A NEW APPROACH TO MINIMISING BINARY
QUARTICS AND TERNARY CUBICS

TOM FISHER

ABSTRACT. We prove a theorem on the minimisation of genus one
curves, generalising work of Birch and Swinnerton-Dyer [3], Cre-
mona and Serf [5], [13] and Cremona and Stoll [6], [7]. The advan-
tage of our approach over earlier methods is that we do not need
to treat residue characteristics 2 and 3 as special cases. This work
has applications to descent calculations on elliptic curves and to
the study of the Tate-Shafarevich group.

1. INVARIANTS

Let C be a smooth curve of genus one defined over a field K, and let
D be a K-rational divisor on C of degree n > 2. We write [D] for the
linear equivalence class of D.

1.1. Binary quartics. If n = 2 then we pick z,y € K(C) such
that £(D) and £(2D) have bases 1,z and 1,z,2% y. The 9 elements
1,z,2%y, 23, vy, 2, 2%y, y* in the 8 dimensional vector space L£(4D)
satisfy a linear dependence relation. Furthermore the coefficient of />
is non-zero. We deduce that the pair (C,[D]) has an equation

(1) y? + (aor® + x4+ o)y = az® + ba® + ca? + dw +e.
If char (K) # 2 then we may complete the square so that oy = ay =
as = 0. The classical invariants of the binary quartic

f(z,2) = az’ + b2’z + ca®2® + doz® + ez!

are
I = 12ae — 3bd + 2,
J = T2ace — 27ad? — 27b%e + 9bed — 2¢°.

We define the invariants ¢, and ¢g of (1) by taking ¢, = 247 and ¢ = 2°J
in the case ag = a1 = ay = 0. We then extend to the general case by
demanding that ¢4 and ¢4 are preserved by all changes of co-ordinates of
the form y — y+roz®+riz+7ry. In addition we put A = (¢ —c2)/1728.
We find that ¢4, cg and A are primitive integer coefficient polynomials
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in the indeterminates «y, aq, s, a, b, ¢, d, e. This enables us define the
invariants ¢4, cg and A in arbitrary characteristic. Moreover if we put

(Oé(), aq, O, a, bu c, du 6) = (07 ai,as, 07 ]-7 A2, a4, aﬁ)

then our expressions for ¢4, ¢g and A reduce to the standard formulae
for an elliptic curve in Weierstrass form (recalled in §4.1). It is con-
venient to rewrite (1) as a homogeneous equation of degree 4, where
x, 2,y are assigned degrees 1,1, 2.

(2) 3 + (2® + qwz + ap2?)y = az* + b’z + ca?2® 4 daz® + ezt

By abuse of terminology we refer to (2) as a binary quartic.

1.2. Ternary cubics. If n = 3 then we pick a basis z,y, z for L(D).
Writing down 10 elements in the 9 dimensional vector space L(3D) we
deduce that (C,[D]) is defined by a ternary cubic

F(ZL’, Y, Z) = az® + by3 + cz? + a2x2y + (131'22?
+bixy® + b3y?z + crxz® + cyz® + mayz.

The Hessian of the ternary cubic F(xq,xs, x3) is

2F 3
H(a:l,mg,xg):—l/Zxdet( 0 )

Gxié?xj i,j=1'
The factor —1/2, although not standard, is a convenient choice. The
Hessian of any linear combination of F' and H again belongs to the

pencil spanned by F' and H. Following [8], [12], the invariants ¢4 and
c¢ are determined by the relation

HAF 4+ pH) = 3(ca *p + 2c6 \p® + cip®) F 4+ (N — 3ea\u® — 2cp°) H.

In addition we put A = (¢} — ¢2)/1728. We find that ¢, ¢ and
A are primitive integer coefficient polynomials in the indeterminates
a, b, c,as,as, by, bs, cr,co, m. This enables us to define the invariants ¢y,
ce and A in arbitrary characteristic. Moreover if we put

((l, ba ¢, ag, as, b17 b37 €1, Co, m) - (_17 07 —0g, 07 —Q2, 07 17 —Qy4,as, al)

then our expressions for ¢4, ¢g and A reduce to the standard formulae
for an elliptic curve in Weierstrass form (recalled in §4.1).

1.3. Computing the Jacobian. It was observed by Weil [16] that the
invariants of a binary quartic may be used to compute its Jacobian.
The generalisation to ternary cubics may be found in [1].
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Theorem 1.1. Let ¢4, cg and A be the invariants of a binary quartic,
respectively a ternary cubic.

(a) The binary quartic, respectively ternary cubic, defines a smooth
curve of genus one if and only if A # 0.

(b) If char (K') # 2,3 then the Jacobian has Weierstrass equation

(3) y* = 1 — 2Tcx — Bdcg.

Notice that (3) has invariants 6%cy, 6°c and 6'2A. As pointed out
in [2] these formulae for the Jacobian can be improved by minimising
at 2 and 3. We give details in Appendix A.

1.4. Equivalence of models.

Definition 1.2. We say that a pair of binary quartics, respectively
ternary cubics, are equivalent if they arise from the same pair (C, [D]).

