INVARIANT THEORY FOR
THE ELLIPTIC NORMAL QUINTIC,
II. THE COVERING MAP

TOM FISHER

ABSTRACT. A genus one curve C of degree 5 is defined by the 4 x 4 Pfaffians of a
5 x 5 alternating matrix of linear forms on P*. We prove a result characterising
the covariants for these models in terms of their restrictions to the family of
curves parametrised by the modular curve X (5). We then construct covariants
describing the covering map of degree 25 from C to its Jacobian and give a
practical algorithm for evaluating them.

1. INTRODUCTION

Definition 1.1. Let n > 3 be an integer.

(i) An elliptic normal curve C C P""! is a smooth curve of genus one and
degree n that spans P!,

(ii) A rational nodal curve C'C P"~! is a rational curve of degree n that spans
P! and has a single node.

If C € P! is an elliptic normal curve then there is a covering map 7 of degree
n? from C to its Jacobian E given by P + [nP— H] € Pic’(C) = E where H is the
hyperplane section. We may also describe 7 : C' — E as the map that quotients
out by the action of E[n| on C by translation (assuming we are not in characteristic
dividing n). The subgroup of SL,, consisting of matrices that describe this action
is called the Heisenberg group of C. If n is odd then over an algebraically closed
field we may change co-ordinates so that this group is generated by

1 00 -+ 0 00 -+ 01
0 G 0 -+ 0 10 - 00
(1) 0 0¢- 0 and 01 - 0 0
0 00 - (ot 00 -+ 10

where (, is a primitive nth root of unity. (If n is even then one must take scalar
multiples of these matrices with determinant 1.)

In the cases n = 2, 3,4 classical invariant theory gives formulae for the Jacobian
E and for the covering map 7 : C' — E. See [13], [14] for the cases n = 2,3, and
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[2] for a survey of the cases n = 2,3,4. In [8] we gave a practical algorithm for
evaluating the invariants in the case n = 5 and showed that they give a formula for
the Jacobian. We now extend this invariant theoretic approach to give a formula
for the covering map.

We work throughout over a field K of characteristic not dividing 6n, where in
due course we take n = 5. Except in the following paragraph, and at the end of
Section 8, we assume for simplicity that K is algebraically closed.

To explain the motivation for our work, let £ be an elliptic curve over a number
field K. For any integer n > 2 the quotient group E(K)/nE(K) injects into
the n-Selmer group S (FE/K), which is finite and effectively computable. In an
explicit n-descent calculation one represents each element of the n-Selmer group
by (equations for) an elliptic normal curve C' C P! with Jacobian E. It is
perhaps better to call C' a “genus one normal curve” as it need not have any K-
rational points. The Selmer group elements with C(K) # () make up the image of
E(K)/nE(K) in S™(E/K). Moreover if P € C(K) then a coset representative
for the corresponding element of E(K)/nE(K) is given by the image of P under
the covering map. Having explicit formulae for the covering map can therefore
help in finding generators for the Mordell-Weil group E(K).

In the case n = 5 the curves of Definition 1.1 are called elliptic normal quintics
and rational nodal quintics. By the Buchsbaum-Eisenbud structure theorem [4],
[5] they are defined by the 4 x 4 Pfaffians of a 5 x 5 alternating matrix of linear
forms on P*. We call such a matrix ¢ a genus one model and write C, C P* for the
subvariety defined by the 4 x 4 Pfaffians. It is shown in [8, Proposition 5.10] that
Cy is a smooth curve of genus one if and only if it is an elliptic normal quintic. In
this case we say that ¢ is non-singular.

There is a natural action of GL5 x GLs5 on the space of genus one models. The
first factor acts as M : ¢ — M@M?' and the second factor acts by changing co-
ordinates on P*. We adopt the following notation. Let V and W be 5-dimensional
vector spaces with bases vy, ..., v4 and wy, ..., ws. We identify the space of genus
one models with A?V @ W via

¢ = (dij) « 2oic; (Vi Nvj) @ ij(wo, . .., wa).

