The density of polynomials of degree n over Z,
having exactly r roots in Q,

Manjul Bhargava, John Cremona, Tom Fisher, and Stevan Gajovi¢

March 26, 2021

Abstract

We determine the probability that a random polynomial of degree n over Z,, has exactly r roots
in Q,, and show that it is given by a rational function of p that is invariant under replacing p by 1/p.

1 Introduction

Let f(z) = ¢, 2"+ ¢,_12" '+ - -+ ¢y be a random polynomial having coefficients ¢y, c1, . . ., ¢, € Z,.
In this paper, we determine the probability that f has a root in QQ,,, and more generally the probability
that f has exactly r roots in Q,. More precisely, we normalise the additive p-adic Haar measure p on
the set of coefficients Z7*" such that ;1(Z3™") = 1, and determine the density 4(.S,) of the set S, of
degree n polynomials in Z,[x] having exactly r roots in Q,. We prove that this density x(S,) is given
by a rational function p*(n, ; p) of p, which satisfies the remarkable identity

p*(n,rip) = p*(n,r;1/p)

for all n, r and p. We also prove that if X,,(p) is the random variable giving the number of Q,-roots
of a random polynomial f € Z,[z] of degree n, then the d-th moment of X,,(p) is independent of n
provided that n > 2d — 1.

Let us now more formally define the probabilities, expectations and generating functions re-
quired to state our main results. Fix a prime p and, for 0 < r < n, let p*(n,r) := p*(n, r; p) denote the
density of polynomials of degree n over Z, having exactly r roots in Q,. This is also the probability
that a binary form of degree n over Z,, has exactly r roots in P'(Q,). For 0 < d < n, set

p(nd) =3 () 1)

r=0

Thus p(n, d) is the expected number of d-sets' of Q,-roots. For fixed n, determining p(n, d) for all d
is equivalent to determining p*(n, r) for all r, via the inversion formula

() = 3 (1) (£)ston.a )

r
d=0

'We find it convenient to refer to a set of size d as a “d-set”.



Equations (1) and (2) are equivalent to the standard observation that a probability distribution is deter-
mined by its moments; the formulation in terms of d-sets is most convenient for our purposes.

Analogous to p(n, d), let a(n, d) (resp. §(n,d)) denote the expected number of d-sets of Q,-
roots of monic polynomials of degree n over Z, (resp. monic polynomials of degree n over Z, that
reduce to 2" modulo p). Define the generating functions:

o0

Aty =1 =1 a(n,dt"

n=0

=1 —t)ZB(n,d)t”

Ra(t) = (1 —t)(1—pt) > (p" +p" -+ 1)p(n, d)t™.
n=0

Then we prove the following theorem.
Theorem 1. Let p be a prime number and n, d any integers such that 0 < d < n. Then:

(a) For fixed n and d, the expectations a(n, d; p), B(n, d; p) and p(n, d; p) are rational functions of p,
which satisfy the identities:

p(n,d;p) = p(n,d; 1/p); 3)
a(n,d;p) = B(n,d; 1/p). 4)

(b) We have the following power series identities in two variables t and u:

> Aalptyu’ = (ZBM)M’) : 5)
d=0 d=0
> Ra(t)u’ = (Z Ad<pt>ud> (Z Bd(wu“) = (Z Bd(t>ud> . (©)

By(t) — tBa(t/p) = ® (Aa(t) — tAa(pt)), (7)

where P is the operator on power series that multiplies the coefficient of t" by p_(g).

(¢c) The power series Ay, By and R, are in fact polynomials of degree at most 2d. Moreover, we
have a(n,d) = A4(1) and B(n,d) = By(1) for n > 2d, and p(n,d) = R4(1) forn > 2d — 1.
Thus the expectations a(n, d), f(n,d), and p(n, d) are independent of n provided that n is suffi-
ciently large relative to d.

We observe that A, and B, (for d = 0,1, 2, .. .) are the unique power series satisfying the relations (5)
and (7) together with the requirements that A, and By are O(t%), Ay = By = 1 and A, and B; are
t + O(t?). This last requirement is needed, since otherwise we could replace A4 and B, by \4A, and
B, where ) is a constant. This uniqueness statement is easily proved by induction on d and n. The
power series R4 are then uniquely determined by (6).

While we have stated all our results above in terms of the ring Z,, the generalisation to any
complete discrete valuation ring with finite residue field (as considered in [3]) is immediate.
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1.1 Relation to previous work

The study of the distribution of the number of zeros of random polynomials has a long and interesting
history. Over the real numbers, the study goes back to at least Bloch and Pélya [2], who proved asymp-
totic bounds on the expected number of real zeros of polynomials of degree n that have coefficients
independently and uniformly distributed in {—1,0, 1}. Further significant advances on the problem
were made by Littlewood and Offord [9, 10, 11] for various other distributions on the coefficients.

An exact formula for the expected number of real zeros of a random degree n polynomial
over R—whose coefficients are each identically, independently, and normally distributed with mean
zero—was first determined in the landmark 1943 work of Kac [7], which influenced much of the
extensive work to follow. In particular, in 1974, Maslova [12, 13] determined asymptotically all higher
moments for the number of zeros of a random real Kac polynomial in the limit as the degree n tends to
infinity. For excellent surveys of the literature and further related results and references regarding the
number of real zeros of random real polynomials, see [15, §1.1] and [14, §1].

The corresponding problems and methods over p-adic fields were first considered by Evans [6],
who determined, for suitably random families of d polynomials in d variables over Z,, the expected
number of common zeros in Zg. In the case d = 1, these results were taken further by Buhler, Gold-
stein, Moews, and Rosenberg [3], Caruso [4], Limmer [8], Shmueli [16], and Weiss [17]. These papers
were concerned primarily with determining the expected number of roots for polynomials of degree n
over the p-adics, the n-th factorial moments for polynomials of degree n, or all moments for polyno-
mials of degree n < 3.

