A FORMULA FOR THE JACOBIAN OF
A GENUS ONE CURVE OF ARBITRARY DEGREE

TOM FISHER

ABSTRACT. We extend the formulae of classical invariant theory for the Jacobian
of a genus one curve of degree n < 4 to curves of arbitrary degree. To do this, we
associate to each genus one normal curve of degree n, an n X n alternating matrix
of quadratic forms in n variables, that represents the invariant differential. We then
exhibit the invariants we need as homogeneous polynomials of degrees 4 and 6 in the
coefficients of the entries of this matrix.

INTRODUCTION

Let C' be a smooth curve of genus one defined over a field K. Its Jacobian is an
elliptic curve F defined over the same field K. However it is only if C' has a K-
rational point that C' and E are isomorphic over K. Starting with equations for C' we
would like to compute a Weierstrass equation for F.

Let D be a K-rational divisor on C of degree n > 1. It is natural to split into
cases according to the value of n. If n = 1 then C' has a K-rational point, and
our task is that of writing an elliptic curve in Weierstrass form. If n > 2 then the
complete linear system |D| defines a morphism C' — P"~!. Explicitly, the map is
given by (f; : ... : f,) where fi,..., f, are a basis for the Riemann-Roch space
L(D). If n = 2 then C'is a double cover of P! and is given by an equation of the form
y?=F (21, z2) where F'is a binary quartic. In this case Weil [W1], [W2] showed that
the classical invariants of the binary quartic /' give a formula for the Jacobian.

If n > 3 then the morphism C' — P"~! is an embedding. The image is a genus one
normal curve of degree n. The word normal refers to the fact C' is projectively normal
(see for example [H, Proposition IV.1.2]), i.e. if H is the divisor of a hyperplane
section then the natural map

SIL(H) — L(dH) (1)

is surjective for all d > 1. If n = 3 then C' C P? is a smooth plane cubic, say with
equation F'(z1,x9,23) = 0. The invariants of a ternary cubic F' were computed by
Aronhold [A], and again Weil (in the notes to [W1] in his collected papers) showed
that these give a formula for the Jacobian. If n = 4 then C' C P? is the complete inter-
section of two quadrics. If we represent these quadrics by 4 x 4 symmetric matrices
A and B, then F(z1,15) = det(Az, + Bx,) is a binary quartic. The invariants of
this binary quartic again give a formula for the Jacobian. For further details of these
formulae in the cases n = 2, 3, 4 see [AKM?P], [ARVT] or [F1].

If n = 5 then C' C P* is no longer a complete intersection, and indeed the homoge-
neous ideal is generated by 5 quadrics. The Buchsbaum-Eisenbud structure theorem
[BE1], [BE2] shows that these quadrics may be written as the 4 x 4 Pfaffians of a 5 x 5
alternating matrix of linear forms. The space of all such matrices is a 50-dimensional
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affine space, with a natural action of GL; x GL5. In [F1] we computed generators
for the ring of invariants and showed that they again give a formula for the Jacobian.
In fact the invariants are too large to write down as explicit polynomials, so instead
we gave a practical algorithm for evaluating them (based in part on the case n = 5
of Proposition 9.3). More recently, B. Gross [G] gave a uniform description of the
invariants in the cases n = 2, 3,4, 5, using results of Vinberg, although this does not
appear to give any way of evaluating the invariants in the case n = 5.

In this paper we extend these formulae for the Jacobian to genus one normal curves
of arbitrary degree.

Let C' C P"! be a genus one normal curve of degree n > 3. Since C has genus
one, the space of regular differentials on C has dimension 1, say spanned by w. We
call w an invariant differential, since geometrically it is invariant under all translation
maps. There is a linear map

NL(H) — L2H); fAg

— M )
w

Since (1) is surjective for d = 2, we may represent this map by an n x n alternating
matrix of quadratic forms in x4, ..., z,. This matrix €2 represents w in the sense that

wid(x; /)

- Qij(zla .. ,$n)

forall 7 # j.

However if n > 4 then there are quadrics vanishing on C' C P"~! and so this descrip-
tion does not determine 2 uniquely. Nonetheless we show, by proving [F3, Conjec-
ture 7.4], that there is a canonical choice of €2. We then define polynomials ¢4 and cg
of degrees 4 and 6 in the coefficients of the entries of €2, and show that the Jacobian
has Weierstrass equation

y? =1 — 27c4(Q)x — 5dcg(Q).

These main results are stated in Section 1. In the next two sections we show that
¢4 and cg are invariants for the appropriate action of GL,,, and that they reduce to the
previously known formulae for n < 5. At this point the proof of our results for any
given value of n is a finite calculation. However finding a proof that works for all n is
more challenging.

In Section 4 we show that if we can find a matrix €2 satisfying some apparently
weaker hypotheses, then it will satisfy the properties claimed in Theorem 1.1. For the
actual construction of €2 in Section 5 we reduce to the case C' is an elliptic curve E
embedded in P"~! via the complete linear system |n.0g|. At first we specify € as a
linear map A2L(n.0g) — S2L(n.0g), and use this in Section 6 to complete the proof
of Theorem 1.1. Then in Section 7 we make a specific choice of basis for £(n.0g),
so that €2 becomes an alternating matrix of quadratic forms. We compute this matrix
explicitly and, in Section 8, prove the formula for the Jacobian by computing c4((2)
and ¢¢(£2). Much of the work here is in checking that the invariants ¢, and c¢ are scaled
correctly for all n.

The description of €2 in Theorem 1.1 involves higher secant varieties. We quote any
general results we need about these as required. Proofs, or references to the literature,
are then given in Section 9.
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In future work we plan to study the space of all matrices €2. This appears to be
defined by d; + d quadrics in PV~ where N = (n? — 1)(n? — 4)/4 and

dy = (n* — 1)(n* — 4)(n* — 9)/36,
dy = (n® —1)*(n* — 9)/9.

The numbers N, d; and d, are dimensions of irreducible representations for GL,,.
Moreover, as suggested by Manjul Bhargava, we expect that ds of the quadrics can be
explained by an associative law, similar to that used in [B, Section 4].

We work throughout over a field K of characteristic 0, although it would in fact
be sufficient that the characteristic is not too small compared to n. Except at the
end of Section 1, where we give the application to computing Jacobians, we will
assume that K is algebraically closed. For a projective variety X we write I(X) for
its homogeneous ideal, and 7> X for the tangent space at P € X.

1. STATEMENT OF RESULTS

Let C C P" ! be a genus one normal curve of degree n > 3. For any integer
r > 1 the rth higher secant variety Sec” C' is the Zariski closure of the locus of all
(r — 1)-planes through r points on C. For example, if » = 1 then Sec' C' = C. The
codimension of Sec” C'in P"~! is max(n — 2r,0). So according as n is odd or even
there is a higher secant variety of codimension 1 or 2. If n = 2r + 1 then Sec” C
is a hypersurface of degree n, whereas if n = 2r + 2 then Sec” C' is the complete
intersection of two forms of degree r 4 1. In Section 9 we give references for these
facts about higher secant varieties, and also explain how to compute equations for
Sec” C' from equations for C'.

We give the polynomial ring R = K{z1,...,x,] its usual grading by degree, say
R = ®4R,, and write R(d) for the graded R-module with eth graded piece Ryy..
Maps between graded free R-modules are required to have relative degree 0, and are
labelled by the matrices of forms that represent them. Our first main result is

Theorem 1.1. Let C C P"! be a genus one normal curve of degree n > 3.

(i) If nis odd, say n = 2r + 1, and Sec” C = {F = 0} then there is a minimal
free resolution

v7 n Q n V
0—R(-2n) — R(—n—1)" — R(—n+1)" — R
where () is an n X n alternating matrix of quadratic forms and
V=V(F)= (& - 2.

(i) If n is even, say n = 2r + 2, and Sec" C' = {F} = F» = 0} then there is a
minimal free resolution

v e Q _ Y
0—R(=n* T R(=52)" - B2y T B2
where () is an n X n alternating matrix of quadratic forms and

o ., on
_ o ox1 Oxn
V=V =6 . o

81‘1 8$n
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We remarked in [F3, Section 7] that Theorem 1.1(i) follows from the Buchsbaum-
Eisenbud structure theorem for Gorenstein ideals of codimension 3. In this paper we
give a different proof, not only so that it runs in parallel with our proof of Theo-
rem 1.1(ii), but also because this is needed for the proof of Theorem 1.2.

