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Abstract
We show that the density of quadratic forms in n variables over Zp that are isotropic is a rational

function of p, where the rational function is independent of p, and we determine this rational func-
tion explicitly. When real quadratic forms in n variables are distributed according to the Gaussian
Orthogonal Ensemble (GOE) of random matrix theory, we determine explicitly the probability that
a random such real quadratic form is isotropic (i.e., indefinite).

As a consequence, for each n, we determine an exact expression for the probability that a
random integral quadratic form in n variables is isotropic (i.e., has a nontrivial zero over Z), when
these integral quadratic forms are chosen according to the GOE distribution. In particular, we find
an exact expression for the probability that a random integral quaternary quadratic form is isotropic;
numerically, this probability of isotropy is approximately 98.3%.

1 Introduction
An integral quadratic form Q in n variables is a homogeneous quadratic polynomial

Q(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

cijxixj, (1)

where all coefficients cij lie in Z. The quadratic form Q is said to be isotropic if it represents 0, i.e., if
there exists a nonzero n-tuple (k1, . . . , kn) ∈ Zn such that Q(k1, . . . , kn) = 0. We wish to consider the
question: what is the probability that a random integral quadratic form in n variables is isotropic?

In this paper, we give a complete answer to this question for all n, when integral quadratic
forms in n variables are chosen according to the Gaussian Orthogonal Ensemble (GOE) of random
matrix theory [1]. In particular, in the most interesting case n = 4, we show that the probability that a
random integral quaternary quadratic form is isotropic is given by(

1

2
+

√
2

8
+

1

π

)∏
p

(
1− p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)

)
≈ 98.3%. (2)

More precisely, let D be a piecewise smooth rapidly decaying function on the vector space
Rn(n+1)/2 of real quadratic forms in n variables (i.e., D(x) and all its partial derivatives are o(|x|−N)
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for all N > 0), and assume that
∫
Q
D(Q)dQ = 1; we call such a function D a nice distribution on the

space of real n-ary quadratic forms. Then we define the probability, with respect to the distribution D,
that a random integral n-ary quadratic form Q has a property P by

lim
X→∞

∑
Q integral, with property P D(Q/X)∑

Q integral D(Q/X)
, (3)

if the limit exists. Let ρDn denote the probability with respect to the distribution D that a random
integral quadratic form in n variables is isotropic. If D = GOE is the distribution on the space of
n × n symmetric matrices given by 1√

2
(A + At), where each entry of the matrix A is an identical

and independently distributed real Gaussian—i.e., the Gaussian Orthogonal Ensemble—then we use
ρn := ρGOE

n to denote the probability, with respect to the GOE distribution, that a random n-ary
quadratic form over Z is isotropic.

We wish to explicitly determine the probability ρn that a random n-ary quadratic form over Z,
with respect to the GOE distribution, is isotropic, i.e., has a nontrivial zero over Z. To accomplish this,
we first recall the Hasse–Minkowski Theorem, which states that a quadratic form over Z is isotropic if
and only if it is isotropic over Zp for all p and over R. For any distributionD as above, let ρDn (p) denote
the probability that a random integral quadratic form, with respect to the distribution D, is isotropic
over Zp, and let ρDn (∞) denote the probability that it is isotropic over R (i.e., is indefinite). Then it
is not hard to show (for the details, see Section 2) that ρn(p) = ρDn (p) is independent of D, and is
simply given by the probability that a random n-ary quadratic form over Zp, with respect to the usual
additive measure on Zn(n+1)/2

p , is isotropic over Zp. Moreover, we will also show in Section 2 that the
probability ρDn (∞) that a random integral quadratic form is isotropic over R is equal to the probability
that a random real quadratic form (with respect to the same distribution D) is indefinite.

For any distribution D as above, it can be proved using the work of Poonen and Voloch [11],
together with the Hasse–Minkowski Theorem, that:

Theorem 1.1 The probability ρDn that a random (with respect to the distribution D) integral quadratic
form in n variables is isotropic is given by the product of the local probabilities:

ρDn = ρDn (∞)
∏
p

ρn(p). (4)

See Section 2 for details. Hence, to determine ρDn , it suffices to determine ρDn (∞) and ρn(p) for all p.
We treat first the probability ρn(p) that a random n-ary quadratic form over Zp is isotropic.

Our main result here is that, for each n, the quantity ρn(p) is given by a fixed rational function in p
that is independent of p (this even includes the case p = 2), and we determine these rational functions
explicitly. Specifically, we prove the following theorem:

Theorem 1.2 Let ρn(p) denote the probability that a quadratic form in n variables over Zp is isotropic.
Then

ρ1(p) = 0, ρ2(p) =
1

2
, ρ3(p) = 1− p

2(p+ 1)2
, ρ4(p) = 1− p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)
,

and ρn(p) = 1 for all n ≥ 5.
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Our method of proof for Theorem 1.2 is uniform in n, and relies on establishing certain recursive
formulae for densities of local solubility for certain subsets of n-ary quadratic forms defined by their
behavior modulo powers of p. In particular, we obtain a new recursive proof of the well-known fact
that every n-ary quadratic form over Qp is isotropic when n ≥ 5. See Section 3 for details.

We turn next to the probability ρn(∞) = ρGOE
n (∞) that a real n-ary quadratic form is isotropic.

Closed form expressions for ρn(∞) for n ≤ 3 were first given by Beltran in [5, (7)]; it is known that
1− ρn(∞) decays like e−n2(log 3)/4 as n→∞ (see [2] and [3]).