The current paper gives a method for computing all moments for the number of zeros of random
p-adic polynomials of degree n in one variable for any degree n. Indeed, Theorem 1, together with the
uniqueness statement that follows it, enables us to explicitly compute the probabilities and moments
p*(n,r), p(n,d), a(n,d), and B(n,d) for any values of n, r, and d. We may similarly compute the
analogues a*(n, r) and 8*(n,r) of p*(n,r); i.e., a*(n,r) (resp. 5*(n,r)) denotes the probability that a
random monic polynomial of degree n (resp. monic polynomial reducing to ™ modulo p) has exactly r
roots over Q,, (equivalently, Z,). Indeed, the formulas (1) and (2) continue to hold when the symbol p is
replaced by « (resp. /3). In particular, we deduce from (2) that p*(n, r), o*(n, r), and 5*(n, r) all satisfy
the same symmetry properties (3) and (4) as their unstarred counterparts.

We thus recover all previously known values of p*, a*, 5*, p, v, and 3, including that p(n, 1) =1
for all n (a result of Caruso [4]), that a(n, 1) = p/(p + 1) (a result of Shmueli [16]), and the values
of p*(n,n) for all n (as determined by Buhler, Goldstein, Moews, and Rosenberg [3]).

1.2 Examples

We illustrate some particularly interesting cases of Theorem 1 below.

1.2.1 The expected number of roots of a random p-adic polynomial

By definition, the quantities p(n, 1), a(n,1), and [(n,1) represent the expected number of roots
over Q, of a random polynomial over Z, of degree n, a random monic polynomial over Z, of de-
gree n, and a random monic polynomial over Z,, of degree n reducing to 2" (mod p), respectively.
Setting d = 1, we compute
1

Ai(t) =t — th?, Bi(t) =t — ﬁt{ Ri(t) = (p+ 1)t — pt2.
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Therefore,
1 ifn=1, 1 ifn=1,

p : 1 .
P itn>o - >
1 mn > T ifn > 2,
and
p(n,1) =1 foralln > 1,

This recovers, in particular, the aforementioned results of Caruso [4] and Shmueli [16] on the values of
p(n, 1) and a(n, 1), respectively, who obtained them via quite different methods (though their methods
are related to those used by Kac [7] cited above).

1.2.2 The second moment of the number of Q,-roots of a random p-adic polynomial

Next, we determine the expected number of 2-sets (i.e., unordered pairs) of QQ,-roots of a polynomial
over Z, of degree n. Setting d = 2, we compute

245(t) = (p/(p+ 1)t* — p(p + 1)(2p* + p + V)nt® + p'nt?,
2B5(t) = (1/(p + 1))t* — p(p + 1)(p* + p* + 2)nt® + p*nt*,
2Ry (t) = (p* +p+ V)t — p(p + 1)3(2p* + 3p> + 2)nt® + p*(p + 1)*(p* + p* + L)nt?,

where n = 1/((p + 1)?(p* + p* + p*> + p + 1)). Therefore,

p/(p+1) ifn=2, 1/(p+1) ifn=2,
20(n,2) =< p*(p® + 1)n ifn =3, 268(n,2) =< (p*+1)n ifn =3,
PP’ +p+1l)n ifn>4, P +p*+ 1)y ifn>4,

and
p(2,2) =1/2, 2p(n,2) = (p* +1)*/(p* +p*+p*+p+1) foralln > 3.

There is no difficulty in extending these calculations to larger values of d.

1.2.3 The density of p-adic polynomials of degree n having r roots

Once we have computed the expectations p(n,d), «(n,d), and S(n,d), we may use (2) and its ana-
logues for o and 3 to compute the probabilities p*(n,r), a*(n,r), and 5*(n,r). Since the probability
of a repeated root is zero, we always have p*(n,n — 1) = a*(n,n — 1) = *(n,n — 1) = 0.

For n = 2 and 3, the probabilities p*(n,r) can already be deduced from results in [1], [3]
and [4]. Namely, we have

p*(27 0) = p*(27 2) = 1/27
and
P (3,0) =2y, p*(3,1) =1-37, p*(3,3) =1,

where

(p* +1)
6(pr +p>+p2+p+1)

"}/:



For quartic polynomials in Z,[z], the probability of having 0, 1, 2 or 4 roots in Q,, is given by

b
p*(4,0) = g(31012 + 5p't 4+ 8p'% 4+ 12p” + 13p® + 12p” + 17p° + 12p° + 13p* + 12p° + 8p* + 5p + 3),

1)
pr(4,1) = g(p12 +2pM + 4p'® 4 3p° 4 6p° + Tp” + 205 + Tp° + 6pt + 3p® + 4p® +2p + 1),

1)
p*(4,2) = Z(p12 + 3p™ +2p™ + 6p + 5p® + 4p” + 9p° + 4p® + 5p* + 6p® + 2p” + 3p + 1),

1)
p*(4,4) = ﬂ(p12 —p't +4p'® 4+ 3p® + 4p” — p® + 4p® + 3p* +4p* —p + 1),

where
(p—1)°

(P° =1 —1)
The last of these probabilities, p*(4, 4), was determined in [3], where it is denoted ;™. As predicted by
Theorem 1(a), the sequence of coefficients in each numerator and in each denominator is palindromic.
Again, there is no difficulty in computing p*(n, r) for larger values of n.

For n = 2 and 3, the probabilities a*(n, ) were computed by Limmer [8, p. 27] and Weiss [17,
Theorem 5.3], who only considered primes p > n. Our work shows that the same formulas hold for all
primes p. Namely, we have

6:

. lp+2 . L p
a(2,0):§m, a(2,2):§m;
(3 0)_1 pt+p*+3p°+3
’ 3pt+pP+pr+p+ 17
a*(31)—1 p° +3pt+p> +2p7 + 2p
’ 2(p+ 1)+ + P2 +p+1)
o (3.3) 1 PP =p'+p’ '
’ 6 (p+1)(pt+p>+p2+p+1)

For monic quartic polynomials in Z,[z], the probability of having 0, 1, 2 or 4 roots in Z, is
given by

1 3ptt + 8p'0 4 6p? + 2p8 — 3p® 4+ 4p® — 4p® — 8p — 8

“0=g b+ 1207~ 1) |
ot (4,1) = 1 p 4+ 2p12 — 6ptt 4 9pt® — 9p¥ + 2p® + 3p” — 2p8 — 3p® + 3p* — 3p® + 3p
’ 3 P -1 -1) ’
o(8.2) = 1 PO £ 2p15 — Aplt 4 9p13 4 2p!2 _ Gplt 4 4pl0 4 259 — 6pd 4+ 2p7 4 pb — 20 + 2p3’
4 (p+1)2(p° = 1)(p° — 1)
o (4 4) = i P16 — dp' 1+ 6ptt — 2p'3 — 4p'? 1 6p!t — Apl0 — 2p° + 6p° — dpT +p6.
’ 24 (p+1)%(p° = 1)(p* - 1)

By the analogue of (4) for o* and 3*, we may obtain the values of 5* from those of a* by substitut-
ing 1/p for p.



