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Abstract. A genus one curve C of degree 5 is defined by the 4×4 Pfaffians of a
5× 5 alternating matrix of linear forms on P4. We prove a result characterising
the covariants for these models in terms of their restrictions to the family of
curves parametrised by the modular curve X(5). We then construct covariants
describing the covering map of degree 25 from C to its Jacobian and give a
practical algorithm for evaluating them.

1. Introduction

Definition 1.1. Let n ≥ 3 be an integer.

(i) An elliptic normal curve C ⊂ Pn−1 is a smooth curve of genus one and
degree n that spans Pn−1.

(ii) A rational nodal curve C ⊂ Pn−1 is a rational curve of degree n that spans
Pn−1 and has a single node.

If C ⊂ Pn−1 is an elliptic normal curve then there is a covering map π of degree
n2 from C to its Jacobian E given by P 7→ [nP−H] ∈ Pic0(C)∼=E where H is the
hyperplane section. We may also describe π : C → E as the map that quotients
out by the action of E[n] on C by translation (assuming we are not in characteristic
dividing n). The subgroup of SLn consisting of matrices that describe this action
is called the Heisenberg group of C. If n is odd then over an algebraically closed
field we may change co-ordinates so that this group is generated by

(1)


1 0 0 · · · 0
0 ζn 0 · · · 0
0 0 ζ2

n · · · 0
...

...
...

...
0 0 0 · · · ζn−1

n

 and


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0


where ζn is a primitive nth root of unity. (If n is even then one must take scalar
multiples of these matrices with determinant 1.)

In the cases n = 2, 3, 4 classical invariant theory gives formulae for the Jacobian
E and for the covering map π : C → E. See [13], [14] for the cases n = 2, 3, and
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[2] for a survey of the cases n = 2, 3, 4. In [8] we gave a practical algorithm for
evaluating the invariants in the case n = 5 and showed that they give a formula for
the Jacobian. We now extend this invariant theoretic approach to give a formula
for the covering map.

We work throughout over a field K of characteristic not dividing 6n, where in
due course we take n = 5. Except in the following paragraph, and at the end of
Section 8, we assume for simplicity that K is algebraically closed.

To explain the motivation for our work, let E be an elliptic curve over a number
field K. For any integer n ≥ 2 the quotient group E(K)/nE(K) injects into
the n-Selmer group S(n)(E/K), which is finite and effectively computable. In an
explicit n-descent calculation one represents each element of the n-Selmer group
by (equations for) an elliptic normal curve C ⊂ Pn−1 with Jacobian E. It is
perhaps better to call C a “genus one normal curve” as it need not have any K-
rational points. The Selmer group elements with C(K) 6= ∅ make up the image of
E(K)/nE(K) in S(n)(E/K). Moreover if P ∈ C(K) then a coset representative
for the corresponding element of E(K)/nE(K) is given by the image of P under
the covering map. Having explicit formulae for the covering map can therefore
help in finding generators for the Mordell-Weil group E(K).

In the case n = 5 the curves of Definition 1.1 are called elliptic normal quintics
and rational nodal quintics. By the Buchsbaum-Eisenbud structure theorem [4],
[5] they are defined by the 4 × 4 Pfaffians of a 5 × 5 alternating matrix of linear
forms on P4. We call such a matrix φ a genus one model and write Cφ ⊂ P4 for the
subvariety defined by the 4× 4 Pfaffians. It is shown in [8, Proposition 5.10] that
Cφ is a smooth curve of genus one if and only if it is an elliptic normal quintic. In
this case we say that φ is non-singular.

There is a natural action of GL5×GL5 on the space of genus one models. The
first factor acts as M : φ 7→ MφMT and the second factor acts by changing co-
ordinates on P4. We adopt the following notation. Let V and W be 5-dimensional
vector spaces with bases v0, . . . , v4 and w0, . . . , w4. We identify the space of genus
one models with ∧2V ⊗W via

φ = (φij)←→
∑

i<j(vi ∧ vj)⊗ φij(w0, . . . , w4).

With this identification the action of GL5×GL5 becomes the natural action of
GL(V )×GL(W ) on ∧2V ⊗W . By squaring and then identifying ∧4V ∼= V ∗ there
is a natural map

(2) P2 : ∧2V ⊗W → V ∗ ⊗ S2W = Hom(V, S2W ).

Explicitly P2(φ) = (vi 7→ pi(w0, . . . , w4)) where p0, . . . , p4 are the 4 × 4 Pfaffians
of φ. Thus V may be thought of as the space of quadrics defining Cφ and W as
the space of linear forms on P4.
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Lemma 1.2. The action of GL(V ) × GL(W ) is transitive on the the genus one
models φ for which Cφ is a rational nodal quintic, and on the genus one models φ
for which Cφ is an elliptic normal quintic with given j-invariant.

Proof. See [8, Proposition 4.6]. �

The co-ordinate ring K[∧2V ⊗W ] is a polynomial ring in 50 variables.

Theorem 1.3. The ring of invariants for SL(V )×SL(W ) acting on K[∧2V ⊗W ]
is generated by invariants c4 and c6 of degrees 20 and 30. Moreover if we scale
them as specified in [8] and put ∆ = (c34 − c26)/1728 then

(i) a genus one model φ is non-singular if and only if ∆(φ) 6= 0,
(ii) if φ is non-singular then Cφ has j-invariant c4(φ)3/∆(φ).

Proof. See [8, Theorem 4.4]. �

Lemma 1.4. Let φ ∈ ∧2V ⊗W be a genus one model with Cφ either an elliptic
normal quintic or a rational nodal quintic. Then the Zariski closure of the GL(V )×
GL(W )-orbit of φ is the zero locus of an irreducible homogeneous invariant I.
Moreover we can take

I =


c4 if j(Cφ) = 0
c6 if j(Cφ) = 1728
∆ if Cφ is a rational nodal quintic

c34 − j(Cφ)∆ otherwise.

Proof. The existence of I is proved in [8, Lemma 4.10]. The invariants listed
vanish at φ by Theorem 1.3 and are irreducible in K[c4, c6]. They are therefore
irreducible inK[∧2V⊗W ] since any factors would themselves have to be invariants.
We use here that SL(V )× SL(W ) is connected and has no 1-dimensional rational
representations. Alternatively we can prove irreducibility by restricting to the
Weierstrass models in [8, Section 6]. �

Lemma 1.5. Let I be a non-constant homogeneous invariant. Then there exists
φ ∈ ∧2V ⊗W with I(φ) = 0 and Cφ either an elliptic normal quintic or a rational
nodal quintic.

Proof. We may assume that I is irreducible in K[c4, c6]. So up to scalar multiples
we have I = c4, c6,∆ or c34 − j∆ with j 6= 0, 1728. We take Cφ to be an elliptic
normal quintic with the appropriate j-invariant, or in the case I = ∆ a rational
nodal quintic. �

The covariants we need to describe the covering map are SL(V ) × SL(W )-
equivariant polynomial maps ∧2V ⊗W → S5dW for d = 1, 2, 3. More generally we
defined a covariant to be an SL(V )× SL(W )-equivariant polynomial map ∧2V ⊗
W → Y where Y is a rational representation of GL(V ) × GL(W ). In all our
examples Y will be homogeneous by which we mean there exist integers r and s
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such that the morphism ρY : GL(V )×GL(W )→ GL(Y ) satisfies ρY (λIV , µIW ) =
λrµsIY for all λ, µ ∈ K×.