With this identification the action of GL5 x GL5 becomes the natural action of
GL(V) x GL(W) on A’V @ W. By squaring and then identifying A*V 2 V* there
is a natural map

(2) Py NV @W — V*®@ S*W = Hom(V, S*W).

Explicitly Pa(¢) = (v; — pi(wo, ..., wys)) where pg,...,py are the 4 x 4 Pfaffians
of ¢. Thus V may be thought of as the space of quadrics defining C, and W as
the space of linear forms on P*.
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Lemma 1.2. The action of GL(V) x GL(W) is transitive on the the genus one
models ¢ for which Cy is a rational nodal quintic, and on the genus one models ¢
for which Cy is an elliptic normal quintic with given j-invariant.

Proof. See [8, Proposition 4.6]. O
The co-ordinate ring K[A*V ® W] is a polynomial ring in 50 variables.

Theorem 1.3. The ring of invariants for SL(V) x SL(W) acting on K[\*V @ W]
is generated by invariants ¢y and cg of degrees 20 and 30. Moreover if we scale
them as specified in [8] and put A = (¢} — ¢2)/1728 then

(i) a genus one model ¢ is non-singular if and only if A(p) # 0,

(ii) if ¢ is non-singular then Cy has j-invariant c4($)*/A(¢).

Proof. See [8, Theorem 4.4]. O
Lemma 1.4. Let ¢ € N>’V @ W be a genus one model with Cy either an elliptic
normal quintic or a rational nodal quintic. Then the Zariski closure of the GL(V') X

GL(W)-orbit of ¢ is the zero locus of an irreducible homogeneous invariant I.
Moreover we can take

& if j(Cy) =0
| Cé if 7(Cy) = 1728
a A if Cy s a rational nodal quintic

ci — j(Cyp)A  otherwise.

Proof. The existence of I is proved in [8, Lemma 4.10]. The invariants listed
vanish at ¢ by Theorem 1.3 and are irreducible in K{cy, ¢s]. They are therefore
irreducible in K[A?V ®@W] since any factors would themselves have to be invariants.
We use here that SL(V) x SL(W) is connected and has no 1-dimensional rational
representations. Alternatively we can prove irreducibility by restricting to the
Weierstrass models in [8, Section 6]. O

Lemma 1.5. Let I be a non-constant homogeneous invariant. Then there exists
¢ € N2V QW with I(¢) = 0 and Cy either an elliptic normal quintic or a rational
nodal quintic.

Proof. We may assume that I is irreducible in K|cy, ¢g]. So up to scalar multiples
we have I = ¢4, ¢6,A or ¢} — jA with j # 0,1728. We take C}, to be an elliptic
normal quintic with the appropriate j-invariant, or in the case I = A a rational
nodal quintic. O

The covariants we need to describe the covering map are SL(V) x SL(WW)-
equivariant polynomial maps A2V @ W — S®W for d = 1,2, 3. More generally we
defined a covariant to be an SL(V') x SL(WW)-equivariant polynomial map A%V &
W — Y where Y is a rational representation of GL(V) x GL(W). In all our
examples Y will be homogeneous by which we mean there exist integers r and s



4 TOM FISHER

such that the morphism py : GL(V) x GL(W) — GL(Y") satisfies py (Aly, uly) =
AN pfly for all A\, up e K*.

Lemma 1.6. Let Y be a homogeneous rational representation of GL(V') x GL(W)
with degrees (r,s). If F : A*°V @ W — Y is a homogeneous covariant then there
exist integers p and q called the weights of F' such that

5 2deg F'=b5p+r
(3) deg F' = 5q + s.

Proof. See [10, Lemma 2.2]. O

For example the Pfaffian map (2) is a covariant of degree 2 with weights (p, ¢) =
(1,0). The covariants in the case Y is the trivial representation are the invariants
as described in Theorem 1.3. For general Y the covariants form a module over the
ring of invariants K{cy, cg).