1.2.4 The density of p-adic polynomials that split completely

The quantities p(n,n) and «(n, n) represent the probabilities that a (general or monic) polynomial of
degree n over Z, splits completely over Q,. These probabilities were previously computed by Buhler,
Goldstein, Moews, and Rosenberg [3]. We may recover these probabilities from Theorem 1 as follows.
If we replace Ay, By, and R, by their coefficients of ¢ (these being the terms of lowest degree in t),
then Theorem 1(b) reduces to

> alnn)(pt)" = (Z p(n, nﬁ") (8)

n=0 n=0
o o0 p+1
S+ A+ Dp(n,n)t" = (Z B(n, n)t”) 9)
n=0 n=0
B(n,n) = p~Gla(n,n), (10)

from which one can inductively compute p(n,n), a(n,n), and B(n,n) for all n. In [3], Buhler
et al. write r2™, r,, and p"s, for p(n,n), a(n,n), and B(n,n), respectively. Our equations (8)
and (9) appear as Equations (1-2) and (3-1) in their paper; and their Lemma 4.1(iv), which states that
rn(q) = (1) q)q(g) , follows by combining our general Equation (4) with (10). The explicit values of
p(n,n) = p*(n,n), a(n,n) = a*(n,n), and B(n,n) = f*(n,n) for n < 4 were recorded in §1.2.3.

1.2.5 The density of p-adic polynomials with a root

We may also compute 1 — p*(n, 0), the probability that a polynomial of degree n over Z, has at least
one root over Q,. Indeed, as a special case of (2), we have p*(n,0) = >_,_,(—1)%p(n, d), and likewise
for the o’s and 3’s. In terms of generating functions, we have

A(t) = (1= 1) a*(n,0)t" = (=1)*Aqy(t)

d=0

B(t) = (1- )Y 5 (n,0)" = 3 (~1)Ba(t)
n=0 d=0
and . -
R ()= (1 =t)(1=pt) Y (p"+p" "+ +1)p = (—1)"Ra(t)
n=0 d=0
Specialising Theorem 1(b) by setting u = —1 gives
A*(pt) = B*(t) (11)
R (t) = A*(pt)B*(t) = B ()" (12)
B*(t) —tB*(t/p) = ®(A"(t) — tB*(pt)) (13)

where @ is as before.

We may therefore use (11) and (13) to recursively solve for a*(n,0) and *(n,0), and then
compute p*(n,0) using (12). The explicit values of a*(n,0), 5*(n,0), and p*(n,0) for n < 4 were
recorded in §1.2.3.



1.2.6 Large p limits

We note that «(n, d), p(n,d), a*(n,r), and p*(n,r) are rational functions in p whose numerators and
denominators have the same degree. Hence, for fixed n, d, and r, we may compute the limits of these
functions as p tends to infinity. Meanwhile, 3(n,d) and 5*(n,r) are rational functions in p whose
denominator has higher degree than the numerator in most cases. Thus, a correction factor of a power
of p is needed to make the limit finite and nonzero. We have the following proposition.

Proposition 1.1.  (a) Let 0 < d < n be integers, and let k = min(d + 1,n). Then

lim a(n,d) = lim p(n,d) = lim p(g)ﬁ(n,d) !

p—00 p—00 p—00 dl’

(b) Let 0 < r < n beintegers. Then

lim p*(n,r) = lim a*(n,r) = Z(—l)d_T (d)% _ 1 i(—l)d%.

pA)OO pA)OO
d=0
Hence, if we also let n — oo, we obtain

N o 1
lim lim p*(n,7) = lim lim a*(n,r) = —e '
n—00 p—00 n—00 p—00 r!

(c) Finally, let 0 < r < n be integers, and let k = min(r + 1,n). If r # n — 1 then

lim p(2) 8*(n,r) = !

p—00 ol

We prove these claims in Section 4.

1.3 A general conjecture

Theorem 1(a) naturally leads us to formulate a much more general conjecture. Namely, we conjecture
that the density of polynomials of degree n over Z, cutting out étale extensions of Q, of degree n in
which p has any given splitting type is a rational function of p satisfying the identities (3) and (4).

Recall that a splitting type of degree n is a tuple o = (dj' d3* - - - di*), where the d; and e; are
positive integers satisfying > d;je; = n. We allow repeats in the list of symbols d;j , but the order in
which they appear does not matter. To make it clear when two splitting types are the same, we could
for example order the pairs (d;, e;) lexicographically. Exponents e; = 1 may be omitted.

For an étale extension K/Q, of degree n, we define the symbol (X, p) to be the splitting type
o= (di*ds? --- dit) if p factors in K as P Py? - - - Pf*, where Py, P, ..., P, are primes in K having
residue field degrees dy, do, . . . , d, respectively. We say that p has splitting type o in K if (K,p) = o.

We then make the following conjecture.



Conjecture 1.2. Let 0 be any splitting type of degree n, and set

p(n,o;p) := density of polynomials f € Z,[x] of degree n
such that K :=Q,[z]|/ f(z) is étale over Q, and (K,p) = o

a(n, o;p) := density of monic polynomials f € Z,[x] of degree n
such that K :=Q,[x]/f(x) is étale over Q, and (K, p) = o,

B(n, o; p) := density of monic polynomials f € Z,[x] of degree n with f(z) = 2™ (mod p)
such that K :=Q,[z]/f(x) is étale over Q, and (K, p) = 0.