More concretely, binary quartics are equivalent if they are related by
making a substitution of the form
r = ax'+ (2
z = ~vyax' +67
y = p Y +rex? + a4 rp2?
and then multiplying through by p2. This transformation is denoted
(i, v, A] where r = (rg,r1,72) and

)

Similarly, ternary cubics are equivalent if they are related by making a
substitution of the form

x/
= A y,

Z/

N e K

and then multiplying through by p. This transformation is denoted
(11, A]. In both cases we put A = pdet A and find ¢ = Mey, ¢ = NS¢
and A’ = A\2A.

2. STATEMENT OF GLOBAL RESULTS

Let E be an elliptic curve defined over a number field K with ring of
integers Ok and class number hx. We write [n] for the multiplication-
by-n map on F.

Definition 2.1. An n-covering of F is a smooth curve of genus one C'
defined over K equipped with a morphism 7 : ' — FE defined over K,
such that m = [n] 09 for some isomorphism 1 : C'~ E defined over K.
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Giving C' the structure of n-covering of its Jacobian is equivalent
to specifying a K-rational divisor class [D] on C' of degree n. Indeed
given an n-covering 7 : C' — E with 7 = [n] o ¢ we put D = ¢*(n.0g).
Conversely given D we define 7 : C' — Pic’C = E; P + [n.P — D].
We say that an n-covering has trivial obstruction if it is possible to
represent the given divisor class by a K-rational divisor D. In the cases
n = 2,3 this is the condition for the n-covering to have an equation of
the form described in §1.

We are ready to state our main theorem.

Theorem 2.2. Let E be an elliptic curve defined over a number field
K, with Ok-coefficient Weierstrass equation

(4) Y+ a1y + asy = 2° + asx® + asx + ag.

(i) Assume (hg,2) = 1. If C' is an everywhere locally soluble 2-covering
of E, then C has an Og-coefficient equation

(5) y? 4 (pr® + gz + )y = az* + ba® + ca® +dx + e

with the same invariants cy, cg and A as (4).
(i1) Assume (hg,3) = 1. If C is an everywhere locally soluble 3-covering
of E, then C has an Og-coefficient equation

az +by + 2 Fasr’y+azx? 2+ biay® + by’ 2 F e w2t 4 coy2i +mayz = 0
with the same invariants cq, cg and A as (4).

We give examples in Appendix B to show that the hypothesis on the
class number cannot be removed.

Theorem 2.2 is most fruitfully applied in conjunction with the stan-
dard techniques for computing local and (where possible) global min-
imal Weierstrass equations. In the case K = Q we refer to [4, §3.2].
For K a general number field one should consult the original papers of
Kraus, Connell, Laska and Tate cited there. Tate’s algorithm, which
provides more detailed local information, is also described in [15]. A
discussion of the passage from local to global in this context may be

found in [14, Chapter VIIL,§8].

Remark 2.3. By completing the square, Theorem 2.2(i) implies a
weaker version where oy = oy = ap = 0, but the binary quartic (5) has
invariants 2%cy, 25¢6, 212A for ¢4, cg, A the invariants of (4).

Remark 2.4. Theorem 2.2 constructs a model for C' with exactly the
same invariants as (4). If our models for C' and E have invariants ¢},
cg, A" and ¢y, cg, A, then an apparently weaker version would give that
A’ divides A in Og. In fact the full result may be deduced from this.
Indeed Theorem 1.1 gives ¢} = ¢y, ¢ = \cg and A’ = A2A for some



MINIMISING BINARY QUARTICS AND TERNARY CUBICS 5

A € K*. So once we know A1 € O, we can reduce to the case A = 1
by rescaling, say, the x co-ordinate of our model for C'.

We recall a standard definition.

Definition 2.5. Let F be an elliptic curve defined over a number field
K. The minimal discriminant D,k is the integral ideal of K generated
by all the A(ay, as, as, ay, ag) as

y2 + a1y + asy = 3+ apr® + agx + ag
ranges over all Og-coefficient Weierstrass equations for F.

The minimal discriminant D¢/ of a 2-covering or 3-covering C' with
trivial obstruction is defined in an entirely analogous manner. The
proof of Theorem 2.2 also gives

Theorem 2.6. Let E be an elliptic curve defined over a number field
K. Let C be a 2-covering or 3-covering of E with trivial obstruction.
(i) There is an integral ideal | of K such that Dok = [12'DE/K.

(i1) If C' is everywhere locally soluble then [ = 1.

Remark 2.7. We suspect it may be possible to give a general definition
of the minimal discriminant of a genus one curve C' that agrees with
our definitions in the case C' is equipped with a K-rational divisor D
of degree n = 1,2 or 3. Theorem 2.6(ii) would then be a special case
of the statement that if two genus one curves are everywhere locally
isomorphic then they have the same minimal discriminant.

In order to compare Theorem 2.2 with earlier work on minimisation
we combine it with Kraus’ conditions for the existence of a Weierstrass
equation with given invariants. In the case K = Q these state:

Theorem 2.8. Let ¢y, cq be integers such that A = (¢} — c2)/1728 is a
non-zero integer. Then there exists an integer coefficient Weierstrass
equation with invariants ¢y and cg, if and only if

(i) ords(cg) # 2, and

(1) either cg = —1 (mod 4), orords(cs) > 4 and cg = 0,8 (mod 32).

