞

Nloc(H)

Ntot(H)
,

if they exist, will be called the proportion of globally soluble and everywhere locally soluble multidegree
d hypersurfaces, respectively. Note that for any place ν, the local proportion limH→∞Nν(H)/Ntot(H)
exists. Indeed, as explained in Remark 2.3 of [PV04], after normalizing the Haar measure (or Lebesgue
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measure for ν = ∞) on the space Zmν of the multihomogeneous polynomials of degree d in the
variables {xij : 1 ≤ i ≤ k, 0 ≤ j ≤ ni}, we see that this local proportion is the measure of the
ν-adically closed subset of Zmν corresponding to the multihomogeneous polynomials with a nontrivial
zero over Qν . We restate Theorem 1.1 using this language:

Theorem 2.1. Let cν = limH→∞Nν(H)/Ntot(H). As H → ∞, the proportion Nloc(H)/Ntot(H)
tends to c :=

∏
ν cν > 0, if one of the following conditions holds:

(i) k = 1 and n1, d1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k = 2, and if n1 = n2 = 1, then d1, d2 ≥ 2;
(iii) k ≥ 3.

Proof. If f is absolutely irreducible modulo p, then for sufficiently large p, the Lang-Weil estimate
guarantees a smooth point on the hypersurface f = 0 modulo p, which may be lifted to a Qp-point
by Hensel’s lemma. By Lemmas 20 and 21 of [PS99], it suffices to show that the space of reducible
polynomials is of codimension at least 2 in the space of all polynomials in Z[{xij}]d. This follows from
Lemma 2.2 below, which shows that the product of the projective spaces of multidegree (r1, · · · , rk)
polynomials and of multidegree (d1 − r1, · · · , dk − rk) polynomials has dimension at most m − 3,
where m− 1 is the dimension of the projective space of multidegree (d1, · · · , dk) polynomials. �

Lemma 2.2. Fix a positive integer k. Given positive integers ni, di, ri for 1 ≤ i ≤ k such that
0 ≤ ri ≤ di for all i but 0 <

∑
i ri <

∑
i di, we have

k∏
i=1

(
ni + ri
ni

)
+

k∏
i=1

(
ni + di − ri

ni

)
<

k∏
i=1

(
ni + di
ni

)
(2.3)

if one of the following conditions holds:
(i) k = 1 and n1, d1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k = 2, and if n1 = n2 = 1, then d1, d2 ≥ 2;
(iii) k ≥ 3.

Proof. We define

S = {(A1, . . . , Ak) : Ai ⊂ {1, 2, . . . , ni + di} with |Ai| = ni}

and subsets

S1 = {(A1, . . . , Ak) ∈ S : Ai ∩ {1, . . . , ri} = ∅ for all 1 ≤ i ≤ k},
S2 = {(A1, . . . , Ak) ∈ S : Ai ∩ {ri + 1, . . . , di} = ∅ for all 1 ≤ i ≤ k}.

Then |S1 ∩ S2| = 1. To prove |S1|+ |S2| < |S| it suffices to show that |S \ (S1 ∪ S2)| ≥ 2.
(i) If k = 1 then by choosing A1 with

|A1 ∩ {1, . . . , r1}| = 1 and |A1 ∩ {r1 + 1, . . . , d1}| = 1

we have |S \ (S1 ∪ S2)| ≥ r1(d1 − r1)
(
n1

2

)
, which is at least 2 under the stated hypotheses.

(ii) If k = 2 then by choosing (A1, A2) with

|A1 ∩ {1, . . . , r1}| = δ, |A1 ∩ {r1 + 1, . . . , d1}| = 1− δ,
|A2 ∩ {1, . . . , r2}| = 1− δ, |A2 ∩ {r2 + 1, . . . , d2}| = δ,

for δ = 0, 1, we have |S \ (S1 ∪ S2)| ≥ (r1(d2 − r2) + r2(d1 − r1))n1n2, which is at least 2
under the stated hypotheses.

(iii) If k ≥ 3 then |S \ (S1 ∪ S2)| ≥
∑

i 6=j ri(dj − rj) ≥ 2. �

We also discuss the analogue of the conjecture of Poonen–Voloch in our setting:
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Conjecture 2.4. For any positive integers di, ni for i ∈ {1, . . . , k}, consider the family of multidegree
(d1, . . . , dk)-hypersurfaces in Pn1 × · · · × Pnk over Q. Then

(i) If di > ni + 1 for all i = 1, . . . , k, then 100% of everywhere locally soluble (d1, . . . , dk)-
hypersurfaces fail the Hasse principle.

(ii) If di < ni + 1 for some i = 1, . . . , k, except if (k, n1, n2, d1, d2) = (2, 1, 2,≥ 2, 2) or
(2, 2, 1, 2,≥ 2), then 100% of everywhere locally soluble (d1, . . . , dk)-hypersurfaces satisfy
the Hasse principle.

Combining Conjecture 2.4(ii) with Theorem 2.1 implies that the proportion of globally soluble
hypersurfaces in P is a product of local densities for many cases, i.e., the last part of Conjecture
1.2: If di < ni + 1 for some i = 1, . . . , k, except for the cases (2, 1, 2,≥ 2, 2), or (2, 2, 1, 2,≥ 2), we
have that

lim
H→∞

N(H)

Ntot(H)
= c =

∏
ν

cν . (2.5)

Remark 2.6. If di < ni + 1 for some i, and yet the hypotheses of Theorem 2.1 are not satisfied then
either some di = 1 or (k, n1, d1) = (1, 2, 2). In the first case both sides of (2.5) are 1. In the second
case concerning plane conics, see, e.g., Theorem 2 of [BCF+16], which states that cp = 1− p

2(p+1)2

for p a prime; one concludes immediately that both sides of (2.5) are 0 in this case.

Motivation for Conjecture 2.4(i). Fix a point a = (a1, . . . , ak) ∈ Zn1+1× · · · ×Znk+1 with each
ai 6= 0 and having coprime coordinates, and consider the set of multidegree (d1, . . . , dk)-polynomials
vanishing on a. The set of these polynomials form a hyperplane in Zm, and to count the multidegree
(d1, . . . , dk) polynomials up to height H vanishing on a is to count the set of integral points contained
in this hyperplane, whose coordinates are bounded by H. As in [PV04], the number of integral
points of height at most H in this hyperplane is given by

c(a)Hm−1

φ(a)
+O(Hm−2),

where φ(a) denotes the covolume of the lattice of integer points on the hyperplane of polynomials
vanishing on a, and c(a) denotes the (m− 1)-dimensional volume of the part of the hyperplane inside
[−1, 1]m.

Ignoring the error term, we get that

N(H) ≤ Hm−1
∑
a

c(a)

φ(a)
,

where the sum ranges over a ∈ Zn1+1 × · · · × Znk+1, excluding the zero vectors in each of the
components. Since c(a) is bounded by definition, it remains to understand the convergence of∑

a
1

φ(a) . Lemma 3.1 of [PV04] shows that φ(a) equals the norm of the vector b formed by the
monomials of degree (d1, . . . , dk) in the coordinates of (a1, . . . , ak) (the coprime condition in that
lemma is not needed). Let φi(ai) denote the norm of the vector formed by plugging in the coordinates
of ai into each of the degree di monomials in ni + 1 variables. Because φ(a) =

∏k
i=1 φi(ai), we have

∑
a∈(Zn1+1\{0})×···×(Znk+1\{0})

1

φ(a)
=

 ∑
a1∈Zn1+1\{0}

1

φ1(a1)

 · · · · ·
 ∑
ak∈Znk+1\{0}

1

φk(ak)

 . (2.7)

We claim that each of the sums
∑

ai∈Zni+1\{0}
1

φi(ai)
converges.

We decompose Zni+1 \ {0} = Tni+1 ∪ Tni ∪ · · · ∪ T1, where Tj consists of the vectors in Zni+1 with
exactly j nonzero coordinates. Let ai = (ai0, . . . , aini). Then by applying the AM-GM inequality to
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the definition of φi(ai), we have

φi(ai) ≥ m1/2
i

∣∣∣∣∣
ni∏
`=0

ai`

∣∣∣∣∣
di

ni+1

. (2.8)

In fact, for ai ∈ Tj , the product over ` on the right side of (2.8) may be taken to be the product of
only the j nonzero ai` if we replace mi with mij :=

(
j+di
di

)
and ni by j. We thus have

∑
a∈Zni+1\{0}

1

φi(ai)
=

ni+1∑
j=1

∑
ai∈Tj

1

φi(ai)

≤
ni+1∑
j=1

∑
ai∈Tj

m
−1/2
ij

∣∣∣∣∣∣
∏

` : ai` 6=0

ai`

∣∣∣∣∣∣
− di

j

.