In Section 2 we recall our method [10] for studying the covariants via their
restrictions to the Hesse family, i.e. the universal family over X (5). These restric-
tions are nearly characterised by their invariance properties under an appropriate
action of SLy(Z/57Z). In Sections 3 and 4 we make this relationship precise. Thus
our work resolves, albeit in one particular case, what is described in [1, Chapter
V,822] as the “mysterious role of invariant theory”. We give examples for a range
of different Y in Section 5. In Section 6 we show how a free basis for the K{cy, cg)-
module of covariants for Y may be characterised in terms of its specialisations to
the genus one models ¢ of the form considered in Lemma 1.4. In Section 7 we
relate the covariants in the case Y = S°W to work of Hulek [11] and finally in
Section 8 we give our formula for the covering map.

2. DISCRETE COVARIANTS

In this section we recall some of the theory from [10]. We then state our main
result on the relationship between covariants and discrete covariants.
We take n > 5 an odd integer. The Heisenberg group of level n is

H, = (o,7|c" =71" =|o,|0,7]] = [, |0, 7]] = 1).
It is a non-abelian group of order n® and its centre is a cyclic group of order
n generated by ¢ = [0,7] = oro 77!, In [10, Section 3] we defined a group

homomorphism sg : GLo(Z/nZ) — Aut(H,) by
s5((98)) 1o (02070 - 1y (/250 d
where the exponents are read as integers mod n.
Definition 2.1. The extended Heisenberg group is the semi-direct product
H' = H, x SLy(Z/nZ),
with group law (R, y)(K,7") = (hsg(v)h', 7).
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The Schrodinger representation 0 : H, — SL,(K) maps ¢ and 7 to the matri-
ces (1). These matrices have commutator 6(¢) = (1.

Theorem 2.2. (i) The Schridinger representation 0 : H, — SL,(K) extends
uniquely to a representation 6% : H" — SL,,(K).
(i) The normaliser of O(H,) in SL,(K) is 6T (H,).

Proof. See [10, Theorem 3.6]. O

Remark 2.3. (i) The representation §* of Theorem 2.2 is given on the generators
S=(5%¢%)and T = (} 1) for SLy(Z/nZ) by suitable scalar multiples of

11 1 ... 1 1 0 0 -~ 0

1 ¢ 2 o ! 0 G20 -0
2

L ¢ G o G and 0 0 % 0

1 GMG2 e G 0 0 0 --- ¢/?

(ii) The Schrodinger representation has ¢(n) conjugates obtained by either chang-
ing our choice of (,, or precomposing with an automorphism of H,,. We may apply
Theorem 2.2 to any one of these representations.

The Hesse family of elliptic normal quintics (studied for example in [9], [11]) is
given by
() u: AT — AW
(a,b) — ad (v1 Avgwe+ b (va Avg)wy
where the sums are taken over all cyclic permutations of the subscripts mod 5. We

define actions of the Heisenberg group Hs on V and W so that the Hesse models
u(a, b) are Hs-invariant.

(5)

Since 0y, and 0y are conjugates of the Schrodinger representation they extend by
Theorem 2.2 to representations of H. . By abuse of notation we continue to write
these representations as 6y and 6y .

Let Y be a homogeneous rational representation of GL(V') x GL(WW). Then 6y
and Oy define an action of H: on Y and so an action of I' = SLs(Z/5Z) on Y 5.
Taking Y = A2V @ W the action of T on (A?V ® W) = Im(u) is described by a
representation x; : I' — GLy(K).

Oy : Hs — SL(V);  o:v— vy T:ivi— v
Ow : Hs — SL(W); o :w; — CGwi; 71w+ wigg.

Definition 2.4. Let 7 : I' — GL(Z) be a representation. A discrete covariant for
Z is a polynomial map f : A? — Z satisfying f o x1(y) = 7(y) o f for all v € T.