PRrooOF: This is [9, Proposition 2. In fact the necessity of these con-
ditions is immediate from Tate’s formulaire, i.e. (8) and (9). O

Theorem 2.8 may be used to determine whether a given integer coef-
ficient Weierstrass equation is minimal. Indeed a Weierstrass equation
with invariants ¢, and cg is minimal at p if and only if p~*c, and p~%cq
fail to satisfy Kraus’ conditions.
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Definition 2.9. An integer coefficient binary quartic, respectively ternary
cubic, with invariants ¢, and cg is p-reducible if it is equivalent to an
integer coefficient binary quartic, respectively ternary cubic, with in-
variants p~*c, and p~Sc¢g.

Theorems 2.6 and 2.8 have the following corollary.

Corollary 2.10. Let ¢y and cg be integers such that A = (c3—c2)/1728
is non-zero. The following conditions are necessary and sufficient for
every integer coefficient p-adically soluble binary quartic, respectively
ternary cubic, with invariants c4 and cg to be p-reducible.

p>5  ptles and p°lcs,
p=3  either 3°|cy and 3°|cs, or 3*||cs, 3%||cs and 32| A,
p=2  either 28|cy, 2°|cs and 27% = 0,1 (mod 4),

or 24| ca, 2%]| cs, 22| A and 27%c = —1 (mod 4).

The analogue of Corollary 2.10 for binary quartics without the cross
terms (i.e. putting oy = a3 = ay = 0) is established by Cremona and
Stoll [6, Appendix A] based on earlier work of Birch and Swinnerton-
Dyer [3, Lemmas 3,4,5], [4, Proposition 3.6.1]. Their result is identical
to ours at all primes p # 2, but is changed beyond recognition at
p = 2. The method of Birch and Swinnerton-Dyer has been extended
to quadratic number fields by Cremona and Serf [5], [13]. In the case
of ternary cubics, Corollary 2.10 is a theorem of Cremona and Stoll
(7], although the details of their work in the case p = 2 have yet to be
written down.

The method of Birch and Swinnerton-Dyer, and its generalisations
cited above, require an analysis of a large number of tedious (yet
elementary) special cases, especially when dealing with the primes
p = 2,3. As observed by Cremona and Stoll [6], [7] the results for
p > 5 generalise immediately to an arbitrary number field. In con-
trast for p = 2, 3 it seems necessary to treat each possible value of the
absolute ramification index as a new special case.

Our proof of Theorem 2.2 avoids all these special cases, and so gives a
more general result. Nonetheless the old approach retains the following
advantages:

e It gives efficient algorithms for minimising binary quartics and
ternary cubics. This is useful in the number field method for
2-descent and 3-descent, where we obtain binary quartics and
ternary cubics that initially have very large coefficients. An al-
gorithm for minimising based on the proof of Theorem 2.2 would
need to begin by finding explicit local solutions. It is therefore
unlikely to be more efficient than the existing methods.
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e In the invariant theory method for 2-descent (introduced in [3]
and improved by Cremona in his program mwrank) it is more
efficient to search for binary quartics without the cross terms.
See [6] for a detailed discussion.

e As pointed out by Cremona and Stoll [6], [7] the hypothesis of
local solubility may be weakened to that of solubility over an
unramified extension of each local field. It is not clear how to
match this result using our methods.

It has long been known that Theorem 2.2 is false if one does not
make the hypothesis that C'is everywhere locally soluble. Our favourite
examples are given by the curves

(6) C, : y? = azr* +da? A = 21212
C,: 2+apP+ad®22=0 A=-3%"

One finds that for p > 5 a prime, C}, has Jacobian C, yet C,, is not p-
reducible. Indeed if C,, were p-reducible then one would obtain a model
with good reduction at p. It would follow that C,(Q,) # () which, upon
inspection of (6), is plainly not the case.

It is easy to show that the converse of Theorem 2.6(ii) is false. For
example the binary quartic y? = 32% + 222? — 2% has discriminant
A = 28.3.13% yet is 2-adically insoluble. Similarly the ternary cubic
23 + 2% + 523 = 0 has discriminant A = —24.3°.5% yet is 3-adically
insoluble.

In a sequel to this paper we plan to generalise Theorem 2.2 to n-
coverings of elliptic curves. The proof will be by induction on n start-
ing from the case n = 3 considered here. The case n = 4 should
be compared with Womack’s algorithm [17] for minimising a pair of
homogeneous quadratics in 4 variables.

It is clear that the models obtained in Theorem 2.2 are far from
unique. An interesting problem would be to determine the number of
integral equivalence classes of solutions. Here we say that two models
are integrally equivalent if, in the notation of §1.4, they are related by
an integer coefficient transformation with A a unit.

3. THE PASSAGE FROM LOCAL TO GLOBAL

Let K be a finite extension of Q, with ring of integers O . Theo-
rem 2.2 has the following local analogue.

Theorem 3.1. Let E be an elliptic curve defined over K. Let cy, cg
and A be the invariants of an Ok -coefficient Weierstrass equation for
E. Then
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(i) Every soluble 2-covering C' of E has an O -coefficient equation
y? 4 (pr® + oz + o)y = az* + b + ca® +dr +e

with invariants cg, cg and A.
(ii) Every soluble 3-covering C' of E has an Ok-coefficient equation

az+-by’ +c2® Fagr’y+asx? 2+ bixy® + byt 2 F e w4 coy2i Fmayz = 0
with invariants ¢4, cg and A.

