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TOM FISHER

Abstract. We prove a theorem on the minimisation of genus one
curves, generalising work of Birch and Swinnerton-Dyer [3], Cre-
mona and Serf [5], [13] and Cremona and Stoll [6], [7]. The advan-
tage of our approach over earlier methods is that we do not need
to treat residue characteristics 2 and 3 as special cases. This work
has applications to descent calculations on elliptic curves and to
the study of the Tate-Shafarevich group.

1. Invariants

Let C be a smooth curve of genus one defined over a field K, and let
D be a K-rational divisor on C of degree n ≥ 2. We write [D] for the
linear equivalence class of D.

1.1. Binary quartics. If n = 2 then we pick x, y ∈ K(C) such
that L(D) and L(2D) have bases 1, x and 1, x, x2, y. The 9 elements
1, x, x2, y, x3, xy, x4, x2y, y2 in the 8 dimensional vector space L(4D)
satisfy a linear dependence relation. Furthermore the coefficient of y2

is non-zero. We deduce that the pair (C, [D]) has an equation

(1) y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e.

If char (K) 6= 2 then we may complete the square so that α0 = α1 =
α2 = 0. The classical invariants of the binary quartic

f(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4

are
I = 12ae− 3bd+ c2,
J = 72ace− 27ad2 − 27b2e+ 9bcd− 2c3.

We define the invariants c4 and c6 of (1) by taking c4 = 24I and c6 = 25J
in the case α0 = α1 = α2 = 0. We then extend to the general case by
demanding that c4 and c6 are preserved by all changes of co-ordinates of
the form y 7→ y+r0x

2+r1x+r2. In addition we put ∆ = (c34−c26)/1728.
We find that c4, c6 and ∆ are primitive integer coefficient polynomials
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in the indeterminates α0, α1, α2, a, b, c, d, e. This enables us define the
invariants c4, c6 and ∆ in arbitrary characteristic. Moreover if we put

(α0, α1, α2, a, b, c, d, e) = (0, a1, a3, 0, 1, a2, a4, a6)

then our expressions for c4, c6 and ∆ reduce to the standard formulae
for an elliptic curve in Weierstrass form (recalled in §4.1). It is con-
venient to rewrite (1) as a homogeneous equation of degree 4, where
x, z, y are assigned degrees 1, 1, 2.

(2) y2 + (α0x
2 + α1xz + α2z

2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4.

By abuse of terminology we refer to (2) as a binary quartic.

1.2. Ternary cubics. If n = 3 then we pick a basis x, y, z for L(D).
Writing down 10 elements in the 9 dimensional vector space L(3D) we
deduce that (C, [D]) is defined by a ternary cubic

F (x, y, z) = ax3 + by3 + cz3 + a2x
2y + a3x

2z
+ b1xy

2 + b3y
2z + c1xz

2 + c2yz
2 +mxyz.

The Hessian of the ternary cubic F (x1, x2, x3) is

H(x1, x2, x3) = −1/2× det

(
∂2F

∂xi∂xj

)3

i,j=1

.

The factor −1/2, although not standard, is a convenient choice. The
Hessian of any linear combination of F and H again belongs to the
pencil spanned by F and H. Following [8], [12], the invariants c4 and
c6 are determined by the relation

H(λF + µH) = 3(c4λ
2µ+ 2c6λµ

2 + c24µ
3)F + (λ3 − 3c4λµ

2 − 2c6µ
3)H.

In addition we put ∆ = (c34 − c26)/1728. We find that c4, c6 and
∆ are primitive integer coefficient polynomials in the indeterminates
a, b, c, a2, a3, b1, b3, c1, c2,m. This enables us to define the invariants c4,
c6 and ∆ in arbitrary characteristic. Moreover if we put

(a, b, c, a2, a3, b1, b3, c1, c2,m) = (−1, 0,−a6, 0,−a2, 0, 1,−a4, a3, a1)

then our expressions for c4, c6 and ∆ reduce to the standard formulae
for an elliptic curve in Weierstrass form (recalled in §4.1).

1.3. Computing the Jacobian. It was observed by Weil [16] that the
invariants of a binary quartic may be used to compute its Jacobian.
The generalisation to ternary cubics may be found in [1].
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Theorem 1.1. Let c4, c6 and ∆ be the invariants of a binary quartic,
respectively a ternary cubic.
(a) The binary quartic, respectively ternary cubic, defines a smooth
curve of genus one if and only if ∆ 6= 0.
(b) If char (K) 6= 2, 3 then the Jacobian has Weierstrass equation

(3) y2 = x3 − 27c4x− 54c6.

Notice that (3) has invariants 64c4, 66c6 and 612∆. As pointed out
in [2] these formulae for the Jacobian can be improved by minimising
at 2 and 3. We give details in Appendix A.

1.4. Equivalence of models.

Definition 1.2. We say that a pair of binary quartics, respectively
ternary cubics, are equivalent if they arise from the same pair (C, [D]).

More concretely, binary quartics are equivalent if they are related by
making a substitution of the form

x = αx′ + βz′

z = γx′ + δz′

y = µ−1y′ + r0x
′2 + r1x

′z′ + r2z
′2

and then multiplying through by µ2. This transformation is denoted
[µ, r, A] where r = (r0, r1, r2) and

A =

(
α β
γ δ

)
.

Similarly, ternary cubics are equivalent if they are related by making a
substitution of the form xy

z

 = A

x′y′
z′


and then multiplying through by µ. This transformation is denoted
[µ,A]. In both cases we put λ = µ detA and find c′4 = λ4c4, c

′
6 = λ6c6

and ∆′ = λ12∆.