Lemma 1.6. Let Y be a homogeneous rational representation of GL(V )×GL(W )
with degrees (r, s). If F : ∧2V ⊗W → Y is a homogeneous covariant then there
exist integers p and q called the weights of F such that

(3)
2 degF = 5p+ r

degF = 5q + s.

Proof. See [10, Lemma 2.2]. �

For example the Pfaffian map (2) is a covariant of degree 2 with weights (p, q) =
(1, 0). The covariants in the case Y is the trivial representation are the invariants
as described in Theorem 1.3. For general Y the covariants form a module over the
ring of invariants K[c4, c6].

In Section 2 we recall our method [10] for studying the covariants via their
restrictions to the Hesse family, i.e. the universal family over X(5). These restric-
tions are nearly characterised by their invariance properties under an appropriate
action of SL2(Z/5Z). In Sections 3 and 4 we make this relationship precise. Thus
our work resolves, albeit in one particular case, what is described in [1, Chapter
V,§22] as the “mysterious role of invariant theory”. We give examples for a range
of different Y in Section 5. In Section 6 we show how a free basis for the K[c4, c6]-
module of covariants for Y may be characterised in terms of its specialisations to
the genus one models φ of the form considered in Lemma 1.4. In Section 7 we
relate the covariants in the case Y = S5W to work of Hulek [11] and finally in
Section 8 we give our formula for the covering map.

2. Discrete covariants

In this section we recall some of the theory from [10]. We then state our main
result on the relationship between covariants and discrete covariants.

We take n ≥ 5 an odd integer. The Heisenberg group of level n is

Hn = 〈σ, τ |σn = τn = [σ, [σ, τ ]] = [τ, [σ, τ ]] = 1〉.
It is a non-abelian group of order n3 and its centre is a cyclic group of order
n generated by ζ = [σ, τ ] = στσ−1τ−1. In [10, Section 3] we defined a group
homomorphism sβ : GL2(Z/nZ)→ Aut(Hn) by

sβ(( a b
c d )) : σ 7→ ζ−ac/2σaτ c ; τ 7→ ζ−bd/2σbτ d.

where the exponents are read as integers mod n.

Definition 2.1. The extended Heisenberg group is the semi-direct product

H+
n = Hn n SL2(Z/nZ),

with group law (h, γ)(h′, γ′) = (h sβ(γ)h′, γγ′).
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The Schrödinger representation θ : Hn → SLn(K) maps σ and τ to the matri-
ces (1). These matrices have commutator θ(ζ) = ζnIn.

Theorem 2.2. (i) The Schrödinger representation θ : Hn → SLn(K) extends
uniquely to a representation θ+ : H+

n → SLn(K).
(ii) The normaliser of θ(Hn) in SLn(K) is θ+(H+

n ).

Proof. See [10, Theorem 3.6]. �

Remark 2.3. (i) The representation θ+ of Theorem 2.2 is given on the generators
S = ( 0 1

−1 0 ) and T = ( 1 1
0 1 ) for SL2(Z/nZ) by suitable scalar multiples of

1 1 1 · · · 1
1 ζn ζ2

n · · · ζ−1
n

1 ζ2
n ζ4

n · · · ζ−2
n

...
...

...
...

1 ζ−1
n ζ−2

n · · · ζn

 and


1 0 0 · · · 0

0 ζ
1/2
n 0 · · · 0

0 0 ζ
22/2
n · · · 0

...
...

...
...

0 0 0 · · · ζ1/2
n

 .

(ii) The Schrödinger representation has φ(n) conjugates obtained by either chang-
ing our choice of ζn or precomposing with an automorphism of Hn. We may apply
Theorem 2.2 to any one of these representations.

The Hesse family of elliptic normal quintics (studied for example in [9], [11]) is
given by

(4)
u : A2 → ∧2V ⊗W

(a, b) 7→ a
∑

(v1 ∧ v4)w0 + b
∑

(v2 ∧ v3)w0

where the sums are taken over all cyclic permutations of the subscripts mod 5. We
define actions of the Heisenberg group H5 on V and W so that the Hesse models
u(a, b) are H5-invariant.

(5)
θV : H5 → SL(V ) ; σ : vi 7→ ζ2i

5 vi ; τ : vi 7→ vi+1

θW : H5 → SL(W ) ; σ : wi 7→ ζ i
5wi ; τ : wi 7→ wi+1.

Since θV and θW are conjugates of the Schrödinger representation they extend by
Theorem 2.2 to representations of H+

5 . By abuse of notation we continue to write
these representations as θV and θW .

Let Y be a homogeneous rational representation of GL(V )×GL(W ). Then θV

and θW define an action of H+
5 on Y and so an action of Γ = SL5(Z/5Z) on Y H5 .

Taking Y = ∧2V ⊗W the action of Γ on (∧2V ⊗W )H5 = Im(u) is described by a
representation χ1 : Γ→ GL2(K).

Definition 2.4. Let π : Γ→ GL(Z) be a representation. A discrete covariant for
Z is a polynomial map f : A2 → Z satisfying f ◦ χ1(γ) = π(γ) ◦ f for all γ ∈ Γ.

Theorem 2.5. Let F : ∧2V ⊗W → Y be a covariant. Then f = F ◦u : A2 → Y H5

is a discrete covariant. Moreover F is uniquely determined by f .
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Proof. See [10, Theorem 4.3]. �

For any given Y the discrete covariants may be computed using invariant theory
for the finite groups H5 and SL2(Z/5Z). We say that a discrete covariant f : A2 →
Y H5 is a covariant if it arises from a covariant F : ∧2V ⊗W → Y as described
in Theorem 2.5. It is important to note that not every discrete covariant is a
covariant. For example, taking Y to be the trivial representation, the ring of
invariants is K[c4, c6] as described in Theorem 1.3 whereas the ring of discrete
invariants is generated by

(6)

D = ab(a10 − 11a5b5 − b10)
c4 = a20 + 228a15b5 + 494a10b10 − 228a5b15 + b20

c6 = −a30 + 522a25b5 + 10005a20b10 + 10005a10b20 − 522a5b25 − b30

subject only to the relation c34 − c26 = 1728D5. We use the same notation for
both a covariant and its restriction to the Hesse family. By the uniqueness part
of Theorem 2.5 this should not cause any confusion.

There are essentially two ways in which a discrete covariant might fail to be a
covariant. The first is that the weights computed using (3) might not be integers.
For example D has weights (p, q) = (24/5, 12/5) and so cannot be an invariant.
The second is that denominators might be introduced. More precisely we prove
the following theorem in Section 3.

Theorem 2.6. Let f : A2 → Y H5 be an integer weight discrete covariant. Then
∆kf is a covariant for some k ≥ 0.

In Section 4 we give a practical method for computing the least such k.

Remark 2.7. If Y is homogeneous of degree (r, s) and Y H5 6= 0 then the action
of the centre of H5 shows that 2r + s ≡ 0 (mod 5). We see by (3) that p is an
integer if and only if q is an integer. So the integer weight condition is just a
congruence mod 5 on the degree of a covariant. Since ∆ = D5 and degD = 12 is
coprime to 5, an equivalent formulation of Theorem 2.6 is that if f : A2 → Y H5 is
a homogeneous discrete covariant then Dmf is a covariant for some m ≥ 0.