In Section 4, we show how to obtain an exact formula for ρn(∞) for any given n. More
precisely, using the de Bruijn identity [4] for calculating certain determinantal integrals, we express
ρn(∞) as the Pfaffian of an explicit n′ × n′ matrix, where n′ := 2dn/2e, whose entries are given in
terms of values of the gamma and incomplete beta functions at integers and half-integers. Indeed, let
Γ denote the usual gamma function Γ(s) =

∫∞
0
xs−1e−xdx, and βt the usual incomplete beta function

βt(i, j) =
∫ t
0
xi−1(1− x)j−1dx. Then we have the following theorem giving expressions for ρn(∞):

Theorem 1.3 Let n ≥ 1 be any integer, and define n′ := 2dn/2e. When real n-ary quadratic forms
are chosen according to the n-dimensional Gaussian Orthogonal Ensemble, the probability of isotropy
over R is given by

ρn(∞) = 1− Pf(A)

2(n−1)(n+4)/4
∏n

m=1 Γ(m
2

)
, (5)

where A is the n′ × n′ skew-symmetric matrix whose (i, j)-entry aij is given for i < j by

aij =

 2i+j−2Γ( i+j
2

)
(
β 1

2
( i
2
, j
2
)− β 1

2
( j
2
, i
2
)
)

if i < j ≤ n,

2i−1Γ( i
2
) if i < j = n+ 1.

(6)

(Note that the second case in (6) arises only when n is odd.)

Theorem 1.3 allows one to calculate ρn(∞) exactly in closed form for any given n. In particular,
it follows from the Pfaffian representation in Theorem 1.3 that ρn(∞) is a polynomial in π−1 of degree
at most bn+1

4
c with coefficients in Q(

√
2) (see Remark 4.1). In Table 1, we give the resulting formulae

for ρn(∞) for all n ≤ 8, and also provide numerical approximations. (For any n > 8, we have
ρn(∞) ≈ 1 to more than 10 decimal places!)

Combining Theorems 1.1, 1.2, and 1.3, we finally obtain the following theorem giving the
probability ρn that a random integral quadratic form in n variables has an integral zero:

Theorem 1.4 Let D be any nice (i.e., piecewise smooth and rapidly decaying) distribution. Then the
probability ρDn that a random integral quadratic form in n variables with respect to the distribution D
is isotropic is given by

ρDn =



0 if n ≤ 3;

ρD4 (∞)
∏
p

(
1− p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)

)
if n = 4;

ρDn (∞) if n ≥ 5.

IfD = GOE is the GOE distribution, then the quantities ρn(∞) = ρDn (∞) are as given in Theorem 1.3.
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n ρn(∞) = ρn(∞) ≈
1 0 0

2
√

2/2 0.7071067811

3 1/2 +
√

2π−1 0.9501581580

4 1/2 +
√

2/8 + π−1 0.9950865814

5 3/4 + (2/3 +
√

2/12)π−1 0.9997197706

6 3/4 + 7
√

2/64 + (37/48−
√

2/3)π−1 0.9999907596

7 7/8 + (47/120 + 109
√

2/480)π−1 − (32
√

2/45)π−2 0.9999998239

8 7/8 + 9
√

2/256 + (2377/3840− 53
√

2/480)π−1 − (32/45)π−2 0.9999999980

Table 1: Probability ρn(∞) that a random n-ary quadratic form over R from the GOE distribution is
isotropic, for n ≤ 8.

In particular, when D = GOE, we have ρn = 0 for n = 1, 2, and 3, while for n = 4 we obtain
the expression (2) for ρ4. For n ≥ 5, we have ρn = ρn(∞), and so the values of ρn are as given by
Theorem 1.3. Theorem 1.4 shows that n = 4 is in a sense the most interesting case, as all places play
a nontrivial role in the final answer.

It is also interesting to compare how the probabilities change if instead of the GOE we use
the uniform distribution U on quadratic forms, where each coefficient of the quadratic form is chosen
uniformly in the interval [−1/2, 1/2]. While the quantities ρUn (∞) can easily be expressed as explicit
definite integrals, it seems unlikely that they can be evaluated in compact and closed form for general n
in this case. Using numerical integration, or a Monte Carlo approximation, we can compute ρUn (∞) ≈
0, 0.627, 0.901, 0.982, 0.998, and > 0.999 for n = 1, 2, 3, 4, 5, and 6, respectively. It is known (see,
e.g., [1, Theorem. 2.3.5]) that 1 − ρUn (∞) decays faster than e−cn for some constant c > 0; the actual
rate of decay is likely even faster. (Indeed, this follows for Wigner random matrices in general, so
applies as well to the GOE case.)

In particular, we have ρU4 = ρU4 (∞)
∏

p ρ4(p) ≈ 97.0%, which is slightly smaller than the GOE
probability ρGOE

4 ≈ 98.3%. We summarize the values of ρDn , and provide numerical values in the cases
of the uniform and GOE distributions, in Table 2.