2. Statement of global results

Let E be an elliptic curve defined over a number field K with ring of
integers OK and class number hK . We write [n] for the multiplication-
by-n map on E.

Definition 2.1. An n-covering of E is a smooth curve of genus one C
defined over K equipped with a morphism π : C → E defined over K,
such that π = [n] ◦ ψ for some isomorphism ψ : C 'E defined over K.
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Giving C the structure of n-covering of its Jacobian is equivalent
to specifying a K-rational divisor class [D] on C of degree n. Indeed
given an n-covering π : C → E with π = [n] ◦ ψ we put D = ψ∗(n.0E).
Conversely given D we define π : C → Pic0C = E;P 7→ [n.P − D].
We say that an n-covering has trivial obstruction if it is possible to
represent the given divisor class by a K-rational divisor D. In the cases
n = 2, 3 this is the condition for the n-covering to have an equation of
the form described in §1.

We are ready to state our main theorem.

Theorem 2.2. Let E be an elliptic curve defined over a number field
K, with OK-coefficient Weierstrass equation

(4) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(i) Assume (hK , 2) = 1. If C is an everywhere locally soluble 2-covering
of E, then C has an OK-coefficient equation

(5) y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e

with the same invariants c4, c6 and ∆ as (4).
(ii) Assume (hK , 3) = 1. If C is an everywhere locally soluble 3-covering
of E, then C has an OK-coefficient equation

ax3+by3+cz3+a2x
2y+a3x

2z+b1xy
2+b3y

2z+c1xz
2+c2yz

2+mxyz = 0

with the same invariants c4, c6 and ∆ as (4).

We give examples in Appendix B to show that the hypothesis on the
class number cannot be removed.

Theorem 2.2 is most fruitfully applied in conjunction with the stan-
dard techniques for computing local and (where possible) global min-
imal Weierstrass equations. In the case K = Q we refer to [4, §3.2].
For K a general number field one should consult the original papers of
Kraus, Connell, Laska and Tate cited there. Tate’s algorithm, which
provides more detailed local information, is also described in [15]. A
discussion of the passage from local to global in this context may be
found in [14, Chapter VIII,§8].

Remark 2.3. By completing the square, Theorem 2.2(i) implies a
weaker version where α0 = α1 = α2 = 0, but the binary quartic (5) has
invariants 24c4, 26c6, 212∆ for c4, c6, ∆ the invariants of (4).

Remark 2.4. Theorem 2.2 constructs a model for C with exactly the
same invariants as (4). If our models for C and E have invariants c′4,
c′6, ∆′ and c4, c6, ∆, then an apparently weaker version would give that
∆′ divides ∆ in OK . In fact the full result may be deduced from this.
Indeed Theorem 1.1 gives c′4 = λ4c4, c

′
6 = λ6c6 and ∆′ = λ12∆ for some
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λ ∈ K×. So once we know λ−1 ∈ OK , we can reduce to the case λ = 1
by rescaling, say, the x co-ordinate of our model for C.

We recall a standard definition.

Definition 2.5. Let E be an elliptic curve defined over a number field
K. The minimal discriminant DE/K is the integral ideal of K generated
by all the ∆(a1, a2, a3, a4, a6) as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

ranges over all OK-coefficient Weierstrass equations for E.

The minimal discriminant DC/K of a 2-covering or 3-covering C with
trivial obstruction is defined in an entirely analogous manner. The
proof of Theorem 2.2 also gives

Theorem 2.6. Let E be an elliptic curve defined over a number field
K. Let C be a 2-covering or 3-covering of E with trivial obstruction.
(i) There is an integral ideal l of K such that DC/K = l12DE/K.
(ii) If C is everywhere locally soluble then l = 1.

Remark 2.7. We suspect it may be possible to give a general definition
of the minimal discriminant of a genus one curve C that agrees with
our definitions in the case C is equipped with a K-rational divisor D
of degree n = 1, 2 or 3. Theorem 2.6(ii) would then be a special case
of the statement that if two genus one curves are everywhere locally
isomorphic then they have the same minimal discriminant.

In order to compare Theorem 2.2 with earlier work on minimisation
we combine it with Kraus’ conditions for the existence of a Weierstrass
equation with given invariants. In the case K = Q these state:

Theorem 2.8. Let c4, c6 be integers such that ∆ = (c34− c26)/1728 is a
non-zero integer. Then there exists an integer coefficient Weierstrass
equation with invariants c4 and c6, if and only if

(i) ord3(c6) 6= 2, and
(ii) either c6 ≡ −1 (mod 4), or ord2(c4) ≥ 4 and c6 ≡ 0, 8 (mod 32).

Proof: This is [9, Proposition 2]. In fact the necessity of these con-
ditions is immediate from Tate’s formulaire, i.e. (8) and (9). �

Theorem 2.8 may be used to determine whether a given integer coef-
ficient Weierstrass equation is minimal. Indeed a Weierstrass equation
with invariants c4 and c6 is minimal at p if and only if p−4c4 and p−6c6
fail to satisfy Kraus’ conditions.
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Definition 2.9. An integer coefficient binary quartic, respectively ternary
cubic, with invariants c4 and c6 is p-reducible if it is equivalent to an
integer coefficient binary quartic, respectively ternary cubic, with in-
variants p−4c4 and p−6c6.

Theorems 2.6 and 2.8 have the following corollary.