We give the proof of Theorem 3.1 in §4. First we show how to deduce
Theorems 2.2 and 2.6 from Theorem 3.1.

PROOF OF THEOREM 2.6: Let n = 2 or 3. We recall that E is
an elliptic curve defined over a number field K, and that C' is an n-
covering of E with trivial obstruction. We fix a prime p of K and put
Yp = ordy(Deyk ), €p = ordy(Dg k). We aim to show

(1) 7o = €p + 12m for some integer m > 0, and

(i) if C(Kp) # 0 them m = 0.

We choose an Og-coefficient model for C' whose discriminant Aq sat-
isfies ord,(A¢) = 7p, and an Ok-coefficient Weierstrass equation for £
whose discriminant Ap satisfies ord,(Ag) = &,.

To prove (i) we use the formulae of Appendix A to construct an Ok-
coefficient model for F with discriminant A¢. (Notice that for p 16 it
suffices to use Theorem 1.1.) Thus e, < ~,. Moreover Ag = AM2A g for
some A € K*. Putting m = ord,(\) gives v, = €, + 12m as required.

To prove (ii) we use Theorem 3.1 to construct an Oy-coefficient model
for C' with discriminant Ag. In the notation of §1.4 this new model is
related to the old by a transformation [y, rp, Ay|, respectively [pp, Ay
For t € K the following transformations are identical:

n=2 [uprp, Al = [, t7rp, tA]

(7) n=3 [1tp; Ap] = [t pap, L Ap].

We may therefore assume that r, € OF and A, € Mat,(0,). We ap-
proximate r, by a vector r € O} and A, by a matrix A € Mat,,(Of).
Since we can find a finite set of primes, not containing p, that gener-
ates the class group, there exists p € K* with ord,(p) = ordy(p,) yet
ordy (1) > 0 for all p’ # p. Finally the transformation [u, r, A}, respec-
tively [u, A, gives a new O -coefficient model for C' whose discriminant
A satisfies ord,(A) = €,. Thus 7, < ¢, as required. O

Before proceeding with the proof of Theorem 2.2 we need two lemmas
on strong approximation. For A = (a;;) € Mat,,(K,) we put ||A||, =
max1<; j<n | @ij][p-
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Lemma 3.2. Let S be a finite set of primes of K. Suppose given A, €
SL,(Oy) for allp € S and let ¢ > 0. Then there exists A € SL,,(O)
such that ||A — Ayl < e forallp € S.

PROOF: Let E;; be the n x n matrix with entry 1 in the (4, j)-th place,
and zeros elsewhere. Using the identities

) ()6 o)
Lo D6 DED6 )6

one can show (via row and column operations) that SL,,(Oy) is gener-
ated by the matrices I,, + AE;; for A € O, and i # j. So it suffices to
treat the case A, = I,, + A\, &;; with A\, = 0 for all but one prime p in
S. We are done by the Chinese Remainder Theorem. O

and

Lemma 3.3. Let S be a finite set of primes of K and let § € Okg.
Suppose given A, € Mat,,(Oy) with det(A,) =6 for allp € S and let
e > 0. Then there exists A € Mat,(Ok) with det(A) = § such that
|A—Ayllp <e forallpes.

PrOOF: By Lemma 3.2 it suffices to treat the case where each local
matrix A, is diagonal. We must choose A = (a;;). Let b € Ok be an
S-unit which is p-adically small for all p € S. (This is possible by the
finiteness of the class group.) We set a; ;41 =bforall1 <i<n—1. We
then use the Chinese Remainder Theorem to choose diagonal entries
for our matrix A that are p-adically close to the diagonal entries of A,
for all p € S. We put

any = (=1)"(ITi=y @i — 6)/0" .

Setting all remaining entries zero gives the required matrix A. 0

PROOF OF THEOREM 2.2: Let n = 2 or 3. We recall that E is an
elliptic curve defined over a number field K, and C' is an everywhere
locally soluble n-covering of E. In particular C' has trivial obstruction
everywhere locally. It is shown in [11] that the obstruction takes values
in the Brauer group. So by global class field theory, C' has trivial
obstruction. (This is the only stage in the proof where we use the
hypothesis of local solubility at the infinite places. This is only an
issue for n = 2.) Thus C is represented by a binary quartic or a
ternary cubic. We use the transformations of §1.4 to find such a model
with Og-coefficients.
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Let Ac and Ag be the discriminants of our models for C and FE.
By Theorem 1.1 we have Ag = M2Ag for some A € K*. Let S be a
finite set of primes containing a set of generators for the class group,
and all primes p with ord,()\) # 0. Theorem 3.1 tells us that for each
p € S our model for C is equivalent to an Op-coefficient model with
discriminant Ag. In the notation of §1.4 the equivalence is given by a
transformation [py, 7, Ap], respectively [py,, Ay], with p, € KX, 7 € K;:’
and A, € GL,(K,). We are free to make adjustments of the form (7).
Not only does this allow us to assume that r, € Op and A, € Mat,(O,)
for all p € S, but also, since (hx,n) =1, we can find p € K* with

ord forp e S,
ordpln) = {o o orp &S

Our local transformations are now of the form [u, 7y, Ay, respectively
(11, Ap] with 7, € OF and A, € Mat,(O,).