LetNn(X) denote the number of integral n-ary quadratic forms that are isotropic over Q whose
coefficients are less than X in absolute value. Since the probabilities of isotropy are equal to 0 for
n ≤ 3, the question arises as to how Nn(X) grows in these cases as X → ∞. For n = 1, we
have trivially N(X) = 1 for any X > 0. For n = 2, it was shown by Dörge [6] and Kuba [10]
that X2 logX � N2(X) � X2 logX , and this was recently refined to an exact asymptotic formula,
N2(X) ∼ c2X

2 logX for an explicit positive constant c2, by Dubickas [7]. For n = 3, it was shown
by Serre [13] that N3(X) = O(X6/

√
logX), who also conjectured that N3(X) > EX6/

√
logX for

some positive constant E; this conjecture was recently resolved by Hooley [9]. In conjunction with
these results for n ≤ 3, the result of Theorem 1.4 determines the rates of growth of Nn(X) for all
n ≥ 1, and indeed proves the existence of main terms in the asymptotics of Nn(X) for all n 6= 3.
(Whether N3(X) ∼ c3X

6/
√

logX for some positive constant c3 remains an open question.)
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n ρDn ρUn ρn

1 0 0 0

2 0 0 0

3 0 0 0

4 ρD4 (∞)
∏

p

(
1− p3

4(p+1)2(p4+p3+p2+p+1)

)
≈ 97.0% ≈ 98.3%

5 ρD5 (∞) ≈ 99.8% > 99.9%

≥ 6 ρDn (∞) > 99.9% > 99.9%

Table 2: Probability that a random integral quadratic form in n variables is isotropic, for a general
distribution D, for the uniform distribution, and for the GOE distribution.

This paper is organized as follows. In Section 2, we prove the product formula in Theorem 1.1.
The theorem is known in the case of the uniform distribution U (or indeed any uniform distribution
supported on a box) for any n ≥ 4 by the work of Poonen and Voloch [11], which in turn depends on
the Ekedahl sieve [8]. To complete the proof of Theorem 1.1, we first prove directly that both sides
of (4) are equal to 0 for n ≤ 3. For n ≥ 4, we prove that (4) is true for a general nice distribution D by
approximating D by a finite weighted average of uniform box distributions, where the result is already
known. The condition that D is rapidly decreasing (as in the case of D = GOE) plays a key role in the
proof; indeed, we show how counterexamples to (4) can be constructed when this condition does not
hold.

In Section 3, we then prove Theorem 1.2, i.e., we determine for each n the exact p-adic density
of n-ary quadratic forms over Zp that are isotropic. The outline of the proof is as follows. First, we note
that a quadratic form in n variables defined over Zp can be anisotropic only if its reduction modulo p
has either two conjugate linear factors over Fp2 or a repeated linear factor over Fp. We first compute the
probability of each of these cases occurring, which is elementary. We then determine the probabilities
of isotropy in each of these two cases by developing certain recursive formulae for these probabilities,
in terms of other suitable quantities, which allow us to solve and obtain exact algebraic expressions
for these probabilities for each value of n. We note that our general argument shows in particular that
quadratic forms in n ≥ 5 variables over Qp are always isotropic, thus yielding a new recursive proof
of this well-known fact.

Finally, we prove Theorem 1.3 in Section 4, i.e., we determine for each n the probability that a
random real n-ary quadratic form from the GOE distribution is indefinite. We accomplish this by first
expressing, as a certain determinantal integral, the probability that an n × n symmetric matrix from
the GOE distribution has all positive eigenvalues. We then show how this determinantal integral can
be evaluated using the de Bruijn identity [4], allowing us to obtain an expression for the probability
of positive definiteness in terms of the Pfaffian of an explicit skew-symmetric matrix A, as given in
Theorem 1.3. We note that the values of these probabilities were known previously for n ≤ 3 (cf. [5,
(7)]).
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We end this introduction by remarking that the analogues of Theorems 1.2 and 1.4 also hold
over a general local or global field, respectively. Here, we define global densities of quadrics as in [11,
§4]; more general densities with respect to “nice distributions” could also be defined in an analogous
manner. Indeed, the analogue of Theorem 1.1 holds (with the identical proof), where the product
on the right hand side of (4) should be taken over all finite and infinite places of the number field
(the densities at the complex places are all equal to 1, since all quadratic forms over C are isotropic).
Theorem 1.2 also holds over any finite extension of Qp, with the same proof, provided that when
making substitutions in the proofs we replace p by a uniformiser, and when computing probabilities
we replace p by the order of the residue field.

2 The local product formula: Proof of Theorem 1.1
Let D be any nice (piecewise smooth and rapidly decaying) distribution. Our aim in this section is to
prove the following three assertions from the introduction:

(a) ρDn (p) is equal to the probability ρn(p) that a random n-ary quadratic form over Zp, with respect
to the usual additive measure on Zn(n+1)/2

p , is isotropic over Zp;

(b) ρDn (∞) is equal to the probability that a random n-ary quadratic form over R, with respect to the
distribution D, is indefinite; and

(c) ρDn = ρDn (∞)
∏

p ρn(p) (i.e., Theorem 1.1 holds).

Items (a) and (b) are trivial in the case thatD = U is the uniform distribution, or more generally
whenD is any distribution U(~a,~b) that is constant on a box [~a,~b] := [a1, b1]×· · ·×[an(n+1)/2, bn(n+1)/2]

and 0 outside this box; here ~a = (a1, . . . , an(n+1)/2) and~b = (b1, . . . , bn(n+1)/2) are vectors in Rn(n+1)/2

such that ai < bi for all i.
Meanwhile, Theorem 1.1 for n ≥ 4, in the case that D is the uniform distribution U, follows

from the work of Poonen and Voloch [11, Theorem 3.6] (which establishes the product formula for the
probability that an integral quadratic form with respect to the distributionD is locally soluble), together
with the Hasse–Minkowski Theorem (which states that a quadratic form is isotropic if and only if it is
locally soluble). In fact, the proof of [11, Theorem 3.6] (which in turn relies on the Ekedahl’s sieve [8])
immediately adapts to the case where D = U(~a,~b) without essential change.