Corollary 2.10. Let c4 and c6 be integers such that ∆ = (c34−c26)/1728
is non-zero. The following conditions are necessary and sufficient for
every integer coefficient p-adically soluble binary quartic, respectively
ternary cubic, with invariants c4 and c6 to be p-reducible.

p ≥ 5 p4 |c4 and p6 |c6,
p = 3 either 35 |c4 and 39 |c6, or 34 ||c4, 36 ||c6 and 312 |∆,
p = 2 either 28 |c4, 29 |c6 and 2−9c6 ≡ 0, 1 (mod 4),

or 24 ||c4, 26 ||c6, 212 |∆ and 2−6c6 ≡ −1 (mod 4).

The analogue of Corollary 2.10 for binary quartics without the cross
terms (i.e. putting α0 = α1 = α2 = 0) is established by Cremona and
Stoll [6, Appendix A] based on earlier work of Birch and Swinnerton-
Dyer [3, Lemmas 3,4,5], [4, Proposition 3.6.1]. Their result is identical
to ours at all primes p 6= 2, but is changed beyond recognition at
p = 2. The method of Birch and Swinnerton-Dyer has been extended
to quadratic number fields by Cremona and Serf [5], [13]. In the case
of ternary cubics, Corollary 2.10 is a theorem of Cremona and Stoll
[7], although the details of their work in the case p = 2 have yet to be
written down.

The method of Birch and Swinnerton-Dyer, and its generalisations
cited above, require an analysis of a large number of tedious (yet
elementary) special cases, especially when dealing with the primes
p = 2, 3. As observed by Cremona and Stoll [6], [7] the results for
p ≥ 5 generalise immediately to an arbitrary number field. In con-
trast for p = 2, 3 it seems necessary to treat each possible value of the
absolute ramification index as a new special case.

Our proof of Theorem 2.2 avoids all these special cases, and so gives a
more general result. Nonetheless the old approach retains the following
advantages:

• It gives efficient algorithms for minimising binary quartics and
ternary cubics. This is useful in the number field method for
2-descent and 3-descent, where we obtain binary quartics and
ternary cubics that initially have very large coefficients. An al-
gorithm for minimising based on the proof of Theorem 2.2 would
need to begin by finding explicit local solutions. It is therefore
unlikely to be more efficient than the existing methods.
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• In the invariant theory method for 2-descent (introduced in [3]
and improved by Cremona in his program mwrank) it is more
efficient to search for binary quartics without the cross terms.
See [6] for a detailed discussion.

• As pointed out by Cremona and Stoll [6], [7] the hypothesis of
local solubility may be weakened to that of solubility over an
unramified extension of each local field. It is not clear how to
match this result using our methods.

It has long been known that Theorem 2.2 is false if one does not
make the hypothesis that C is everywhere locally soluble. Our favourite
examples are given by the curves

(6)
Ca : y2 = ax4 + a3 ∆ = 212a12

Ca : x3 + ay3 + a2z3 = 0 ∆ = −39a12.

One finds that for p ≥ 5 a prime, Cp has Jacobian C1, yet Cp is not p-
reducible. Indeed if Cp were p-reducible then one would obtain a model
with good reduction at p. It would follow that Cp(Qp) 6= ∅ which, upon
inspection of (6), is plainly not the case.

It is easy to show that the converse of Theorem 2.6(ii) is false. For
example the binary quartic y2 = 3x4 + x2z2 − z4 has discriminant
∆ = 28.3.132 yet is 2-adically insoluble. Similarly the ternary cubic
x3 + 2y3 + 5z3 = 0 has discriminant ∆ = −24.39.54 yet is 3-adically
insoluble.

In a sequel to this paper we plan to generalise Theorem 2.2 to n-
coverings of elliptic curves. The proof will be by induction on n start-
ing from the case n = 3 considered here. The case n = 4 should
be compared with Womack’s algorithm [17] for minimising a pair of
homogeneous quadratics in 4 variables.

It is clear that the models obtained in Theorem 2.2 are far from
unique. An interesting problem would be to determine the number of
integral equivalence classes of solutions. Here we say that two models
are integrally equivalent if, in the notation of §1.4, they are related by
an integer coefficient transformation with λ a unit.

3. The passage from local to global

Let K be a finite extension of Qp with ring of integers OK . Theo-
rem 2.2 has the following local analogue.

Theorem 3.1. Let E be an elliptic curve defined over K. Let c4, c6
and ∆ be the invariants of an OK-coefficient Weierstrass equation for
E. Then
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(i) Every soluble 2-covering C of E has an OK-coefficient equation

y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e

with invariants c4, c6 and ∆.
(ii) Every soluble 3-covering C of E has an OK-coefficient equation

ax3+by3+cz3+a2x
2y+a3x

2z+b1xy
2+b3y

2z+c1xz
2+c2yz

2+mxyz = 0

with invariants c4, c6 and ∆.

We give the proof of Theorem 3.1 in §4. First we show how to deduce
Theorems 2.2 and 2.6 from Theorem 3.1.

Proof of Theorem 2.6: Let n = 2 or 3. We recall that E is
an elliptic curve defined over a number field K, and that C is an n-
covering of E with trivial obstruction. We fix a prime p of K and put
γp = ordp(DC/K), εp = ordp(DE/K). We aim to show

(i) γp = εp + 12m for some integer m ≥ 0, and
(ii) if C(Kp) 6= ∅ them m = 0.

We choose an OK-coefficient model for C whose discriminant ∆C sat-
isfies ordp(∆C) = γp, and an OK-coefficient Weierstrass equation for E
whose discriminant ∆E satisfies ordp(∆E) = εp.

To prove (i) we use the formulae of Appendix A to construct an OK-
coefficient model for E with discriminant ∆C . (Notice that for p - 6 it
suffices to use Theorem 1.1.) Thus εp ≤ γp. Moreover ∆C = λ12∆E for
some λ ∈ K×. Putting m = ordp(λ) gives γp = εp + 12m as required.