The above sum converges if di > j for all j = 1, . . . , ni + 1, so it converges if di > ni + 1. Thus, the
original quantity (2.7) converges if di > ni + 1 for all i = 1, . . . , k.

This heuristic therefore predicts N(H) ∼ O(Hm−1). Combining this with the estimate Ntot(H) ∼
(2H)m gives Conjecture 2.4(i).

Motivation for Conjecture 2.4(ii). We may restrict ourselves to only consider polynomials f for
which f = 0 defines a smooth geometrically integral hypersurface X in P (see also [PV04, Remark
2.1]). We use a well known conjecture of Colliot-Thélène (see, e.g., [CT03]):

Conjecture 2.9 (Colliot-Thélène). Let X be a smooth proper geometrically integral variety over a
number field. If X is (geometrically) rationally connected, then the Brauer-Manin obstruction to
the Hasse principle for X is the only obstruction.

In particular, we show in Proposition 2.10 that if X is a multidegree (d1, . . . , dk)-hypersurface
in P = Pn1 × · · · × Pnk with di < ni + 1 for some i, then X is rationally connected. We will
show in Proposition 2.11 below that the Brauer-Manin obstruction is vacuous for smooth complete
intersections (of dimension at least 3) in P over number fields. Thus, conditional on Conjecture 2.9,
we see that the Hasse principle is satisfied for these X of dimension ≥ 3.

In almost all cases with di < ni + 1 for some i where X has dimension 1 or 2, either some di = 1
(and so X has a rational point) or X is a quadric hypersurface (and so is known to satisfy the Hasse
principle). For the case of bidegree (2, d2)-surfaces in P2 × P1 with d2 ≥ 2, however, it is possible for
the Hasse principle to not be satisfied (e.g., the famous example of Iskovskikh [Isk71] where d2 = 4),
so we exclude this case. The other nontrivial case is handled in the proof of [PV04, Proposition 3.4],
which shows, under Conjecture 2.9, that the Hasse principle holds for a density 1 set of cubic surfaces
in P2.

Proposition 2.10. Fix an integer k ≥ 1 and positive integers di, ni for i ∈ {1, . . . , k}. Let X be a
smooth integral multidegree (d1, . . . , dk)-hypersurface in Pn1 × · · ·×Pnk over C. Then X is rationally
connected if and only if di < ni + 1 for some i.

Proof. One direction is easy: if di > ni for all i, then H0(X,ωX) is nonzero, hence X is not rationally
connected. For the reverse direction, without loss of generality, suppose d1 < n1 + 1. Then consider
the projection π : X → Pn2 × · · · × Pnk (note that this codomain is a point if k = 1). The fibers of
this projection π are degree d1 hypersurfaces in Pn1 ; the general ones are smooth and, by assumption,
Fano and thus rationally connected [Cam92,KMM92].
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We apply a theorem of Graber–Harris–Starr [GHS03], which states that if X → Y is a dominant
morphism of complex varieties where the general fiber and Y are both rationally connected, then X
is rationally connected as well. Here the projection map π is surjective by a dimension count, and
the codomain Pn2 × · · · × Pnk is rationally connected, so X itself is rationally connected. �

In the following proposition, the notation BrY refers to the cohomological Brauer groupH2
ét(Y,Gm)

for a scheme Y .

Proposition 2.11. Let K be a number field. Let X be a smooth complete intersection in a product
P = Pn1 × · · · × Pnk satisfying dimX ≥ 3. Then the natural map BrK → BrX is an isomorphism,
hence the Brauer-Manin obstruction for X is vacuous.

Proof. We need only slightly modify the proof in [PV04, Appendix A and B] for the same result where
X is a smooth complete intersection in a single projective space Pn (see also [Sch16, Proposition
2.6] for a smooth complete intersection in the product of two projective spaces). We summarize the
argument here. We use the low degree exact sequence from the Leray spectral sequence

0→ PicX → (PicXK)GK → BrK → ker(BrX → BrXK)→ H1(K,PicXK) (2.12)

where GK = Gal(K/K). We need to check that PicX → (PicXK)GK is an isomorphism,
H1(K,PicXK) = 0, and BrXK = 0.

The restriction map Pic PK → PicXK is an isomorphism since X is a smooth complete intersec-
tions of dimension at least 3 [Har70, Corollary 3.3]. Then since Pic P → Pic PK is an isomorphism,
we find that the injections

PicX ↪→ (PicXK)GK ↪→ PicXK

are isomorphisms and H1(K,PicXK) = 0.
To show that BrXK = 0 here, we use the Kummer sequence to obtain, for any prime `,

0 // (Pic PK)/` //

��

H2(PK ,Z/`Z)

ψ
��

0 // (PicXK)/` // H2(XK ,Z/`Z) // (BrXK)[`] // 0.

The top horizontal injection is in fact an isomorphism, since both groups are rank k over Z/`Z
(using the Kunneth formula to compute H2(P,Z/`Z)). By a version of Weak Lefschetz (see, e.g.,
[PV04, Corollary B.5] with V = P), the vertical map ψ is an isomorphism, so we have (BrXK)[`] = 0
for all `. Since BrXK is torsion, it is in fact 0.

Thus, from (2.12), the map BrK → BrX is an isomorphism, so no elements of BrX obstruct
rational points on X. �

3. Counting polynomials over finite fields

Our strategy for proving Theorems 1.4 and 1.5 can be viewed as an extension of Hensel’s lemma.
If the reduction of the (2, 2)-form mod p has a smooth Fp-point, then Hensel’s lemma implies that
this can be lifted to a Qp-point; conversely, if the reduction of the (2, 2)-form has no Fp-points, then
clearly it has no Qp-points. The p-adic solubility of many (2, 2)-forms can be determined in this way,
so it is crucial to understand (2, 2)-forms over finite fields. We work over a finite field Fq, where q is
a power of a prime p, for this section, since it is no extra work to do so, though we will only need
these results over Fp for the later sections.
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3.1. Preliminaries. Many (2, 2)-forms modulo p contain binary quadratic forms as one of its factors,
so we collect some relevant calculations here. These are easy to check.

Lemma 3.1. Of the q2 monic quadratic polynomials f ∈ Fq[X],

• q(q − 1)/2 have two distinct roots in Fq;
• (q2 − q)/2 have conjugate roots in Fq2;
• q have a double root in Fq.

Lemma 3.2. Of the q3 binary quadratic forms f ∈ Fq[X,Y ],

• (q − 1)(q + 1)q/2 have two distinct roots in Fq;
• (q − 1)(q2 − q)/2 have two conjugate roots in Fq2;
• (q − 1)(q + 1) have a double root in Fq;
• 1 is the zero form.

3.2. Reducible (2, 2)-forms. Now we look at the bihomogeneous polynomials of bidegree (d1, d2) in
Fq[X0, X1;Y0, Y1] for 0 ≤ d0, d1 ≤ 2, starting with the irreducible (d1, d2)-forms with (d1, d2) 6= (2, 2).
These correspond to (d1, d2)-curves in P1 × P1, where we assume that (X0, X1) corresponds to the
coordinates in the first factor of P1 and (Y0, Y1) corresponds to the coordinates in the second P1.