To show that Theorem 1.1 holds also when D = U(~a,~b) and n ≤ 3, it suffices to prove that in
this case both sides of (4) are equal to 0. To see this, we may use Theorem 1.2, which does not rely on
the results of this section, and which states that the probability that a random n-ary quadratic form over
Zp is isotropic is equal to ρn(p) = 0, 1/2, or 1 − p/(2(p + 1)2) for n = 1, 2, or 3, respectively. This
immediately implies that the right hand side of (4) is zero. To see that the left hand side of (4) is zero,
we note that if a quadratic form over Z is isotropic, then it must be isotropic over Zp for all p (the easy
direction of the Hasse–Minkowski Theorem). By the Chinese Remainder Theorem, the (limsup of the)
probability ρDn that a random integral n-ary quadratic form is isotropic with respect to the distribution
D = U(~a,~b) is at most ∏

p<Y

ρn(p)
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for any Y > 0. Letting Y now tend to infinity shows that ρDn = 0 for n = 1, 2, or 3, i.e., the left hand
side of (4) is also zero.

Thus we have established items (a)–(c), for all n, in the case that D = U(~a,~b) is a constant
distribution supported on a box [~a,~b]. Clearly (a)–(c) then must hold also for any finite weighted
average of such box distributions U(·, ·).

To show that (a)–(c) hold for general nice distributions D, we make use of the following ele-
mentary lemma regarding integration of rapidly decaying functions.

Lemma 2.1 Let f be any piecewise smooth rapidly decaying function on Rm. Then∫
f(y)dy = lim

X→∞

1

Xm

∑
y∈Zm

f(y/X). (7)

Proof: For any N > 0, let fN(y) be equal to f(y) if |y| ≤ N , and 0 otherwise. Then fN is piecewise
smooth with bounded support, and so is Riemann integrable. Thus we have∫

fN(y)dy = lim
X→∞

1

Xm

∑
y∈Zm

fN(y/X). (8)

Since f is rapidly decreasing, for any ε > 0 we may chooseN large enough so that
∫
|y|>N |f(y)|dy < ε

and (1/Xm)
∑

y∈Zm, |y/X|>N |f(y/X)| < ε for any X ≥ 1. For this value of N , the left hand side of
(8) is within ε of the left hand side of (7), while for each X ≥ 1, the expression in the limit on the right
hand side of (8) is within ε of the expression in the limit on the right hand side of (7). Since we have
equality in (8), we conclude that the left hand side of (7) is within 2ε of both the lim infX→∞ and the
lim supX→∞ of the expression in the limit of the right hand side of (7). Since ε is arbitrarily small, we
have proven (7). �

Note that Lemma 2.1 does not necessarily hold if we drop the condition that f is rapidly decay-
ing. For example, if f is the characteristic function of a finite-volume region having a cusp going off
to infinity containing a rational line through the origin (and thus infinitely many lattice points on that
line), then the left hand side of (7) is finite while the expression in the limit on the right hand side of
(7) is infinite for any rational value of X .

Lemma 2.1 implies in particular that

lim
X→∞

1

Xn(n+1)/2

∑
Q integral

D(Q/X) = 1 (9)

for any nice distribution D.
Now any piecewise smooth rapidly decaying function can be approximated arbitrarily well by

a finite linear combination of characteristic functions of boxes. Let D be a nice distribution. For any
ε > 0, we may find a nice distribution Dε that is a finite weighted average of box distributions U(·, ·),
such that ∫

|D(y)−Dε(y)|dy < ε. (10)
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By Lemma 2.1, we then have

lim
X→∞

1

Xn(n+1)/2

∑
Q integral

|D(Q/X)−Dε(Q/X)| < ε. (11)

To show that ρDn (p) = ρn(p), we note that

ρn(p) = ρDε
n (p) = lim

X→∞

∑
Q integral,isotropic/Zp

Dε(Q/X)∑
Q integralDε(Q/X)

(12)

= lim
X→∞

∑
Q integral,isotropic/Zp

Dε(Q/X)

Xn(n+1)/2
(13)

= lim
X→∞

∑
Q integral,isotropic/Zp

D(Q/X) + E(X, ε)

Xn(n+1)/2
(14)

= lim
X→∞

∑
Q integral,isotropic/Zp

D(Q/X) + E(X, ε)∑
Q integralD(Q/X)

, (15)

where for sufficiently large X we have |E(X, ε)| < εXn(n+1)/2 by (11); here the first equality follows
because Dε is a finite weighted average of box distributions U(·, ·), the second equality follows from
the definition (3), and the third and fifth equalities follow from (9). Letting ε tend to 0 in (15) now
yields ρn(p) = ρDn (p), proving item (a) for general nice distributions D.

Analogously, we have∫
Q isotropic/R

Dε(Q)dQ = ρDε
n (∞) = lim

X→∞

∑
Q integral,isotropic/RDε(Q/X)∑

Q integralDε(Q/X)
(16)

= lim
X→∞

∑
Q integral,isotropic/RD(Q/X) + E ′(X, ε)∑

Q integralD(Q/X)
, (17)

where again for sufficiently largeX we have |E ′(X, ε)| < εXn(n+1)/2. By (10), the leftmost expression
in (16) approaches

∫
Q isotropic/RD(Q)dQ as ε → 0, while expression (17) approaches ρDn (∞) by defi-

nition (3). This thus proves item (b) for general nice distributions. In particular, we have also proven
that

lim
ε→0

ρDε
n (∞) = ρDn (∞). (18)

Finally, we have in a similar manner:

ρDε
n (∞)

∏
p

ρn(p) = ρDε
n = lim

X→∞

∑
Q integral,isotropic/ZDε(Q/X)∑

Q integralDε(Q/X)
(19)

= lim
X→∞

∑
Q integral,isotropic/ZD(Q/X) + E ′′(X, ε)∑

Q integralD(Q/X)
, (20)

where again for sufficiently largeX we have |E ′′(X, ε)| < εXn(n+1)/2. By (18), the leftmost expression
in (19) approaches ρDn (∞)

∏
p ρn(p) as ε→ 0, while expression (20) approaches ρDn by definition. We

have proven also item (c) for general nice distributions, as desired.