To prove (ii) we use Theorem 3.1 to construct anOp-coefficient model
for C with discriminant ∆E. In the notation of §1.4 this new model is
related to the old by a transformation [µp, rp, Ap], respectively [µp, Ap].
For t ∈ K×

p the following transformations are identical:

(7)
n = 2 [µp, rp, Ap] = [t−2µp, t

2rp, tAp]

n = 3 [µp, Ap] = [t−3µp, tAp].

We may therefore assume that rp ∈ O3
p and Ap ∈ Matn(Op). We ap-

proximate rp by a vector r ∈ O3
K and Ap by a matrix A ∈ Matn(OK).

Since we can find a finite set of primes, not containing p, that gener-
ates the class group, there exists µ ∈ K× with ordp(µ) = ordp(µp) yet
ordp′(µ) ≥ 0 for all p′ 6= p. Finally the transformation [µ, r, A], respec-
tively [µ,A], gives a newOK-coefficient model for C whose discriminant
∆ satisfies ordp(∆) = εp. Thus γp ≤ εp as required. �

Before proceeding with the proof of Theorem 2.2 we need two lemmas
on strong approximation. For A = (aij) ∈ Matn(Kp) we put ||A||p =
max1≤i,j≤n ||aij||p.



MINIMISING BINARY QUARTICS AND TERNARY CUBICS 9

Lemma 3.2. Let S be a finite set of primes of K. Suppose given Ap ∈
SLn(Op) for all p ∈ S and let ε > 0. Then there exists A ∈ SLn(OK)
such that ||A− Ap||p < ε for all p ∈ S.

Proof: Let Eij be the n×n matrix with entry 1 in the (i, j)-th place,
and zeros elsewhere. Using the identities(

1 1
0 1

) (
1 0
−1 1

) (
1 1
0 1

)
=

(
0 1
−1 0

)
and (

1 0
−α−1 1

) (
1 α− 1
0 1

) (
1 0
1 1

) (
1 α−1 − 1
0 1

)
=

(
α 0
0 α−1

)
one can show (via row and column operations) that SLn(Op) is gener-
ated by the matrices In + λEij for λ ∈ Op and i 6= j. So it suffices to
treat the case Ap = In + λpEij with λp = 0 for all but one prime p in
S. We are done by the Chinese Remainder Theorem. �

Lemma 3.3. Let S be a finite set of primes of K and let δ ∈ OK.
Suppose given Ap ∈ Matn(Op) with det(Ap) = δ for all p ∈ S and let
ε > 0. Then there exists A ∈ Matn(OK) with det(A) = δ such that
||A− Ap||p < ε for all p ∈ S.

Proof: By Lemma 3.2 it suffices to treat the case where each local
matrix Ap is diagonal. We must choose A = (aij). Let b ∈ OK be an
S-unit which is p-adically small for all p ∈ S. (This is possible by the
finiteness of the class group.) We set ai i+1 = b for all 1 ≤ i ≤ n−1. We
then use the Chinese Remainder Theorem to choose diagonal entries
for our matrix A that are p-adically close to the diagonal entries of Ap

for all p ∈ S. We put

an1 = (−1)n(
∏n

i=1 aii − δ)/bn−1.

Setting all remaining entries zero gives the required matrix A. �

Proof of Theorem 2.2: Let n = 2 or 3. We recall that E is an
elliptic curve defined over a number field K, and C is an everywhere
locally soluble n-covering of E. In particular C has trivial obstruction
everywhere locally. It is shown in [11] that the obstruction takes values
in the Brauer group. So by global class field theory, C has trivial
obstruction. (This is the only stage in the proof where we use the
hypothesis of local solubility at the infinite places. This is only an
issue for n = 2.) Thus C is represented by a binary quartic or a
ternary cubic. We use the transformations of §1.4 to find such a model
with OK-coefficients.
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Let ∆C and ∆E be the discriminants of our models for C and E.
By Theorem 1.1 we have ∆C = λ12∆E for some λ ∈ K×. Let S be a
finite set of primes containing a set of generators for the class group,
and all primes p with ordp(λ) 6= 0. Theorem 3.1 tells us that for each
p ∈ S our model for C is equivalent to an Op-coefficient model with
discriminant ∆E. In the notation of §1.4 the equivalence is given by a
transformation [µp, rp, Ap], respectively [µp, Ap], with µp ∈ K×

p , rp ∈ K3
p

and Ap ∈ GLn(Kp). We are free to make adjustments of the form (7).
Not only does this allow us to assume that rp ∈ O3

p and Ap ∈ Matn(Op)
for all p ∈ S, but also, since (hK , n) = 1, we can find µ ∈ K× with

ordp(µ) =

{
ordp(µp) for p ∈ S,
0 for p 6∈ S.

Our local transformations are now of the form [µ, rp, Ap], respectively
[µ,Ap] with rp ∈ O3

p and Ap ∈ Matn(Op).
Let λp = µ detAp. Since ∆C = λ12

p ∆E it follows that λ/λp is a root
of unity. Making adjustments to rp and Ap (say, by rescaling the x
co-ordinate on our local model) we may suppose that λ = λp for all
p ∈ S. We put δ = λµ−1. Then detAp = δ for all p ∈ S, and moreover
δ ∈ OK . We use Lemma 3.3 to construct a matrix A ∈ Matn(OK)
with determinant δ that is p-adically close to Ap for all p ∈ S. In
the case n = 2 we also approximate the rp for p ∈ S by a vector
r ∈ O3

K . Finally the transformation [µ, r, A], respectively [µ,A], gives
a new OK-coefficient model for C with discriminant ∆E. We are done
by Remark 2.4. �

4. Proof of local results

We work over a local field K, complete with respect to a discrete
valuation ord : K× → Z. We write R for the ring of integers and π for
a uniformiser. The residue field is k = R/πR. We make no restriction
on the characteristic of k (or for that matter K).