3. Fractional covariants

In this section we prove Theorem 2.6.

Lemma 3.1. Let φ ∈ ∧2V ⊗W be a non-singular Hesse model.

(i) The stabiliser of φ in SL(V )× SL(W ) is

H = {(θV (h), θW (h)) : h ∈ H5}.
(ii) The normaliser of H in SL(V )× SL(W ) is

N = {(θV (h), ζθW (h)) : (ζ, h) ∈ µ5 ×H+
5 }.
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Proof. (i) It is clear by (4) and (5) that H is contained in the stabiliser of φ.
Since any automorphism of Cφ of order 5 is translation by a 5-torsion point of its
Jacobian, all such automorphisms are described by elements of H.

Now let g ∈ SL(V )×SL(W ) with g(φ) = φ and let γ be the automorphism of Cφ

induced by g. By [8, Proposition 5.19 and Lemma 2.4] γ preserves the invariant
differential and is therefore a translation map. Since Cφ ⊂ P4 is a curve of degree 5
this translation is by a point of order 5. Composing g with a suitable element of
H reduces us to the case γ is the identity. Then g = (gV , gW ) is a pair of scalar
matrices. Since these matrices each have determinant 1 and jointly fix φ it follows
that (gV , gW ) = (θV (h), θW (h)) for some h in the centre of H5.

(ii) We see by Theorem 2.2(ii) that N is contained in the normaliser of H, and
that any element of the normaliser may be composed with an element of N to give
an element of the form g = (IV , gW ) where IV is the identity. Since θV is faithful
it follows that gW is in the centraliser of θW (H5) in SL(W ), which turns out to
consist only of scalar matrices. �

The following proposition will be used to explain the relationship between the
covariants and the discrete covariants.

Proposition 3.2. Let G be a linear algebraic group acting on irreducible affine
varieties X and Y . Let H ⊂ G be a subgroup whose normaliser N ⊂ G is of finite
order coprime to charK. Suppose that A ⊂ XH is an irreducible variety acted on
by N/H, and U ⊂ A is a dense open subset such that

(i) the morphism G× U → X; (g, φ) 7→ g(φ) has dense image,
(ii) the stabiliser in G of each element of U is H,
(iii) either charK = 0 or the derivative of the map in (i) is an isomorphism

at all points of G× U .

Then by restriction to A there is a bijection between

• G-equivariant rational maps F : X − →Y , and
• N/H-equivariant rational maps f : A− →Y H

Proof. Let F : X − →Y be a G-equivariant rational map. Its domain of definition
is aG-invariant open subset ofX and hence by (i) it meets U . Therefore F restricts
to a rational map f on A. By hypothesis A is acted on by N and pointwise fixed by
H. Since F is N -equivariant it follows that f(A) ⊂ Y H and f is N/H-equivariant.

Conversely suppose f : A− →Y H is an N/H-equivariant rational map. We let
δ ∈ N act on G × A via (g, a) 7→ (gδ−1, δa). Since N is a finite group of order
coprime to charK and G×A is an affine variety, the quotient (G×A)/N exists,
and is an affine variety. We consider the maps

ψid : (G× A)/N −→X; (g, a) 7→ g(a)

ψf : (G× A)/N − →Y ; (g, a) 7→ g(f(a)).
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Shrinking U if necessary, we may assume that N/H acts on U . By (i) ψid has
dense image, by (ii) it is injective on the dense subset (G×U)/N , and by (iii) it is
separable. It follows that ψid is birational. Then F = ψf ◦ ψ−1

id is a G-equivariant
rational map extending f . �

Proof of Theorem 2.6. We apply Proposition 3.2 with G = SL(V ) × SL(W ),
X = ∧2V ⊗W and H ⊂ N ⊂ G as in Lemma 3.1. We also let A = XH be the
space of Hesse models and U ⊂ A the space of non-singular Hesse models.

We check the hypotheses (i), (ii) and (iii). By [9, Proposition 4.1] every non-
singular model is equivalent to a Hesse model and by Theorem 1.3 the non-
singular models are Zariski dense in ∧2V ⊗ W . This proves (i). We checked
(ii) in Lemma 3.1 and (iii) is checked in Lemma 3.3 below.

By Lemma 3.1 and the definition of H+
5 we have N/H ∼=µ5 × Γ where Γ =

SL2(Z/5Z). Now f is Γ-equivariant by definition of a discrete covariant and µ5-
equivariant by the assumption it has integer weights. So by Proposition 3.2 it is
the restriction of a G-equivariant rational map F : ∧2V ⊗W − →Y . (We say F
is a fractional covariant.)

It remains to show that ∆kF is regular for some k ≥ 0. Let S ∈ K[∧2V ⊗W ]
be a homogeneous polynomial of least degree such that SF is regular. Then
F = R/S where R is a covariant and S is an invariant. Suppose S(φ) = 0 for
some non-singular model φ. By [9, Proposition 4.1] we may suppose that φ is
a Hesse model, and so by the regularity of f we have R(φ) = S(φ) = 0. By
Lemma 1.4 the Zariski closure of the GL(V )×GL(W )-orbit of φ is the zero locus
of a homogeneous invariant I. Now both R and S are divisible by I and this
contradicts the choice of S. Therefore F is regular on all non-singular models.
By Theorem 1.3(i) and the Nullstellensatz it follows that ∆kF is regular for some
k ≥ 0. �

The following lemma completes the proof of Theorem 2.6 in the case of positive
characteristic (still assuming charK 6= 2, 3, 5).

Lemma 3.3. The derivative of the morphism

SL(V )× SL(W )× A2 → ∧2V ⊗W
(gV , gW , (a, b)) 7→ (gV , gW )u(a, b)

is an isomorphism at all (gV , gW , (a, b)) with D(a, b) 6= 0.

Proof. It suffices to compute the derivative at (IV , IW , (a, b)). This is a linear map

(7) sl(V )× sl(W )× A2 → ∧2V ⊗W.
We write Eij for the n×n matrix with (i, j) entry 1 and all other entries 0. Then
sln has basis {Eij : i 6= j} ∪ {E00 − Eii : i 6= 0}. Taking these bases for sl(V ) and
sl(W ), the standard basis for A2 and the basis {(vi∧vj)wk : i < j} for ∧2V ⊗W , we
found by direct calculation that the derivative (7) has determinant 54D(a, b)4. �
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4. Denominators

In this section we show how to find the least value of k in Theorem 2.6. We
consider the family of genus one models

(8)
u1 : A5 → ∧2V ⊗W

(λ0, . . . , λ4) 7→
∑
λ0(v1 ∧ v4)w0 +

∑
(v2 ∧ v3)w0.

where the sums are taken over all cyclic permutations of the subscripts mod 5.
These models are related to the Hesse family by

(9) u1(a, . . . , a) = u(a, 1).

Remark 4.1. If φ = u1(λ0, . . . , λ4) then Cφ ⊂ P4 is defined by λ0x
2
0 + x1x4 −

λ2λ3x2x3 = 0 and its cyclic permutes. These curves were studied in [7] where it is
shown that φ = u1(λ, 1, . . . , 1) defines the universal family of (generalised) elliptic
curves parametrised by X1(5). Here λ is a co-ordinate on X1(5)∼= P1.

Definition 4.2. Let D ⊂ SL(V ) × SL(W ) be the subgroup of pairs of diagonal
matrices

(10)


α1α4

α0α2

α1α3

α2α4

α0α3

 ,


α0

α1

α2

α3

α4

 ,

with
∏
αi = 1.