Lemma 3.3. The number of irreducible bihomogeneous polynomials in Fq[X0, X1;Y0, Y1] (with
bidegrees as indicated) are as follows:

Bidegree Number of forms up to scaling by F×q
(1, 0) m10 = q + 1
(2, 0) m20 = (q2 − q)/2
(1, 1) m11 = q3 − q
(2, 1) m21 = q5 − q3

Proof. There are q2 − 1 nonzero (1, 0)-forms, and so q + 1 up to scaling. The number of irreducible
(2, 0)-forms is taken from Lemma 3.2, taking into account scaling. Each irreducible (1, 1)-form is the
graph of a Mobius map, and so m11 = |PGL2(Fq)| = q3 − q. Finally we compute

m21 = (q6 − 1)/(q − 1)−m10m11 −m10m20 −m2
10(m10 + 1)/2 = q5 − q3. �

We now consider all the different ways in which a (2, 2)-form can factor. We use the notation
(a1, b1)e1 · · · (ar, br)er to denote the bidegrees of the irreducible factors, with multiplicity. For example,
the factorization type (1, 0)2(0, 1)(0, 1) indicates that the (2, 2)-form factors as a product F 2

10F01G01,
where F10, F01, and G01 are irreducible polynomials in Fq[X0, X1;Y0, Y1] with bidegrees (1, 0), (0, 1),
and (0, 1), respectively, and that F01 is not an F×q -multiple of G01.

Lemma 3.4. The number of reducible (2, 2)-forms over Fq with each factorization type are as follows.
Moreover, the curve C ⊂ P1 × P1 defined by such a form either always has a smooth Fq-point, or
never has a smooth Fq-point, as indicated in the right hand column.
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Factorization type Number of forms up to scaling by F×q Smooth point?
(1, 1)(1, 1)

(
m11

2

)
= (q3 − q)(q3 − q − 1)/2 yes

(2, 1)(0, 1) or (1, 2)(1, 0) 2m21m10 = 2q3(q + 1)2(q − 1) yes
(1, 1)(1, 0)(0, 1) m11m

2
10 = q(q + 1)3(q − 1) yes

(1, 0)(1, 0)(0, 1)(0, 1)
(
m10

2

)2
= q2(q + 1)2/4 yes

(2, 0)(0, 1)(0, 1) or (0, 2)(1, 0)(1, 0) 2m20

(
m10

2

)
= q2(q + 1)(q − 1)/2 yes

(2, 0)(0, 2) m2
20 = q2(q − 1)2/4 no

(1, 0)2(0, 1)(0, 1) or (0, 1)2(1, 0)(1, 0) 2m10

(
m10

2

)
= q(q + 1)2 yes

(2, 0)(0, 1)2 or (0, 2)(1, 0)2 2m20m10 = q(q + 1)(q − 1) no
(1, 1)2 m11 = q(q + 1)(q − 1) no

(1, 0)2(0, 1)2 m2
10 = (q + 1)2 no

Proof. The counts all follow from Lemma 3.3 as indicated. In each of the cases listed as having
smooth Fq-points, there is an irreducible factor of multiplicity 1 with bidegree (1, 0), (0, 1), (1, 1),
(2, 1) or (1, 2). Each such factor defines a smooth curve of genus 0 which, by projection to one of the
factors, is isomorphic to P1. Moreover a case-by-case analysis shows that this curve meets the other
components of C in at most 2 points. Since #P1(Fq) = q + 1 > 2 this shows that C has a smooth
Fq-point. In the remaining cases each irreducible factor is either repeated or has bidegree (2, 0) or
(0, 2). So in these cases there are no smooth Fq-points. �

3.3. Irreducible (2, 2)-forms. We now consider the irreducible (2, 2)-forms over Fq. We distinguish
between those that are absolutely irreducible (i.e., do not factor over Fq) and those that factor over
Fq2 as the product of a bidegree (1, 1)-form and its conjugate. In the latter case, we say the form
has factorization type (1, 1)(1, 1).

Lemma 3.5. Let C ⊂ P1 × P1 be a curve defined by an absolutely irreducible (2, 2)-form F ∈
Fq[X0, X1;Y0, Y1]. Then C has a smooth Fq-point.

Proof. If C is smooth then it has genus 1, and the lemma follows by the Hasse-Weil bound. If C is
singular, then it has geometric genus 0. The normalization is a smooth genus 0 curve, in fact P1

itself (e.g., by the Hasse-Weil bound), and thus has (q + 1) Fq-points. Since the preimage of the
singular point is at most length 2, the curve C must have at least one smooth Fq-point. �

Remark 3.6. The numbers of irreducible (2, 2)-forms are as follows:

Factorization type Number of forms up to scaling by F×q
smooth q4(q + 1)2(q − 1)2

absolutely irreducible yet singular q3(q + 1)2(q − 1)2

(1, 1)(1, 1) (q3 − q)(q3 + q − 1)/2

In the case (1, 1)(1, 1) the (1, 1)-forms are irreducible over Fq2 , since the original (2, 2)-form was
irreducible over Fq. Each is therefore the graph of a Mobius map, and so the count in the last row is
(# PGL2(Fq2) −# PGL2(Fq))/2. We omit the details of the other two counts since these are not
needed for the proof of Theorem 1.4. However, as a check on our calculations, we note that these
counts, together with those in Lemma 3.4, do indeed add up to (q9 − 1)/(q − 1).

If F has factorization type (1, 1)(1, 1) then C is geometrically the union of two rational curves.
We subdivide into cases according as these meet in

(i) a pair of points defined over Fq,
(ii) a pair of conjugate points defined over Fq2 ,
(iii) a single point defined over Fq.
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Lemma 3.7. The number of (2, 2)-forms over Fq (up to scaling by F×q ) in cases (i), (ii) and (iii)
above are, respectively,

n11 = q3(q + 1)2(q − 1)/4,

n12 = q2(q + 1)(q − 1)2(q − 2)/4,

n13 = q(q + 1)2(q − 1)2/2.

Proof.

(i) The singular points can be any pair of points in P1(Fq) × P1(Fq) that remain distinct under
both projection maps. This last condition comes from the fact, noted in Remark 3.6, that
each (1, 1)-form is the graph of a Mobius map. We make a change of coordinates to move
the singular points to ((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)). By hypothesis F factors as the
product of two (1, 1)-forms over Fq2 , and these are now linear combinations of X0Y1 and X1Y0.
Therefore F = f(X0Y1, X1Y0) for some irreducible binary quadratic form f . We compute n11 as
the product of the (q2 − q)/2 choices for f (up to scaling), and the q2(q + 1)2/2 choices for the
(unordered) pair of singular points.

(ii) We write Fq2 = Fq(α) where α2 + rα+ s = 0 for some r, s ∈ Fq. As noted in (i), the singular
points remain distinct under both projection maps. After a change of coordinates, defined
over Fq, we may therefore assume that the singular points are ((α : 1), (α : 1)) and its Galois
conjugate. Then F = f(X0Y0 + rX0Y1 + sX1Y1, X0Y1 − X1Y0) for some irreducible binary
quadratic form f . There are (q2 − q)/2 choices for f (up to scaling), but one of these gives
F = (X2

0 + rX0X1 + sX2
1 )(Y 2

0 + rY0Y1 + sY 2
1 ). Therefore n12 is the product of (q + 1)(q − 2)/2

and the (q2 − q)2/2 choices for the singular points.
(iii) We make a change of coordinates to move the singular point to ((0 : 1), (0 : 1)). Then F is

the product of αX0Y0 + βX0Y1 + γX1Y0, and its Galois conjugate, for some α, β, γ ∈ Fq2 with
β, γ 6= 0. If β and γ are a basis for Fq2 as an Fq-vector space, then by substitutions of the form
X1 ← X1 + λX0 and Y1 ← Y1 + µY0 with λ, µ ∈ Fq we may reduce to the case α = 0. But then
the two components also meet at ((1 : 0), (1 : 0)), which cannot happen in case (iii). Therefore
F = f(X0Y0, X0Y1 + cX1Y0) for some irreducible binary quadratic form f and constant c ∈ F×q .
We compute n13 as the product of the (q2 − q)/2 choices for f (up to scaling), the q − 1 choices
for c, and the (q + 1)2 choices for the singular point.

As a final check, we note that n11 + n12 + n13 = (q3 − q)(q3 + q − 1)/2. �

4. Local solubility for bidegree (2, 2)-forms

Fix a prime p, and consider the space of all (2, 2)-forms F ∈ Zp[X0, X1;Y0, Y1] with its natural
product Haar measure when viewed as a copy of Z9

p. In this section, we determine the density of
Qp-soluble forms in this space.