4.1. Weierstrass equations. We recall some standard facts about
elliptic curves and Weierstrass equations, many of which we have been
using already. The formulae are taken from [14, Chapter III].

Definition 4.1. An elliptic curve (E, 0) defined over K is a smooth
curve of genus one defined over K equipped with a rational point 0 ∈
E(K).
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We choose x, y ∈ K(E) such that L(2.0) and L(3.0) have bases 1, x
and 1, x, y. Then the 7 elements 1, x, y, x2, xy, x3, y2 in the 6 dimen-
sional vector space L(6.0) satisfy a linear dependence relation. Fur-
thermore the coefficients of x3 and y2 are non-zero. Rescaling x and y
we deduce that (E, 0) has a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Following Tate’s formulaire we define

(8)

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and

(9)
c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

As noted in §1 these formulae for c4, c6 and ∆ may also be obtained
by specialising the invariants for a binary quartic or ternary cubic.

Definition 4.2. A Weierstrass equation for (E, 0) is minimal if ord(∆)
is minimal subject to the condition a1, a2, a3, a4, a6 ∈ R.

Any two Weierstrass equations for (E, 0) are related by making a
substitution of the form

x = u2x′ + r
y = u3y′ + u2sx′ + t

and then dividing through by u6. This transformation is denoted
[u; r, s, t]. The coefficients a′i of the new Weierstrass equation are re-
lated to the coefficients ai of the old via

(10)

ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (rs+ t)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

The associated quantities (8) and (9) are transformed by

(11)

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

and u4c′4 = c4, u
6c′6 = c6, u

12∆′ = ∆.
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4.2. Generalised Weierstrass equations. We generalise the stan-
dard definitions recalled in the last subsection.

Definition 4.3. A generalised elliptic curve (E, 0, 0′) defined over K is
a smooth curve of genus one defined over K equipped with an ordered
pair of rational points 0, 0′ ∈ E(K). The possibility 0 = 0′ is allowed.

We choose x, y ∈ K(E) such that L(0 + 0′) and L(2.0 + 0′) have
bases 1, x and 1, x, y. Then the 8 elements 1, x, y, x2, xy, x3, y2, x2y in
the 7 dimensional vector space L(4.0+3.0′) satisfy a linear dependence
relation. Furthermore the coefficient of y2 is non-zero. We deduce that
(E, 0, 0′) has a generalised Weierstrass equation

y2 + α1xy + α3y = ξx2y + ηx3 + α2x
2 + α4x+ α6.

The invariants c4, c6 and ∆ are defined as polynomials in ξ, η, α1, α2,
α3, α4, α6 by specialising the invariants for a ternary cubic.

Definition 4.4. A generalised Weierstrass equation for (E, 0, 0′) is
minimal if ord(∆) is minimal subject to the condition ξ, η, α1, α2, α3,
α4, α6 ∈ R.

Any two generalised Weierstrass equations for (E, 0, 0′) are related
by making a substitution of the form

x = v2wx′ + ρ
y = v3w2y′ + v2wσx′ + τ

and then dividing through by v6w4. This transformation is denoted
[v, w; ρ, σ, τ ]. The coefficients of the new generalised Weierstrass equa-
tion are related to the old via

v−1ξ′ = ξ
wη′ = η + σξ

vwa′1 = α1 − 2ρξ + 2σ
v2w2α′2 = α2 + (2ρσ + τ)ξ − σα1 + 3ρη − σ2

v3w2α′3 = α3 − ρ2ξ + ρα1 + 2τ
v4w3α′4 = α4 + ρ(ρσ + 2τ)ξ − σα3 + 2ρα2 − (ρσ + τ)α1 + 3ρ2η − 2στ
v6w4α′6 = α6 + ρ2τξ + ρα4 + ρ2α2 + ρ3η − τα3 − τ2 − ρτα1.

We have arranged that if ξ = 0, η = 1, αi = ai and

[v, w; ρ, σ, τ ] = [u, 1; r, s, t]

then these formalae reduce to those recalled in §4.1.

Proposition 4.5. Let (E, 0, 0′) have generalised Weierstrass equation

(12) y2 + α1xy + α3y = ξx2y + ηx3 + α2x
2 + α4x+ α6.

Then (E, 0) has Weierstrass equation

(13) Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6
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where

(14)

a1 = α1

a2 = α2 + ξα3

a3 = ηα3 − ξα4

a4 = ηα4 + ξα2α3 − ξ2α6

a6 = η2α6 − ξηα1α6 + ξηα3α4 − ξ2α2α6.

Moreover the generalised Weierstrass equation (12) and its associated
Weierstrass equation (13) have the same invariants c4, c6 and ∆.

Proof: The required isomorphism is given by

X = ηx+ ξy
Y = ηy + ξ(−α1y + ξxy + ηx2 + α2x+ α4).

The statement concerning invariants is proved by direct calculation.
An alternative proof is given by specialising the formulae of Artin,
Rodriguez-Villegas and Tate recalled in Appendix A. �

Lemma 4.6. If we transform the generalised Weierstrass equation (12)
by [v, w; ρ, σ, τ ] then the associated Weierstrass equation (13) is trans-
formed by [u; r, s, t] where

(15)

u = vw
r = ρη + τξ
s = σ − ρξ
t = τη − 2ρ2ξη + (ρσα1 − ρα2 + σα3 + 2στ)ξ − ρ(ρσ + τ)ξ2.