Then p(n,o;p), a(n,o;p), and 5(n, o; p) are rational functions of p and satisfy the identities:

p(n,o;p) = p(n,o;1/p); (14)
an,o;p) = B(n,0;1/p). (15)

We have proven that Conjecture 1.2 holds in the quadratic and cubic cases. For example,

p(2, (11); 1/2
p(2,(2); 1/2—p/(0* +p+1)
p(2,(1%); p/(P* +p+1)

)
)
)
p(3, (111);
p(3, (12);
)
)
)

p
p
p

(1/6)(p" + 20 + 1)/ (0" +p* +p* +p+1)
(1/2)(p" + 1)/ (" +p* +p* +p+1)
(1/3)(
(

?

p(3,(3);
p(3, (1°1);
p(3, (1%);

Note again that the numerators and denominators are all palindromic, and thus these expressions sat-
isfy (14). Analogous formulas hold for the o’s and 3’s that satisfy (15). In particular, these formulas
hold for all p, including p = 2 and p = 3.

Theorem 1(a) may also be viewed as a special case of Conjecture 1.2, since the density p*(n, ; p)
of polynomials of degree n over Z, having exactly 7 roots over Q, is simply the sum of the densities
p(n,o; p) over all splitting types o having exactly r 1’s (and similarly for the o’s and (3’s); thus if the
equalities (14) and (15) hold for all p(n, o;p), then they will also hold for p*(n,r) and p(n,d) (and
similarly for the o’s and /3’s), implying Theorem 1(a).

1/3)(p* ="+ 1)/ +p° +p* +p+1)
P +p)/p+ P +p P +p+1)
P/t +pP+p +p+1).

)
)
)
)
)
)
)=
)

p
D
p
p
D

1.4 Methods and organization of the paper

In Section 2, we explain some preliminaries needed for the proof of Theorem 1, regarding counts of
polynomials in [F,[x] having given factorization types, power series identities involving these counts,
resultants of polynomials over Z,, and explicit forms of Hensel’s lemma for polynomial factorization.

In Section 3, we then turn to the proof of Theorem 1. We first explain how Theorem 1(b)
easily implies Theorem 1(a). To prove Theorem 1(b), we begin by writing the a(n, d) in terms of the
B(n',d") forn’ < nand d < d. This involves considering how a monic polynomial over Z, factors
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mod p and showing that the random variables given by the number of Z,-roots above each F,-root are
independent. The answers may be expressed in terms of the generating functions .4, and B, as

Ai(pt) = pBi(t)

Aslpt) = pBa(t) + Splp — DB, (1)

(16)
As(pt) = pBs(t) + p(p — 1)Bi()Ba(t) + ép(p —1(p—2)Bi(t)°

which may be expressed more succinctly in the form (5). We then explain how to write the 5(n, d)
in terms of the a(n’, d) for n’ < n. This is proved by making substitutions of the form z < pz, and
analysing the valuations of the resulting coefficients; the relation we obtain is expressed succinctly in
the form (7). These two types of relations allow us then to recursively solve for the a’s and 3’s. We then
write the p’s in terms of the a’s and [3’s, using another related independence result, and the relations
we thereby obtain are expressed succinctly in the form (6), completing the proof of Theorem 1(b).

As previously noted, Theorem 1(b) gives a way to compute the power series Ay, By and R, for
each d. However, it does not seem to give any way of showing that these are in fact polynomials for
all d. In establishing Theorem 1(c), we thus use a different technique to prove the stabilisation result
for the a’s, or equivalently, that 4, is a polynomial of degree at most 2d. We could also give a similar
proof of the corresponding result for the /3’s, but there is no need, since it follows from that for the a’s,
using either (4) or (16).

Once we have shown that A; and B, are polynomials of degree at most 2d, the same result
for R4 then follows by (6). This is not sufficient to prove the stabilisation result for the p’s, since the
definition of R, involves additional factors. However, a variant of the ideas used to show that A, is a
polynomial also show that A4(1) = A4(p), and from this we deduce the stabilisation result for the p’s.

Finally, in Section 4, we prove the asymptotic results contained in §1.2.6.

2 Preliminaries

2.1 Basic notation

For aring R, let R[x] denote the ring of univariate polynomials over R, and for n > 0, let R[z],, denote
the subset of polynomials of degree at most n, and R|[x]! the subset of monic polynomials of degree n.
In the case R = Z,, we identify Z,[z]), with Z via

n—1

n 7
"+ E a;x" < (ag,a1,...,an1),
i=0

and thereby use the usual p-adic measure on subsets of Z, [z]} inherited via this identification.
For f € Z,[x], we denote by f its image under reduction modulo p in F,,[z]. A polynomial with

coefficients in Z, is primitive if not all its coefficients are divisible by p, that s, if f # 0. For a primitive

polynomial f € Z,[z|, we define the reduced degree of f to be deg(f). Hence deg(f) < deg(f), with
equality if and only if the leading coefficient of f is a unit.



2.2 Counts involving splitting types of polynomials over [,

We will require expressions for the number of monic polynomials in F,[z] that factor as a product
of irreducible polynomials with given degrees and multiplicities. These counts, and the corresponding
probabilities for a random polynomial to have given factorization types, are collected in this subsection.

To this end, let S(n) denote the set of all splitting types of degree n. Thus, for example,
S(2) = {(11),(1%),(2)} has three elements, S(3) has five elements, and S(4) has 11.

We say that a monic polynomial f in F,[x] of degree n has splitting type (di* d5* --- di*) €
S(n) if it factors as f(z) = H;=1 fi(x)%, where the f; are distinct irreducible monic polynomials
over I, with deg(f;) = d;. We write o( f) for the splitting type of f, and N, for the number of monic
polynomials in [F,,[z] with splitting type o.