In order to determine the solubility of a given form F , it will often suffice to look at its reduction
mod p, denoted F ∈ Fp[X0, X1;Y0, Y1], and look for a smooth Fp-point on the curve C defined by
F , so that we may apply Hensel’s lemma. As seen in the tables of Section 3 (where we now take
q = p), it is easy to see that most of the factorization types for F have a smooth Fp-point on C.
According to the results of Section 3, only five cases require further consideration, which we analyze
in Section 4.3.

4.1. Preliminaries. Let v(a) = vp(a) denote the p-adic valuation of a ∈ Qp.
10



We will often keep track of the valuations of the coefficients of the (2, 2)-form (1.3) as a 3 × 3
table:

v(a00) v(a01) v(a02)
v(a10) v(a11) v(a12)
v(a20) v(a21) v(a22),

(4.1)

where each entry is the valuation of the coefficient of the corresponding monomial term in

X2
0Y

2
0 X2

0Y0Y1 X2
0Y

2
1

X0X1Y
2
0 X0X1Y0Y1 X0X1Y

2
1

X2
1Y

2
0 X2

1Y0Y1 X2
1Y

2
1 .

(4.2)

4.2. A useful lemma. Before analyzing the cases where Hensel’s lemma does not directly apply,
we note that the following lemma will be used several times in the next section, and is, in some
sense, typical of the arguments we use. In fact, we use it once in the analysis of Case 3 and twice in
the analysis of Case 5 (in Lemmas 4.11 and 4.15).

Lemma 4.3. Let a00, a01, a02, a10, a11, a20 be any fixed elements of Zp satisfying

v(a00) ≥ 2, v(a01) ≥ 2, v(a02) = 1,

v(a10) ≥ 1, v(a11) ≥ 1,

v(a20) = 0.

Let

S :=


2∑

i,j=0

aijX
2−i
0 Xi

1Y
2−j
0 Y j

1 : a12 ∈ pZp, a21 ∈ Zp, a22 ∈ Zp

 .

Then the proportion of the polynomials in S that have Qp-solutions for which p - X1Y1 is 1/2.

Proof. Let σ(a00, a01, a02, a10, a11, a20) be the desired probability (that a polynomial in S has a
Qp-solution with p - X1Y1), and let τ(a00, a01, a02, a10, a11, a20) be the corresponding probability
when S is replaced by its subset

T :=


2∑

i,j=0

aijX
2−i
0 Xi

1Y
2−j
0 Y j

1 : a12, a21, a22 ∈ pZp

 .

If F ∈ S, then F (0, 1;Y0, 1) reduces mod p to a quadratic polynomial in Y0, i.e., the coefficient of
Y 2
0 is nonzero mod p. Furthermore, all such quadratic polynomials occur with equal probability. By

Lemma 3.1, this quadratic splits into distinct factors over Fp with probability 1
2(1− 1

p). In this case,
the point ((0 : 1), (α : 1)), where α is one of the roots of the quadratic, is a smooth Fp-point, so by
Hensel’s lemma, the curve defined by F = 0 has a Qp-point of the form ((0 : 1), (α̃ : 1)) for some lift
α̃ ∈ Zp. If the quadratic is instead irreducible, as happens with probability 1

2(1− 1
p), then there are

no Qp-points with p - X1. It remains to consider the case F ≡ a20X2
1 (Y0 − cY1)2 (mod p), for some

0 ≤ c ≤ p− 1. Transforming F by the substitution Y0 ← Y0 + cY1 we find

σ

a00 a01 a02
a10 a11
a20

 =
1

2

(
1− 1

p

)
+

1

p2

p−1∑
c=0

τ

a00 2ca00 + a01 c2a00 + ca01 + a02
a10 2ca10 + a11
a20

 . (4.4)

We note in particular that the arguments of τ satisfy the conditions in the statement of the lemma.
If F ∈ T then F ≡ a20X

2
1Y

2
0 (mod p). For a solution with p - X1 we need p | Y0. This suggests

making the substitution Y0 ← pY0. Dividing through by p, and then swapping the X’s and Y ’s we
11



find

τ

a00 a01 a02
a10 a11
a20

 = σ

 pa00 pa10 pa20
a01 a11

p−1a02

 . (4.5)

Using (4.4) and (4.5) to solve for σ and τ , we find that σ = τ = 1/2. �

4.3. The cases without smooth Fp-points. As remarked before, these are the factorization types
of the (2, 2)-form F over Fp which do not immediately yield a smooth Fp-point in the reduction of
the corresponding curve.

Case number Factorization type Number of forms up to scaling by F×p
1 (1, 1)(1, 1) n1 := (p3 − p)(p3 + p− 1)/2
2 (2, 0)(0, 2) n2 := p2(p− 1)2/4
3 (2, 0)(0, 1)2 or (0, 2)(1, 0)2 n3 := p(p+ 1)(p− 1)
4 (1, 1)2 n4 := p(p+ 1)(p− 1)
5 (1, 0)2(0, 1)2 n5 := (p+ 1)2

Let n0 = (p9− 1)/(p− 1)− (n1 +n2 +n3 +n4 +n5) be the number of forms lying in none of the 5
cases, and let ξi be the probability of solubility in case i. Then the overall probability of solubility is

ρ =
n0 + n1ξ1 + n2ξ2 + n3ξ3 + n4ξ4 + n5ξ5

(p9 − 1)/(p− 1)

In this section we compute ξ1, . . . , ξ5 and hence obtain the final answer stated in Theorem 1.4. In
the context of computing ξ5, it is helpful to make the following definition for ξ′i, and to compute the
ξ′i alongside the ξi:

Definition 4.6. For 1 ≤ i ≤ 4, we let ξ′i be the probability of solubility given the following conditions:
we are in case i, the point ((0 : 1), (0 : 1)) is a singular point on the reduction mod p, and v(a22) ≥ 2.
We write ξ′1j for 1 ≤ j ≤ 3 for the same probability in cases 1(i), 1(ii), and 1(iii), as defined below.
We define ξ′5 in the same way, except that we require that the singular point ((0 : 1), (0 : 1)) is not
the point where the two lines meet.

We compute the values of ξi and ξ′i in the next sections.

4.3.1. Case 1. In this case the reduction of our curve mod p is geometrically the union of two
rational curves. We subdivide into the cases (i), (ii), (iii) as defined immediately before Lemma 3.7,
and note that n1 = n11 + n12 + n13. Writing ξ11, ξ12, ξ13 for the probabilities of solubility in cases
1(i), 1(ii) and 1(iii), respectively, we have

ξ1 = (n11ξ11 + n12ξ12 + n13ξ13)/n1.

Case 1(i). In this case, the two components meet at a pair of points defined over Fp. We begin
by computing ξ11. As in the proof of Lemma 3.7(i) we may assume that F = f(X0Y1, X1Y0) for
some irreducible binary quadratic form f . The only Fp-points on the reduction are the singular
points ((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)). We must decide if they lift to Qp-points. Let α be the
probability that the singular point ((0 : 1), (0 : 1)) lifts.

Since ((0 : 1), (0 : 1)) is a singular point on the curve defined by F , we deduce that all the
valuations v(a12), v(a21), v(a22) are ≥ 1. If v(a22) = 1, then the singular point ((0 : 1), (0 : 1)) does
not lift. Otherwise (with probability 1/p), we have v(a22) ≥ 2. Then the valuations of the coefficients
of F satisfy

≥ 1 ≥ 1 = 0
≥ 1 ≥ 0 ≥ 1
= 0 ≥ 1 ≥ 2
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where the equalities follow from f being irreducible. Making the substitutions X0 ← pX0, Y0 ← pY0
and dividing through by p2, we obtain a (2, 2)-form G(X0, X1, Y0, Y1) whose coefficients bij have
valuations satisfying

≥ 3 ≥ 2 = 0
≥ 2 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0.

We now investigate whether G ∈ Fp[X0, X1;Y0, Y1] is absolutely irreducible. Define a ternary
quadratic form Q(X0, Y0, Z0) by G(X0, 1, Y0, 1) = Q(X0, Y0, 1), so that the zero-set of Q in A2

X0,Y0
⊂

P2 coincides with the zero-set of G in A1
X0
×A1

Y0
⊂ P1 × P1. Then the curve defined by Q (and thus,

the curve defined by G) is geometrically irreducible if and only if the discriminant of Q is nonzero,
equivalently

b22 disc(f)− f(b21,−b12) 6≡ 0 (mod p).