Theorem 2.5. Let F : N2V QW — Y be a covariant. Then f = Fou : A2 — Y
1s a discrete covariant. Moreover F' is uniquely determined by f.
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Proof. See [10, Theorem 4.3]. O

For any given Y the discrete covariants may be computed using invariant theory
for the finite groups H; and SLy(Z/5Z). We say that a discrete covariant f : A* —
YHs s a covariant if it arises from a covariant F' : A2V @ W — Y as described
in Theorem 2.5. It is important to note that not every discrete covariant is a
covariant. For example, taking Y to be the trivial representation, the ring of
invariants is Kcy, ¢g] as described in Theorem 1.3 whereas the ring of discrete
invariants is generated by

D = ab(a'® — 11a°6° — b'?)
(6) cq = a®® + 228450 + 4944'°p'° — 228a5b'5 + p*°
cs = —a>® 4+ 522a%°6° + 10005a2°6'° + 1000506 — 522a°p* — p3°

subject only to the relation ¢} — ¢z = 1728D°. We use the same notation for
both a covariant and its restriction to the Hesse family. By the uniqueness part
of Theorem 2.5 this should not cause any confusion.

There are essentially two ways in which a discrete covariant might fail to be a
covariant. The first is that the weights computed using (3) might not be integers.
For example D has weights (p,q) = (24/5,12/5) and so cannot be an invariant.
The second is that denominators might be introduced. More precisely we prove
the following theorem in Section 3.

Theorem 2.6. Let f : A2 — Y5 be an integer weight discrete covariant. Then
A*f is a covariant for some k > 0.

In Section 4 we give a practical method for computing the least such k.

Remark 2.7. If Y is homogeneous of degree (r,s) and Y5 = 0 then the action
of the centre of Hj shows that 2r +s = 0 (mod 5). We see by (3) that p is an
integer if and only if ¢ is an integer. So the integer weight condition is just a
congruence mod 5 on the degree of a covariant. Since A = D% and deg D = 12 is
coprime to 5, an equivalent formulation of Theorem 2.6 is that if f : A2 — Y5 is
a homogeneous discrete covariant then D™ f is a covariant for some m > 0.

3. FRACTIONAL COVARIANTS
In this section we prove Theorem 2.6.

Lemma 3.1. Let ¢ € A2V @ W be a non-singular Hesse model.
(1) The stabiliser of ¢ in SL(V') x SL(W) is
H = {(0v(h),0w(h)) : h € H5}.
(ii) The normaliser of H in SL(V') x SL(W) is
N = {(Ov(h),COw(h)) : (¢, h) € ps x Hy}.
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Proof. (i) It is clear by (4) and (5) that H is contained in the stabiliser of ¢.
Since any automorphism of Cy of order 5 is translation by a 5-torsion point of its
Jacobian, all such automorphisms are described by elements of H.

Now let g € SL(V') x SL(W) with ¢g(¢) = ¢ and let v be the automorphism of C,
induced by g. By [8, Proposition 5.19 and Lemma 2.4] - preserves the invariant
differential and is therefore a translation map. Since Cy C P* is a curve of degree 5
this translation is by a point of order 5. Composing g with a suitable element of
H reduces us to the case v is the identity. Then g = (gy, gw) is a pair of scalar
matrices. Since these matrices each have determinant 1 and jointly fix ¢ it follows
that (gv, gw) = (Ov(h), 0w (h)) for some h in the centre of Hs.

(ii) We see by Theorem 2.2(ii) that N is contained in the normaliser of H, and
that any element of the normaliser may be composed with an element of N to give
an element of the form g = (Iy, gw) where Iy is the identity. Since 6y is faithful
it follows that gy is in the centraliser of Oy (Hs) in SL(W), which turns out to
consist only of scalar matrices. U

The following proposition will be used to explain the relationship between the
covariants and the discrete covariants.

Proposition 3.2. Let G be a linear algebraic group acting on irreducible affine
varieties X and Y. Let H C G be a subgroup whose normaliser N C G s of finite
order coprime to char K. Suppose that A C X" is an irreducible variety acted on
by N/H, and U C A is a dense open subset such that

(i) the morphism G x U — X; (g,¢) — g(¢) has dense image,
(ii) the stabiliser in G of each element of U is H,
(iii) either char K = 0 or the derivative of the map in (i) is an isomorphism
at all points of G x U.