8



3 The density of n-ary quadratic forms over Zp that are isotropic:
Proof of Theorem 1.2

3.1 Preliminaries on n-ary quadratic forms over Zp

Fix a prime p. For any free Zp-module V of finite rank, there is a unique additive p-adic Haar measure
µV on V which we always normalize so that µV (V ) = 1. All densities/probabilities are computed with
respect to this measure. In this section, we take V = Vn to be the n(n+ 1)/2-dimensional Zp-module
of n-ary quadratic forms over Zp. We then work out the density ρn(p) (i.e. measure with respect to µV )
of the set of n-ary quadratic forms over Zp that are isotropic.

We start by observing that a primitive n-ary quadratic form over Zp can be anisotropic only
if, either: (I) the reduction modulo p factors into two conjugate linear factors defined over a quadratic
extension of Fp, or (II) the reduction modulo p is a constant times the square of a linear form over Fp.
For if the reduced form has rank ≥ 3, then, after setting some variables to zero we obtain a smooth
conic. But a conic over a finite field always has a rational point (see, for example, [12, Chapter I,
Cor. 2]); this lifts to a Qp-point by Hensel’s Lemma. Note that if p = 2, this argument is still valid,
provided that we define the rank correctly, i.e. it is not the rank of the corresponding symmetric matrix,
but rather the codimension of the singular locus in the ambient projective space.

Let ξ(n)1 and ξ(n)2 be the probabilities of Cases I and II, i.e. the densities of these two types of
quadratic forms in Vn. Then

ξ
(n)
0 = 1− ξ(n)1 − ξ

(n)
2 −

1

pn(n+1)/2

is the probability that a form is primitive, but not in Cases I or II. Let α(n)
1 (resp. α(n)

2 ) be the probability
of isotropy for quadratic forms in Case I (resp. Case II). Then

ρn(p) = ξ
(n)
0 + ξ

(n)
1 α

(n)
1 + ξ

(n)
2 α

(n)
2 +

1

pn(n+1)/2
ρn(p),

implying that

ρn(p) =
pn(n+1)/2

pn(n+1)/2 − 1

(
ξ
(n)
0 + ξ

(n)
1 α

(n)
1 + ξ

(n)
2 α

(n)
2

)
. (21)

3.2 Some counting over finite fields

Let η(n)1 (resp. η(n)2 ) be the probability that a quadratic form is in Case I (resp. Case II) given the “point
condition” that the coefficient of x21 is a unit. Similarly, let ν(n)1 be the probability that a quadratic form
is in Case I given the “line condition” that the binary quadratic form Q(x1, x2, 0, . . . , 0) is irreducible
modulo p. Note that it is impossible to be in Case II given the line condition, but we may also define
ν
(n)
2 = 0. Set η(n)0 = 1 − η(n)1 − η

(n)
2 and ν(n)0 = 1 − ν(n)1 − ν

(n)
2 = 1 − ν(n)1 . The values of ξ(n)j , η(n)j ,

ν
(n)
j , are given by the following easy lemma.

9



Lemma 3.1 The probabilities that a random quadratic form over Zp is in Case I or Case II are as
follows.

• Case I (all; relative to point condition; relative to line condition)

ξ
(n)
1 =

(pn − 1)(pn − p)
2(p+ 1)pn(n+1)/2

; η
(n)
1 =

pn−1 − 1

2pn(n−1)/2
; ν

(n)
1 =

1

p(n−1)(n−2)/2
.

• Case II (all; relative to point condition; relative to line condition)

ξ
(n)
2 =

pn − 1

pn(n+1)/2
; η

(n)
2 =

1

pn(n−1)/2
; ν

(n)
2 = 0.

Proof: Case I: There are (p2n − 1)/(p2 − 1) linear forms over Fp2 up to scaling; subtracting the
(pn − 1)/(p − 1) which are defined over Fp, dividing by 2 to account for conjugate pairs and then
multiplying by p− 1 for scaling gives (pn−1)(pn−p)

2(p+1)
Case I forms, and hence the value of ξ(n)1 .

Similarly, the number of Case I quadratic forms satisfying the point condition is (p2(n−1) −
pn−1)(p−1)/2. Dividing by the probability 1−1/p of the point condition holding gives pn(pn−1−1)/2

and hence the value of η(n)1 .
Lastly, the number of Case I quadratic forms satisfying the line condition is p2n−3(p − 1)2/2;

dividing by the probability ξ(2)1 of the line condition holding gives p2n−1, and hence the value of ν(n)1 .
Case II is similar and easier: the number of Case II quadratic forms is pn−1, of which pn−pn−1

satisfy the point condition and none satisfy the line condition; the given formulae follow. �

3.3 Recursive formulae

We now outline our strategy for computing the densities ρn(p) using (21), by evaluating α(n)
j for j =

1, 2. If a quadratic form is in Case I, then we may make a linear change of variables (using a change
of coordinate matrix in GLn(Zp), which preserves density), transforming it so that its reduction is an
irreducible binary form in only two variables. Now isotropy forces the values of those variables, in any
primitive vector giving a zero, to be multiples of p; so we may scale those variables by p and divide the
form by p. Similarly, if a form is in Case II, then we transform it so that its reduction is the square of a
single variable, then scale that variable and divide out. After carrying out this process once, we again
divide into cases and repeat the procedure, which leads us back to an earlier situation but with either
the line or point conditions, which we need to allow for. All these transformations clearly preserve the
property of isotropy.