Lemma 4.3. The action of D on A5 compatible with u1 is

(λ0, λ1, λ2, λ3, λ4) 7→ (
α2

0

α1α4
λ0,

α2
1

α0α2
λ1,

α2
2

α1α3
λ2,

α2
3

α2α4
λ3,

α2
4

α0α3
λ4).

In particular D acts transitively on the subsets of A5 defined by the condition that
λ0, . . . , λ4 have a fixed non-zero product.

Proof. Let gV and gW be the matrices (10) with (α0, . . . , α4) = (α, 1, . . . , 1). Then

(gV , gW )u1(λ0, . . . , λ4) = αu1(α
2λ0, α

−1λ1, λ2, λ3, α
−1λ4).

From this calculation and the obvious cyclic symmetry it follows that the action
of D on A5 is as stated. In the special case (α0, . . . , α4) = (β−2, β−1, 1, β, β2)
this action is given by (λ0, λ1, λ2, λ3, λ4) 7→ (β−5λ0, λ1, λ2, λ3, β

5λ4). Since we are
working over an algebraically closed field the final statement is clear. �

Let Y be a homogeneous rational representation of GL(V )×GL(W ).

Theorem 4.4. Let f : A2 → Y H5 be an integer weight discrete covariant.

(i) There is a unique D-equivariant rational map f1 : A5− →Y with

f1(a, . . . , a) = f(a, 1).
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(ii) f is a covariant if and only if f1 is regular.

Proof. By Theorem 2.6 there is a fractional covariant F : ∧2V ⊗W − →Y with
f = F ◦u. It follows by (9) and Lemma 4.3 that f1 = F ◦u1 satisfies (i). Uniqueness
is proved using the final part of Lemma 4.3.

It remains to show that if f1 is regular then F is regular. Theorem 2.6 already
shows that R = ∆kF is a covariant for some k ≥ 0. We take the least such k. Let
φ = u1(0, 1, 1, 1, 1). Then Cφ is the rational nodal quintic parametrised by

(x0 : . . . : x4) = (s5 − t5 : st4 : s2t3 : −s3t2 : −s4t).

If k ≥ 1 then by regularity of f1 we have R(φ) = 0. Then Lemma 1.4 shows that
R is divisible by ∆ contradicting our choice of k. Therefore k = 0 and F is a
covariant. By the convention introduced following Theorem 2.5, we say that f is
a covariant. �

What makes Theorem 4.4 useful is that we can compute f1 from f without
going via F . Explicitly we put

(11) f1(λ0, . . . , λ4) = ρY (gV , gW )f(a, 1)

where gV and gW are given by (10) and satisfy u1(λ0, . . . , λ4) = (gV , gW )u(a, 1).
We then eliminate α0, . . . , α4 and a from the right hand side, using the relations

α2
i /(αi+1αi+4) = λi/a(12)

α5
i = λ2

i /(λi+2λi+3)(13)

a5 = λ0λ1 . . . λ4.(14)

The first of these comes from Lemma 4.3. The other two may be deduced from the
first using

∏
αi = 1. One systematic way to proceed is by using (12) to eliminate

α0, α1, α2, then (13) to eliminate α3, α4 and finally (14) to eliminate a.

Remark 4.5. It can be shown that Theorem 4.4(i) still holds if we weaken the
condition that f is SL2(Z/5Z)-equivariant and just require that it is equivariant
for the action of T = ( 1 1

0 1 ).

5. Examples

We can use Theorem 4.4 in the case Y is the trivial representation to give
another proof (independent of Theorem 1.3) that the discrete invariants c4 and c6
are in fact invariants. Indeed let f be an integer weight discrete invariant. The
integer weight condition is that f is homogeneous of degree a multiple of 5. We
construct f1 from f by making the substitutions a5 7→

∏
λi and b 7→ 1. Since no

denominators are introduced it follows by Theorem 4.4 that f is an invariant.
In the cases Y = ∧2V ⊗W and ∧2V ∗⊗W ∗ the following proposition was already

proved in [9] using evectants. We now have a general method. In the calculations
that follow all sums and products are taken over the cyclic permutations of the
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subscripts mod 5. Recall that we fixed bases v0, . . . , v4 and w0, . . . , w4 for V and
W . The dual bases for V ∗ and W ∗ are v∗0, . . . , v

∗
4 and w∗

0, . . . , w
∗
4.

Proposition 5.1. Let Y be any one of

∧2V ⊗W, V ∗ ⊗ ∧2W, V ⊗ ∧2W ∗, ∧2V ∗ ⊗W ∗,
V ∗ ⊗ S2W, S2V ∗ ⊗W ∗, S2V ⊗W, V ⊗ S2W ∗.

Then every integer weight discrete covariant f : ∧2V ⊗W → Y H5 is a covariant.
In particular the covariants F : ∧2V ⊗W → Y form a free K[c4, c6]-module of
rank 2 or 3 and the generators have degrees as indicated in [10, Table 4.6].

Proof. Let f : ∧2V ⊗ W → Y H5 be an integer weight discrete covariant. In
each case [10, Lemma 4.4] shows that dimY H5 = 2 or 3 and a basis is found
by inspection. We construct f1 from f by making the substitutions a5 7→

∏
λi,

b 7→ 1, and

a
∑

(v1 ∧ v4)w0 7→
∑

λ0(v1 ∧ v4)w0
∑

v∗0(w1 ∧ w4) 7→
∑

v∗0(w1 ∧ w4)∑
(v2 ∧ v3)w0 7→

∑
(v2 ∧ v3)w0 a2 ∑

v∗0(w2 ∧ w3) 7→
∑

λ2λ3v
∗
0(w2 ∧ w3)

∑
v0(w∗

1 ∧ w∗
4) 7→

∑
v0(w∗

1 ∧ w∗
4) a4 ∑

(v∗1 ∧ v∗4)w
∗
0 7→

∑
λ1λ2λ3λ4(v∗1 ∧ v∗4)w

∗
0

a3 ∑
v0(w∗

2 ∧ w∗
3) 7→

∑
λ0λ1λ4v0(w∗

2 ∧ w∗
3)

∑
(v∗2 ∧ v∗3)w

∗
0 7→

∑
(v∗2 ∧ v∗3)w

∗
0

a
∑

v∗0w
2
0 7→

∑
λ0v

∗
0w

2
0 a2 ∑

v∗20 w∗
0 7→

∑
λ2λ3v

∗2
0 w∗

0∑
v∗0w1w4 7→

∑
v∗0w1w4 a4 ∑

v∗1v
∗
4w

∗
0 7→

∑
λ1λ2λ3λ4v

∗
1v

∗
4w

∗
0

a2 ∑
v∗0w2w3 7→

∑
λ2λ3v

∗
0w2w3

∑
v∗2v

∗
3w

∗
0 7→

∑
v∗2v

∗
3w

∗
0

a3 ∑
v2
0w0 7→

∑
λ0λ1λ4v

2
0w0 a4 ∑

v0w
∗2
0 7→

∑
λ1λ2λ3λ4v0w

∗2
0

a
∑

v1v4w0 7→
∑

λ0v1v4w0
∑

v0w
∗
1w

∗
4 7→

∑
v0w

∗
1w

∗
4∑

v2v3w0 7→
∑

v2v3w0 a3 ∑
v0w

∗
2w

∗
3 7→

∑
λ0λ1λ4v0w

∗
2w

∗
3

Since these substitutions eliminate a it is clear that no denominators are intro-
duced. It follows by Theorem 4.4 that f is a covariant. �

Proposition 5.2. Let Y be any one of S5W,S5V, S5V ∗, S5W ∗. Then the covari-
ants F : ∧2V ⊗W → Y form a free K[c4, c6]-module of rank 6 with generators
in degrees 10, 20, 30, 30, 40, 50 except in the case Y = S5W ∗ where the generators
have degrees 30, 40, 50, 50, 60, 70.