If the matrix (2 exists then, by the uniqueness of minimal free resolutions (see for
example [E, Section 20.1] or [P, Section 7]), it is uniquely determined up to scalars.
Moreover starting from equations for Sec” C' we can solve for €2 by linear algebra. The
details are very similar to those in [F4, Section 4].

Let 2 = (§2;;) be as specified in Theorem 1.1. We put

082, 095 OM;;
_ ir s d ]\/—Z iJ QT 3
rszl 8$S 8.I'r . - r=1 a " ( )
‘We then define
3(n—2)2 K 9*M;; 0°M,
Q 1 rs 4
A= o n+3 Z 92,0, 00z, @
and
—(n — 2)3 . agNijk O3 N,
)N)= =/ ) 5
) = o (79 W;tzl 0,0,0, 07,01;01 ®)

Let C'; and Cy be genus one curves with invariant differentials w; and ws. An iso-
morphism 7 : (C},w;) — (Cy,wy) is an isomorphism of curves v : C; — Cy with
YWy = wi.

Theorem 1.2. Let C C P" ! be a genus one normal curve of degree n > 3, and let §)
be an alternating matrix of quadratic forms as specified in Theorem 1.1. Then
(i) There is an invariant differential w on C' such that
_ md(w/x;)
Qij(xly e ,.Z’n)
(ii) The pair (C,w) is isomorphic (over K = K) to

(y? = 2® — 27cs(Q)x — 54cg(Q), 3dx/y).

foralli # j.

The following corollary gives the application of Theorem 1.2 to computing Jaco-
bians. For this result only we drop our assumption that / is algebraically closed.

Corollary 1.3. Let C C P"! be a genus one normal curve defined over a field K.
Suppose we scale the matrix ) in Theorem 1.1 so that the coefficients of its entries are
in K. Then C has Jacobian elliptic curve y* = x* — 27c,(Q)x — 54cg(Q).

Proof: Let F be the elliptic curve y? = 23 — 27¢4(Q)x — 54c¢6(2). By Theorem 1.2
there is an isomorphism v : C' — E with v*(3dz/y) = w. Let & = o(y)y~! for
o € Gal(K/K). Since 3dx/y and w are both K -rational it follows that £*(3dz/y) =
3dx/y. This implies, as explained for example in [F1, Lemma 2.4], that, : £ — E
is a translation map. Then C is the twist of E by the class of {{,} in H*(K, E). It
follows by Theorems 3.6 and 3.8 in [S, Chapter X] that C'is a principal homogeneous
space under F, and F is the Jacobian of C. O
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Remark 1.4. Although we will not need it for the proofs of Theorems 1.1 and 1.2, it
is natural to ask whether C' C P"~! is uniquely determined by ). The answer is that it
is. Indeed by the minimal free resolutions in Theorem 1.1 we can recover V from ().
Then by Euler’s identity we obtain equations for Sec” C' where n — 2r = 1 or 2. This
then determines Sec' C' = C' by Theorem 9.1(v).

2. CHANGES OF CO-ORDINATES

We show that the constructions in Section 1 behave well under all changes of co-
ordinates. First we define an action of GL,, on the space of all n x n alternating
matrices of quadratic forms in x4, ... x,. For g € GL,, we put

gxQ =g 7T (Q(Z JilTis .. ., Z gm:z:l)) g
=1 i=1

where g~ 7 is the inverse transpose of g. Since the scalar matrices act trivially, this
could equally be viewed as an action of PGL,,.

Lemma 2.1. Let C C P" ! and C' C P"~! be genus one normal curves. Let ) and
Q' be alternating matrices of quadratic forms that satisfy the conclusions of Theo-
rem 1.1, and define invariant differentials w and w' on C and C'. If v : C" — C'is an
isomorphism given by

(x1:... 1 mpy) — (Zgﬂwi S ngxi)
i=1 i=1

for some g € GL,, then there exists A € K* such that g« = Q' and v*w = A~/
Proof: Suppose n is odd, say n = 2r 4+ 1 and Sec” C' = {F = 0}. Then Sec” C" is
defined by
F'(zy,....,2,) = F(y1, ..., yn)
where y; = > | g;;z;. By the chain rule
V(F) (@1, aa) = V) (1, 40) 9"
Then
V(F)Q=0 = V(') (gxQ) =0.

It follows by the uniqueness of minimal free resolutions that g x Q = AQ?’ for some
A € K*. The case n is even is similar.
We also have v*w = pw' for some pp € K*. If y; = > | g;;x; then

v2d(ye[ys) = Y gingjerd(ai/a;).
irj=1
Dividing by 7*w = uw'’ gives
Q- yyn) = 079 V@, a0 ge
Hence g x Q = 1~ and so u = AL O

Lemma 2.2. The polynomials c, and cg are invariants for the action of GL,, i.e.
ca(g* Q) = c4(Q) and cs(g x Q) = () for all g € GL,.
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Proof: Let ' = g« (), i.e.

n

Q;j(mb ce 7xn) = Z (gil)ai(gil)bjﬁab(yb s 7yn)
a,b=1
where y; = > | g;;;. Direct calculation using (3) shows that
Mi/j(xla s 7-7371) = Z (g_l)ai<g_1)bjMab(yla s 7yn)7
a,b=1

n

N, o) = Y (97 ai(g i (0 ek Nae(Wrs - - yn)-

a,b,c=1
Then
O*M!. " O2M
i -1\ (. =1y ab
81'7»8275 ) 26;21(9 )az (g )b] GrcYsd 8(Ecafli'd ;
82M,/,S - 1 _ a MCD
Dedz; AB;H(Q Jer(g )Dsngng—ax NP

Multiplying these together and summing gives

i M 0*M!, i O?Myy, 9*My
i a= laxrﬁxs 81’181‘] —abcd:I 83008@ al‘aal‘b.

Thus ¢4(2) = ¢4(2). A similar argument shows that c(€') = ¢4(£2). O

The following corollary shows that to prove Theorems 1.1 and 1.2 for a fixed value
of n, it suffices to prove them for a family of curves covering the j-line.

Corollary 2.3. Let )y and Qy correspond to pairs (C,wq) and (Cs,ws). If there
is an isomorphism v : C; — Cy with y*wy = Awy then c4(y) = Ney(Qy) and
06(91) = )\606(92).

Proof: After composing the isomorphism  with a translation map, we may suppose
it is given by a change of co-ordinate on P"~!. The case A = 1 is immediate from
Lemmas 2.1 and 2.2. In general we use that ¢, and ¢4 are homogeneous polynomials
of degrees 4 and 6. U

3. CURVES OF SMALL DEGREE

We compare our general formula for the Jacobian with the formulae previously
known for genus one normal curves of degrees 3, 4 and 5.

For curves of degrees 3 and 4 it is easy to write down a matrix (2 satisfying the
conclusions of Theorems 1.1 and 1.2(i). Indeed for C' = {F(x1,z3,73) = 0} C P*a
plane cubic we put

0 or  _ OF
6.773 axz
_ | _er oF
Q - Oxs O ox1 )
oF  _ OF 0

Oz2 oz
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and for C = {F} = F, = 0} C P? a quadric intersection we let € be the 4 x 4
alternating matrix with entries

o _ OF0F, OF 0F,
Y O Oxy Oxy Oy

where (i, j, k,[) is an even permutation of (1,2,3,4). To prove Theorem 1.2(ii) in
these cases we may check by direct computation that ¢4 (§2) and c(§2) are the classical
invariants of a ternary cubic or quadric intersection, as scaled in [F1, Section 7]. We
note that these are polynomials of degrees 4 and 6 in the coefficients of F', respectively
of degrees 8 and 12 in the coefficients of /| and F5.