To make this precise, we introduce some extra notation for the probability of isotropy for
quadratic forms which are in Case I or Case II after the initial transformation: let β(n)

1 (resp. β(n)
2 )

be the probability of isotropy given we are in Case I (resp. Case II) after one step when the original
quadratic form was in Case I, and similarly γ(n)1 (resp. γ(n)2 ) the probability of isotropy given we are in
Case I (resp. Case II) after one step when the original quadratic form was in Case II.

10



Lemma 3.2 .

1. α(2)
1 = 0, and for n ≥ 3,

α
(n)
1 = ξ

(n−2)
0 + ξ

(n−2)
1 β

(n)
1 + ξ

(n−2)
2 β

(n)
2 +

1

p(n−1)(n−2)/2
(ν

(n)
0 + ν

(n)
1 α

(n)
1 + ν

(n)
2 α

(n)
2 ).

2. α(1)
2 = 0, and for n ≥ 2,

α
(n)
2 = ξ

(n−1)
0 + ξ

(n−1)
1 γ

(n)
1 + ξ

(n−1)
2 γ

(n)
2 +

1

pn(n−1)/2
(η

(n)
0 + η

(n)
1 α

(n)
1 + η

(n)
2 α

(n)
2 ).

Proof: We have α(2)
1 = 0 since a binary quadratic form that is irreducible over Fp is anisotropic. Now

assume that n ≥ 3, and (for Case I) Q(x1, . . . , xn) (mod p) has two conjugate linear factors. Without
loss of generality, the reduction modulo p is a binary quadratic form in x1 and x2. Now any primitive
vector giving a zero of Q must have its first two coordinates divisible by p, so replace Q(x1, . . . , xn)
by 1

p
Q(px1, px2, x3, . . . , xn). The reduction modulo p is now a quadratic form in x3, . . . , xn. If the

new Q is identically zero modulo p, then, after dividing it by p, we obtain a new integral form that
lands in Cases I and II with probabilities ν(n)1 and ν(n)2 , respectively, since it satisfies the line condition;
otherwise, we divide into cases as before, with the probabilities of being in each case given by ξ(n−2)j .

The result for α(n)
2 is proved similarly: without loss of generality the reduction modulo p is a

quadratic form in x1 only, we replace Q(x1, . . . , xn) by 1
p
Q(px1, x2, . . . , xn), whose reduction mod-

ulo p is a quadratic form in x2, . . . , xn. If the new Q is identically zero modulo p, then, after dividing
by p, we have an integral form that lands in Cases I and II with probabilities η(n)1 and η(n)2 , respectively,
since it satisfies the point condition; otherwise, we divide into cases, with probabilities ξ(n−1)j . �

It remains to compute β(n)
1 (for n ≥ 4), β(n)

2 (for n ≥ 3), γ(n)1 (for n ≥ 3) and γ(n)2 (for n ≥ 2).
Since ξ(1)1 = 0, we do not need to compute β(3)

1 or γ(2)1 , which are in any case undefined.

Lemma 3.3 .

(i) If n ≥ 4 then β(n)
1 = ν

(n−2)
0 + ν

(n−2)
1 β

(n)
1 ; also, β(4)

1 = 0.

(ii) If n ≥ 3 then β(n)
2 = ν

(n−1)
0 + ν

(n−1)
1 γ

(n)
1 ; also, β(3)

2 = 0.

(iii) If n ≥ 3 then γ(n)1 = η
(n−2)
0 + η

(n−2)
1 β

(n)
1 + η

(n−2)
2 β

(n)
2 ; also, γ(3)1 = 0.

(iv) If n ≥ 2 then γ(n)2 = η
(n−1)
0 + η

(n−1)
1 γ

(n)
1 + η

(n−1)
2 γ

(n)
2 ; also, γ(2)2 = 0.

Proof: In Case I, the initial transformation leads to a quadratic form for which the valuations of the

11



coefficients satisfy1

≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

≥ 0 ≥ 0 ≥ 0 . . . ≥ 0
≥ 0 ≥ 0 . . . ≥ 0

≥ 0 . . . ≥ 0
. . . ...
≥ 0

(22)

and β(n)
1 (resp. β(n)

2 ) are the probabilities of isotropy given that the reduction modulo p of the form in
x3, x4, . . . , xn is in Case I (resp. Case II).

Similarly, in Case II the initial transformation leads to

= 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 0 ≥ 0 ≥ 0 ≥ 0 . . . ≥ 0

≥ 0 ≥ 0 ≥ 0 . . . ≥ 0
≥ 0 ≥ 0 . . . ≥ 0

≥ 0 . . . ≥ 0
. . . ...
≥ 0

(23)

and γ(n)1 (resp. γ(n)2 ) are the probabilities of isotropy given that the reduction modulo p of the form in
x2, x3, . . . , xn is in Case I (resp. Case II).