Proof: A direct calculation. �

4.3. An algorithm for minimising. We continue to write R for the
ring of integers of K. It is clear that every generalised Weierstrass
equation is equivalent to one with coefficients in R.

Theorem 4.7. A generalised Weierstrass equation with coefficients in
R is minimal if and only if its associated Weierstrass equation is min-
imal.

Proof: It is clear from Proposition 4.5 that if a generalised Weierstrass
equation is not minimal then its associated Weierstrass equation is not
minimal. Explicitly if the generalised Weierstrass equation is minimised
by a transformation [v, w; ρ, σ, τ ] then its associated Weierstrass equa-
tion is minimised by [u; r, s, t] where u, r, s, t are given by (15).

To prove the theorem we give an algorithm for minimising a gen-
eralised Weierstrass equation, subject only to the hypothesis that the
associated Weierstrass equation is not minimal. The basic idea is as
follows. By hypothesis there is a transformation [1; r, s, t] which when
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applied to the associated Weierstrass equation gives πi |ai for all i. We
hope to solve (15) for ρ, σ, τ . If successful, we apply the transformation
[1, 1; ρ, σ, τ ] to our generalised Weierstrass equation, and thus reduce
to the case πi | ai for all i. With a bit of luck we can then use (14)
to show that the αi are divisible by certain powers of π. Finally we
minimise using either [π, 1; 0, 0, 0] or [1, π; 0, 0, 0].

In practice our algorithm is a hybrid of the above sketch and the
first few steps of Tate’s algorithm: see [15].

Step 1. If π | ξ and π | η then we repeatedly apply the transformation
[π−1, π; 0, 0, 0] until either ξ or η is a unit.

Step 2. By hypothesis π |∆. So the reduction mod π of our generalised
Weierstrass equation has a singular point. By Step 1 either π - ξ or
π - η. So the points at infinity on the reduction are smooth. Making
a transformation of the form [1, 1; ρ, 0, τ ] we may suppose that the
singular point is (x, y) = (0, 0). Then π | α3, α4, α6. By (14) we also
have π |a3, a4, a6.

Step 3. By hypothesis π |c4 = b22−24b4. But by Step 1 we already have
π |b4 = 2a4 + a1a3. Therefore π |b2 where

b2 = a2
1 + 4a2 = α2

1 + 4α2 + 4ξα3.

Since π |α3 we deduce π | (α2
1 + 4α2). Making a transformation of the

form [1, 1; 0, σ, 0] we may assume that π |αi for all i. By (14) we also
have π |ai for all i.

Step 4. By hypothesis there is a transformation [1; r, s, t] for which the
transformed quantities a′i satisfy πi |a′i for all i. Since we already have
π |ai for all i it follows by (10) that

π |2s, π |(3r − s2), π |2t, π |(3r2 − 2st), π |(r3 − t2).

From these we deduce π | r, s, t. (Recall that we make no assumption
on the characteristic of k.)

The algorithm now splits into two cases.

Case π - η. Making a transformation [1, η; 0, 0, 0] we may assume that
η = 1. Let r, s, t be as in Step 4. We solve for ρ, σ, τ satisfying

(16)
r = ρ+ ξτ
s = σ − ξρ
t = τ − 2ξρ2 + ξ(α1ρσ − α2ρ+ α3σ + 2στ)− ξ2ρ(ρσ + τ).
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To do this we set (ρ1, σ1, τ1) = (r, s, t) and recursively define

ρn = r − ξτn−1

σn = s+ ξρn

τn = t+ 2ξρ2
n − ξ(α1ρnσn − α2ρn + α3σn + 2σnτn)

+ ξ2ρn(ρnσn + τn).

Since π |r, s, t and π |α1, α2, α3 it follows by induction that

ρn+1 ≡ ρn (mod πn)
σn+1 ≡ σn (mod πn)
τn+1 ≡ τn (mod πn+1).

Since K is complete1 the sequences ρn, σn, τn converge to ρ, σ, τ ∈ R,
a solution to (16). We apply the transformation [1, 1; ρ, σ, τ ] and hence
reduce to the case πi |ai for all i. Since π |ρ, σ, τ we still have π -η and
π |αi for all i. We now use (14) to show that π2 |α6 since π2 |a6, then
π2 | α4 since π2 | a4, then π2 | α3 since π2 | a3, and so on. In the end
we get πi |αi for all i. We can then minimise using the transformation
[π, 1; 0, 0, 0].

Case π |η. By Step 1 we have π -ξ. Making a transformation [ξ−1, 1; 0, 0, 0]
we may assume that ξ = 1. Let r, s, t be as in Step 4. Since

a′4 = a4 − sa3 + 2ra2 − (rs+ t)a1 + 3r2 − 2st

we have π2 |a4. Then using (14) we obtain π2 |α6 and π3 |a6. Since

a′3 = a3 + ra1 + 2t
a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

it follows that π2 | t.
We apply the transformation [1, 1; 0, s, r] to our generalised Weier-

strass equation. After this transformation we still have π |η and π |αi

for all i. According to Lemma 4.6 the associated Weierstrass equation
is transformed by [1; r, s, t′] where t′ = rη+ sα3 + 2rs. Since t ≡ t′ ≡ 0
(mod π2) it follows by (10) and (11) that

π |a1, π2 |a2, a3, π3 |a4, π4 |a6

and πi |bi for all i. Using (14) we obtain π2 |α4, α6 and then

π2 |(α2 + α3), π3 |(α2α3 − α6), π4 |α2α6.