Then by restriction to A there is a bijection between

o G-equivariant rational maps F : X — =Y and
e N/H-equivariant rational maps f: A— —YH

Proof. Let F: X — —Y be a G-equivariant rational map. Its domain of definition
is a G-invariant open subset of X and hence by (i) it meets U. Therefore F restricts
to a rational map f on A. By hypothesis A is acted on by N and pointwise fixed by
H. Since F is N-equivariant it follows that f(A) C Y and f is N/H-equivariant.

Conversely suppose f : A— — Y is an N/H-equivariant rational map. We let
§ € N act on G x A via (g,a) — (g6~1,da). Since N is a finite group of order
coprime to char K and G x A is an affine variety, the quotient (G x A)/N exists,
and is an affine variety. We consider the maps

Yia : (G x A)/N — X; (9.a) — g(a)
v (G x AN — =Y, (g,a) — g(f(a)).
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Shrinking U if necessary, we may assume that N/H acts on U. By (i) t¢iq has
dense image, by (ii) it is injective on the dense subset (G x U)/N, and by (iii) it is
separable. It follows that 1iq is birational. Then F' = ¢ o @D;ll is a G-equivariant
rational map extending f. O

Proof of Theorem 2.6. We apply Proposition 3.2 with G = SL(V) x SL(W),
X =AV@Wand HC N C G as in Lemma 3.1. We also let A = X be the
space of Hesse models and U C A the space of non-singular Hesse models.

We check the hypotheses (i), (ii) and (iii). By [9, Proposition 4.1] every non-
singular model is equivalent to a Hesse model and by Theorem 1.3 the non-
singular models are Zariski dense in A’V ® W. This proves (i). We checked
(ii) in Lemma 3.1 and (iii) is checked in Lemma 3.3 below.

By Lemma 3.1 and the definition of HS we have N/H = yus x I' where I' =
SLo(Z/5Z). Now f is I'-equivariant by definition of a discrete covariant and pus-
equivariant by the assumption it has integer weights. So by Proposition 3.2 it is
the restriction of a G-equivariant rational map F: A’V @ W — —Y. (We say F
is a fractional covariant.)

It remains to show that AFF is regular for some k& > 0. Let S € K[A2V @ W]
be a homogeneous polynomial of least degree such that SF is regular. Then
F = R/S where R is a covariant and S is an invariant. Suppose S(¢) = 0 for
some non-singular model ¢. By [9, Proposition 4.1 we may suppose that ¢ is
a Hesse model, and so by the regularity of f we have R(¢) = S(¢) = 0. By
Lemma 1.4 the Zariski closure of the GL(V') x GL(W)-orbit of ¢ is the zero locus
of a homogeneous invariant I. Now both R and S are divisible by [ and this
contradicts the choice of S. Therefore F' is regular on all non-singular models.
By Theorem 1.3(i) and the Nullstellensatz it follows that A*F is regular for some
k> 0. 0

The following lemma completes the proof of Theorem 2.6 in the case of positive
characteristic (still assuming char K # 2,3, 5).
Lemma 3.3. The derivative of the morphism
SL(V) x SL(W) x A2 — A2V oW
(9v, 9w, (a,b)) +— (gv, gw)u(a,b)
is an isomorphism at all (gv, gw, (a,b)) with D(a,b) # 0.

Proof. 1t suffices to compute the derivative at (I, Iy, (a,b)). This is a linear map
(7) sl(V) x sl(W) x A? — A2V @ W.

We write E;; for the n x n matrix with (¢, j) entry 1 and all other entries 0. Then
sl, has basis {E;; : ¢ # j} U {Ew — Ej; : i # 0}. Taking these bases for s[(V') and
sI(W), the standard basis for A% and the basis {(v;Avj)wy, : i < j} for A2V QW we
found by direct calculation that the derivative (7) has determinant 5*D(a,b)*. O
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4. DENOMINATORS

In this section we show how to find the least value of k£ in Theorem 2.6. We
consider the family of genus one models
(8) up A S AV oW
(Aos -5 A1) = 30 Ao(vr Avg)wg + D (v2 A vz )wo.
where the sums are taken over all cyclic permutations of the subscripts mod 5.
These models are related to the Hesse family by

(9) ui(a,...,a) =u(a,l).