If o = (d), then we simply write Ny for NV,.. That is, N, is the number of degree d irreducible
monic polynomials in [, [x]. Writing  for the Mobius function, it is well known that

1 d/k
Na = p %d:ﬂ(k)p :

In general, for 0 = (d* d5? - - di*) € S(n), we have
- Ng mq
N, = , 17
H (md> (mdl Mgz -+ mdn) (7

Mae = Mae(0) 1= #{s : d&* = d°},

where

and .
mqg =mg(o) :=#{s:ds =d} = Zmde.
e=1
Since there are p” monic polynomials of degree n in F,[z|, the probability that a degree n monic

polynomial f € F,[x] has splitting type o, for o € S(n), is N,/p”. This is evidently a rational
function of p.

2.3 Power series identities involving N,

We now establish some power series identities involving the counts N, defined in the last section.
Let x4 for d, e > 1 be indeterminates. For a splitting type o € S(n) of degree n, let

so that every monomial in y,, has weight n. We set x40 = 1 for all d > 1.
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Proposition 2.1. We have the following identity in Z[{z g }a.e>1][[t]):

o) ) 00 Ny
Z Ynt" = H (Z xdetde> . (18)
n=0

d=1 e=0

Proof. We must show that when the right hand side is multiplied out, the coefficient of ¢" is y,,. The
coefficient of " is a sum of monomials in the =4 of weight n. Each such product has the form x, for
some 0 € S(n), and the number of times each monomial occurs is V. O

By specializing the z4., we obtain the following corollary.

Corollary 2.2. We have the following identity in Z|[t]]:

(1 —pt)” H (19)
d=1
Proof. In (18), set x4, = 1 forall d, e. Then x, = 1, so y,, = p”, and (19) follows. O
Corollary 2.3. Let z, for e > 1 be indeterminates, and set xo = 1. Then, in Z[x1, xs, . . .|[[t]], we have:
o0 p
Z > N, <H x) = (Z m”) (1—¢)P(1 —pt)~". (20)
n=0 geS(n) leeo n=0
Proof. In (18), set 1. = x., and set x4, = 1 for all d > 2. Then, by Corollary 2.2, we have
[T =N = (1=t —pt),
d=2
yielding (20). ]

2.4 Resultants, coprime factorizations, and independence
2.4.1 Resultants

We begin with an observation about resultants of polynomials in Z,[z] and their behavior upon reduc-
tion modulo p.

Lemma 24. Let f, g € Z,[x]| have degrees m and n respectively.
1. Ifthe leading coefficients of f and g are both units, then m = Res(f, 7).
2. Ifthe leading coefficient a,, of f is a unit and d = deg(g) < n, then Res(f, g) = @ * Res(f,g).
3. If the leading coefficients of f and g are both non-units, then M = 0.

Proof. These are standard properties of resultants and may be seen by examination of the definition
of Res(f, g) as the value of the (m + n) x (m + n) Sylvester determinant. O

Corollary 2.5. Let f,g € Zy|x] have degrees m and n respectively. Then Res(_ f,q) is a unit if and
only if at least one of the leading coefficients of f, g is a unit, and the reductions f,q are coprime.
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Our reason to consider resultants is the following.
Lemma 2.6. Let R be a ring. For any d > 1, we identify R[z]} = R and R[x]y & R as R-modules.

(@) The multiplication map R|[z]} x R[z]} — R[z]! . has Jacobian given by Res(f, g).

m+n
(b) The multiplication map R|x|! X R[z|, — R[|m+n has Jacobian given by Res(f, g).

Proof. We first consider case (a), when both polynomials are monic. Let f(z) = 2™ + ZZ 0 4T,
g(x) = 2™ + Z;‘;& bjxl, and h(z) = 2™ 4+ 377" ¢pz® be monic polynomials in R|[x] havmg
degrees m, n, and m + n respectively. If h(z) = f(z)g(x), then ¢z = 3, . a;b;, and the matrix
of partial derivatives of the ¢, with respect to the a; and b; is precisely the Sylvester matrix whose
determinant is Res(f, g).

We next consider case (b), and assume that f(z) = 2™ + 7' a;2" € R[ ]L. is monic while
g(x) = 377 bz’ € Rlz], is not necessarily so. Let f(r)g(z) = v erz®, and let M be the
(m+n+1) x (m + n + 1) matrix of partial derivatives of the ¢, with respect to the a; and b;. Since
Cm+n = by, the last row consists of 0’s except for the final entry which is 1. Expanding the determinant
by the last row, we again obtain Res(f, g). O

Corollary 2.7. Let A C Z,z]},, B C Zy|x]} (resp. B C Z,[z],), and AB C Z,|x];, ., (resp.

AB C Zy|x)m+n) be measurable subsets such that multiplication induces a bijection

AxB— AB={ab|a€ A, b€ B}.
IfRes(a,b) € Z3; foralla € A and b € B, then this bijection is measure-preserving.

2.4.2 Coprime factorizations and Hensel lifting

We next recall Hensel’s lemma for polynomial factorizations in certain quantitative forms. The first is
standard, and is stated as Lemma 2.3 in [3], while the variant is mentioned in [3, p. 24].

For f € F,[z]}, we denote by P; the set of polynomials in Z,[z]} that reduce to f modulo p;
and for n > d, we denote by P}1 the set of polynomials in Z,|x],, that reduce to f modulo p.

Lemma 2.8. Suppose that g, h € F,[x] are monic and coprime. Then the multiplication map
PgXPh—)Pgh (21)
is a measure-preserving bijection.

Proof. Let f € Z,[z]}, be such that f factors in Fp[x] as f = gh. Then by Hensel’s lemma f factors
uniquely in Z,[z| as f = gh, where § € P, and h € P,. Therefore (21) is a bijection. The measure-
preserving property holds by Corollaries 2.5 and 2.7. ]

The following variant will be used to handle polynomials f € Z,[z] whose leading coefficient
1S not a unit.

Lemma 2.9. For n > m, the multiplication map
Lplaly, x PP = {f € Zyplaln : | € Fylal,,} (22)
is a measure-preserving bijection.