From these we deduce

π |α1, π2 |α2, α3, α4, π3 |α6.

1In fact an approximate solution to (16) would suffice, so we don’t really need
that K is complete.
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Since

a6 = η2α6 − ηα1α6 + ηα3α4 − α2α6

it follows that π5 |a6. Next using

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

we obtain first π3 |a3 and then π4 |a4. By (14) we also have π3 |α4 and
π4 |α6. We can then minimise using the transformation [1, π; 0, 0, 0]. �

Recall that we defined the invariants of a generalised Weierstrass
equation (12) as the invariants of the ternary cubic

(17) y2z+α1xyz+α3yz
2− (ξx2y+ ηx3 +α2x

2z+α4xz
2 +α6z

3) = 0.

A calculation reveals that these are the same as the invariants of the
binary quartic

(18) y2 + (−ξx2 + α1xz + α3z
2)y = ηx3z + α2x

2z2 + α4xz
3 + α6z

4.

Proof of Theorem 3.1: Let n = 2 or 3. We recall that E is an
elliptic curve defined over K, with K a finite extension of Qp. We are
given an OK-coefficient Weierstrass equation for E and a soluble n-
covering C of E. The structure of n-covering determines a K-rational
divisor class [D] on C. For 0 a rational point on C the Riemann-Roch
space L(D − (n− 1).0) is 1-dimensional. Hence

D ∼ (n− 1).0 + 0′

where 0′ is a rational point on C. By Theorem 4.7 the generalised
elliptic curve (C, 0, 0′) has an OK-coefficient generalised Weierstrass
equation with the same invariants as a minimal Weierstrass equation for
E. Then (18) or (17) is a model for the pair (C, [D]) with discriminant
dividing that of our original Weierstrass equation. We are done by the
local analogue of Remark 2.4. �

Remark 4.8. More concretely, a soluble binary quartic, respectively
ternary cubic, may be put in generalised Weierstrass form using (in the
notation of §1.4) a transformation [1, 0, A], respectively [1, A]. Indeed
in the case n = 2 we move the rational point to (x : z) = (1 : 0). The
resulting binary quartic has no x4 term and is therefore of the form (18).
In the case n = 3 we move the rational point to (x : y : z) = (0 : 1 : 0)
and its tangent line to z = 0. The resulting ternary cubic has no terms
y3 or xy2 and is therefore of the form (17).
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Appendix A. Formulae for the Jacobian

In §1 we defined the invariants c4, c6 and ∆ of a binary quartic,
respectively a ternary cubic. We now attempt to “work back” through
the formulae (8) and (9) in order to define quantities b2, b4, b6, b8 and
a1, a2, a3, a4, a6. In the case n = 2, we find

c4 ≡ (α2
1 − 4α0α2 + 4c)2 (mod 24).

We set b2 = α2
1 − 4α0α2 + 4c and solve for b4, b6, b8 using (9). Next

we set a1 = α1 and a2 = −α0α2 + c. It turns out that we can write
b4 = α1a3 + 2a4 where a3 and a4 are polynomials not involving α1.
Putting a6 = (b6 − a2

3)/4 we obtain

a1 = α1

a2 = c− α0α2

a3 = α0d+ α2b
a4 = −4ae+ bd− (α2

0e+ α0α2c+ α2
2a)

a6 = −4ace+ ad2 + b2e− (α2
0ce+ α2

1ae+ α2
2ac+ α0α2bd)

+α0α1be+ α1α2ad.

In the case n = 3, we find

c4 ≡ (m2 − 4(a2c2 + a3b3 + b1c1))
2 (mod 24).

We set b2 = m2− 4(a2c2 + a3b3 + b1c1) and solve for b4, b6, b8 using (9).
Next we set a1 = m and a2 = −(a2c2 + a3b3 + b1c1). It turns out that
we can write b4 = ma3 + 2a4 where a3 and a4 are polynomials not
involving m. Putting a6 = (b6 − a2

3)/4 we obtain

a1 = m

a2 = −(a2c2 + a3b3 + b1c1)

a3 = 9abc− (ab3c2 + ba3c1 + ca2b1)− (a2b3c1 + a3b1c2)

a4 = −3(abc1c2 + acb1b3 + bca2a3)
+ a(b1c

2
2 + b23c1) + b(a2c

2
1 + a2

3c2) + c(a2
2b3 + a3b

2
1)

+ a2c2a3b3 + b1c1a2c2 + a3b3b1c1
a6 = −27a2b2c2 + 9abc(ab3c2 + ca2b1 + ba3c1) + 3abc(a2b3c1 + a3b1c2)

− (a2bc32 + b2ca3
3 + c2ab31 + a2cb33 + b2ac31 + c2ba3

2)
+ 2(abc1c2 + bca2a3 + cab1b3)(a2c2 + a3b3 + b1c1)
− 3(aba3b3c1c2 + bca2a3b1c1 + caa2b1b3c2)
− (b1c1 + a2c2)(ab

2
3c1 + bc2a

2
3)

− (c2a2 + a3b3)(bc
2
1a2 + ca3b

2
1)

− (a3b3 + b1c1)(ca
2
2b3 + ab1c

2
2)

− a2a3b1b3c1c2 − 3abc(a2c2 + a3b3 + b1c1)m
+ (ab(a3c

2
2 + b3c

2
1) + bc(a2

2c1 + a2
3b1) + ac(a2b

2
3 + b21c2))m

+ (ab1b3c1c2 + ba2a3c1c2 + ca2a3b1b3)m
− (abc1c2 + bca2a3 + cab1b3)m

2 + abcm3.
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We record an immediate consequence.