As described for example in [F4, Section 4], a genus one normal curve of degree
n = 5 is defined by the 4 x 4 Pfaffians pq, ..., p; of a 5 x 5 alternating matrix of linear
forms on P4, We call the matrix of linear forms ® a genus one model of degree 5, and
note that there is a natural action of GL5 x GLj5 on the space of all such models. It is
shown in [H, Proposition VIIL.2.5] that the secant variety Sec? C' is a hypersurface of
degree 5 with equation /' = 0 where F' is the determinant of the Jacobian matrix of
P1,---,Dps. In [F3, Section 7] we proved that there is a degree 5 covariant € satisfying
the conclusions of Theorems 1.1 and 1.2(i). We gave an explicit formula for this
covariant in [FS, Section 2].

We claim that ¢4(€2) and c6(€2) are invariants for the action of SL; x SL;. For the
action of SLj; via changes of co-ordinates on P this follows from Lemma 2.2. For the
action of SL; via ® — AP AT it turns out that the coefficients of the entries of () are
already invariants. Since €2 is a covariant of degree 5, the invariants ¢4(€2) and ¢g(£2)
have degrees 20 and 30 in the coefficients of the entries of ®. Computing a single
numerical example (to check the scaling) shows that ¢,(€2) and ¢4(€2) are the same as
the invariants c4(®) and cg(®P) constructed in [F1].

4. MINIMAL FREE RESOLUTIONS

Let C' C P"! be a genus one normal curve of degree n > 3. Let Q beann x n
alternating matrix of quadratic forms in 1, ..., x,. In Sections 5 and 6 we exhibit (2
satisfying the following three hypotheses.

(H1) If n —2r > Land f € I(Sec” C) then 3", 2L.0;; € I(Sec” C) for all j.

(H2) If n — 2r = 2and Sec” C = {F} = F, =0} then Y_""._, 201,082 _ ),

i,j=1 9z, " “U Bz,

(H3) If n — 2r > 1 then there exists P € Sec” C' with rank Q(P) = 2r.
In this section we prove:

Theorem 4.1. Let () be an n X n alternating matrix of quadratic forms, satisfying the
hypotheses (H1), (H2) and (H3). Then there is a minimal free resolution as described
in Theorem 1.1.

The next two propositions are proved in Section 9. By abuse of notation we write
P both for a point in P"~! and for a vector of length n representing this point.

Proposition 4.2. If n —2r > land P = ,_, &P, for some P, ..., P, € C distinct
and &y, . .., & # 0 then the tangent space Tp Sec” C' is the linear span of the tangent
lines Tp,C, ..., Tp.C.
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Proposition 4.3. Let V(F') and V (F\, F3) be as defined in Theorem 1.1.
(i) If n—2r = 1 and Sec” C = {F = 0} then the entries of V (F') define a variety
in P! of codimension 3.
(i) Ifn—2r = 2and Sec" C' = {F, = F; = 0} then the 2 x 2 minors of V (I}, F)
define a variety in P"! of codimension 3.
Proof: (i) Theorem 9.1 tells us that Sec” C has singular locus Sec’ ™! C, and that this

has codimension 3.
(i1) This is proved in Section 9.3. 0

We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.4. Let C C P! be a genus one normal curve. Suppose thatn — 2r > 1

and ly, ... U, are linear forms in x1, ..., x, such that
. af T T
> o €1(Sec”C)  forall f € I(Sec” C). (6)
i=1 i

Then there exists A\ € K such that {; = \x; forall 1 <1 < n.

Proof: The coefficients of ¢1,..., ¢, form an n X n matrix. Let V' C Mat, (K) be
the subspace of all solutions to (6). We must show that V' consists only of scalar
matrices. Let E be the Jacobian of C'. Translation by 7' € E[n] is an automorphism
of C that extends to an automorphism of P"~!, say given by a matrix M;. Now V is
stable under conjugation by each M. By considering the standard representation of
the Heisenberg group (see for example [F2, Section 3]) it follows that 1/ has a basis
{Mr : T € X} for some subset X C E[n].

We suppose for a contradiction that My € V for some 0g # T € E[n]. Then
translation by 7" on C extends to an automorphism of P"~! that sends each point
P € Sec" C' to a point in the tangent space Tp Sec” C'. Let H be the divisor of a
hyperplane section on C. For D an effective divisor on C' we write D C P"~' for
the linear subspace cut out by £L(H — D) C L(H). For example, if D is a sum of
distinct points on C' then D is the linear span of these points. We also write Dy for D
translated by 7. We choose D = P; + ... + P, an effective divisor of degree r such
that

(1) P,...,P. € C aredistinct,
(i1) D and Dr have disjoint support,

(iii) 2D + Dp ¢ H.

Proposition 4.2 shows that for generic P € D we have Tp Sec” C' = 2D. It follows
from our assumption My € V that Dy C 2D, equivalently £L(H —2D) C L(H —Dr).
Then by (ii) we have

L(H —2D) = L(H — 2D) N L(H — Dy) = L(H — 2D — Dy).

However by (iii) and the Riemann-Roch theorem these spaces do not have the same
dimension. Indeed, since r > 1 and n — 2r > 1 we have

dim L(H — 2D) =n — 2r # max(n — 3r,0) = dim L(H — 2D — Dr).
This is the required contradiction. 0

We show that the resolution in Theorem 1.1 is a complex.
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Lemma 4.5. Let C C P"~! be a genus one normal curve, and let ) be an alternating
matrix of quadratic forms satisfying the hypotheses (H1) and (H2).

(i) If n =2r + 1 and Sec" C = {F = 0} then
“~ OF
Za ;=0 forall1 < j <n.
ox;
(ii) Ifn:2r—|—2andSec C ={F, = F, =0} then

~ OF ~ OF
- (%1 i1 8901

Proof: (i) By the hypothesis (H1) we have

Z forall 1 <5 <n,
8@

for some linear forms ¢y,...,¢,. We multiply by and sum over j. Since € is
alternating the left hand side is zero. Therefore

~  OF

j=1
By Lemma 4.4 and Euler’s identity it follows that {; = ... = ¢, = 0 as required.
(i1) By the hypothesis (H1) we have
OF:
Z axl = (;Fy + m,F) forall 1 < j <n, (7)
for some linear forms /1, ..., ¢, and mq, ..., m,. We multiply by aF L and sum over j.

Since (2 is alternating the left hand side is zero. Since F and F; are forms defining a
variety of codimension 2 they must be coprime. Therefore

OF
E:@ 1_§F2 and Ejmjam — —¢F
J

for some ¢ € K. If instead we multiply (7) by 6F 2 and sum over j then using the
hypothesis (H2) we find that

for some ) € K.

By Lemma 4.4 there exist \,u € K such that ¢, = A\z; and m; = pax; for all
1 < ¢ < n. By Euler’s identity and the linear independence of F3 and F5 it follows
that A = p = 0. Therefore

OF:
Z L, = forall1 <75 <n.
3:@
The corresponding result for F5 follows by symmetry. U

To complete the proof of Theorem 4.1 we must show that the complex is exact. First
we need some linear algebra. If B is an nxn matrix and S C {1,...,n} then we write
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B? for the (n — |S]) x (n — |S|) matrix obtained by deleting the rows and columns
indexed by S. The Pfaffian pf()) of an alternating matrix M is a polynomial in the
matrix entries with the property that det(M) = pf(M)2.

Lemma 4.6. (1) Let A be a1l x n matrix and B an n X n alternating matrix over
afield K. Suppose that rank A = 1, rank B =n— 1 and AB = 0. Then there
exists A\ € K* such that

(=)' pf(BY) = Aq,
foralll <i<n.
(ii) Let A be a 2 x n matrix and B an n X n alternating matrix over a field K.

Suppose that rank A = 2, rank B = n — 2 and AB = 0. Then there exists
A € K* such that

(—1)i+j Pf(B{i’j}) = Maiag; — a1jaz;)
foralll <i<j<n.