Proof. Let f € Zy[x],, be such that f is monic of degree m. Then homogenising, applying Hensel’s
lemma, and dehomogenising, shows that f factors uniquely in Z,[z]| as f = f1 f> where f1 € Z,[x]},
and fo € P'"™. Therefore, (22) is a bijection. The measure-preserving property again holds by
Corollaries 2.5 and 2.7, since f; is monic. ]
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2.4.3 Independence lemmas

Finally, we may phrase Lemmas 2.8 and 2.9 as statements regarding the independence of suitable
random variables.

Corollary 2.10. Let g, h € F,[x] be coprime monic polynomials. For f € Py, let m, and 7 denote the
projections of Py, onto Py and P, respectively, under the bijection Py, — P, x P,. Then the number
of Qp-roots of f € Py, is X +Y, where X, Y : Py, — {0,1,2,...} are independent random variables
distributed on f € Py, as the number of Q,-roots of m(f) € P, and mo(f) € Py, respectively.

Corollary 2.11. Let m < n, and let
B = {f € Zy[z]n : [ € Fylal,,}-

For f € By, ,,, let 1 and 1y denote the projections of By, , onto Zy|x],, and P{'"™, respectively, under
the bijection By, ,, — Zy,|x]}, x P[™™. Let X, Y : By, , — {0,1,2,...} be the random variables giving
the numbers of roots of f € By, ,, in Z, and in Q, \ Z,, respectively. Then X andY are independent
random variables distributed on f € By, as the number of Q,-roots of V1 (f)(x) € Z,|z]. and of

Yo (f) ¥ (x) := a2 ™ho(f)(1/x) € Pya—m, respectively.

3 Proof of Theorem 1

3.1 Theorem 1(b) implies Theorem 1(a)

Theorem 1(b) allows us to compute a(n, d), 5(n,d), and p(n,d) for any n and d. Indeed we use (5)
and (7) to solve for the a’s and (3’s, and then (6) to compute the p’s. The answers obtained are rational
functions of p. The relation (5) is invariant under replacing ¢ — t/p and switching p <> 1/p and
Ay <> By, while the relation (7) is invariant under switching p <» 1/p and A, <> B,. The symmetry (4)
then follows by induction on n and d, while (3) follows from (6). ]

3.2 Proof of Theorem 1(b)
3.2.1 Conditional expectations

The expectations a(n, d) and 3(n, d) were defined in the introduction. To help evaluate them, we make
the following additional definitions.

Definition 3.1. (i) For f € F,[z]}., let a(n, d | f) denote the expected number of d-sets of Q,-roots
of a polynomial in P; C Z,[z]},. Since P; has relative density p~" in Z,[z]}., we have

alnd)=p™ > an,d]f). (23)
fEFpfal}
Also, B(n,d) = a(n,d | z™).

(ii) For o in S(n), let a(n,d | o) be the expected number of d-sets of Q,-roots of a polynomial
in Z,[z]}, whose mod p splitting type is o. Thus

a(n,d)=p™" Z Ny,a(n,d| o), (24)
oeS(n)
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and
a(n,d|o)=N" > and]f), (25)
fEFp[alh: o(f)=0

where o( f) denotes the splitting type of f.

3.2.2 Writing the o’s in terms of the 3’s
The aim of this subsection is to prove (5), the first part of Theorem 1(b).

Lemma 3.2. Let g, h € F,[x] be monic and coprime. Then

a(deg(gh),d| gh) = Y a(deg(g).di | g) - a(deg(h).ds | h), (26)
di1+do=d

where the sum is over all pairs (dy, d2) of nonnegative integers summing to d.
If, additionally, h has no roots in I, then

a(deg(gh),d | gh) = a(deg(g),d | g).

Proof. The lemma follows from Corollary 2.10 and the observation that if X and Y are independent
random variables taking values in {0, 1,2, ...} then

X+Y X Y
]E( ) = ) E( )E( ) (27)
d irinea N d O
Recall that S(n,d) = a(n,d | ™) is the expected number of d-sets of roots of a monic poly-

nomial of degree n which reduces to 2" modulo p. Using Lemma 3.2, we can express «(n,d | f) for
monic f € F,[x], in terms of 3(n', d') for appropriate n’, d'.

Lemma 3.3. Leto = (1™ --- 1" ... ) € S(n) be a splitting type with exactly k = my (o) powers of 1.
Then

k
a(n,d| o) = Z H,B(nz,dz) (28)
di+-+dp=d i=1

Proof. Let f € F,[z]} have splitting type o. To evaluate «(n, d | f), we may ignore the factors of f of
degree greater than 1, since if f = f; fo where o(f;) = (1™ ---1™) and f, has no linear factors, then
a(n,d | f) = a(deg(f1),d | f1) by the last part of Lemma 3.2.

Now let f = Hle 07", where the ¢; are distinct, monic, and of degree 1. Using Lemma 3.2
repeatedly gives

k
and| fy= Y [[aln.d|g).
di+-+dp=d i=1

Finally, a(n;, d; | £}") = a(n;,d; | ™) = [(ni, d;), since for fixed ¢ € Z, the map g(x) — g(x + ¢)
is measure-preserving on monic polynomials in Z,[z] of a given degree. Thus

amd| )= ]B0ud), (29)

di+-+dp=d i=1

and (28) now follows from (25) and (29). [l
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Proof of Theorem 1(b), Equation (5). Let 0 = (1™ ---1™...) € S(n) be as in Lemma 3.3. Then,
by (24) and Lemma 3.3, we have

k
=p " Z Nya(n,d|o)=p™" Z N, Z Hﬁ(nl,dz) (30)

oeS(n) oeS(n) di+-+dp=d i=1

Multiplying by u? and summing over d gives

i (n, Y N ]] (iﬂ(e,d}ud>.

d=0 c€eS(n) leco

Multiplying by (pt)", summing over n, and using Corollary 2.3, we obtain

> <Z a(n, d)(pt)") ut = <Z (Z 6(n,d)t”> ud> (1—t)P(1 —pt)~"

d=0 \n=0

Finally, multiplying both sides by 1 — pt yields (5). [

3.2.3 Writing the p’s in terms of the o’s and /3’s

The aim of this section is to prove (6), the second part of Theorem 1(b).