Let Ay = pdet A,. Since Ac = A\?Ap it follows that A/A, is a root
of unity. Making adjustments to r, and A, (say, by rescaling the x
co-ordinate on our local model) we may suppose that A = A, for all
peS. Weput § =A=', Then det A, = 6 for all p € S, and moreover
d € Okg. We use Lemma 3.3 to construct a matrix A € Mat,,(O)
with determinant ¢ that is p-adically close to A, for all p € S. In
the case n = 2 we also approximate the r, for p € S by a vector
r € O%. Finally the transformation [u,r, A], respectively [u, A], gives
a new Og-coefficient model for C' with discriminant Ag. We are done
by Remark 2.4. 0

4. PROOF OF LOCAL RESULTS

We work over a local field K, complete with respect to a discrete
valuation ord : K* — Z. We write R for the ring of integers and 7 for
a uniformiser. The residue field is k = R/mR. We make no restriction
on the characteristic of k (or for that matter K).

4.1. Weierstrass equations. We recall some standard facts about
elliptic curves and Weierstrass equations, many of which we have been
using already. The formulae are taken from [14, Chapter III].

Definition 4.1. An elliptic curve (£,0) defined over K is a smooth
curve of genus one defined over K equipped with a rational point 0 €
E(K).
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We choose z,y € K(E) such that £(2.0) and £(3.0) have bases 1,z
and 1,z,y. Then the 7 elements 1,xz,y, 22, xy, 23,y in the 6 dimen-
sional vector space £(6.0) satisfy a linear dependence relation. Fur-
thermore the coefficients of 3 and y? are non-zero. Rescaling x and y
we deduce that (E,0) has a Weierstrass equation

y2 + a1y + asy = x° + aQ;EQ + asx + ag.
Following Tate’s formulaire we define
b2 = CL% + 4&2

(8) b4 = 2a4 + aias

b@ = a?), + 46L6

b8 = a%aﬁ + 4dasag — arasaqs + a2a£2’, - azzl
and

Cy = b% — 24b4
(9) Cg = —b% + 36b2b4 — 216b6
A = —b2bg — 8b3 — 27b2 + bbb

As noted in §1 these formulae for ¢4, ¢g and A may also be obtained
by specialising the invariants for a binary quartic or ternary cubic.

Definition 4.2. A Weierstrass equation for (F,0) is minimal if ord(A)
is minimal subject to the condition aq, as, as, as, ag € R.

Any two Weierstrass equations for (F,0) are related by making a
substitution of the form
r = uwa'+r
y = udy +ulsx’ +1
and then dividing through by w®. This transformation is denoted
[u; T, s,t]. The coefficients a of the new Weierstrass equation are re-
lated to the coefficients a; of the old via

ua) = a;+2s
u?a, = ap— say + 3r — s*
(10) uday = az+ra;+2t
uld, = a4 — saz+2ray; — (rs+t)ay + 3r? — 2st
ubaly = ag+ras+riag+r® —taz —t* — rta;.

The associated quantities (8) and (9) are transformed by
qu’2 = b2 + 127”

(11) U4bﬁl = b4 + Tbg + 67"2
UGb% = b6 + 27”b4 + T2b2 + 4T3
uSby = bg + 3rbg + 3r°by + r3by + 31t

and ulc) = ¢4, u®cy = cg, ul?A = A.
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4.2. Generalised Weierstrass equations. We generalise the stan-
dard definitions recalled in the last subsection.

Definition 4.3. A generalised elliptic curve (E,0,0’) defined over K is
a smooth curve of genus one defined over K equipped with an ordered
pair of rational points 0,0’ € E(K). The possibility 0 = 0 is allowed.

We choose z,y € K(F) such that £(0 + 0") and £(2.0 + 0') have
bases 1,z and 1,z,y. Then the 8 elements 1, z,y, 22, zy, 23, y?, 2%y in
the 7 dimensional vector space £(4.0+3.0') satisfy a linear dependence
relation. Furthermore the coefficient of 42 is non-zero. We deduce that
(E,0,0') has a generalised Weierstrass equation

y* + arwy + agy = Ex’y + na’ + apr’ + ur + ag.
The invariants c4, ¢g and A are defined as polynomials in &, 1, aq, as,

a3, ay, ag by specialising the invariants for a ternary cubic.

Definition 4.4. A generalised Weierstrass equation for (F,0,0') is
minimal if ord(A) is minimal subject to the condition &, 0, a1, a9, as,
ay, ag € R.

Any two generalised Weierstrass equations for (E,0,0) are related
by making a substitution of the form
r = vwr' +p
y = vdwy +0*wor +1
and then dividing through by v®w?*. This transformation is denoted

[v,w; p,o,7]. The coeflicients of the new generalised Weierstrass equa-
tion are related to the old via

vl = ¢
wy' = n+of
vwal] = a3 —2p§+ 20
viwial, = as+ (2p0 + 7)€ — oag + 3pn — o2
vdw?ah = az— p*+ pag + 27
viwda, = ag+ plpo +27)€ — oag + 2pas — (po + T)aq + 3p*n — 20T
Vwtay = ag+ p*TE+ pay + pPag + pPn — Tag — 2 — prag.