Remark 4.1. If ¢ = ui(N, ..., \s) then Cy C P* is defined by Mgz + 124 —
XaAszoxg = 0 and its cyclic permutes. These curves were studied in [7] where it is
shown that ¢ = uy (A, 1,...,1) defines the universal family of (generalised) elliptic
curves parametrised by X;(5). Here X is a co-ordinate on X (5) = P!.

Definition 4.2. Let D C SL(V) x SL(W) be the subgroup of pairs of diagonal
matrices
Q10 Qo
Qo2 ai
(10) 103 5 (6% )
QoY ag
QplQ3 Qy
with [Ja; = 1.
Lemma 4.3. The action of D on A® compatible with u, is

2 2 2 2 2
i ol o) 3 Xy
()\07 )\17 )\27 )\37 )\4> — <041044)\0’ Qo )\17 aias )\27 a2a4>\3’ a0a3/\4>~

In particular D acts transitively on the subsets of A5 defined by the condition that
Aoy - -+, Ay have a fixed non-zero product.

Proof. Let gy and gy be the matrices (10) with (ag,...,a4) = (a,1,...,1). Then
(v, gw) ur(Xos - - -, M) = aur(a®Xg, a™ Ay, Ay, Ag, 7 P Ay).

From this calculation and the obvious cyclic symmetry it follows that the action
of D on A® is as stated. In the special case (ap,...,aq) = (872,671, 1,8,3%)
this action is given by (Mg, A1, A2, A3, Ag) — (875X, A1, A2, Az, 3°\4). Since we are
working over an algebraically closed field the final statement is clear. O

Let Y be a homogeneous rational representation of GL(V') x GL(W).

Theorem 4.4. Let f : A2 — Y5 be an integer weight discrete covariant.

(i) There is a unique D-equivariant rational map fi : A — —Y with

fila,...;a) = f(a,1).
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(ii) f is a covariant if and only if fi is regular.

Proof. By Theorem 2.6 there is a fractional covariant F': A2V @ W — — Y with
f = Fou. It follows by (9) and Lemma 4.3 that f, = Fou; satisfies (i). Uniqueness
is proved using the final part of Lemma 4.3.

It remains to show that if f; is regular then F'is regular. Theorem 2.6 already
shows that R = AFF is a covariant for some k& > 0. We take the least such k. Let
¢ =11(0,1,1,1,1). Then C is the rational nodal quintic parametrised by

(o :...:my) = (" =17 st %17 1 —5°1% 1 —s).

If £ > 1 then by regularity of f; we have R(¢) = 0. Then Lemma 1.4 shows that
R is divisible by A contradicting our choice of k. Therefore £ = 0 and F' is a
covariant. By the convention introduced following Theorem 2.5, we say that f is
a covariant. ]

What makes Theorem 4.4 useful is that we can compute f; from f without
going via F'. Explicitly we put

(11) fi(ho, s A1) = py(gv. gw) f(a, 1)

where gy and gy are given by (10) and satisfy ui(No, ..., \1) = (gv, gw)u(a,1).
We then eliminate «y, ..., a4 and a from the right hand side, using the relations
(12) @ [(ipina) = Aifa

(13) a; A7/ (Nigaivs)

(14) a® = MM ...\

The first of these comes from Lemma 4.3. The other two may be deduced from the
first using [[ oz = 1. One systematic way to proceed is by using (12) to eliminate
o, a1, g, then (13) to eliminate ag, ay and finally (14) to eliminate a.

Remark 4.5. It can be shown that Theorem 4.4(i) still holds if we weaken the
condition that f is SLy(Z/5Z)-equivariant and just require that it is equivariant
for the action of T'= ({ 1).

5. EXAMPLES

We can use Theorem 4.4 in the case Y is the trivial representation to give
another proof (independent of Theorem 1.3) that the discrete invariants ¢4 and cg
are in fact invariants. Indeed let f be an integer weight discrete invariant. The
integer weight condition is that f is homogeneous of degree a multiple of 5. We
construct f; from f by making the substitutions a® — []A; and b +— 1. Since no
denominators are introduced it follows by Theorem 4.4 that f is an invariant.