Proof: (i) It is well known that the vector with ith entry (—1)’ pf(B{"}) belongs to the
kernel of B. See for example [BH, Section 3.4]. Since rank B = n — 1 this vector is
non-zero and the kernel is 1-dimensional. The result follows.
(i1) We first claim there exist \q, ..., A\, € K such that
i+j iy _ ) Ailaagy — agjay ifi <7,

(=1 pt(BM) = { —/(\i(aligmj - éua)%) ifi> 7.
Indeed taking as; times the first row of A minus aq; times the second row of A, gives
a non-zero vector in the kernel of B}, If rank B = n — 2 then we argue as in (i).
Otherwise we can simply take \; = 0. This proves the claim.

Now let C' = (ay;a2; — a1ja9;); j=1,. » and let D be the diagonal matrix with entries
A,y ..oy An. We must show that if C'D = DC then C'D is a scalar multiple of C'.
More generally this is true for any rank 2 alternating matrix C' and diagonal matrix
D. Indeed we may re-order the rows and columns so that the diagonal entries of D
which are equal are grouped together. Then C' is in block diagonal form. Since C'is

alternating of rank 2, exactly one of these blocks is non-zero. The result is then clear.
O

Lemma 4.7. Let C C P" ! be a genus one normal curve, and let ) be an alternating
matrix of quadratic forms satisfying the hypotheses (H1), (H2) and (H3).
(i) If n =2r + 1and Sec”" C = {F = 0} then the (n — 1) x (n — 1) Pfaffians of
Q) are (scalar multiples of) the partial derivatives of F.
() If n = 2r 4+ 2 and Sec" C' = {F, = F, = 0} then the (n — 2) x (n — 2)
Pfaffians of S are (scalar multiples of) the 2 x 2 minors of V ([, F3).

Proof: We apply Lemma 4.6 over the function field K (x1, ..., x,).

(i) By Lemma 4.5 we have > ", % ij = 0. By the hypothesis (H3) the generic rank

of Qisn — 1. So by Lemma 4.6(i) there exists A € K (x1,...,x,) such that

(1) pE(@) = A ST

forall1 < i <n.
X

Since pf(©2{") and 2£ are forms of degree n — 1, we can write A\ = u/v where u and
v are coprime forms of the same degree. Then v divides % for all 7, and so must be a
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constant by Proposition 4.3(i). Therefore \ is a constant.
(ii) By Lemma 4.5 we have ) " | %sz =3, %sz = 0. By the hypothesis (H3)
the generic rank of €2 is n — 2. So by Lemma 4.6(ii) there exists A € K(z1,...,z,)

such that
O(Fy, F3)

1) pf (OB =
(-1 pi(@) =25

foralll << 7 <n.

Since pf(2{%7}) and % are forms of degree n — 2, we can write A\ = u/v where
Chiad}

u and v are coprime forms of the same degree. Then v divides % for all 7, 7, and
iy Ly
so must be a constant by Proposition 4.3(ii). Therefore A is a constant. U
Let R = K[xy,...,x,]. Consider a complex of graded free R-modules
0= Fp =5 Fpi—r ... —F 5 . (8)

We write V;, C P"~! for the subvariety defined by the 7}, x r}, minors of (o, where rj, =
rank(yy). The Buchsbaum-Eisenbud acyclicity criterion (see [BH, Theorem 1.4.13]
or [E, Theorem 20.9]) states that (8) is exact if and only if rank F}, = rank ¢, +
rank @1 and codim Vi, > kforall 1 < k < m.

Proof of Theorem 4.1: We already saw in Lemma 4.5 that the resolution in Theo-
rem 1.1 is a complex. We must prove it is exact. If n is odd then the free R-modules
have ranks 1,7n,7n,1 and the maps have ranks 1,7 — 1,1. If n is even then the free
R-modules have ranks 2, n,n, 2 and the maps have ranks 2, n — 2,2. By Lemma 4.7
we have V} = V5, = V3 and Proposition 4.3 shows that this variety has codimension 3.
We now apply the Buchsbaum-Eisenbud acyclicity criterion. 0

5. A BASIS-FREE CONSTRUCTION

The results of Section 2 show that for the proof of Theorems 1.1 and 1.2 we are free
to make changes of co-ordinates on P"~!. Since we are working over an algebraically
closed field we can therefore reduce to the following situation. Let £ be the elliptic
curve

y2 + a2y + asy = 3+ a2x2 + a4 + ag

with point at infinity Op and invariant differential
w=dr/(2y + a1z + a3) = dy/(3x* + 2a7 + a4 — a1y).

Let C' C P! be the image of £ embedded via the complete linear system |n.0g|.
The embedding depends on a choice of basis for the Riemann-Roch space £(n.0g),
but the only effect of changing this is to make a change of co-ordinates on P"~!. In
this section we define a linear map ) : A2L(n.0g) — S?£L(n.0g). In the next section
we show that the corresponding alternating matrix of quadratic forms satisfies the
hypotheses (H1), (H2) and (H3).

For f € L(n.0g) we put f= df Jw € L((n + 1).0g). Motivated by (2) we define a
linear map

AN L(nOg) — S2L((n+1).0g)
fAgm feg—g®f.
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Lemma 5.1. Let f, g € L(n.0g). Then the rational function on E x E given by

(P.Q) i H LTI 1(Qlg(P) ~ F(P)g(Q)

belongs to L((n+ 1).0g) ® L((n + 1).0g).

Proof: (i) If we fix ) = (z¢, yq) then as rational functions of P = (z,y),
+ Yo +a1xg +a
I T B e (054 Q) and  f(Q)g - g(Q)f € L(n.0p — Q).

T —XQ
Therefore the product belongs to L((n + 1).0g).
(ii) If we fix P = (xp, yp) then as rational functions of Q) = (z,vy),

Yyp+ Yy +a1r + as c
I'p — X

Therefore the product belongs to L((n 4 1).0g). O

LOg+P) and g(P)f— f(P)g € L(n0g— P).

We define a second linear map
B : N*L(n.0g) — S*L((n +1).0g)

f/\gHyP‘f'yQ‘f‘ale‘f‘a?)

(f(@)g(P) - f(P)g(Q))

Tp —IqQ P=Q
where | p—¢ is our notation for the natural map
L((n+1).05) ® L((n+1).05) = S*L((n+1).0g).

We show that A and B both represent the invariant differential w, in the sense of
Theorem 1.2(1).

Lemma 5.2. As rational functions on E we have

A(fNg)=B(fAg)=Ffi—gf =

Proof: This is clear for A. For B we apply I’Hopital’s rule to get

Jdg —gdf.

Qg —9(Q)f Qg —9@Q)f

. Y

T —IQ P=Q x P=Q
and then use that © = 2y + a,x + as. 0

If we pick bases for £(n.0g) and L((n + 1).0g) then A and B are (represented by)
n X n alternating matrices of quadratic forms in n + 1 variables. However the matrix
() we seek is an n x n alternating matrix of quadratic forms in n variables. It turns out
that the correct choice of €2 is a linear combination of A and B.

We may expand rational functions on £ as Laurent power series in the local param-
eter t = x/y at Op. Let ¢ be the linear map that reads off the coefficient of ="'
There are exact sequences

0= L(n.0p) = L((n+1).05) > K =0

and
0= S2L(n.0p) — S2L((n +1).05) B L((n+1).05) — 0 9)
where ¢2(f ® g) = ¢(f)g + ¢(9) [
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Lemma 5.3. Let f, g € L(n.0g) be rational functions whose coefficients of t ™ (when
expanded as Laurent power series in t) are 0, 1 respectively. Then

2(A(fNg)) =nf and  G:(B(f Ng))=2f.

Proof: (i) Wehavex =t 2+...andy =t 3+.... Theni = 2y+a,xz+az = 2t >+
-..and § = 3% +2asx+as —ayy = 3t~*+. ... Writing g as a polynomial in z and y it

follows that g = ¢ +...and g = nt "1 +.... Therefore ¢(f) = &(g) = ¢(f) =0
and ¢(g) = n. We compute

Ga(A(fNg)) = da(fRG—g® [)=nf.
(i) If we fix Q) = (zg, yo) then as rational functions of P = (z,y),
Y+ Yo + a1xg + a: _ .
S =t and Q) - 9(@F = F@QET" -
T —XqQ

with product f(Q)t™" "1+ ...