We have arranged that if £ =0, n =1, a; = a; and
[v,w; p,o,7] = [u, 1;7, 5, 1]
then these formalae reduce to those recalled in §4.1.
Proposition 4.5. Let (E,0,0") have generalised Weierstrass equation
(12) Y+ oy + asy = Exy + nad 4 asa® + aux + o
Then (E,0) has Weierstrass equation
(13) Y24+ a XY + a3y = X3+ ap; X% 4+ a4 X + ag
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where
a; = a1
ay = g+ E€as
(14) as = nas— oy
as = mnoay+ Eanas — 2o
ag = nlag — Enarag + Enasay — Eapag.

Moreover the generalised Weierstrass equation (12) and its associated
Weierstrass equation (13) have the same invariants cy, cg and A.

PRrROOF: The required isomorphism is given by

X = nz+&y
Y = Uy+€(—a1y+§xy+nm2+a2x+a4).

The statement concerning invariants is proved by direct calculation.
An alternative proof is given by specialising the formulae of Artin,
Rodriguez-Villegas and Tate recalled in Appendix A. O

Lemma 4.6. If we transform the generalised Weierstrass equation (12)
by [v,w; p, o, 7| then the associated Weierstrass equation (13) is trans-
formed by [u;r, s, t] where

U = vw
r = pn+71€
15 s = e
t = Tn—=2p*n+ (poar — pag + oaz + 207)E — p(po + 7)E2
PROOF: A direct calculation. O

4.3. An algorithm for minimising. We continue to write R for the
ring of integers of K. It is clear that every generalised Weierstrass
equation is equivalent to one with coefficients in R.

Theorem 4.7. A generalised Weierstrass equation with coefficients in
R is minimal if and only if its associated Weierstrass equation is min-
imal.

PRrROOF: It is clear from Proposition 4.5 that if a generalised Weierstrass
equation is not minimal then its associated Weierstrass equation is not
minimal. Explicitly if the generalised Weierstrass equation is minimised
by a transformation [v,w; p, o, 7] then its associated Weierstrass equa-
tion is minimised by [u; 7, s,t] where u,r, s, t are given by (15).

To prove the theorem we give an algorithm for minimising a gen-
eralised Weierstrass equation, subject only to the hypothesis that the
associated Weierstrass equation is not minimal. The basic idea is as
follows. By hypothesis there is a transformation [1;r, s,¢] which when
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applied to the associated Weierstrass equation gives 7 |a; for all i. We
hope to solve (15) for p, o, 7. If successful, we apply the transformation
[1,1; p, 0, 7] to our generalised Weierstrass equation, and thus reduce
to the case 7' | a; for all 7. With a bit of luck we can then use (14)
to show that the a; are divisible by certain powers of 7. Finally we
minimise using either [, 1;0,0,0] or [1,7;0,0, 0].

In practice our algorithm is a hybrid of the above sketch and the
first few steps of Tate’s algorithm: see [15].

Step 1. If 7| £ and 7| n then we repeatedly apply the transformation
(771, 7;0,0,0] until either £ or 5 is a unit.

Step 2. By hypothesis 7| A. So the reduction mod 7 of our generalised
Weierstrass equation has a singular point. By Step 1 either 71 ¢ or
m1n. So the points at infinity on the reduction are smooth. Making
a transformation of the form [1,1;p,0,7] we may suppose that the
singular point is (x,y) = (0,0). Then 7 | as, a4, ag. By (14) we also
have 7| as, a4, ag.

Step 3. By hypothesis 7 |cy = b2 —24b,. But by Step 1 we already have
7 |by = 2a4 + ayaz. Therefore 7|by where

by = a% + dag = 04% + 4oy + 4€as.

Since 7 | a3 we deduce 7 | (a? + 4ay). Making a transformation of the
form [1,1;0, 0,0] we may assume that 7| «; for all i. By (14) we also
have 7 |a; for all 1.

Step 4. By hypothesis there is a transformation [1;r, s, ¢] for which the
transformed quantities a} satisfy 7|} for all 7. Since we already have
m|a; for all 7 it follows by (10) that

m|2s, w|(3r—s?), wl|2t, w|(3r*—2st), =|(rP—1?).

From these we deduce 7 |7, s,t. (Recall that we make no assumption
on the characteristic of k.)

The algorithm now splits into two cases.

Case m1n. Making a transformation [1,7;0,0,0] we may assume that
n = 1. Let r,s,t be as in Step 4. We solve for p, o, 7 satisfying

= p+ET

’
(16) s = o—&p
t = 7—26p% +&(a1po — aop + azo + 207) — E2p(po + T).
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To do this we set (p1,01,71) = (r, s,t) and recursively define

Pn = T — 57-7171

on = S+Epn

T, = t+ 25/0% - f(alpn% — QP + 30, + 20n7'n)
+ gzpn(pnan + Tn)-

Since 7 |r,s,t and 7|y, g, ag it follows by induction that

pusr = o (mod o)
Ons1 = Op (mod 7)
Totl = Tn (mod 71,

Since K is complete! the sequences p,,, 0,, T, converge to p,o,7 € R,
a solution to (16). We apply the transformation [1, 1; p, o, 7] and hence
reduce to the case 7’| a; for all i. Since 7|p, o, 7 we still have m{n and
7| a; for all i. We now use (14) to show that 72|« since 72 |ag, then
72 | ay since 72 | ay, then 72 | a3 since 2 | a3, and so on. In the end
we get 7' |a; for all i. We can then minimise using the transformation
[7,1;0,0,0].