In the cases Y = A2V @W and A2V*@W* the following proposition was already
proved in [9] using evectants. We now have a general method. In the calculations
that follow all sums and products are taken over the cyclic permutations of the



INVARIANT THEORY FOR THE ELLIPTIC NORMAL QUINTIC 11

subscripts mod 5. Recall that we fixed bases vy, ...,v4 and wy,...,ws for V and
W. The dual bases for V* and W* are vg, ..., v; and wg, ..., w;.

Proposition 5.1. Let Y be any one of
NV @ W, V* @ AW, V@ NW*, AV W,
V* @ S2W, SV @ W*, SV oW, V ® S2W*,

Then every integer weight discrete covariant f : A2V @ W — Y5 is a covariant.
In particular the covariants F : N’V @ W — Y form a free K|cy, cg]-module of
rank 2 or 3 and the generators have degrees as indicated in [10, Table 4.6].

Proof. Let f : N2V @ W — YH5 be an integer weight discrete covariant. In
each case [10, Lemma 4.4] shows that dimY#> = 2 or 3 and a basis is found
by inspection. We construct f; from f by making the substitutions a® — ] \;,
b— 1, and

ad (v Avg)wg — Y Ao(v1 A vg)wg S ui(wr Awy) — Y vh(wr A wa)
> (v2 Avg)wg — > (v2 A vg)wy a’ Yo vg(wa Aws) = D AaAsvg (wa A ws)
> vo(wi Awy) — > vo(wi Awy) a* Y (v Avpwg = 3 A AaAsAa (vl A v))wp
a® Y vo(wy Aws) — Y- AoAr dvo(wy A w}) > (v3 Av)wg — > o(v3 A v)wg
ad véw% = )\ovéwg a’ > Uégwé = )\2)\3@62103
Yo viwiwg Y viwiwy at Yo viviws — Y0 A A Az v viwg
a’ o vfwaws Y A Agvwaws Yo vsviws — Y vsviwg
a’ > v%wo =y )\0)\1)\47)(2]100 a’ > vowgz =y /\1)\2)\3)\41)011)32
ad vivgwg — Y AgU1v4wg Y vowiwy — Y vowiwy
> vavswg — Y vavswy a’ Do vowiws — Y AgA i Avpwiws

Since these substitutions eliminate a it is clear that no denominators are intro-
duced. It follows by Theorem 4.4 that f is a covariant. O

Proposition 5.2. Let Y be any one of S°W, S5V, S°V*, S°W*. Then the covari-
ants F : N2’V @ W — Y form a free Klcy, cg]-module of rank 6 with generators
in degrees 10,20, 30, 30, 40,50 except in the case Y = S?W* where the generators
have degrees 30,40, 50, 50, 60, 70.

Proof. The module of integer weight discrete covariants is computed as described
in [10] and is found to be a free K|[c4,cg]-module of rank 6 with generators in
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degrees 10, 10, 20, 20, 30, 30. We use Theorem 4.4 to decide which of these are
covariants. We construct f; from f by making the substitutions a® — [[A\;, b — 1
and

a® Y wg = S A Aw] a® S = S0 AoAIA20]
at S wiwiwg — Y A3 Awiwiwy a’ S vdvivg = >0 AoA Aavdvivg
a® S wowiw? — 3 Ao dqwowiw? a > vovivd — 3 Avgvivg
a’ > wowgwg =y )\2)\3w0w§w§ at > U[)U%U% = /\1)\2)\3)\41)01)%7)32,
ad’ wngwg =y )\Owg’wgwg a? > 1)8’[}21}3 = > A )\41181)21)3
HonHwo HUOHHUO
5 Z 0*5 —s Z )‘0)‘2)‘?’)085 alO Z w*5 — Z )\2/\3)\3)\?111)55
a® S vgdvivl = 3 A Asugduiu) a® S wiBwiwg — 3 M AN wiBwiw]
aty vEvi2ui? = D A dadsuui?ei?  a? Y wiwiPwi? v 3 A dswiwitw;?
a > vgvitui? = 3 AovgusZos? a® S wiwi?wi? — 3 Ao Awiwiiws?
ad S vgdvivl = 3 Moo AgugBvivs a’ S wiBwiwh — > A A Az wiBwiw]
[Tvg — ITvg [Twg = ITwg