If we fix P = (zp, yp) then as rational functions of @ = (z,y),

yp +y+ a1x + as

= —t'+... and g(P)f—f(P)g=—f(P)t™"+...
Ip — X
with product f(P)t~"~! +. ... In both cases the leading coefficient is f. Adding these
together gives ¢o(B(f A g)) = 2f. |

Corollary 5.4. Let Q) = nB — 2A. Then Q) is a linear map N*L(n.0g) — S2L(n.0g).

Proof: This follows from Lemma 5.3 and the exact sequence (9). [

6. PROOF OF THEOREM 1.1

If we pick a basis for £(n.0g) then the linear map defined in Corollary 5.4 is rep-
resented by an n X n alternating matrix of quadratic forms in n variables. In this
section we complete the proof of Theorem 1.1 by showing that this matrix € satisfies
the hypotheses (H1), (H2) and (H3), as stated at the start of Section 4.

For Op # P € E we write P and dP for the linear maps f +— f(P) and f — f(P)
in the dual space £(n.0g)*. For example, if £(n.0g) has basis 1, z,y, 2%, xy, ... then

P = (1,2p,yp, 2%, 2pyp, . ..),
dP = (0,2yp + ayzp + as, Bxfp + 2a0xp + a4 — aryp, . . .).
We note that [P] is a point on C' C P"~! = P(L(n.0g)*), with tangent line passing
through [dP]. The square brackets indicate that we are taking the 1-dimensional sub-

spaces spanned by these vectors, i.e. the corresponding points in projective space. For
Op # @ € E we likewise define Q and dQ.

For P, € E let Apg be the slope of the chord (or tangent line if P = ()) joining
P and Q. In the following lemma the vectors P, Q, dP, dQ in £(n.0g)* are extended
to L((n + 1).0g)* using exactly the same definition. Evaluating A or B at a linear
combination (P + nQ gives an element of (A2L(n.0g))* = A*(L(n.0g)*).

Lemma 6.1. Let Op # P,QQ € Eand &,n € K. Then
A(EP +1Q) = &(P A dP) + &n(P AdQ + QA dP) +17°(Q A dQ),
B(EP +1Q) = &(P AdP) + n(Ag-p — Ap—@)(P A Q) + 7*(Q A dQ).
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Proof: (i) For f,g € L(n.0g) we compute

AP)(f A g) = (f§—gf)(P) = (P AdP)(f Ag).
The formula for A((P + nQ) follows by bilinearity.
(ii) For f,g € L(n.0g) we write

B(EP +nQ)(f A g) = € By + &nBy + 1By
By Lemma 5.2 we have
By = (fg—gf)(P) = (P AdP)(f Ag),
By = (f§—9/)(Q) = (QAdQ)(f A g).
Since for s,t € L((n + 1).0g) we have
(s @) (EP +nQ) = s((P + nQ)t(EP +1Q)
= &%s(P)U(P) + &n(s(P)H(Q) + s(Q)t(P)) + n°s(Q)t(Q),
it follows from the definition of B that
B = Ap_q(f(Q)g(P) — [(P)9(Q)) + Ao,-pr(f(P)g(Q) — f(Q)g(P))
= (Ag—r = Ap—@)(PAQ)(fA9).
O

We pick a basis for £(n.0g), so that now 2(P) is an n x n alternating matrix, and
P, Q, dP, dQ are column vectors.

Lemma 6.2. Let Op # Py, ..., P, € Edistinctand &1, . .. ,&. € K. Then

: S
Q) _¢P) =1 (_E 0) 1’
=1

where
(n— 2)5% —251522 e 266,
-2 n—2 oo =28,
| we wdig e o
_25157” _2§2§r s (7’L - 2)57?
and 11 is the n X 2r matrix with columns P+, ... P, dPy,..., dP,.

Proof: Recall that 2 = nB — 2A. The case » = 2 is immediate from Lemma 6.1.
Since the entries of {2 are quadratic forms the general case follows. ([l

We now check the hypotheses (H1), (H2) and (H3).

Proof of (H1) and (H3): Suppose n — 2r > 1. A generic point P € Sec" C
may be written P = [>._ &P, for some Op # Pp,...,P, € E distinct and
&, ...,& # 0. By Proposition 4.2 the tangent space Tp Sec” C' C P" ! is spanned by

Py,...,P,., dPy,...dP,. In particular these 2r vectors are linearly independent.
For f € I(Sec” C) we have 31" | 2L(P)v, = 0 for any v in the linear span of
Py,....,P,.,dPy,...dP,. By Lemma 6.2 the columns of €2 are linear combinations
n o Of

of these vectors. So for each 1 < j < n the form Zz’:l 8I'Qij vanishes at P. Since
P € Sec" C'is generic, this proves (H1). Since n ¢ {0,2r} and &, ..., & # 0, the

matrix (10) is non-singular. Therefore rank 2(P) = 2r and this proves (H3). U
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Proof of (H2): We write n = 27 and Sec’ ' C = {F, = F, = 0} where F} and F,
are forms of degree r. We must show that the form

OF
Z 8951 g 8:}52 (1D

i,7=1

is identically zero. A generic point P € Sec’ C = P""! may be written P =
>, &Py] for some O # Py,..., P, € E distinct and &y, . ..,§, # 0. In addition
we may assume that 2(P; + ...+ P,) o H where H is the hyperplane section. This
ensures that the vectors Py, ... P, dPy,...dP, are linearly independent. We choose
co-ordinates on P" ! so that [Py} = (1:0:...:0),[Py)=(0:1:0:...:0),...,
dP, = (0:...:0:1). Since I} and I, vanish on Sec” " C' they vanish on the linear
span of any r — 1 of the [P;]. Replacing F; and F; by suitable linear combinations we
may assume

Fl(azl,...,xr,O,...,O) :0,

Fy(zy,...,2,,0,...,0) = 2129 . .. .
Therefore at P = (&, :...: & :0:...:0) we have
(g%(P),...,gTF:L(P)):(O,...,O,*,...,*),
(G2(P),.... 22 P) = (&% ]]&*- %
i#1 itr

= ()

where = is the matrix (10). Since n = 2r the coefficients in each row and column of
= sum to zero. Therefore the form (11) vanishes at P. Since P € P"~! is generic, this
shows that the form is identically zero. U

This completes the proof of Theorem 1.1.

7. EXPLICIT FORMULAE

In this section we give an explicit formula for the matrix {2 defined in Section 5. As
before F is the elliptic curve

y2 + arxy + azy = 2%+ ayx? + agr + ag.

with invariant differential w = dz/(2y 4+ a1z + a3). We embed E in P"~! via

(oo :a3:... 2) = (1,2,y, 2% 2y, 2°, 2%y, 2%, .. ) (12)

Notice there is no x;. The indicator function of a set X is denoted 1x. We define
linear forms in indeterminates {x,, : m € Z} as follows
6
T = 5 (2Tpmi1 + 1T + a3Tm—2) + Lioad Z(—l)l(m - %)aixm—i-l—i
16 1
T = 3(2Tmi1 + @12 + 3Tpn—2) + Lonoaa D (= 1) 01
i=1
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where by convention a; = 0. For z € R we let sign(xz) = —1,0, 1 according as x is
negative, zero or positive. For r, s € Z we define

Ars =TrTs — Ty,
)

Brs = Z Slgn(k + %)(xr+2kfs—2k - xs+2kfr—2k)'

k=—00

Theorem 7.1. Let C C P" ! be the image of E under the embedding (12).

(1) A= (Arg)rs=02..nand B = (Bys)s—02..n are n X n alternating matrices
of quadratic forms in xq, Xy, ..., Tpi1.

(i) Q = nB —2A is an n X n alternating matrix of quadratic forms in xy, xs, . . . ,
Tn. It satisfies the conclusions of Theorem 1.1 and

vid(x:/x;)

n—2w=
( ) Qij(l'l,..‘,l‘n>

foralli # j. (13)

Proof: It is part of the theorem that the indeterminates x,,, for m ¢ {0,2,3,...,n}
cancel from the formula for €). So when applying the theorem we simply set them to
be zero. However we will not do this in the proof. Since 7, is a linear combination
of Tpi1, T, - - -, Tm—5 €ach B, is of the form Zij cijxr;x; where each ¢;; is a finite
sum. But it is not immediately clear that the B, ; are polynomials, i.e. that ¢;; = 0 for
all but finitely many pairs (4, j). We check this first.