Case 7 |n. By Step 1 we have 71¢. Making a transformation [£~!, 1;0, 0, 0]
we may assume that £ = 1. Let 7, s,t be as in Step 4. Since

a), = ay — sas + 2rag — (rs +t)ay + 3r? — 2st
we have 72| ay. Then using (14) we obtain 7%| g and 73 |ag. Since

CLg = CL3+7’(11+2t
ag = ag+rag+riag+ 1’ —tag —1? —rtay

it follows that 72 |¢.

We apply the transformation [1,1;0,s,7] to our generalised Weier-
strass equation. After this transformation we still have 7|7 and 7| o
for all 7. According to Lemma 4.6 the associated Weierstrass equation
is transformed by [1;7, s, '] where t' = rn+ sag + 2rs. Sincet =t =0
(mod 7?) it follows by (10) and (11) that

mlay, 7w*|as,as, m|as, 7| as
and 7 |b; for all 7. Using (14) we obtain ©%|ay, ag and then
| (ag + as), 7| (as —ag), T asas.
From these we deduce

mlan, mag,as,ay T |ag.

'In fact an approximate solution to (16) would suffice, so we don’t really need
that K is complete.
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Since
2
g = N Qg — N1 + N30y — a0l

it follows that 7°|as. Next using

b6 = a§ + 4@6
bs = alag+ dasag — ajazay + azai — aj

we obtain first 73| a3 and then 7*|ay. By (14) we also have 73| ay and
74| . We can then minimise using the transformation [1,7;0,0,0]. O

Recall that we defined the invariants of a generalised Weierstrass
equation (12) as the invariants of the ternary cubic

(17) y?*z + arwyz + asyz® — (Exy 4+ 02’ + apa®z + auzz® + ag2®) = 0.

A calculation reveals that these are the same as the invariants of the
binary quartic

(18) 3/2 + (—5372 + oz + a322)y = 77:632 + a2x222 + Oz4xz3 + a6z4.

PrROOF OF THEOREM 3.1: Let n = 2 or 3. We recall that E is an
elliptic curve defined over K, with K a finite extension of Q,. We are
given an Og-coefficient Weierstrass equation for £ and a soluble n-
covering C' of E. The structure of n-covering determines a K-rational
divisor class [D] on C. For 0 a rational point on C' the Riemann-Roch
space L(D — (n —1).0) is 1-dimensional. Hence

D~(n—1).0+0

where 0/ is a rational point on C. By Theorem 4.7 the generalised
elliptic curve (C,0,0") has an Og-coefficient generalised Weierstrass
equation with the same invariants as a minimal Weierstrass equation for
E. Then (18) or (17) is a model for the pair (C,[D]) with discriminant
dividing that of our original Weierstrass equation. We are done by the
local analogue of Remark 2.4. O

Remark 4.8. More concretely, a soluble binary quartic, respectively
ternary cubic, may be put in generalised Weierstrass form using (in the
notation of §1.4) a transformation [1,0, A], respectively [1, A]. Indeed
in the case n = 2 we move the rational point to (x : z) = (1: 0). The
resulting binary quartic has no 2 term and is therefore of the form (18).
In the case n = 3 we move the rational point to (z:y:z) = (0:1:0)
and its tangent line to z = 0. The resulting ternary cubic has no terms
y® or zy? and is therefore of the form (17).
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APPENDIX A. FORMULAE FOR THE JACOBIAN

In §1 we defined the invariants c4, ¢ and A of a binary quartic,
respectively a ternary cubic. We now attempt to “work back” through
the formulae (8) and (9) in order to define quantities by, by, bg, bg and
ai,as, as, ay, ag. In the case n = 2, we find

¢y = (af — dapay +4c)*  (mod 24).

We set by = a? — 4apas + 4c¢ and solve for by, bg, bg using (9). Next
we set a; = o and a3 = —agas + ¢. It turns out that we can write
by = ajas + 2a4 where az and a4 are polynomials not involving aj.
Putting ag = (bg — a3)/4 we obtain

a1 = O

a9 = C— (gl

as = O[Qd + Oégb

ay = —dae+bd — (ake + agasc + a3a)

ag = —dace + ad® + b*e — (aice + atae + adac + agasbd)

+ aparbe + aganad.
In the case n = 3, we find
cs = (m® — 4(agey + azbs + biey))®  (mod 24).