Proof. The module of integer weight discrete covariants is computed as described
in [10] and is found to be a free K[c4, c6]-module of rank 6 with generators in
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degrees 10, 10, 20, 20, 30, 30. We use Theorem 4.4 to decide which of these are
covariants. We construct f1 from f by making the substitutions a5 7→

∏
λi, b 7→ 1

and

a5 ∑
w5

0 7→
∑

λ3
0λ1λ4w

5
0 a5 ∑

v5
0 7→

∑
λ0λ

2
1λ

2
4v

5
0

a4 ∑
w3

0w1w4 7→
∑

λ2
0λ1λ4w

3
0w1w4 a3 ∑

v3
0v1v4 7→

∑
λ0λ1λ4v

3
0v1v4

a3 ∑
w0w

2
1w

2
4 7→

∑
λ0λ1λ4w0w

2
1w

2
4 a

∑
v0v

2
1v

2
4 7→

∑
λ0v0v

2
1v

2
4

a2 ∑
w0w

2
2w

2
3 7→

∑
λ2λ3w0w

2
2w

2
3 a4 ∑

v0v
2
2v

2
3 7→

∑
λ1λ2λ3λ4v0v

2
2v

2
3

a
∑

w3
0w2w3 7→

∑
λ0w

3
0w2w3 a2 ∑

v3
0v2v3 7→

∑
λ1λ4v

3
0v2v3∏

w0 7→
∏

w0
∏

v0 7→
∏

v0

a5 ∑
v∗50 7→

∑
λ0λ

2
2λ

2
3v

∗5
0 a10 ∑

w∗5
0 7→

∑
λ2

1λ
3
2λ

3
3λ

2
4w

∗5
0

a2 ∑
v∗30 v∗1v

∗
4 7→

∑
λ2λ3v

∗3
0 v∗1v

∗
4 a6 ∑

w∗3
0 w∗

1w
∗
4 7→

∑
λ1λ

2
2λ

2
3λ4w

∗3
0 w∗

1w
∗
4

a4 ∑
v∗0v

∗2
1 v∗24 7→

∑
λ1λ2λ3λ4v

∗
0v

∗2
1 v∗24 a2 ∑

w∗
0w

∗2
1 w∗2

4 7→
∑

λ2λ3w
∗
0w

∗2
1 w∗2

4

a
∑

v∗0v
∗2
2 v∗23 7→

∑
λ0v

∗
0v

∗2
2 v∗23 a3 ∑

w∗
0w

∗2
2 w∗2

3 7→
∑

λ0λ1λ4w
∗
0w

∗2
2 w∗2

3

a3 ∑
v∗30 v∗2v

∗
3 7→

∑
λ0λ2λ3v

∗3
0 v∗2v

∗
3 a4 ∑

w∗3
0 w∗

2w
∗
3 7→

∑
λ1λ2λ3λ4w

∗3
0 w∗

2w
∗
3∏

v∗0 7→
∏

v∗0
∏

w∗
0 7→

∏
w∗

0

In the cases Y = S5W,S5V, S5V ∗ an integer weight discrete covariant is a covari-
ant if and only if the coefficient of

∑
w5

0,
∑
v5

0,
∑
v∗50 is divisible by a5. Computing

the discrete covariants we find that there is a single constraint in degree 10m for
each m ≥ 1. The covariants therefore have Hilbert series

2(t10 + t20 + t30)

(1− t20)(1− t30)
− t10

1− t10
=
t10 + t20 + 2t30 + t40 + t50

(1− t20)(1− t30)
.

In Section 7 we give further details of the covariants in the case Y = S5W .
In the case Y = S5W ∗ an integer weight discrete covariant is a covariant if and

only if the coefficient of
∑
w∗5

0 is divisible by a10 and the coefficient of
∑
w∗3

0 w
∗
1w

∗
4

is divisible by a5. We find that the discrete covariants of degrees 10 and 20 are
not covariants and that there are 3 constraints in degrees 10m for each m ≥ 3.
The covariants therefore have Hilbert series

2(t10 + t20 + t30)

(1− t20)(1− t30)
− 2t10 − 2t20 − 3t30

1− t10
=
t30 + t40 + 2t50 + t60 + t70

(1− t20)(1− t30)
.

�

Example 5.3. The degree 10 covariant for Y = S5W is

S10 = a5b5 ∑
w5

0 − a4b(a5 − 3b5)
∑

w3
0w1w4 + a3b2(a5 + 2b5)

∑
w0w

2
1w

2
4

+a2b3(2a5 − b5)
∑

w0w
2
2w

2
3 − ab4(3a5 + b5)

∑
w3

0w2w3 + (a10 − 16a5b5 − b10)
∏

w0



INVARIANT THEORY FOR THE ELLIPTIC NORMAL QUINTIC 13

and the degree 30 covariant for Y = S5W ∗ is

T30 = 125a10b10(3a10 − 8a5b5 − 3b10)
∑

w∗5
0

−5a6b4(3a20 + 134a15b5 + 57a10b10 + 216a5b15 − 22b20)
∑

w∗3
0 w∗

1w
∗
4

+a2b3(32a25 − 195a20b5 + 4110a15b10 + 900a10b15 + 480a5b20 + 9b25)
∑

w∗
0w

∗2
1 w∗2

4

−a3b2(9a25 − 480a20b5 + 900a15b10 − 4110a10b15 − 195a5b20 − 32b25)
∑

w∗
0w

∗2
2 w∗2

3

−5a4b6(22a20 + 216a15b5 − 57a10b10 + 134a5b15 − 3b20)
∑

w∗3
0 w∗

2w
∗
3

+(a30 − 258a25b5 + 3435a20b10 − 23040a15b15 − 3435a10b20 − 258a5b25 − b30)
∏

w∗
0.

The covariant S10 is (a scalar multiple of) the determinant of the Jacobian matrix
of the quadrics defining Cφ. We do not know of any similar construction for T30.
The contraction of these two covariants is 〈S10, T30〉 = c24. In [8, Section 8] we used
the existence of a such a covariant T30 to justify our algorithm for computing the
invariants in the case of a singular genus one model.

In [10, Section 7] we showed that the covariant Ω5 of degree 5 in the following
proposition represents the invariant differential.

Proposition 5.4. The covariants for Y = ∧2W ∗ ⊗ S2W form a free K[c4, c6]-
module of rank 6 with generators in degrees 5, 15, 15, 25, 25, 35.