(This argument still works in characteristic 2 provided that the formula for the discriminant of a
ternary quadratic form is scaled by appropriate powers of 2.)

If the curve defined by G is geometrically irreducible, then the argument in Lemma 3.5 shows that
it has a smooth Fp-point. Otherwise (with probability 1/p), the reduction mod p is geometrically the
union of two rational curves meeting at ((1 : 0), (1 : 0)) and an Fp-point of the form ((λ : 1), (µ : 1)).
The two rational curves are not defined over Fp, since the binary quadratic form f is irreducible. We
make the substitutions X0 ← X0 + λX1 and Y0 ← Y0 + µY1 to move the second point of intersection
to ((0 : 1), (0 : 1)), and start over again considering whether this singular point lifts. The probability
that it lifts is again α. We thus obtain the recursive formula

α =
1

p

((
1− 1

p

)
+

1

p
α

)
,

and so α = 1/(p+ 1).
We are interested in the probability that at least one of the singular points lifts. Since these

events depend on different coefficients of the (2, 2)-form they are independent. Therefore

ξ11 = 1−
(

1− 1

p+ 1

)2

=
2p+ 1

(p+ 1)2
.

A small modification of this argument (as required by Definition 4.6) gives

ξ′11 = 1−
(

1− 1

p+ 1

)(
1− p

p+ 1

)
=
p2 + p+ 1

(p+ 1)2
.

Case 1(ii). The two components meet at a pair of conjugate points defined over Fp2 . There are no
Fp-points on the reduction. Therefore ξ12 = 0 and ξ′12 is not defined.

Case 1(iii). The two components meet at a single point defined over Fp. As in the proof of
Lemma 3.7(iii) we may assume that F = f(X0Y0, X0Y1+X1Y0) for some irreducible binary quadratic
form f . The only Fp-point on the reduction is the singular point ((0 : 1), (0 : 1)). If this lifts to
a Qp-point then we must have v(a22) ≥ 2. Since this is exactly the condition in Definition 4.6 it
follows that ξ13 = (1/p)ξ′13.

We show in Section 5, using results from [BCF], that

ξ13 =
2p10 + 3p9 − p5 + 2p4 − 2p2 − 3p− 1

2(p+ 1)2(p9 − 1)
.

As noted in the last paragraph, we have ξ′13 = pξ13.
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4.3.2. Case 2. This is the case (2, 0)(0, 2). There are no Fp-points on the reduction. Therefore
ξ2 = 0 and ξ′2 is not defined.

4.3.3. Case 3. This is the case (2, 0)(0, 1)2 or (0, 2)(1, 0)2. We may assume without loss of generality
that F = f(X0, X1)Y

2
0 for some irreducible binary quadratic form f . The coefficients satisfy

= 0 ≥ 1 ≥ 1
≥ 0 ≥ 1 ≥ 1
= 0 ≥ 1 ≥ 1

where the equalities follow from f being irreducible. Making the substitution Y0 ← pY0 and dividing
through by p gives

= 1 ≥ 1 ≥ 0
≥ 1 ≥ 1 ≥ 0
= 1 ≥ 1 ≥ 0

The reduction mod p is now g(X0, X1)Y
2
1 for some binary quadratic form g. If g is irreducible,

splits, or has repeated roots, then the probability of solubility is 0, 1, or 1/2, respectively. In the
last of these cases, we are using Lemma 4.3: more specifically, we assume the double root is at
(X0 : X1) = (0 : 1), make the substitution X0 ← pX0, divide through by p, and then apply the
lemma. Note that the lemma applies as v(a20) = 0, and there are no solutions with p | X1Y1 in view
of the substitutions we made to reach this situation.

If g is identically zero, then we divide through by p, to obtain a (2, 2)-form H satisfying the line
condition, by which we mean that H(X0, X1; 1, 0) (mod p) is an irreducible binary quadratic form.
Writing δline for the probability of solubility in this case, we have

ξ3 =
1

p3

(
p3 − p

2
· 1 +

p(p− 1)2

2
· 0 + (p2 − 1) · 1

2
+ δline

)
(4.7)

and
ξ′3 =

1

p2

(
p(p− 1) · 1 + (p− 1) · 1

2
+ δline

)
. (4.8)

Lemma 4.9. There are (up to scaling by F×p ) exactly p7(p− 1)/2 forms over Fp satisfying the line
condition. The numbers of these in Cases 1 to 3 are

r11 = p3(p+ 1)(p− 1)2/4

r12 = p2(p+ 1)(p− 1)2(p− 2)/4

r13 = p2(p+ 1)(p− 1)2/2

r2 = p2(p− 1)2/4

r3 = p2(p− 1)/2

There are none in Cases 4 and 5.
Proof. It is easy to check that forms in Cases 1(ii) and 2 always satisfy the line condition, and those
in Cases 4 and 5 never satisfy the line condition. By double counting pairs consisting of (2, 2)-forms
and (0, 1)-forms (both up to scalars) that meet in a pair of conjugate points over Fp2 , we find that
(p+1)r11 = (p−1)n11 and (p+1)r13 = pn13. In Case 3 we must count the forms f(X0, X1)g(Y0, Y1)2

where f is an irreducible binary quadratic form, and g is a linear form with g(1, 0) 6= 0. We find
that r3 is the product of the (p2 − p)/2 choices for f and the p choices for g. �

Let r0 = p7(p − 1)/2 − (r11 + r12 + r13 + r2 + r3) be the number of forms satisfying the line
condition not in Cases 1 to 3. Then

δline =
r0 + r11ξ11 + r12ξ12 + r13ξ13 + r2ξ2 + r3ξ3

p7(p− 1)/2
(4.10)
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Using the values of ξ11, ξ12, ξ13 and ξ2 already computed, we can now solve (4.7) and (4.10) for ξ3
and δline. We then use (4.8) to compute ξ′3. We find that

ξ3 =
p10 + 2p9 + p6 − 2p5 + 2p3 + p2 − 3p− 2

2(p+ 1)(p9 − 1)

and

ξ′3 =
2p10 + p9 + p7 − 2p6 + 2p4 + p3 − 2p2 − 2p− 1

2(p+ 1)(p9 − 1)
.

4.3.4. Case 4. This is the case (1, 1)2. By a change of coordinates we may assume

F ≡ (X0Y1 −X1Y0)
2 (mod p).

We show in Section 5, using results from [BCF], that

ξ4 =
5p10 + 8p9 + p8 − p7 + 2p6 − 3p5 + 4p3 − 10p− 6

8(p+ 1)(p9 − 1)
,

and

ξ′4 =
4p10 + 3p9 − p7 + 2p6 − 2p5 + 2p3 − p2 − 5p− 2

4(p+ 1)(p9 − 1)
.

4.3.5. Case 5. This is the case (1, 0)2(0, 1)2. By a change of coordinates we may assume

F ≡ X2
0Y

2
0 (mod p).

The coefficients of F have valuations satisfying
= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1.

Let Q and Q′ be the binary quadratic forms over Fp determined by the last row and column, i.e.,

Q(Y0, Y1) = 1
pF (0, 1;Y0, Y1) (mod p)

Q′(X0, X1) = 1
pF (X0, X1; 0, 1) (mod p)

Note that these forms have the same last coefficient c ∈ Fp as they share one entry in the coefficient
matrix corresponding to X2

1Y
2
1 . Writing ξ51 and ξ52 for the probabilities of solubility in the cases

c 6= 0 and c = 0, respectively, we have

ξ5 = (1− 1/p)ξ51 + (1/p)ξ52.

Lemma 4.11. We have ξ51 = 3/4.

Proof. The coefficients satisfy

= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 = 1.

The reduction mod p is the union of two double lines, meeting at a single point. Any Qp-point has
p | X0 or p | Y0, but not both since v(a22) = 1. In other words, any Qp-point must reduce to lie on
exactly one of the lines.