If r =s (mod 2) and r < s then

Brs = Q(xrfs + Xy 2T o2+ ...+ xS—QfT‘-f—Q) (14)
whereas if 7 is even and s is odd then

Brs = —A1T,Ts + Qr,s—f—l + a2QT,s—1 + a'4Q7‘,5—3 + a6Qr,s—5 - Qs,r+1 (15)

where
TiTj + TigoTjo + ...+ T;7; if 4 <742,
Qij =<} 0 ift =7+ 2,
—(xi_2$j+2 + Ti—4Tj44 + ...+ ,I‘j+2l‘i_2) if i > ] + 2.
Since B, = — B, this proves that the B, are polynomials.

We show that the matrices A and B defined in the statement of the theorem represent
the linear maps A and B defined in Section 5. The theorem then follows from the
results of Sections 4, 5 and 6. In particular (13) follows from Lemma 5.2.

In the statement of the theorem the {z,, : m € Z} are indeterminates. However for
the proof they will be the following rational functions on £/,

- xm/2 if m is even,
™ 2m32y if mis odd.

As rational functions on F, we claim that #,, = dx,,/w (in agreement with the nota-

tion in Section 5) and 7,,, = %:z:m_g(Qy + a;z + a3). In checking these claims, we start

with the right hand sides, since this also serves to motivate the definitions of &, and
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T,,. For m even we have

dx,, /w = %x(m_z)/z(dx/w)

= %l'(m72)/2(2y + a1 + ag)
m
2

(me—l—l + a1y, + CL3xm—2)7

and
%xm_Q(Qy + a1z + az) = %(2xm+1 + 12, + 3T o).

For m odd we have

A, Jw = mnga:(m*“”)/Qy(dx/w) 4 a:(m’?’)/Z(dy/w)
= M3 m02(2y% 4 ayxy + agy) + 22327 + 2007 + as — ary)
- mT_gx(m_5)/2(_a1=’L'y — agy + 22° + 2a,2* + 2047 + 2ag)
+ 2Mm=9/2(32% 4 20522 + ayx — ayzy)
= a2 (mx3 - mT_lalmy - mT_:%ai%y + Z?:l(m - i)a2i1’3_i)

= (2211 + 1T + Q3Tm—2) + Do (= 1) (M — L)aiTmi1i,
and
(m—5)/2 (e, 2
z (2y* + a1y + asy)

1
2
= %:v(m_5)/2(—a1xy — agy + 22° 4 2a,2* + 2047 + 2ag)
1
2

(241 + 01T + A3Tp—2) + Z?:1(_1)iaz‘$m+1—z’-

S22y + a1z + ag) =

It is now clear that A(x, A x5) = A, for all r, s € Z. It remains to prove the same
for B. By definition of B we have

Bla, Az,) = LLTRIDIQTG (0 (0yy (P) — 2, (P)2.(Q))

Tp —2q P=Q

where P, () are points on F. Since T,,, = %xm_g(Qy + a1z + ag) we have

22, (P)T4(Q) = (2yg + a1xg + az)x,(P)xs—2(Q)

_ 2yQ + a1xg + as (ng(P)ﬂl?sz(Q) _ $T(P)$3(Q))

Irp —XqQ

Adding this to the same expression with (7, s) replaced by (s — 2,7 + 2) and then
setting P = () gives

Brs - Br+2,s—2 = Q(xrfs + xs—Zfr—i-Q) = B(xr A xs) - B($r+2 A xs—2)~ (16)
Rather more obviously, replacing (r, s) by (r+2, s+2) changes B, and B(x, Azy) in

the same way, that is, by shifting the subscripts up by 2. So to prove B(x, Axs) = B,
for all r, s € Z it suffices to prove it for all » € {0,1} and s € {0,1,2,3}. This is a
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finite calculation. We give two examples:

_ Yyp t+Yg +a1xq + as

B(zg AN x3) = —
(zo 3) Tp — 7o (yp — Q) o
_ (yp + arzpyp + azyp) — (Y4 + a12Qyq + asyq) .
Tp — 10 1yp o

= (2% + xprg + xé —a1yp + az(zp +zg) + a4)‘P:Q
= 2x0x4 + x% — 1703 + 2021072 + a4x(2),
and
_ Yp T Yq +mxqg + as

B(za N w3) = P (yp(zg —zp) + zp(yr — Yo))

P=Q
= (—yp(yp + Yo + a12g + az) + rp(x% + xprg + ... + a4))|P:Q

= (g + TpTYH — YPYo — MTQYP + AsTpTQ — ag)‘P:Q

= 20524 — x% — 12223 + agzL‘g — aﬁx(z).

It is easy to check using (15) that these are equal to B3 and Bss. The other cases we
need can then be checked using (16) and the fact that B is alternating. [

8. PROOF OF THEOREM 1.2

Let Q = nB —2Abe as in Theorem 7.1. Then ¢4(Q2) = f, (a1, ..., aq) and c(Q2) =
gnlai, ..., ag) for some polynomials f,, and g,. We consider the effect of a change of
Weierstrass equation, with notation as in [S, Chapter III].

Lemma8.1. Let ay,...,ag and ), . .., ag be the coefficients of two Weierstrass equa-
tions related by x = u*x’ +r and y = w3y’ + u?sa’ +t. Then

fulay, ... a¢) = utf.(d),. .. ap)

gnlay, ... ag) = ulgn(d), ..., ap)
Proof: This follows from Corollary 2.3 and v’ = w. ([l

It follows by Lemma 8.1, and the standard procedure for converting a Weierstrass
equation to the shorter form y? = 2 + ax + b, that f,, and g, are scalar multiples of
the usual polynomials ¢4 and cg in aq, . . . , ag. Explicitly,

fn(al, e ,a6) = gn(bg — 24[)4) = §n(a‘11 + .. .),
gnlay, ... ag) = Nu(—b3 + 36byby — 216bg) = 1, (—as + ...),
where bQ = a% + 4(12, b4 = 2&4 + aias and b@ = CL% + 4@6.
To complete the proof of Theorem 1.2 we must compute the constants &,, and 7),,. For

any given value of n these can be read off from a single numerical example. However
we need to compute these constants for all n. We write

Q=00 4+ a;0W + 4,0 4+ 300 + 4, QW + 00O,

Since ¢4(2) and ¢6(£2) have degrees 4 and 6 in the coefficients of the entries of (2, we
see by (17) that it suffices to compute the invariants of Q).

7
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We put
Yoo = (1) sign(s —r)n — 2((=1)°[5) — (=1)"[5]) -
Lemma 8.2. The alternating matrix Q) has entries above the diagonal

VrsTrLs + <_1)Sn1r+s even 29:—17“)/2—1 Ty 2kL s—2k- (18)

Proof: Since Q = nB — 2A we have Q) = nBM — 2A(1) where the superscripts
indicate that we are taking the coefficient of a;. Then A has (r, s) entry

((_1)8 L%J — (=1 L%J) Lrls
whereas (14) and (15) show that if 7 < s then B"Y) has (r, s) entry

(—1)°(2rs + Tpyols g + .. L5 0Tryo) ifr=s (mod 2)
(—1)°z,x, ifr#s (mod 2).

Lemma 8.3. The matrices QW, Q' = (y,,x,2;) and

r,s=0,2,3,....n
A = ((sign(j —i)n —2(j — i>)xixj)i,j:0,1 ..... -
all have the same invariants c, and cg.