We set by = m? — 4(ayco + agbs + bicy) and solve for by, bg, bg using (9).
Next we set a; = m and as = —(agcy + agbs + bycy). It turns out that
we can write by = masz + 2a4 where as and a4 are polynomials not
involving m. Putting ag = (bg — a3)/4 we obtain

a = m

ay = —(ascs + aszbs + bicy)

az = 9abc — (absce + bagey + cagzby) — (agbsey + asbics)
ay = —3(abcicy + acbibs + beasas)

+a(bycs + bicy) + b(agcd + a3ca) + c(azbs + asb?)
+ ascaasbs + biciascs + asbsbicy
ag = —27a*b*c* + 9abc(abscy + cashy + bazey) + 3abc(asbsey + azbics)
— (a®bc3 + b?cal + *ab} + a*cb + b*act + c*ba3)
+ 2<6Lb0102 + bca2a3 + Ca/blb3>(a202 + a3b3 + blcl)
- 3(@()(13()30102 + bca2a3b101 + Caagblbgcg)
— (byey + ages)(abiey + begal)
— (coag + agbsz)(bcias + cazb?)
— (a3b3 -+ blcl)(cagbg -+ ablcg)
— asazbibzcicy — 3abc(agcy + agbs + bycy)m
+ (ab(ascs + bsct) + be(aser + a3by) + ac(agbi + bicy))m
+ (ablbgClcz + b@2a361C2 + Cagagblbg)m
— (abcycy + beagas + cabibz)m? + abem?.
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We record an immediate consequence.

Lemma A.1. Let aqy,aq,as,aq,ag be the quantities associated to a bi-
nary quartic or ternary cubic, as defined above. Then the Weierstrass
equation

(19) y? + a1y 4 asy = 2° + asx® + aux + ag

has the same invariants cy, cg and A as the original binary quartic or
ternary cubic.

These formulae, in the case of a ternary cubic, are due to Artin,
Rodriguez-Villegas and Tate [2]. Moreover they show that (19) is a
formula for the Jacobian that works in arbitrary characteristic. In
characteristic different from 2 and 3 this is already clear from Theo-
rem 1.1.

APPENDIX B. THE CLASS GROUP

We give some examples to show that the hypothesis on the class
number in Theorem 2.2 cannot be removed. First we need two lemmas.

Lemma B.1. Let [K : Q)] < oo with p # 2. Let [u,r, Al with p €
K*,r € K3 and A € GLy(K) be a transformation relating two O-
coefficient binary quartics with good reduction. Then

ord(p) = ord(det A) =0 (mod 2).

PROOF: Since p # 2 we may assume the binary quartics have no
cross terms (i.e. o9 = a3 = ay = 0) and r = 0. Let 7 € K with
ord(m) = 1. Since both binary quartics have good reduction we have
ord(u) = —ord(det A). So without loss of generality

oAl =0, (%)

for some a > b. If a > b then the first binary quartic has singular
reduction above (x : z) = (0: 1). Soa = band ord(u) = ord(det A) =0
(mod 2). O

Lemma B.2. Let [K : Q] < oco. Let [u, A] with p € K* and A €
GL3(K) be a transformation relating two Ok -coefficient ternary cubics
with good reduction. Then

ord(p) = ord(det A) =0 (mod 3).
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PROOF: Let m € K with ord(m) = 1. Since both ternary cubics have
good reduction we have ord(y) = —ord(det A). So without loss of
generality

a

e
[:ua A] — [ﬂ_—a—b—c’ 0 b
0

jan)
o O

]

3

C

]
3

for some a > b > c¢. If b > ¢ then the first ternary cubic has singular
reduction at (z :y:2) = (0:0:1). If a > b = ¢ then the reduction
contains the line x = 0. So a = b = ¢ and ord(u) = ord(det A) = 0
(mod 3). O

Example B.3. Let K = Q(v/—35) and a = (=1 +1/—35)/2. Let E
be the elliptic curve with Weierstrass equation

v =2 — 11z + 14
and C the 2-covering of E with equation
(20) y? = a(2? — a?)(2? — 2az?).

We have Ap = 2° and A¢ = 2°3'2. The prime 3 factors in Ok as
(3) = pp with p? = (). We can minimise (20) locally at p and p by
means of the transformations

3710, <(1) (1)>] and [1,0, <(1) 3(_)1>].

So if C' has an Og-coefficient equation with the same invariants as F,
then (20) and this new equation are related by [u,r, A] with

ordy(p) 1 (mod 2)
ordg(p) 0 (mod 2)

and ordg(p) = 0 (mod 2) for all q¢2,3. Since 2 is inert in K and
hyx = 2 it follows that p is principal, which is a contradiction. Finally
we note that a € (K3)?, so C is everywhere locally soluble.

Example B.4. Let K = Q(v/—23) and o = 2+ +/—23. Let E be the
elliptic curve with Weierstrass equation

v +y=1°4+2v—-23x + 8+ 3v/—23

and C' the 3-covering of E with equation

(21) 32° + a(r?y — x2° + 3y°2) + oy’ = 0.

We have (Ag) = p1p2 and A¢ = a'?Ag where p; = (1 + 64/—23) and
po = (1527 + 446+/—23) are prime ideals. The prime 3 factors in O
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as (3) = pp with p?> = (o). We can minimise (21) locally at p by means
of the transformation

3 0
0 0
001

So if C' has an Og-coefficient equation with the same invariants as F,
then (21) and this new equation are related by [u, A] with

ordp(n) =2 (mod 3)
and ordg(p) =0 (mod 3) for all q # p, py, po. Since p; and p, are prin-

cipal and hy = 3 it follows that p is principal, which is a contradiction.
Finally we note that C' is globally soluble.

0
374, 1 0]
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