Lemma A.1. Let a1, a2, a3, a4, a6 be the quantities associated to a bi-
nary quartic or ternary cubic, as defined above. Then the Weierstrass
equation

(19) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

has the same invariants c4, c6 and ∆ as the original binary quartic or
ternary cubic.

These formulae, in the case of a ternary cubic, are due to Artin,
Rodriguez-Villegas and Tate [2]. Moreover they show that (19) is a
formula for the Jacobian that works in arbitrary characteristic. In
characteristic different from 2 and 3 this is already clear from Theo-
rem 1.1.

Appendix B. The class group

We give some examples to show that the hypothesis on the class
number in Theorem 2.2 cannot be removed. First we need two lemmas.

Lemma B.1. Let [K : Qp] < ∞ with p 6= 2. Let [µ, r, A] with µ ∈
K×, r ∈ K3 and A ∈ GL2(K) be a transformation relating two OK-
coefficient binary quartics with good reduction. Then

ord(µ) ≡ ord(detA) ≡ 0 (mod 2).

Proof: Since p 6= 2 we may assume the binary quartics have no
cross terms (i.e. α0 = α1 = α2 = 0) and r = 0. Let π ∈ K with
ord(π) = 1. Since both binary quartics have good reduction we have
ord(µ) = − ord(detA). So without loss of generality

[µ, r, A] = [π−a−b, 0,

(
πa 0
0 πb

)
]

for some a ≥ b. If a > b then the first binary quartic has singular
reduction above (x : z) = (0 : 1). So a = b and ord(µ) ≡ ord(detA) ≡ 0
(mod 2). �

Lemma B.2. Let [K : Qp] < ∞. Let [µ,A] with µ ∈ K× and A ∈
GL3(K) be a transformation relating two OK-coefficient ternary cubics
with good reduction. Then

ord(µ) ≡ ord(detA) ≡ 0 (mod 3).
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Proof: Let π ∈ K with ord(π) = 1. Since both ternary cubics have
good reduction we have ord(µ) = − ord(detA). So without loss of
generality

[µ,A] = [π−a−b−c,

πa 0 0
0 πb 0
0 0 πc

]

for some a ≥ b ≥ c. If b > c then the first ternary cubic has singular
reduction at (x : y : z) = (0 : 0 : 1). If a > b = c then the reduction
contains the line x = 0. So a = b = c and ord(µ) ≡ ord(detA) ≡ 0
(mod 3). �

Example B.3. Let K = Q(
√
−35) and α = (−1 +

√
−35)/2. Let E

be the elliptic curve with Weierstrass equation

y2 = x3 − 11x+ 14

and C the 2-covering of E with equation

(20) y2 = α(x2 − αz2)(x2 − 2αz2).

We have ∆E = 29 and ∆C = 29312. The prime 3 factors in OK as
(3) = pp with p2 = (α). We can minimise (20) locally at p and p by
means of the transformations

[3−1, 0,

(
1 0
0 1

)
] and [1, 0,

(
1 0
0 3−1

)
].

So if C has an OK-coefficient equation with the same invariants as E,
then (20) and this new equation are related by [µ, r, A] with

ordp(µ) ≡ 1 (mod 2)
ordp(µ) ≡ 0 (mod 2)

and ordq(µ) ≡ 0 (mod 2) for all q - 2, 3. Since 2 is inert in K and
hK = 2 it follows that p is principal, which is a contradiction. Finally
we note that α ∈ (K∗

2)2, so C is everywhere locally soluble.

Example B.4. Let K = Q(
√
−23) and α = 2 +

√
−23. Let E be the

elliptic curve with Weierstrass equation

y2 + y = x3 + 2
√
−23x+ 8 + 3

√
−23

and C the 3-covering of E with equation

(21) 3x3 + α(x2y − xz2 + 3y2z) + α2y3 = 0.

We have (∆E) = p1p2 and ∆C = α12∆E where p1 = (1 + 6
√
−23) and

p2 = (1527 + 446
√
−23) are prime ideals. The prime 3 factors in OK
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as (3) = pp with p3 = (α). We can minimise (21) locally at p by means
of the transformation

[3−4,

3 0 0
0 1 0
0 0 1

].

So if C has an OK-coefficient equation with the same invariants as E,
then (21) and this new equation are related by [µ,A] with

ordp(µ) ≡ 2 (mod 3)

and ordq(µ) ≡ 0 (mod 3) for all q 6= p, p1, p2. Since p1 and p2 are prin-
cipal and hK = 3 it follows that p is principal, which is a contradiction.
Finally we note that C is globally soluble.
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[9] A. Kraus, Quelques remarques à propos des invariants c4, c6 et ∆ d’une courbe
elliptique. Acta Arith. 54 (1989), no. 1, 75–80.

[10] MAGMA is described in W. Bosma, J. Cannon and C. Playoust, The Magma
algebra system I: The user language, J. Symb. Comb. 24, 235-265 (1997). (See
also the Magma home page at http://magma.maths.usyd.edu.au/magma/.)

[11] C. O’Neil, The period-index obstruction for elliptic curves. J. Number Theory
95 (2002), no. 2, 329–339.



MINIMISING BINARY QUARTICS AND TERNARY CUBICS 21

[12] G. Salmon, A treatise on the higher plane curves, Third edition, Hodges, Foster
and Figgis, Dublin, 1879.

[13] P. Serf, The rank of elliptic curves over real quadratic number fields of class
number 1, PhD thesis, Universität des Saarlandes, Saarbrücken, 1995.

[14] J.H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathe-
matics 106, Springer-Verlag, New York, 1986.

[15] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate
Texts in Mathematics 151, Springer-Verlag, New York, 1994.
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