To investigate whether there are solutions with p | X0 we make the substitution X0 ← pX0 and
divide by p to get

= 1 ≥ 2 ≥ 2
≥ 1 ≥ 1 ≥ 1
≥ 0 ≥ 0 = 0.
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We then apply Lemma 4.3 (with Y0 ↔ Y1). The probability of a solution with p | X0 and the
probability of a solution with p | Y0 are each 1/2. The lemma also implies that these two events are
independent of each other, so the probability of insolubility of these polynomials is 1/4. Hence, the
probability of solubility is 3/4. �

Definition 4.12. Let δ1 and δ2 be the probabilities of solubility in the cases
≥ 1 ≥ 1 ≥ 0
≥ 1 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0

≥ 1 ≥ 1 = 0
≥ 1 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0

(The subscript is the number of equalities in the matrix.) Let δ∗1 and δ∗2 be the probabilities when
we change the top left ≥ 1 to = 1. Let ε1 and ε2 be the probabilities when we change the top left
≥ 1 to ≥ 2.

Clearly we have
δ1 = (1− 1/p)δ∗1 + (1/p)ε1

δ2 = (1− 1/p)δ∗2 + (1/p)ε2
(4.13)

Lemma 4.14. We have

ξ52 =

(
1− 1

p2

)
+

1

p2

(
1

p

(
1− 1

p

)2

δ∗2 + 2
1

p

(
1− 1

p

)
δ∗1 +

(
1

p

)2

ε1

)
Proof. If at least one of the forms Q and Q′ has distinct roots in Fp then the (2, 2)-form is soluble
over Qp. This happens with probability 1− 1/p2. Otherwise (with probability 1/p2) the coefficients
satisfy

= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 2
≥ 1 ≥ 2 ≥ 2

(The bottom right ≥ 2 comes from the assumption that c = 0, and the two adjacent ≥ 2 entries
arise from assuming that neither Q nor Q′ has distinct roots in Fp.) We split into 3 cases:

(i) Suppose v(a02) = v(a20) = 1. If v(a22) = 2 then the (2, 2)-form is insoluble over Qp.
Otherwise, we find by substituting X0 ← pX0, Y0 ← pY0, and dividing through by p3, that
the probability of solubility is δ∗2 .

(ii) Suppose v(a02) = 1 and v(a20) ≥ 2. We find by substituting X0 ← pX0, and dividing
through by p2, that the probability of solubility is δ∗1. The case where v(a02) ≥ 2 and
v(a20) = 1 works in exactly the same way via the substitution Y0 ← pY0.

(iii) Suppose v(a02) ≥ 2 and v(a20) ≥ 2. Via either of the substitutions in (ii), the probability of
solubility is ε1.

Combining these gives the desired expression for ξ52. �

Lemma 4.15. We have

ξ′5 =

(
1− 1

p

)
+

1

p

(
1− 1

p

)
3

4
+

(
1

p

)2(
1− 1

p

)
+

(
1

p

)3

δ1.

Proof. According to Definition 4.6, we may suppose the coefficients of F satisfy

= 0 ≥ 1 ≥ 2
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
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If v(a12) = 1, then Q′ has distinct roots in Fp and so F is soluble over Qp. Otherwise (with
probability 1/p), we have v(a12) ≥ 2.

If v(a22) = 1, then by an argument similar to Lemma 4.11, the probability of solubility is 3/4.
(The solutions with p | X0 are analysed in exactly the same way as before, whereas to analyse those
with p | Y0 we substitute Y0 ← pY0 and then X1 ← pX1.)

Otherwise (with probability 1/p), we have v(a22) ≥ 2. If v(a21) = 1, then Q has distinct roots in
Fp and so F is soluble over Qp. Otherwise (with probability 1/p), we have v(a21) ≥ 2. We find by
substituting Y0 ← pY0 and then dividing through by p2 that the probability of solubility is δ1. �

Lemma 4.16. There are p5 possibilities for F (up to scaling by F×p ) satisfying the conditions in the
definition of δ1. The number of these in Cases 1 to 5 are

s11 = p3(p− 1)/2,

s12 = 0,

s13 = p(p− 1)2/2,

s2 = 0,

s3 = p(p− 1)/2,

s4 = p(p− 1)

s5 = p.

In Cases 1(i), 1(iii), and 4, these forms also satisfy the conditions in the definition of δ2. In Cases
3 and 5, they do not.

Proof. The conditions in the definition of δ1 are that F = 0 is singular at ((1 : 0), (1 : 0)) but does
not contain the line Y1 = 0. We have (p + 1)2s11 = 2n11 and (p + 1)2s13 = n13. In Cases 1(ii)
and 2, there are no Fp-points so s12 = s2 = 0. In Cases 3, 4, and 5, we count the forms X2

1f(Y0, Y1),
(αX1Y0 + βX0Y1 + γX1Y1)

2, and X2
1g(Y0, Y1)

2 where f is an irreducible binary quadratic form,
α, β, γ ∈ F×p with αβ 6= 0, and g is a linear form with g(1, 0) 6= 0. Finally, it is only in Cases 3 and 5
that the reduction mod p contains the line X1 = 0. �

For the final computation of ξ5, let s0 = p5−(s11+s13+s3+s4+s5) and t0 = p4(p−1)−(s11+s13+s4)
so that

δ1 =
s0 + s11ξ11 + s13ξ13 + s3ξ3 + s4ξ4 + s5ξ5

p5

δ2 =
t0 + s11ξ11 + s13ξ13 + s4ξ4

p4(p− 1)
.

Replacing each ξ by ξ′ (see Definition 4.6) we have

ε1 =
s0 + s11ξ

′
11 + s13ξ

′
13 + s3ξ

′
3 + s4ξ

′
4 + s5ξ

′
5

p5

ε2 =
t0 + s11ξ

′
11 + s13ξ

′
13 + s4ξ

′
4

p4(p− 1)
.

Putting together all the equations derived in this section, together with the previously computed ξ’s,
we are now able to solve for ξ5. We find ξ5 = f(p)/g(p) where

f(p) = 6p18 + 8p17 + 2p16 − 8p15 + 16p14 − 12p13 − 4p12 + 3p11 + 9p10 − 35p9

+ 8p8 − 11p7 + 3p6 − p5 + 8p4 − 6p3 − 4p2 + 10p+ 8,

g(p) = 8(p+ 1)(p9 − 1)(p8 − 1).
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5. Relation to binary quartics

We compute some of the probabilities required in Section 4 by reducing them to probabilities
already computed in [BCF]. The basic idea is that a (2, 2)-form determines a binary quartic form, by
writing the (2, 2)-form as a binary quadratic form in Y0, Y1 and taking the discriminant. However,
since we also want results in the case p = 2, we will in fact work with generalised binary quartics,
defined as follows.

Definition 5.1. A generalised binary quartic (G2, G4) is a pair of binary forms of degrees 2 and
4. A generalised binary quartic (G2, G4) is soluble over a field K if for some X0, X1, Z ∈ K with
(X0, X1) 6= (0, 0) we have Z2 +G2(X0, X1)Z = G4(X0, X1).

We write Zp[X0, X1] = ⊕dZp[X0, X1]d and Zp[X0, X1;Y0, Y1] = ⊕d,eZp[X0, X1;Y0, Y1]de for the
gradings of these rings by degree d and by bidegree (d, e), respectively.

Lemma 5.2. Let `, a ∈ Fp such that Z2 + `Z − a is irreducible over Fp, and let

S := {(G2, G4) ∈ Zp[X0, X1]2 × Zp[X0, X1]4 : G2 ≡ `X2
0 (mod p) and G4 ≡ aX4

0 (mod p)},
T := {(G2, G4) ∈ Zp[X0, X1]2 × Zp[X0, X1]4 : G2 ≡ 0 (mod p) and G4 ≡ 0 (mod p)},

and T∗ := {(G2, G4) ∈ T : G4(0, 1) 6≡ 0 (mod p2)}. Then the proportions of generalised binary
quartics in S, T and T∗ that are soluble over Qp are, respectively,

σ =
2p10 + 3p9 − p5 + 2p4 − 2p2 − 3p− 1

2(p+ 1)2(p9 − 1)
,

τ =
5p10 + 8p9 + p8 − p7 + 2p6 − 3p5 + 4p3 − 10p− 6

8(p+ 1)(p9 − 1)
,

and

τ∗ =
5p10 + 5p9 − p7 + 3p6 − 4p5 + 4p3 − 8p− 4

8(p+ 1)(p9 − 1)
.