Recall that p(n, d) is the expected number of d-sets of Q,-roots of polynomials f € Z,[z] of
degree n. It is evident that this does not change if we restrict to primitive polynomials.

Let f € Z,[z] be a primitive polynomial of degree n. Let m = deg(f) be the reduced degree
of f. For fixed m with 0 < m < n, the density of primitive polynomials f € Z,[x],, with reduced
degree m is pnp+—11_1 p™. Therefore, conditioning on the value of m, we have

p(n,d) = n+1 Zp p(n,d,m), 31)

where p(n,d, m) is the expected number of d-sets of Q,-roots of f as f € Z,[x],, runs over polyno-
mials of degree n with reduced degree m. This expectation does not change if we restrict to f whose
reduction mod p is monic.

Equation (6) now follows from (31) and the following lemma.

Lemma 3.4. We have

p(n,d,m) = > a(m,d)-B(n—m,dy). (32)
di+do=d
Proof. This follows from Corollary 2.11 and (27). ]

3.2.4 Writing the /3’s in terms of the o’s

The aim of this section is to prove (7), the third and last part of Theorem 1(b).
Fixing d, we put o, := «(n,d) and f3,, := [(n,d). In the following lemma, we express (3, in
terms of o, for s < n.
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Lemma 3.5. We have »

Bo=p o, +p—1) Y pFpa. (33)

0<s<r<n

Proof. Recall that 3, is the expected value of the random variable X distributed as the number of d-
sets of Z,-roots of f € P,n. All such roots must lie in pZ,, and thus correspond to Z,-roots of f(px).
To each f € P,», we associate a pair of integers (7, s) with 0 < s < r < n as follows. Consider f(pz),
and let r be the largest integer such that p" | f(pz), so that 1 < r < n. Let s be the reduced degree
of p~" f(px). Theneither 0 < s <r < mn,ors =r =n.

The relative density of the subset of f € P,» such thatp” | fis p_(;>, since for0 < i < r—2we
require the coefficient of z* in f to be divisible by p”~% and not just by p. Given r < n, the condition that
p~" f(px) has reduced degree at least s imposes r—s—1 additional divisibility conditions, so the relative
density of those f such that the reduced degree is exactly s is p~">"Y(1 — 1/p) = p*"(p — 1). Thus

the relative density of f € P,» with parameters (r, s) is given by pf(;) P (p—1)= p7<r§1) p’(p—1)

for0 < s <r <n.Ifr =n, then s = r, and therefore the density of f with parameters (n,n) is p_(2 .
Given the values of 7 and s, the conditional expected value of X is a,, independent of r, by

Corollary 2.11. Hence 3, = pf(g)ozn + D o<s<r<n pf(yél)ps (p— 1a. O]

Proof of (7). Taking Equation (33) for n and n — 1 and subtracting gives

n—2
PD (B = Buct) = (@ — ") + (0 - 1) Y P, (34)
s=0

Now taking Equation (34) for n and n — 1 and again subtracting yields

n

p(Q) [(5% - ﬁn—l) - pl_n(ﬁn—l - ﬁn—Q)] = (an - an—l) - pn_l(an—l - an—2)7
and this indeed asserts the equality of the coefficient of ¢" on both sides of (7). [

We have completed the proof of Theorem 1(b).

Remark 3.6. Equations (30), (31), (32) and (33) are sufficient to compute the «’s, 3’s and p’s.
We were motivated to find the neater formulation in Theorem 1(b) by the desire to prove the p <> 1/p
symmetries.

3.3 Proof of Theorem 1(c)

Consider a random polynomial of degree n in Z,[z]. Let a(n, d) be the expected number of d-sets of
roots in Z,. Conditioning on the reduced degree and applying Corollary 2.11 shows that

G(n,d) = zn: (1 _ 1) Lot —m,d)+ ——a(n,d).

p)p pn+1

m=0

This rearranges to give

a(n,d)=>_(1-p)p™a(m,d) +p™Ha(n, d). (35)



In other words, a(n, d) is a weighted average of the a(m, d) for m < n.

We now show that «(n, d) and a(n, d) are equal and independent of n, provided that n > 2d.

Let A, = Z,[X]}, denote the set of monic polynomials over Z, of degree n, and B,, the set of
all polynomials of degree less than n. Then we have A, = {X" + h : h € B,}, and both A,, and B,
may be identified with Z; and have measure 1. Let APt be the subset of those f in A, that split
completely. The measure of AP is a(n, n).

Now consider the multiplication map A" x Z,[z],_4 — Z,[x],, whose image is the set of
[ € Z,|x],, with at least d roots in Z,; in general, the number of preimages of f in Z,[x], is equal to
the number of d-sets of roots of f in Z,. This implies that a(n, d) is the p-adic measure of the image of
the multiplication map, viewed as a multiset. The change of variables from AP™ x 7 [z],, 4 to Z,[z],
introduces a Jacobian factor which, by Lemma 2.6, is just the resultant. Therefore,

a(n,d) = / / | Res(g, h)| dh dg. (36)
g€ AP JheZpla)n—a
Similarly, we have
a(n, d) = / | / | Res(g, h)| dh dg. 37)
geAP™ JheA, 4
The following lemma now proves the first part of Theorem 1(c), namely, that A4(t) is a polynomial of
degree at most 2d.
Lemma 3.7. The expectations o(n, d) and a(n, d) are equal and independent of n for n > 2d.

Proof. By (36) and (37) it suffices to show that for each fixed g in Aflpht, the values of the inner integrals
fhezp[x}n,d | Res(g,h)| dhand [,., |Res(g,h)|dh are equal and independent of n for n > 2d. Our
argument is quite general, in that we only use that g is monic, not that it is split.