Proof. The module of integer weight discrete covariants is computed as described
in [10] and is found to be a free K[c4, c6]-module of rank 6 with generators in
degrees 5, 15, 15, 25, 25, 35. We use Theorem 4.4 to decide which of these are
covariants. We construct f1 from f by making the substitutions a5 7→

∏
λi, b 7→ 1

and

a
∑

(w∗
1 ∧ w∗

4)w
2
0 7→

∑
λ0(w

∗
1 ∧ w∗

4)w
2
0∑

(w∗
1 ∧ w∗

4)w1w4 7→
∑

(w∗
1 ∧ w∗

4)w1w4

a2
∑

(w∗
1 ∧ w∗

4)w2w3 7→
∑
λ2λ3(w

∗
1 ∧ w∗

4)w2w3

a4
∑

(w∗
2 ∧ w∗

3)w
2
0 7→

∑
λ2

0λ1λ4(w
∗
2 ∧ w∗

3)w
2
0

a3
∑

(w∗
2 ∧ w∗

3)w1w4 7→
∑
λ0λ1λ4(w

∗
2 ∧ w∗

3)w1w4∑
(w∗

2 ∧ w∗
3)w2w3 7→

∑
(w∗

2 ∧ w∗
3)w2w3.

In this case every integer weight discrete covariant is a covariant. �

6. Independence of covariants

Let Y be a homogeneous rational representation of GL(V )×GL(W ).

Theorem 6.1. Assume charK = 0.

(i) The module of covariants ∧2V ⊗W → Y is a free K[c4, c6]-module of rank
m = dimY H5.
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(ii) Let F1, . . . , Fm be homogeneous covariants for Y . Then F1, . . . , Fm are a
free basis for the module in (i) if and only if for each φ with Cφ either
an elliptic normal quintic or rational nodal quintic, F1(φ), . . . , Fm(φ) are
linearly independent over K.

Proof. (i) The fact we obtain a free module is a standard result in invariant theory.
We have assumed charK = 0 so that SL(V )× SL(W ) is linearly reductive, i.e. it
has a Reynolds operator. Applying the Reynolds operator to the free K[∧2V ⊗W ]-
module of polynomial maps ∧2V ⊗ W → Y shows that the covariants form a
projective K[c4, c6]-module and hence a free K[c4, c6]-module. By Theorem 2.6
the rank is the same as for the integer weight discrete covariants. We proved in
[10, Lemma 4.5] that this rank is m.

(ii) Let F1, . . . , Fm be homogeneous covariants that are a basis for the module
in (i) and let φ be a genus one model with Cφ either an elliptic normal quintic
or rational nodal quintic. Suppose for a contradiction that there is a dependence
relation

λ1F1(φ) + . . .+ λmFm(φ) = 0

for some λ1, . . . , λm ∈ K not all zero. Let

(15) d =

 6 if c4(φ) = 0
4 if c6(φ) = 0
2 otherwise.

Since φ is equivalent to a Weierstrass model we see by [8, Proposition 4.7] that
for every ζ ∈ µd there exists g = (gV , gW ) ∈ SL(V ) × GL(W ) with gφ = φ and
det gW = ζ. Let Fi have weights (pi, qi). Applying g to the above dependence
relation we obtain

ζq1λ1F1(φ) + . . .+ ζqmλmFm(φ) = 0.

We may therefore reduce to the case where all the qi are congruent mod d. This
implies by (3) that the degrees of the Fi are congruent mod 5d. We recall that
c4 and c6 have degrees 20 and 30. It follows by (15) that there is a homogeneous
covariant

F = I1F1 + . . .+ ImFm

with F (φ) = 0 where each Ii is a monomial in c4 and c6 and Ii(φ) 6= 0 for some
i. Then F is divisible by the invariant I constructed in Lemma 1.4. Since we
are assuming F1, . . . , Fm are a basis for the module of covariants it follows that I
divides Ii and so Ii(φ) = 0 for all i. This is the required contradiction.

Conversely suppose F1, . . . , Fm are covariants whose specialisations at φ are
linearly independent over K whenever Cφ is an elliptic normal quintic or rational
nodal quintic. If there is a relation

I1F1 + . . .+ ImFm = 0
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for some invariants I1, . . . , Im then these invariants vanish on all non-singular
models and so are identically zero by Theorem 1.3. Thus F1, . . . , Fm generate a
free submodule of rank m. By (i) it remains to show that if

I1F1 + . . .+ ImFm = IF

for some covariant F and invariants I, I1, . . . , Im then I divides Ii for all i. We
prove this by specialising to the genus one model in Lemma 1.5. �

Remark 6.2. (i) The result that F1(φ), . . . , Fm(φ) are linearly independent for φ
non-singular could equally be proved using discrete covariants. However this proof
does not generalise to the case Cφ is a rational nodal quintic.
(ii) We can remove the hypothesis charK = 0 from Theorem 6.1 (but still of course
requiring charK 6= 2, 3, 5) by applying the Reynolds operator for SL2(Z/5Z) to
the free K[a5, b5]-module of 〈T 〉-equivariant maps A2 → Y H5 that pass the test of
Theorem 4.4. See also Remark 4.5.

7. Quintic covariants

We give further details of the covariants in the case Y = S5W . We already
noted in the proof of Proposition 5.2 that the integer weight discrete covariants
form a free K[c4, c6]-module of rank 6 generated in degrees 10, 10, 20, 20, 30, 30. A
basis for Y H5 is

F1 =
∑
w5

0 − 30
∏
w0, F2 = 10

∑
w3

0w1w4, F3 = 10
∑
w3

0w2w3,

G1 =
∑
w5

0 + 20
∏
w0, G2 = 10

∑
w0w

2
1w

2
4, G3 = 10

∑
w0w

2
2w

2
3.

In terms of this basis we have generators

F10 = (a10 − 36a5b5 − b10)F1 + 5a4b(a5 − 3b5)F2 + 5ab4(3a5 + b5)F3,

F20 = (a20 + 114a15b5 + 114a5b15 − b20)F1

−a4b(a15 + 171a10b5 + 247a5b10 − 57b15)F2

−ab4(57a15 + 247a10b5 − 171a5b10 + b15)F3,

F30 = D
(
10a4b4(9a10 + 26a5b5 − 9b10)F1

+a3(a15 + 126a10b5 + 117a5b10 − 12b15)F2

−b3(12a15 + 117a10b5 − 126a5b10 + b15)F3

)
,

G10 = (a10 + 14a5b5 − b10)G1 + 5a3b2(a5 + 2b5)G2 + 5a2b3(2a5 − b5)G3,

G20 = (a20 − 136a15b5 − 136a5b15 − b20)G1

−a3b2(7a15 + 272a10b5 − 221a5b10 + 26b15)G2

−a2b3(26a15 + 221a10b5 + 272a5b10 − 7b15)G3,

G30 = 2D2
(
10a3b3G1 + a(a5 − 3b5)G2 − b(3a5 + b5)G3

)
.

We recall from Section 5 that a discrete covariant is a covariant if and only if the
coefficient of

∑
w5

0 is divisible by a5. Therefore the K[c4, c6]-module of covariants
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for Y = S5W has basis

(16)
S10 = F10 −G10, S30 = F30 −G30, S40 = c6F10 + c4F20,

S20 = F20 −G20, S ′30 = F30 +G30, S50 = c24F10 + c6F20.

If we evaluate these covariants at a non-singular model φ then by Theorem 6.1
we obtain a basis for the space of Heisenberg invariant quintics. The space of
Heisenberg invariant quintics relative to a fixed elliptic normal quintic was studied
by Hulek [11]. We show that our basis obtained by specialising the covariants
picks out some of the quintic hypersurfaces to which Hulek was able to attach a
geometric meaning.