Proof. These probabilities were computed in [BCF]. The probability σ was computed in Lemma
2.12, where it was denoted α−4 . The probabilities τ and τ∗ were computed in Section 2.3, where they
were denoted σ4 and β04 . �

We define a map

Φ : Zp[X0, X1;Y0, Y1]22 → Zp[X0, X1]2 × Zp[X0, X1]4

F0Y
2
0 + F1Y0Y1 + F2Y

2
1 7→ (F1,−F0F2).

It is easy to check that a (2, 2)-form F is soluble over Qp if and only if the generalised binary quartic
Φ(F ) is soluble over Qp. We write Φp for the corresponding map on forms with coefficients in Fp.
The cases (i) and (ii) in the following lemma relate to Cases 1(iii) and 4 in Section 4.3.

Lemma 5.3. Let F ∈ Fp[X0, X1;Y0, Y1]22 take one of the following forms:

(i) F = f(X0Y0, X0Y1 +X1Y0) where f is an irreducible binary quadratic form,
(ii) F = (X0Y1 −X1Y0)

2.
Then Φ restricts to a measure-preserving map

{F ∈ Zp[X0, X1;Y0, Y1]22 : F ≡ F (mod p)}
→ {G ∈ Zp[X0, X1]2 × Zp[X0, X1]4 : G ≡ Φp(F ) (mod p)}.
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Proof. The proof comes down to showing that the derivative of Φp at F is a surjective linear map
F9
p → F8

p. In cases (i) and (ii), this linear map is given by

F0Y
2
0 + F1Y0Y1 + F2Y

2
1 7→ (F1,−f(0, 1)X2

0F0 − f(X0, X1)F2), and

F0Y
2
0 + F1Y0Y1 + F2Y

2
1 7→ (F1,−X2

0F0 −X2
1F2),

respectively, which are both surjective. �

Case 1(iii). We use these lemmas to compute ξ13, that is, the probability of solubility where F
mod p is of the form indicated in Lemma 5.3(i). Let f have coefficients a, b, c. Then Φp(F ) is the
generalised binary quartic with equation

(Z + cX0X1)
2 + bX2

0 (Z + cX0X1) + acX4
0 = 0.

From this we see that ξ13 = σ as defined in Lemma 5.2.

Case 4. We use these lemmas to compute ξ4, that is, the probability of solubility where F mod
p is of form indicated in Lemma 5.3(ii). Since Φp(F ) is identically zero, we see that ξ4 = τ as
defined in Lemma 5.2. To compute ξ′4 we must consider (2, 2)-forms F that additionally satisfy
v(a22) ≥ 2. Under the measure preserving map in Lemma 5.3(ii) these are mapped to T \ T∗.
Therefore τ = (1− 1/p)τ∗ + (1/p)ξ′4 and so

ξ′4 = pτ − (p− 1)τ∗ =
4p10 + 3p9 − p7 + 2p6 − 2p5 + 2p3 − p2 − 5p− 2

4(p+ 1)(p9 − 1)
.

Remark 5.4. The same approach could be used to compute ξ11, and indeed our answer agrees with
[BCF, Lemma 2.11].

6. Connections to the Hasse principle

In Theorem 1.5, we determined that the proportion of (2, 2)-forms that are everywhere locally
soluble is c ≈ 0.8739. A heuristic, similar to [Bha14, Conjectures 6 and 7] predicts that the proportion
of everywhere locally soluble (2, 2)-forms that are globally soluble is 1

4 , i.e., in the notation of §2,
that limH→∞

N(H)
Nloc(H) = 1

4 and thus limH→∞
N(H)
Ntot(H) = 1

4c.
In this section we report on some experiments to test this conjecture numerically. A similar

study in the case of plane cubics was made in [Fis15]. With the one exception noted below, all
computations were performed using Magma [BCP97] and the data may be found at [FHP19].

6.1. Experiments and results. For each H ∈ {10, 30, 100, 300, 1000}, we chose 1000 (2, 2)-forms
(i.e., polynomials of the form (1.3)), with coefficients chosen uniformly at random from [−H,H] ∩ Z.
The numbers of these that were soluble or everywhere locally soluble (ELS) were as follows:

initial range improved range
H #soluble #soluble #ELS

10 [753, 755] 753 885

30 [640, 652] 642 885

100 [536, 582] 549 875

300 [378, 502] [432, 433] 867

1000 [275, 464] [357, 464] 879

The second column gives our initial estimate for the number of soluble (2, 2)-forms out of the 1000.
The lower bound was obtained by searching for rational solutions, with the assistance of 4-descent in
Magma. The upper bound was obtained by computing the Cassels-Tate pairing on the 2-Selmer
group of the Jacobian. For the improved estimates in the third column we used a range of methods,
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described more fully below, that are conditional on standard conjectures and sometimes were only
practical for H sufficiently small.

For the first 4 experiments, we also give the breakdown of these totals by the rank of the Jacobian
elliptic curve E/Q. The annotations + and − in the case H = 300 indicate that we should add or
subtract one if the remaining form whose solubility has not yet been decided turns out to be soluble.

rankE(Q) singular 0 1 2 3 4 5 6 Total

H = 10 #ELS 5 0 86 344 313 116 21 0 885

#soluble 5 0 16 285 310 116 21 0 753

H = 30 #ELS 0 0 122 310 291 129 29 4 885

#soluble 0 0 1 208 274 126 29 4 642

H = 100 #ELS 0 0 171 321 257 96 25 5 875

#soluble 0 0 0 205 221 93 25 5 549

H = 300 #ELS 0 0 230− 373 187+ 58 19 0 867

#soluble 0 0 0 210 151+ 52 19 0 432+

Although we can see from our first table that the proportion of everywhere locally soluble forms
that are globally soluble is decreasing with H, this hardly amounts to strong evidence that the
limit is 1/4. However, the prediction of 1/4 arises since, in the limit, it is expected that (i) 50% of
the Jacobians have rank 1 and 50% have rank 2 (by, e.g., the Minimalist Conjecture), and (ii) the
proportions of forms that are soluble in these two cases are 0 and 1/2, respectively (as explained
below). Our second table therefore provides much stronger evidence for the conjecture, and indeed
we see that the convergence in (ii) is happening much faster than that in (i).

6.2. The marked point. As we saw in Section 5, if F ∈ Z[X0, X1;Y0, Y1] is a (2, 2)-form, then
it determines a pair of binary quartics. These binary quartics have the same discriminant, which
is accordingly called the discriminant of F . We should expect a randomly chosen (2, 2)-form to
have nonzero discriminant (and hence define a smooth curve). This was true in all our experiments,
except for 5 cases with H = 10, which were all in any case soluble. From now on we assume that
the discriminant is nonzero, and write E for the Jacobian of C = {F = 0} ⊂ P1 × P1. Since the
discriminant is a degree 12 polynomial in the coefficients of F , the conductor and discriminant of E
each have size about H12.

There are two maps C → P1, given by projection to each factor, and the difference of fibres is a
nonzero marked point P0 ∈ E(Q). There is an explicit formula for P0 (see [BH16, Section 6.1.2] or
[FR18, Lemma 2.1]) in terms of the coefficients of F . As might be predicted from this formula, we
found in our experiments that P0 had canonical height at most log(2H2). The torsion subgroup of
E(Q) was trivial in all but 6 cases with H = 10, when it had order 2. In only one of these cases was
P0 a torsion point.

We should expect that for a randomly chosen (2, 2)-form, the associated binary quartics should
not have any rational roots (i.e., linear factors). This was true in all but 69, 9 and 1 of our examples
with H = 10, 30 and 100. We should also expect that P0 /∈ 2E(Q), and this was true in all but 6
cases when H = 10, and 2 cases when H = 30. If P0 /∈ 2E(Q) and the associated binary quartics do
not have any rational roots, then if rankE(Q) = 1, the (2, 2)-form is not soluble. We thus expect
that the (2, 2)-form is not soluble in general if rankE(Q) = 1.

We now explain why half of the forms with rank 2 Jacobian are expected to be soluble. For an
elliptic curve E of rank 2, we want to estimate the proportion of elements in Sel2(E/Q) that are in
the image of E(Q)/2E(Q). The average size of Sel2(E/Q) is 6 in this family [BH19b], but two of the
2-Selmer group elements correspond to (2, 2)-forms for which one of the associated binary quartics
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has a rational root, which should only happen 0% of the time when we order by height. Now the size
of E(Q)/2E(Q) is 4 for the 100% of elliptic curves E for which there is no 2-torsion, but we also
subtract the same 2 elements corresponding to the (2, 2)-forms for which one of the associated binary
quartics has a rational root. We thus predict that (4− 2)/(6− 2) = 1/2 of the forms are soluble.