Proof: We first explain why Q(!) and ' have the same invariants, despite the “extra
terms” in (18). We start with Q). The only entries involving x are in the first row
and column. We replace 2o by A\~'xy and multiply the first row and column by \. By
Lemma 2.2 this does not change the invariants, but setting A = 0 removes the extra
terms from the first row and column. Now the only entries involving x5 are in the
second row and column. We replace x5 by A\~'zy and multiply the second row and
column by A. This does not change the invariants, but setting A = 0 removes the extra
terms from the second row and column. We repeat this procedure for all subsequent
rows and columns. In the end we remove all the extra terms, and are left with the
matrix 2.
We define a bijection 7 : {0,1,...,n — 1} — {0,2,3,...,n} by

iy {2 ifi <n/2,
| 2(n—i)+1 ifi>n/2

We then compute

sign(j —i)n — 2(j — 1) ifi <n/2andj <n/2,

) —n—=2(—=(n—yj)—1) ifi <n/2andj >n/2,
Tr@r) TN n =20+ (n— 1)) ifi >n/2and j < n/2,
sign(j —i)n —2(—(n—j) + (n—1)) ifi>n/2andj > n/2.

In all cases we have () () = sign(j —4)n —2(j — ). Therefore (' and A are related
by a permutation matrix. It follows by Lemma 2.2 that they have the same invariants.
O
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Lemma 8.4. The alternating matrix of quadratic forms

0 (n—2)x1xy (n—4)z123 (N —6)T124 -+  (2—n)212,
0 (n—2)zgzs (n—4)zoxy -+ (4—n)vom,
0 (n—2)xszy -+ (6 —n)rsz,

(n—2)x,_127,

has invariants c4(A) = (n — 2)* and cs(A) = —(n — 2)°.

Proof: We have A = (\,;2,24), s=1,.. , Where \,s = sign(s—r)n—2(s—r). Following
the definitions of ¢4 and ¢4 in Section 1 we put

Z Oy O,

= LT
Oxys Ox, I

’T‘S—

U
Nij, = Aok = vijpzizxy
J E , axr ¥ J

where p;; = 000 AirAjr) — )\fj and v = 1ij(Nik + Aji). It is not hard to show that

> sign(i — r)sign(j — r) = n — 2|i — j| — d;;,
r=1

> (i —r)sign(j —r) = 2ij — 7> — (n+ )i+ n(n+1)/2,

d (i—=r)(j—r)=nij—(i+jn(n+1)/2+n(n+1)2n+1)/6.

r=1
We use these to compute

D Xadjr = 2nfi — I = 202|i — j| = 6;m® + (n® + 2n) /3

r=1
and then subtract off

A =4l — jI? —4n|i — j| 4 (1 = 6;;)n’

to get

pig = 2(n = 2)(Ji — j* = nli — j|) + n(n - 1)(n - 2)/3.

Noting the symmetries ji;; = pt;; and v;;, = vj;,, and using computer algebra to check
our calculations, we find

“ 82Mij 82Mrs . 2 n—|—3
Z 0x,0x, 0x;0x; 42”” (16/3)n(n 2)( 5 )

i j,rys= i<j
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and

j;: a3]Vijk 83pﬁst
0

- 2,020z, 0,070}
Zvjzkarvsvtzl

=4 Z (Vijk + Vjki + Vkij)’

i<i<k
= 4> (i — pe) + Nty — prir) + Nie (i — 1x))
i<i<k
=64(n—2)> Y (i—2j+k)’(n+i+j— 2k (n+2i—j—k)?

1<j<k
= 64n(n — 2) (n ? 5) .

The final sums are evaluated using the standard formulae for ) " i, Y %, etc. In
practice it is simpler to observe that the answer is a polynomial in n, say of degree at
most d, and then check the result for d + 1 distinct values of n.

Finally scaling by the constants included in the definitions (4) and (5) it follows that
ca(A) = (n—2)*and ¢(A) = —(n — 2)5. O

The last two lemmas show that &, = (n — 2)* and 1, = (n — 2)5. Therefore
ci(Q) = (n—2)*cs(E) and c5(Q) = (n —2)%cs(E). Letw = dx/(2y + a1x + a3). By
the formulae in [S, Chapter III] we have

(B,w) = (y* = 2° — 2Tcy(E)x — bdcg(E), 3dx Jy).
Therefore
(B, (n —2)w) = (y* = 2% — 27c4(Q)x — 54c6(Y), 3dz /y).

Recalling from Theorem 7.1 that {2 = nB — 2A represents the invariant differential
(n — 2)w, this completes the proof of Theorem 1.2.

9. HIGHER SECANT VARIETIES

In this final section we give references and proofs for the facts about higher secant
varieties we used earlier in the paper.

Theorem 9.1. Let C C P" ! be a genus one normal curve of degree n > 3.
(i) Sec” C' C P! is an irreducible variety of codimension max(n — 2r,0).
(i1) The vector space of forms of degree r + 1 vanishing on Sec” C' has dimension
B(r 4+ 1,n), where

Birim) = (n;r) ) (n;:1)

is the number of ways of choosing r elements from Z/nZ such that no two
elements are adjacent.

(iii) If n — 2r > 2 then the homogeneous ideal I(Sec” C) is generated by forms of
degree r + 1.

(iv) if n — 2r = 1 then Sec” C'is a hypersurface of degree n.

(v) If n — 2r > 1 then Sec” C has singular locus Sec” ™ C.
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Proof: (i) This is a general fact about curves. See for example [L, Section 1].

(i), (iii), (iv). More generally the minimal free resolution for /(Sec” C') was computed
in [VBH, Section 8]. See [GP, Section 5] for the cases » = 1, 2, and [F2, Section 4]
for further discussion.

(v) This is [vBH, Proposition 8.15]. 0

9.1. Computing equations for higher secant varieties. The following two propo-
sitions may be used to compute equations for Sec” C' from equations for C'. We say
that a form f vanishes on C' with multiplicity r if (passing to affine co-ordinates) the
Taylor expansion of f at each point P € C begins with terms of order greater than or
equal to 7.

Proposition 9.2. Let C C P"! be a variety contained in no hyperplane. Let f be a
form of degree r + 1.

(1) If r > 1 then
f € I(Sec" C) <= f vanishes on C with multiplicity r.
(1) If r > 2 then

0
fel(Sec"C) <= 8f € I(Sec" ' O) foralli=1,...,n.
T
Proof: (i) We choose P, ..., P, € C spanning P"~1. By a change of co-ordinates we
may assume P = (1:0:...:0),P,=(0:1:0:...:0),...,P,=(0:0:...:1).

If f € I(Sec” C) then it vanishes on the linear span of any r of the P,. Therefore the
monomials appearing in f involve at least  + 1 of the x;, and since f has degree r + 1
must be squarefree. But then f vanishes at P, with multiplicity r. Since P, € C was
arbitrary it follows that f vanishes on C' with multiplicity 7.

Conversely, suppose f vanishes on C' with multiplicity r. Let IT be an (r — 1)-
plane spanned by points P, ..., P, € C. By a change of co-ordinates we may assume
P=(1:0:...:0,PR=(0:1:0:...:0),.... Then f(zy,...,2,,0,...,0) has
total degree r + 1, but has degree at most 1 in each of the variables. It follows that
f vanishes on II. By definition Sec” C' is the Zariski closure of the union of all such
(r — 1)-planes. Therefore f € I(Sec” C) as required.

(ii) Since char(K) = 0 this follows from (i). O

Now let C' C P! be a genus one normal curve. Taking r = 1 in Theorem 9.1
shows that the homogeneous ideal /(C') is generated by a vector space of quadrics of
dimension n(n — 3)/2. Suppose we know a basis for this space. Then by repeatedly
applying Proposition 9.2(ii) we can find a basis for the space of forms of degree r 4 1
vanishing on Sec” C. Theorem 9.1(iii) tells us that if n — 2r > 2 then these forms
define Sec” C'. The following proposition covers the remaining case.