Lemma 7.1. Let φ ∈ ∧2V ⊗ W be non-singular and write S10, . . . , S50 for the
quintic forms obtained by evaluating the covariants (16) at φ.

(i) S10 is (a scalar multiple of) the determinant of the Jacobian matrix of the
quadrics defining Cφ.

(ii) The Heisenberg invariant quintics vanishing on the tangent variety of Cφ

are linear combinations of S10, S20, S
′
30.

(iii) The quintics S10, S20, S30 are singular along Cφ.
(iv) The quintics S10, S20, S30, S

′
30, S40 vanish on Cφ.

Proof. For the proof we may take φ = u(a, b) a Hesse model. Let p0, . . . , p4 be the
equations for Cφ, i.e. pi = abw2

i + b2wi+1wi+4 − a2wi+2wi+3.
(i) We compute S10 = 25 det(∂pi/∂wj).
(ii) The tangent line to Cφ at P = (0 : a : b : −b : −a) also passes through

Q = (5a3b3 : 0 : −b(2a5 − b5) : −b(a5 + 2b5) : a(a5 − 3b5)).

Evaluating the quintic forms at λP + Q we find that S10, S20, S
′
30 vanish on the

tangent line whereas S30, S40, S50 give polynomials in λ of degrees 0, 2, 4.
(iii) We may write these quintics as linear combinations of

∑
p2

0w0,
∑
p1p4w0 and∑

p2p3w0.
(iv) We may write these quintics as linear combinations of

∑
p0w

3
0,

∑
p0w0w1w4,∑

p0w0w2w3,
∑
p0(w

2
1w3 + w2w

2
4) and

∑
p0(w1w

2
2 + w2

3w4). �

Theorem 7.2. Let C = Cφ be an elliptic normal quintic. Let TanC and SecC be
the tangent and secant varieties of C. Let F be the locus of singular lines of the
rank 3 quadrics containing C. Then

(i) SecC is the degree 5 hypersurface defined by S10.
(ii) TanC and F are irreducible surfaces of degrees 10 and 15 and their union

is the complete intersection defined by S10 and S20.
(iii) The space of Heisenberg invariant quintics containing TanC has basis

S10, S20, S
′
30.

(iv) The space of Heisenberg invariant quintics containing F , equivalently that
are singular along C, has basis S10, S20, S30.
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(v) The space of Heisenberg invariant quintics containing C has basis S10,
S20, S30, S

′
30, S40.

Proof. This follows by Lemma 7.1 and work of Hulek [11]. �

8. The covering map

We call the covariants ∧2V ⊗W → SdW covariants of order d. The action of the
Heisenberg group shows that the order must be a multiple of 5. By Theorem 6.1
and [10, Lemma 4.4], the K[c4, c6]-modules of covariants of orders 5, 10, 15 have
ranks 6, 41, 156. Fortunately we do not need to classify all these covariants since
most of them vanish on Cφ and therefore are of no use for describing the covering
map.

Lemma 8.1. Let C ⊂ Pn−1 be an elliptic normal curve. Then the space of Heisen-
berg invariant polynomials of degree nd, quotiented out by the subspace vanishing
on C, has dimension d.

Proof. Let π : C → E be the covering map of degree n2 from C to its Jacobian E.
Then π∗(d.0E) ∼ ndH where H is the hyperplane section for C. So if f1, . . . , fd

is a basis for the Riemann-Roch space L(d.0E) then π∗f1, . . . , π
∗fd are basis for

the space of forms of degree nd in K[x0, . . . , xn−1]/I(C) that are invariant under
the action of E[n]. Applying the Reynold’s operator for the Heisenberg group
shows that every such form has a representative in K[x0, . . . , xn−1] that is itself
Heisenberg invariant. �

Lemma 8.2. Let C ⊂ Pn−1 be either an elliptic normal curve or a rational nodal
curve, and let P ∈ C be a smooth point. Suppose Z,X, Y are homogeneous poly-
nomials in K[x0, . . . , xn−1] of degrees n, 2n, 3n with ordP (Z) = 1, ordP (X) = 0,
ordP (Y ) = 0. Then for each d ≥ 1 the forms

{X iY jZk : i, k ≥ 0, j ∈ {0, 1}, 2i+ 3j + k = d}
are linearly independent in the co-ordinate ring K[x0, . . . , xn−1]/I(C).

Proof. This is clear since ordP (X iY jZk) = k and the forms listed have distinct
values of k. �

Lemma 8.3. There are covariants Z,X, Y of orders 5, 10, 15 and degrees 50, 110,
165 such that whenever Cφ is an elliptic normal quintic or rational nodal quintic
there is a smooth point P ∈ Cφ such that the evaluations of Z,X, Y at φ satisfy
ordP (Z) = 1, ordP (X) = 0, ordP (Y ) = 0.

Proof. We start with the covariants U,H : ∧2V ⊗ W → ∧2V ⊗ W and Q6 :
∧2V ⊗W → S2V ⊗W where U is the identity map and (on the Hesse family)

H = −(∂D/∂b)
∑

(v1 ∧ v4)w0 + (∂D/∂a)
∑

(v2 ∧ v3)w0

Q6 =
∑

(5a3b3v2
0 + a(a5 − 3b5)v1v4 − b(3a5 + b5)v2v3)w0.
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There are covariants P2, P12, P22 : ∧2V ⊗W → V ∗⊗S2W where P2 is the Pfaffian
map (2) and P12, P22 satisfy

P2(λU + µH) = λ2P2 + 2λµP12 + µ2P22.

We define covariants M30 : ∧2V ⊗W → S5V and N30 : ∧2V ⊗W → S5V ∗ where
M30 = detQ6 and N30 is the coefficient of t in det(P2 + tP22). We also define T23

and T28 taking values in V ⊗ S3W by

(⊗2V ⊗W )× (V ∗ ⊗ S2W )→ V ⊗ S3W

(U, P22) 7→ T23

(Q6, P22) 7→ T28.

We then put

Z = (1/2)Q6(P22, P22)

X = (33/26)M30(P12, P12, P12, P22, P22)

Y = (33/28)N30(T23, T28, T28, T28, T28).

As required these are covariants of orders 5, 10, 15 and degrees 50, 110, 165.
Suppose Cφ is a rational nodal quintic. By Lemma 1.2 we may assume that φ

is as given in Section 4, i.e. φ = u1(0, 1, 1, 1, 1). Then Cφ is parametrised by

(x0 : . . . : x4) = (s5 − t5 : st4 : s2t3 : −s3t2 : −s4t)

Evaluating Z,X, Y at φ we find

(17)

Z(s5 − t5, st4, s2t3,−s3t2,−s4t) = −2834s10t10(s5 − t5)
X(s5 − t5, st4, s2t3,−s3t2,−s4t) = 21639s20t20(s10 + 10s5t5 + t10)

Y (s5 − t5, st4, s2t3,−s3t2,−s4t) = 226315s35t35(s5 + t5).