We assume that n > 2d, and write each h € Z,[z],,_q uniquely as h = qg+r with g € Z,[x],,—24
and r € B,. This sets up a bijection (¢, ) — h = qg + r from Z,[x],,—24 X By to Z,[z],—4 (using here
that n — d > d). Now using Res(g, h) = Res(g, ), and the fact that our bijection has trivial Jacobian
(the change of basis matrix is triangular with 1’s on the diagonal since g is monic), we deduce that

/ RM%WM=/ / HM@WWW:/ | Res(g, r)|dr.
h€ZLp([x]n—a q€ZLp[x)n—24 J r€EBy r€By

since the integral over ¢ € Z,[z],_24 is just the measure of Z,[x],_o4 Which is 1. In an identical
manner, we have

/ | Res(g, h)|dh = / / | Res(g,7)|drdq = / | Res(g,r)|dr.
heAn—d qun—2d TEBd TeBd

and)=and)= [ [ Restgun)] dr dg
geAZplit reBy

for n > 2d. The inner integral above clearly depends on g and d, but not on n. [

Hence

We now turn to proving the remaining parts of Theorem 1(c). By Lemma 3.7, we have that
A,4(t) is a polynomial of degree at most 2d. Thus, fixing any n > 2d, we may write

Aq(t) = (1 —1t) 2": a(m, d)t™ + a(n, d)t" . (38)

m=0
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Lemma 3.7 allows us to replace a(n, d) by a(n, d) in (35). Taking ¢ = 1 in (38) shows that the left hand
side of (35) is A4(1). Taking ¢t = p in (38) shows that the right hand side of (35) is A4(p). Therefore,
Aq(1) = Aa(p).

Since A, is a polynomial of degree at most 2d, it follows by (5), or equally (4), that B, is a
polynomial of degree at most 2d. Directly from the definitions of .4, and 3, these results are equivalent
to the statements that a(n, d) = A4(1) and B(n,d) = By(1) for all n > 2d.

It follows by (6) that R, is a polynomial of degree at most 2d. To prove the stabilisation
result for the p(n,d), we use the fact we just proved that A4(1) = Au(p). It follows by (5), or
equally (4), that By(1) = B4(1/p). By (6), we then have R4(1) = R,4(1/p). We may therefore
write R4(t) = Ra(1) + (1 — ¢)(1 — pt)F(t) where F has degree at most 2d — 2. Finally, from the
definition of R4, we have p(n,d) = R4(1) for all n > deg(F).

This completes the proof of Theorem 1(c).

Remark 3.8. The values of the a(n, d), which may be computed from the «(n, d) using (35), may
also be of independent interest. For example, the expectation a(n,1) = p/(p + 1) is computed by
Caruso [4], and also follows from the one-variable case of the work of Evans [6, Theorem 1.2].

4 Asymptotic results

In this section, we prove Proposition 1.1. The proof is essentially independent of our earlier results,
although for convenience we will reference some of our earlier formulas. We begin with a well-known
lemma (see, e.g., [5, p. 256] for a proof).

Lemma 4.1. Let f € F,[z]| be a monic polynomial of degree n, and C' C S, a conjugacy class (i.e.,
a cycle type) corresponding to the partition dy + --- + d; = n. Let A\(C,p) be the probability that
f factors into irreducible polynomials of degrees di, ..., d;, respectively. Then \(C,p) — |C|/n! as
p — 0.

If o = (di* d3? --- dj*) € S(n) is a splitting type of degree n, then by (17), we have that N, is
a polynomial in p of degree >_'_, d;. Therefore, if ¢; > 1 for at least one i € {1,2,...,t}, then

By (24), to compute lim, ,, a(n,d), it thus suffices to consider only ¢ € S(n) that correspond to
factorizations without multiple factors, i.e., to partitions d; + --- + d; = n of n. It is sufficient to
consider only those squarefree polynomials modulo p that have » > d distinct roots (since all of these
roots lift by Hensel’s lemma), where each such polynomial is weighted by (2) By Lemma 4.1, we
wish to count all permutations in S,, with r fixed points, where each such permutation is weighted
by (1). The total weighted number of such permutations is (’}) (n — d)! = %, because we can choose d

ar
fixed points in {1, 2, ..., n}, and then randomly permute the other n — d numbers. It follows that
. 1 n! 1
o) = = )

By (31), we have lim,,_,, p(n,d) = lim,_,~, p(n,d,n). Either directly from the definitions, or
as a special case of (32), we have p(n,d,n) = a(n, d). Therefore,

lim p(n,d) = lim a(n,d) = —

p—0o0 p—o0 d! ’

18



proving Proposition 1.1(a) for p and «.
Using (2), and its analogue for a*, we then have

& d\1 1= 1
. * 71 * _E :_ d—r _ § _1\d
plggop (nar> - plgroloa (n,r) _ d_o( 1) <T) d! - 7l d_o( ]-) dl?

proving Proposition 1.1(b).
To prove the large p limits involving 3, we note that if d = n — 1 or d = n, then (33) is just

B(n,d) = p~Ban,d).
while if d < n — 1, then Equation (33) takes the shape
Bln,d) = p~"Da(d.d) + O~ ")),

From the previous two equations and (39), we see that

n ]_ 1 ]_
lim p<2)ﬂ(n,n) =— and lim p(d; )ﬂ(n,d) = —ford <n,
p—co n! p—roo d!
proving Proposition 1.1(a) for 3.
The analogue of (2) for 5* shows that for r < n — 2, we have
. (7‘+1) % 1
lim p\ 2 /3%(n,r) = —.
p—oo rl
Since *(n,n) = [(n,n), this completes the proof of Proposition 1.1(c). Note that 5*(n,n — 1) = 0,
so there is no need to compute the limits in this case.
If we take » = 0 in Proposition 1.1, we see that

n

lim p*(n,0) = > (—1)%/dL.

pP—00
d=0

The reader may recognise this as the answer to the derangements problem, i.e., the probability that a
random permutation on 7 letters has no fixed point. This is the case because, by Lemma 4.1, monic
polynomials without Q,-roots correspond, in the large p limit, to permutations without fixed points.
Similarly, the limit lim,, o p*(n,7) = (1/r!) > —;(—1)¢/d! is equal to the probability that a random
permutation on n letters has exactly r fixed points.
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