Remark 6.1. Although one of the best methods for finding generators of large height on an elliptic
curve E/Q is to use Heegner points, this only works for curves of rank 1. Since our elliptic curves
all come with a known point of infinite order, this method was of no use to us. We instead relied
almost exclusively on descent methods.

6.3. The initial estimates: computing ranks of elliptic curves. The curve defined by a (2, 2)-
form is isomorphic to the curve defined by either of the associated binary quartics. Our interest is
therefore in deciding the solubility of the genus one curves associated to binary quartics.

Let C/Q be a genus one curve defined by a binary quartic, and let E/Q be its Jacobian. If C is
everywhere locally soluble, then it defines a class [C] in the 2-Selmer group Sel2(E/Q). Moreover
C(Q) 6= ∅ if and only if [C] ∈ im(δ) where δ in the connecting map in the Kummer exact sequence

0→ E(Q)/2E(Q)
δ→ Sel2(E/Q)→X(E/Q)[2]→ 0.

Given a point P ∈ E(Q) the Magma function GenusOneModel(2,P) computes a binary quartic
representing δ(P ). In conjunction with the function IsEquivalent for testing equivalence of binary
quartics, this gives a convenient way of reducing the problem of deciding whether C(Q) 6= ∅ to that
of finding generators for E(Q).

An initial upper bound for the rank of E(Q) is obtained by 2-descent, that is, by computing
the 2-Selmer group Sel2(E/Q). This upper bound can sometimes be improved by computing the
Cassels-Tate pairing. Let Sn be the image of the natural map Sel2

n
(E/Q)→ Sel2(E/Q). If ξ, η ∈ Sn,

say with ξ′ 7→ ξ and η′ 7→ η, then there is an alternating pairing

〈 , 〉n : Sn × Sn → F2 ; (ξ, η) 7→ 〈ξ′, η〉CT = 〈ξ, η′〉CT (6.2)

whose kernel is Sn+1. We note the inclusions of F2-vector spaces

im(δ) ⊂ . . . ⊂ S3 ⊂ S2 ⊂ S1 = Sel2(E/Q).

The function CasselsTatePairing in Magma, written by S. Donnelly, computes the pairings

〈 , 〉CT : Sel2(E/Q)× Sel2(E/Q)→ F2, (6.3)

and
〈 , 〉CT : Sel2(E/Q)× Sel4(E/Q)→ F2, (6.4)

taking as input either a pair of binary quartics, or a binary quartic and a quadric intersection.
(A variant of his method for computing (6.3) is described in [Fis16].) We may thus compute the
pairing (6.2) for n = 1 and n = 2.

A lower bound for the rank of E(Q) may be obtained by searching for points either directly on
E, or better on one of its 4-coverings as computed using FourDescent in Magma. In this way we
obtained generators for a subgroup Γ ⊂ E(Q) of known points. In all cases where it is possible that
rank Γ < rankE(Q) we searched up to height 1010 on the 4-coverings.

Our initial (unconditional) estimate on the number of (2, 2)-forms that are soluble was obtained
as follows. First, if the curve C defined by our (2, 2)-form is not everywhere locally soluble, then
it is obviously not soluble. Otherwise C (or more precisely one of the associated binary quartics)
determines a class [C] ∈ Sel2(E/Q). If [C] ∈ δ(Γ) then we know that C(Q) 6= ∅, and indeed from
the generators for Γ we may compute an explicit solution. Otherwise we look for [D] ∈ Sel2(E/Q)
with 〈[C], [D]〉CT 6= 0. If we succeed in finding a binary quartic D with these properties, then it is a
witness to the fact that C(Q) = ∅.
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6.4. The improved estimates. Both the improved estimates, and the second table (giving the
breakdown by rank of the Jacobian) are conditional on the following two standard conjectures.

• Parity conjecture: This is the parity part of the Birch–Swinnerton-Dyer conjecture, i.e.,
the Mordell-Weil rank of an elliptic curve E/Q is even or odd according as its root number
w(E/Q) is +1 or −1.
• Generalised Riemann Hypothesis (GRH) : This is needed for the class number calculations
for 2-descent (but would be easy to remove for small H) and for the computation of analytic
rank bounds.

For ease of exposition, we will assume (as is the case in all examples of interest) that E(Q) has
trivial torsion subgroup. We write r2n = dimF2 Sn for the upper bound on the rank of E(Q) obtained
by 2n-descent. Thus we have

rank Γ ≤ rankE(Q) ≤ . . . ≤ r8 ≤ r4 ≤ r2.

It is a theorem, original due to Monsky [Mon96], that w(E/Q) = (−1)r2 .
We improve our lower bounds on the number of forms that are soluble by using the parity

conjecture. Indeed, if rank Γ = r2n − 1 for some n, then we may conclude by the parity conjecture
that im(δ) = Sn. We mainly used this idea with n = 1, when the conclusion is that binary quartics
with Jacobian E satisfy the Hasse principle, but also used it with n = 2 in four examples with
H = 1000.

In the two examples where we used the parity conjecture in the case H = 30, we were also able
to find the missing generators using EightDescent in Magma [Sta05]. In particular on the curve
{F = 0} ⊂ P1 × P1 where

F = 27X2
0Y

2
0 −X0X1Y

2
0 + 17X2

1Y
2
0 − 27X2

0Y0Y1 + 15X0X1Y0Y1 + 9X2
1Y0Y1

− 25X2
0Y

2
1 − 12X0X1Y

2
1 − 13X2

1Y
2
1 ,

we found the solution

X0 = 5998800628516423107297133082973646629266881508307007941326966876023,

X1 = 342294900150114936634770190317380320064921533929615189995360150770683,

Y0 = 246468494594162038245191010835877699291643209107952263886240062422805,

Y1 = −206172926328604047309514129427033995615708844556361901784128916991449.

This maps to a point on the Jacobian of canonical height ĥ ≈ 644.736, which is well beyond the
range that could be found by 4-descent. Unfortunately it was not practical to run EightDescent
in the experiments with H = 100, 300 and 1000, and so our improved lower bounds in those cases
remain conditional on the parity conjecture.

The main method we used to improve the upper bounds on the number of forms that are soluble
was to compute the Cassels-Tate pairing (6.4). In the experiments with H = 10, 30, 100 and 300, we
were left with 0, 1, 2 and 5 examples where r2 = r4 = r8 = 3, yet (despite searching on all 4-coverings
up to height bound 1010) we could only find one generator. The elliptic curves in question are
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recorded in the following table.

y2 = x3 − 385216x− 118546643 ∆ = 2.0

y2 + xy = x3 − x2 − 21940631x− 10062163381 ∆ = 2.6

y2 + xy = x3 − x2 − 130106786x− 418444299752 ∆ = 2.5

y2 = x3 + x2 − 674939767x+ 9768411280745 ∆ = 3.5

y2 + xy + y = x3 + 1365438724x+ 1088450102306 ∆ = 3.0

y2 + xy = x3 + x2 + 13646956x+ 36868880351052 ∆ = 3.6

y2 + y = x3 + 463718380x− 1653282652263 ∆ = 3.9

y2 + xy = x3 + x2 − 6811523942x+ 180704627470189

In all but the last of these examples, we were able to prove that the rank is 1 by using Sage [Sag19]
to compute an upper bound on the analytic rank. The parameter ∆ we used for this calculation
(see [Bob13]) is recorded in the right hand column. In the last example we obtained no rank bound
better than 3, despite taking ∆ = 4.0.

Unfortunately it was not practical to compute the pairing (6.4) in the experiment with H = 1000.
So we are left with a large number of unresolved cases. Writing t = rank Γ for the number of
generators known, there were 90 cases with (r2, r4, t) = (3, 3, 1), 14 cases with (r2, r4, t) = (4, 4, 2),
and one each with (r2, r4, t) = (4, 4, 1), (5, 3, 1) and (5, 5, 3).
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