The conclusions of the lemma are satisfied for P = (0 : 1 : 1 : −1 : −1).
Now suppose Cφ is an elliptic normal quintic. Then by [9, Proposition 4.1] we

may assume that φ = u(a, b) is a Hesse model. There is a flex (i.e. hyperosculating
point) of Cφ at P = (0 : a : b : −b : −a). Evaluating Z,X, Y at φ we find

(18)

Z(0, a, b,−b,−a) = 0

X(0, a, b,−b,−a) = 218310D10

Y (0, a, b,−b,−a) = −227315D15

where D = ab(a10 − 11a5b5 − b10). Since ∆ = D5 it is clear that X and Y do not
vanish at P . Now Cφ ⊂ P4 is a curve of degree 5 meeting the degree 5 hypersurface
defined by Z at the 25 flexes of Cφ. So by Bezout’s theorem either ordP (Z) = 1
or Z vanishes identically on Cφ. To rule out the latter we write Z in terms of the
basis (16). Explicitly we find

Z = (39/10)c24S10 + 4c6S20 − 54c4S30 − (198/5)c4S
′
30 + 12S50.
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By Theorem 6.1 the specialisations of S10, . . . , S50 at φ are linearly independent.
It follows by Theorem 7.2(v) that Z does not vanish identically on Cφ. �

Lemma 8.4. Let L/K be a finite Galois extension with Galois group Γ. Let V be
a finite dimensional vector space over L. Suppose there is an action of Γ on V
satisfying γ(v +w) = γ(v) + γ(w) and γ(λv) = γ(λ)γ(v) for all γ ∈ Γ, λ ∈ L and
v, w ∈ V. Then dimK VΓ = dimL V.

Proof. A generalised form of Hilbert’s Theorem 90 states that H1(Γ,GLn(L)) =
{1}. See for example [12, Chapter X, Proposition 3]. We fix a basis for V over L,
and then compare this basis with its Galois conjugates. By writing the resulting
cocycle as a coboundary, we find a new basis for V over L consisting of vectors
fixed by Γ. �

Lemma 8.5. Let Md be the K[c4, c6]-module of covariants for Y = S5dW , quo-
tiented out by the submodule of covariants that vanish on the curve. Then Md is
a free K[c4, c6]-module of rank d generated by

{X iY jZk : i, k ≥ 0, j ∈ {0, 1}, 2i+ 3j + k = d}
where Z,X, Y are the covariants in Lemma 8.3.

Proof. Let Z = (S5dW )H5 and m = dimZ. We apply Lemma 8.4 with K =
K(a, b)Γ, L = K(a, b) and V either U = L⊗K Z or the subspace U0 of forms that
vanish on the curve defined by the generic Hesse model u(a, b). Since the action
of Γ on A2 (and hence on L = K(A2)) was defined so that u : A2 → (∧2V ⊗W )H5

is Γ-equivariant, we do indeed have that Γ acts on U0. By Lemmas 8.1 and 8.4
we compute

dimK UΓ = dimL U = m,
dimK UΓ

0 = dimL U0 = m− d.
Thus the K[a, b]Γ-module of discrete covariants A2 → Z has rank m, and the
submodule of discrete covariants vanishing on the curve has rank m−d. It follows
by Theorem 2.6, and the proof of [10, Lemma 4.5], that the K[c4, c6]-module
of covariants ∧2V ⊗W → S5dW has rank m, and the submodule of covariants
vanishing on the curve has rank m− d. Therefore Md has rank d.

Let F1, . . . , Fd be the covariants in the statement of the lemma. Lemmas 8.2
and 8.3 show that if Cφ is an elliptic normal quintic or rational nodal quintic then
F1(φ), . . . , Fd(φ) are linearly independent over K. An argument similar to the
proof of Theorem 6.1(ii) now shows that F1, . . . , Fd are a free basis for Md. �

We show that the covariants Z,X, Y give a formula for the covering map. The
formula for the Jacobian was already proved in [8] by a different method.

Theorem 8.6. Let φ ∈ ∧2V ⊗W be non-singular. Then Cφ has Jacobian elliptic
curve E with Weierstrass equation

(19) y2 = x3 − 27c4(φ)x− 54c6(φ)
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and the covering map Cφ → E is given by (x, y) = (X/Z2, Y/Z3) where Z,X, Y
are the evaluations at φ of the covariants in Lemma 8.3.

Proof. By Lemma 8.5 the K[c4, c6]-module M6 has basis

X3, XY Z, X2Z2, Y Z3, XZ4, Z6.

Since Z,X, Y have degrees 50, 110, 165 and c4, c6 have degrees 20, 30 we must
therefore have

Y 2 = λX3 + µc4XZ
4 + νc6Z

6

for some λ, µ, ν ∈ K. We determine these scalars by specialising to the case
Cφ is a rational nodal quintic. Using (17) we find λ = 1, µ = −27, ν = −54.
Thus (x, y) = (X/Z2, Y/Z3) defines a morphism π : Cφ → E where E is the curve
defined by (19). The fibre above the point at infinity on E is Cφ∩{Z = 0}. By (18)
and Bezout’s Theorem this consists of the 25 flexes on Cφ. Thus deg π = 25.
Since Z,X, Y are covariants it is clear that π quotients out by the action of the
Heisenberg group on Cφ. Hence E is the Jacobian of Cφ and π is the covering
map. �

We gave algorithms for computing Q6 and H in [8, Section 8] and [9, Section 11].
So we can evaluate the covariants Z,X, Y by following the proof of Lemma 8.3.
This gives a practical algorithm for computing the covering map. Although we
have been working over an algebraically closed field it is clear that Theorem 8.6
still holds without this assumption. We give an example in the case K = Q.

Example 8.7. Let C ⊂ P4 be the elliptic normal quintic defined by the 4 × 4
Pfaffians of

0 2x2 + 3x4 2x2 + x3 + x4 + 4x5 x1 − x3 + 3x4 − x5 −x1 − x2 − x5

0 x1 + 2x2 − x3 − 2x4 + x5 2x1 − x2 + x3 + 3x4 −x1 + x2 − x3 + x5

0 −2x2 + x3 + x4 + 2x5 −2x4 + x5

− 0 x2 + x3 + 2x4 − x5

0


The invariants of this model are c4 = 21288863488 and c6 = 3106257241074688.
Our Magma function CoveringCovariants evaluates the covariants of Lemma 8.3
to give forms Z,X, Y . The first of these is

Z = 208089517036452423241728x5
1 + 481348375428118457413632x4

1x2

− 1067331097433708461809664x4
1x3 − 861565401032195664871424x4

1x4

− 2713065303844178403139584x4
1x5 − 1159509369215265868720128x3

1x
2
2

+ . . .+ 8511800259354855263252480x5
5.
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Evaluating these forms at (4013 : −2384 : −1616 : 1388 : 1021) ∈ C(Q) we obtain

Z = 3412377609951638022163996178720787224832,

X = 12141242195111585999097107425889311253617470393872861501219624577\
3843080932512669892608,

Y = 13341702475842976696719854379608150742217144829049714776419935109\
10164201520123953599858396067352426339710162835468918162316066816.

The Jacobian of C is the elliptic curve E with Weierstrass equation y2 = x3 −
27c4x − 54c6 and P = (X/Z2, Y/Z3) ∈ E(Q) is a point of canonical height
164.90718 . . .. In fact E(Q) has rank 1 and is generated by P .

Remark 8.8. The elliptic curve E in the above example is labelled 17472bz1 in
Cremona’s tables [6]. It satisfies a 5-congruence with the elliptic curve F labelled
17472bx2. In fact F has Weierstrass equation y2 = x(x+16)(x−26) and the genus
one model in Example 8.7 may be constructed from the point (−2, 28) ∈ F (Q)
using visibility as described in [10].
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