(i) To evaluate β(n)
1 we may assume, after a second linear change of variables, that we have

≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

≥ 0 ≥ 0 ≥ 1 . . . ≥ 1
≥ 0 ≥ 1 . . . ≥ 1

≥ 1 . . . ≥ 1
. . . ...
≥ 1

and that the reductions modulo p of both 1
p
Q(x1, x2, 0, . . . , 0) and Q(0, 0, x3, x4, 0, . . . , 0) are irre-

ducible binary quadratic forms. Any zero of Q must satisfy x3 ≡ x4 ≡ 0 (mod p). This gives a
contradiction when n = 4, so that Q(x1, . . . , x4) is anisotropic, and β(4)

1 = 0. Otherwise, replacing
Q(x1, . . . , xn) by 1

p
Q(x3, x4, px1, px2, x5, . . . , xn) brings us back to the situation in (22). Now, how-

ever, the line condition holds, so that Cases I and II occur with probabilities ν(n−2)1 and ν(n−2)2 = 0

instead of ξ(n−2)1 and ξ(n−2)2 .

1In this and the similar arrays which follow, we put into position (i, j) the known condition on v(ai,j), so the top left
entry refers to the coefficient of x2

1, the top right to x1xn and the bottom right to x2
n.
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(ii) To evaluate β(n)
2 , we may assume that the valuations of the coefficients satisfy

≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

= 0 ≥ 1 . . . ≥ 1
≥ 1 . . . ≥ 1

. . . ...
≥ 1

and that the reduction modulo p of 1
p
Q(x1, x2, 0, . . . , 0) is an irreducible binary quadratic form. If n = 3

thenQ is anisotropic, and β(3)
2 = 0. Otherwise, replacingQ(x1, . . . , xn) by 1

p
Q(x2, x3, px1, x4, . . . , xn)

brings us back to the situation in (23) but with the line condition, so that Cases I and II occur with
probabilities ν(n−1)1 and ν(n−1)2 instead of ξ(n−1)1 , ξ(n−1)2 .

(iii) For γ(n)1 , we may assume that the valuations of the coefficients satisfy

= 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 0 ≥ 0 ≥ 1 . . . ≥ 1

≥ 0 ≥ 1 . . . ≥ 1
≥ 1 . . . ≥ 1

. . . ...
≥ 1

and the reduction of Q(0, x2, x3, 0, . . . , 0) modulo p is irreducible. Any zero of Q now satisfies x2 ≡
x3 ≡ 0 (mod p). When n = 3 this gives a contradiction, so Q(x1, x2, x3) is anisotropic, and γ(3)1 = 0.
Otherwise, replacing Q(x1, . . . , xn) by 1

p
Q(x3, px1, px2, x4, . . . , xn) brings us back to the situation

in (22) but with the point condition, so that Cases I and II occur with probabilities η(n−2)1 and η(n−2)2 .

(iv) Lastly, for γ(n)1 , we may assume that the valuations of the coefficients satisfy

= 1 ≥ 1 ≥ 1 . . . ≥ 1
= 0 ≥ 1 . . . ≥ 1

≥ 1 . . . ≥ 1
. . . ...
≥ 1.

If n = 2 then Q(x1, x2) is anisotropic , and γ
(2)
2 = 0. Otherwise, replacing Q(x1, . . . , xn) by

1
p
Q(x2, px1, x3, . . . , xn) brings us back to the situation in (23) but with the point condition. �

3.4 Conclusion

Using Lemmas 3.1 and 3.3 we can compute β(n)
j and γ(n)j for j = 1, 2 and all n: we first determine

β1 from Lemma 3.3 (i), then β(n)
2 and γ(n)1 together using Lemma 3.3 (ii,iii), and finally γ(n)2 using

13



Lemma 3.3 (iv). The following table gives the result:

β
(n)
1 β

(n)
2 γ

(n)
1 γ

(n)
2

n = 2 − − − 0

n = 3 − 0 0 1/2

n = 4 0 (2p+ 1)/(2p+ 2) (p+ 2)/(2p+ 2) 1− (p/(4(p2 + p+ 1)))

n ≥ 5 1 1 1 1

Now, using Lemma 3.2, we compute α(n)
1 and α(n)

2 :

α
(n)
1 α

(n)
2

n = 2 0 1/(2p+ 2)

n = 3 1/(p+ 1) (p+ 2)/(2p+ 2)

n = 4 1− (p3/(2(p+ 1)(p2 + p+ 1))) 1− (p3/(4(p+ 1)(p3 + p2 + p+ 1)))

n ≥ 5 1 1

Finally, we compute ρn(p) using (21), yielding the values stated in Theorem 1.2.

Note that our proof of Theorem 1.2 also yields a (recursive) algorithm to determine whether a
quadratic form over Qp is isotropic. Tracing through the algorithm, we see that, for a quadratic form of
nonzero discriminant, only finitely many recursive iterations are possible (since we may organize the
algorithm so that at each such iteration the discriminant valuation is reduced), i.e., the algorithm always
terminates. In particular, when n ≥ 5, our algorithm always yields a zero for any n-ary quadratic form
of nonzero discriminant; hence every nondegenerate quadratic form in n ≥ 5 variables is isotropic.