Proposition 9.3. Suppose n — 2r = 1. Let f be a form of degree n. If r > 2 then
of
(9.1’1‘

Proof: “=" Let H be the divisor of a hyperplane section, and let P € C' be any point.
Let C, C P" and C_ C P"? be the images of C' embedded via the linear systems

fel(Sec" C) «— € I(Sec" tO)? foralli=1,...,n.
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|H £+ P|. We choose co-ordinates so that the isomorphisms C;, — C' — C_ are given
by

(1o imp) = () (o T,
In particular P is the point (27 : ... : x,) = (0 : ... :0:1). By Theorem 9.1 we
know that I(Sec” ™! C_) is generated by forms g1, g, € K[zy,...,x,_1] of degree r.
By [F2, Corollary 2.3] there exist forms hy, hy € K[xq,...,x,] of degree r + 1 such
that f; = 2,119, + h; € I(Sec” C) fori = 1,2. Then F' = g1hy — goh belongs to

I(Sec" Cy)N K|xy, ...,z = I(Sec" C).
Since ¢, go are coprime and f, f, are irreducible it is clear that F' is non-zero. By
Theorem 9.1(iv) we have I(Sec” C') = (F'). We compute
8F 8f1 8f2 8f1 an

oz, - O0xpyiq Oy,  Ox, OTpi1

On the other hand, for7 = 1,2 and j = n,n + 1 we have

afi
8$j

Therefore 25 € I(Sec’™ ' C)%. Since P € C was arbitrary, and C' spans P"~', the
result follows.

“<” Let Py,..., P. be r distinct points on C. By a change of co-ordinates we may
assume P, = (1:0:...:0),P=(0:1:0:...:0),.... By Proposition 9.2
we know that f vanishes on C' with multiplicity 2(r — 1) + 1 = n — 2. Therefore
f(x1,...,2.,0,...,0) has total degree n, but has degree at most 2 in each of the

€ I(Sec" 'O )N Klxy, ...z, = I(Sec" ' O).

variables. Since 2r < n it follows that f vanishes on the linear span of Py, ..., P,.
By definition Sec” C' is the Zariski closure of the union of all such (r — 1)-planes.
Therefore f € I(Sec” C') as required. O

9.2. Proof of Proposition 4.2. Let C' C P"~! be a genus one normal curve of degree
n. Let H be the divisor of a hyperplane section. We identify £(H) with the space of
linear forms on P"~!. For D an effective divisor on C' we write D C P"~! for the
linear subspace cut out by L(H — D) C L(H). We have

Sec" C' = U D.
deg D=r

We also put D° = D \ Up/pD’. The ged and lem of divisors Y mpP and > m/p P
are > min(mp, m’p)P and Y max(mp, mp)P.

Lemma 9.4. Let D, D,, D, be effective divisors on C.

(i) If deg D < n then dim D = deg D — 1.

(ii) The linear span of D1 and Dy is lecm (D1, Ds).

(iii) If deg(lem (D1, D)) < n then Dy N Dy = ged(Dy, D).

Proof: (i) By Riemann-Roch we have dim £L(H — D) = n — deg D.
(ii) We have £(H — D)) N L(H — Dy) = L(H — lem(Dy, Ds)).

(iii) The inclusion “D” is clear. Equality follows by counting dimensions using (i)
and (i1). ]

With the above notation, Proposition 4.2 becomes
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Proposition 9.5. Suppose n — 2r > 1. Let D = P, + ... + P, be an effective
divisor of degree r with P, ..., P. € C distinct. Then for any P € D° we have
TpSec" C' = 2D.

Proof: If P ¢ D' for D’ an effective divisor of degree at most r, then by Lemma 9.4(iii)
we have D = D'. In particular P ¢ Sec” ' C. It follows by Theorem 9.1(v) that P is
a smooth point on Sec” C'. The next lemma shows that 2D C Tp Sec” C, and equality
follows by comparing dimensions, using Lemma 9.4(1) and Theorem 9.1(1). [l

Lemma 9.6. Let X be an affine variety and Py, ..., P. € X. Let P = ) _ &; P, where
Y& =1.If& # 0 then Tp, X C Tp(Sec” X).

Proof: There is a morphism X x ... x X — Sec" X; (ay,...,a,) — > &a; with

derivative TplX X ... X TPTX — Tp(SeCT X) ; (bh ey br) — Efzbz O
In fact Proposition 9.5 is true without the hypothesis that P, ..., P, are distinct.

However, since we do not need this, we omit the details.

9.3. Proof of Proposition 4.3. We must prove the following.

Proposition 9.7. Suppose n — 2r = 2 and write Sec” C = {F| = Fy = 0}. Then the
variety X C P! defined by

8$1 8xn
rank | op, 0 am | =1
ox1 Oy

has codimension 3.

If n = 4then C' = {F, = F, = 0} C P? is the intersection of two quadrics. There
are 4 singular quadrics in the pencil spanned by F; and F5, and each is singular at just
one point. Then X is the union of these 4 singular points, and so has codimension 3.

We now generalise this argument. Let [ be the divisor of a hyperplane section. We
identify £(H) with the space of linear forms on P"~!. Let D; and D, be divisors on
C of degree r + 1 with Dy + Dy = H. Let ®(Dy, D5) be the (r + 1) X (r + 1) matrix
of linear forms representing the multiplication map

L(Dy) x L(Ds) — L(H).

Since ®( Dy, D5) has rank at most 1 on C, it has rank at most r on Sec” C. Therefore
det ®(Dq, Dy) is a form of degree r 4 1 vanishing on Sec” C'. In particular it belongs
to the pencil spanned by F7 and F5.

Lemma 9.8. Every linear combination of I\ and F, arises in this way. Moreover
there are exactly 4 forms in the pencil arising as det ®(Dq, Ds) with Dy ~ Ds.

Proof: We say that divisor pairs (D;, Dy) and (D}, D) are equivalent if D, ~ D
or D; ~ Dj. Tt is shown in [F2, Lemma 2.9] that if (D;, Dy) and (D7, D)) are
inequivalent then Sec” C' = {det ®(D;, Dy) = det ®(D}, D)) = 0} € P* L. In
particular these two forms are linearly independent.

We claim that the map (D1, Dy) — ®(Dy, D3) is a bijection between the equiva-
lence classes of divisor pairs and the pencil of forms spanned by F} and F5. To prove
this let C be the image of an elliptic curve FE embedded in P"~! by |n.0g|. Then
writing

det ®(r.0g + P, (r +2).0g — P) = s(P)F| + t(P)F5,
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for P € E, we can see that s/t is a rational function on E. It therefore defines a
morphism (s : t) : E — P!. By the previous paragraph, this morphism is non-
constant, and indeed has fibres of the form { P, —P}. It must therefore be surjective.
This proves the claim.

For the final statement we note that .0 + P ~ (r + 2).0p — P if and only if
P e E[2]. O

Lemma 9.9. Let S be the singular locus of V = {det ®(Dy, Dy) = 0} C P""!. Then
S contains Sec” ! C. Moreover

() If Dy o¢ Dy then S = Sec"* C.

(1) If Dy ~ Dy then S has codimension 3.

Proof: Since C' spans P" ! itis clear that for each P € Sec” ! C' we have Tp Sec” C' =
P"~!. Therefore S contains Sec” ! C.

(i) Let P € V'\ Sec" ! C be any point. According to [F2, Theorem 1.3] the r x r
minors of ®(D;, D,) generate I(Sec” ' C). Therefore evaluating ®(D;, D;) at P
gives a matrix of rank 7. Moving P to (1 : 0 : ... : 0) and picking suitable bases for
L(Dy) and L(D,) we have

00 - 0
01 - 0
q)(Dl,DQ) =T . +q)/
0 0 1
where @' is an (r 4+ 1) x (r + 1) matrix of linear forms in z, ..., z,. Now the top

left entry of ®(D;, Ds) is an equation for TpV . Since the product of non-zero rational
functions on C' is again non-zero, the entries of ®(D;, D,) are non-zero. Therefore
P €V is a smooth point.
(ii) Picking suitable bases for £(D;) and £(D,) we may suppose that ®(D;, Ds) is
symmetric. Since {rank ®(Dy, D) < r — 1} C S, and the quadratic forms of rank
at most m — 2 have codimension 3 in the space of all quadratic forms in m variables,
it follows that S has codimension at most 3. Suppose for a contradiction that S has
codimension at most 2. Then its intersection with Sec" C' = {F} = F, = 0} has
codimension at most 3. But this intersection is contained in the singular locus of
Sec” C, which by Theorem 9.1 has codimension 4. This is the required contradiction.
O

To complete the proof of Proposition 9.7, we note that X is the union of the singular
loci of the hypersurfaces defined by linear combinations of F} and F3. It follows by
Lemmas 9.8 and 9.9 that X has codimension 3.
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