4 The density of n-ary quadratic forms over R that are indefinite:
Proof of Theorem 1.3

4.1 Preliminaries on the Gaussian Orthogonal Ensemble (GOE)

We wish to calculate the probability ρn(∞) that a real symmetric matrix M from the n-dimensional
GOE has an indefinite spectrum. The distribution of matrix entries in the GOE is invariant under or-
thogonal transformations. Since real symmetric matrices can be diagonalised by an orthogonal trans-
formation, the GOE measure can be written directly in terms of the eigenvalues λ(M), yielding the
distribution

P
(
λ(M) ∈ [λ+ dλ)

)
=

1

ZGOE
n

|∆(λ)|
n∏
i=1

e−
1
4
λ2i dλi; (24)

here
∆(λ) :=

∏
1≤i<j≤n

(λj − λi) = det(ϕi(λj)),

where (ϕi(λj)) = (λi−1j ) is a Vandermonde matrix, and the normalizing factor ZGOE
n is given by

ZGOE
n = n!(2π)

n
2 2(n(n−1)/4+n/2)

n∏
j=1

Γ( j
2
)

Γ(1
2
)
. (25)
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See, for example, [1, (2.5.4)].
Note that the probability that the matrix M is indefinite is related to the probability p+n that all

its eigenvalues are positive by

ρn(∞) = 1− P(positive definite)− P(negative definite) = 1− 2p+n , (26)

where the second equality follows by symmetry. Below we will calculate p+n , and hence obtain the
value of ρn(∞).

4.2 de Bruijn’s identity

We recall a useful result from [4, §4] for calculating determinantal integrals of the type we will need.
As a generalisation of an expression for the volume of the space of symmetric unitary matrices, de
Bruijn considered integrals of the form:

Ω =

∫
· · ·
∫

a≤x1≤···≤xn≤b

det
1≤i,j≤n

(ϕi(xj))dµ(x1) . . . dµ(xn). (27)

Recall that the Pfaffian of a skew-symmetric matrix A = (aij) is given by

Pf(A) =
∑
τ

sgn(τ)ai1,j1ai2,j2 · · · ais,js , (28)

where τ ranges over all partitions

τ = {(i1, j1), (i2, j2), . . . (is, js)}

of n = 2s where ik < ik+1 and ik < jk. The sign is of the corresponding permutation

τ =

[
1 2 3 4 · · · 2s
i1 j1 i2 j2 · · · js

]
.

The integral (27) may be rewritten as the Pfaffian of either an n× n skew-symmetric matrix if
n is even, or an (n+ 1)× (n+ 1) skew-symmetric matrix if n is odd. More precisely, let n′ := 2dn/2e;
then we have Ω = Pf(A), where A is the n′×n′ skew-symmetric matrix whose (i, j)-entry aij is given
for i < j by

aij =


∫ b
a

∫ b
a

sign(y − x)ϕi(x)ϕj(y)dµ(x)dµ(y) if i < j ≤ n;∫ b
a
ϕj(x)dµ(x) if i < j = n+ 1.

(29)

The second case occurs only when n is odd. Note that this expression for Ω is valid in any ordered
measure space; below, we will use dµ(x) = e−x

2/4dx, where dx is the Lebesgue measure on R.
The Pfaffian form of the integral is found by expanding the determinant and using a signature

function to keep track of the signs and the ordering of the xi. This signature function of n variables can
be broken up into a sum of products of two-variable pieces (and a one-variable piece if n is odd) and
thus the integral can be factorised into a sum of products of two (and one) dimensional integrals which
is recognised as of the form (28) for a matrix with entries (29).
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4.3 Calculation of ρ∞n
For a matrix M from the GOE, the joint distribution of the eigenvalues λ1(M) ≤ λ2(M) ≤ · · · ≤
λn(M) is given by

n!

ZGOE
n

1λ1≤λ2≤···≤λn|∆(λ)|
n∏
i=1

e−
1
4
λ2i dλi. (30)

The ordering in the domain of integration below means that we can replace |∆(λ)| by ∆(λ). It then
follows that p+n is given by the integral

p+n =
n!

ZGOE
n

∫
· · ·
∫

0≤λ1≤···≤λn≤∞

∆(λ)
n∏
i=1

e−
1
4
λ2i dλi

=
n!

ZGOE
n

∫
· · ·
∫

0≤λ1≤···≤λn≤∞

det(ϕi(λj))
n∏
i=1

e−
1
4
λ2i dλi

=
n!

ZGOE
n

Pf(A), (31)

where the last equality follows from the result of §4.2. Here, A = (aij), where for i < j ≤ n we define

aij =

∫ ∞
0

∫ ∞
0

sign(y − x)xi−1yj−1e−
x2+y2

4 dxdy

= 2i+j−2Γ

(
i+ j

2

)(
β 1

2

(
i

2
,
j

2

)
− β 1

2

(
j

2
,
i

2

))
, (32)

and for n odd we also set ai,n+1 = 2i−1Γ( i
2
). Here the gamma and incomplete beta functions are as

defined in §1. From the resulting skew-symmetric matrixA, we may evaluate (31) to determine ρn(∞),
yielding Theorem 1.3. Explicit values of ρn(∞) are displayed in Table 1 for n ≤ 8.

Remark 4.1 It is easily shown that the matrix entries aij in Theorem 1.3 are of the form x or x
√
π for

x ∈ Q(
√

2), in accordance with whether i + j is even or odd. Let s = dn/2e, so that A is a 2s × 2s
matrix. Then after re-ordering the rows and columns we have

Pf(A) = ±Pf

(
A1

√
πA2

−
√
πAt2 A3

)
= ±πs/2Pf

(
A1 A2

−At2 π−1A3

)
where A1, A2 and A3 are s× s matrices with entries in Q(

√
2). Since

∏n
m=1 Γ(m/2) = πs/2y for some

y ∈ Q, it follows by Theorem 1.3 and the definition of the Pfaffian that ρn(∞) is a polynomial in π−1

having coefficients in Q(
√

2) and degree at most bs/2c = b(n+ 1)/4c.
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