In the cases Y = S5, S5V, S5V* an integer Weight discrete covariant is a covari-
ant if and only if the coefficient of > wj, > v5, >~ v§? is divisible by a®. Computing
the discrete covariants we find that there is a single constraint in degree 10m for
each m > 1. The covariants therefore have Hilbert series

2(t10+t20+t30> th B t10+t20+2t30+t40+t50
@)1 -5 1—70 (1—@)(1 -5

In Section 7 we give further details of the covariants in the case Y = S°W.

In the case Y = S°W* an integer weight discrete covariant is a covariant if and
only if the coefﬁcient of " wg? is divisible by a'® and the coefficient of > wiwiw;
is divisible by a®. We find that the discrete covariants of degrees 10 and 20 are
not covariants and that there are 3 constraints in degrees 10m for each m > 3.
The covariants therefore have Hilbert series

2(t10 + t20 + t30) B 2t10 B 2t20 B 3t30 _ z530 + t40 + 2t50 + t60 + t70
(1 — 20)(1 — ¢30) 1 —¢l0 (1 — 20)(1 — ¢30)

Example 5.3. The degree 10 covariant for Y = S°W is
S1o = a®b® S wf — a*b(a® — 36°) " wwiwy + adb?(a® + 2b°) Zwow%wz
+a?b%(2a° — b°) 3 wowdw? — ab*(3a® + b°) 3 wiwows + (a¥ — 16a°b° — b1°) [T wo
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and the degree 30 covariant for Y = S°W* is
T30 = 12505 (3a'% — 8a°0° — 3b'0) 3" wi?

—5a5*(3a® + 134a™0° 4 5700 + 216a°b"° — 2206%°) 3" witwiwj

+a?b?(32a% — 195a*°0° + 4110a"°" + 900a'6"° + 480a°0* + 96*°) 3" wiwi?wi?

—a®b*(9a% — 480a2°0° + 900a56"° — 4110a'°b"® — 195a°0% — 320%) 3= wiwi2ws?

~5a*b%(22a*" + 216a'°° — 57a'%0'0 + 134a°0" — 3b%°) 3" wiBwiw}

+(a® — 258405 + 3435a*°p10 — 23040a'°b'° — 3435a'°6%° — 2584°b*° — b30) [ w.
The covariant Sy is (a scalar multiple of) the determinant of the Jacobian matrix
of the quadrics defining Cy. We do not know of any similar construction for Tj.
The contraction of these two covariants is (Syg, T30) = c2. In [8, Section 8] we used

the existence of a such a covariant T3y to justify our algorithm for computing the
invariants in the case of a singular genus one model.

In [10, Section 7] we showed that the covariant Q5 of degree 5 in the following
proposition represents the invariant differential.

Proposition 5.4. The covariants for Y = N*W* @ S?W form a free K|cy, cg)-
module of rank 6 with generators in degrees 5,15,15,25,25, 35.

Proof. The module of integer weight discrete covariants is computed as described
in [10] and is found to be a free K|[c4, cg]-module of rank 6 with generators in
degrees 5,15,15,25,25,35. We use Theorem 4.4 to decide which of these are
covariants. We construct f; from f by making the substitutions a® — [[\;, b — 1
and

a - (wi Awpwg = 37 Ao(wi Awp)wg
> (wi A wiwiwy — > (wi A wi)wiwy
a® S (wi A wwaws — S Ao Az(wi A w))wows
a* 32 (ws Awi)wg = 30N A A (w5 A wi)wd
a® S (wi A wdwywy — S Ao Ag(wi A wi)wiwy
Y (wh A wiwaws — > (wi A wh)waws.

In this case every integer weight discrete covariant is a covariant. U

6. INDEPENDENCE OF COVARIANTS
Let Y be a homogeneous rational representation of GL(V') x GL(W).

Theorem 6.1. Assume char K = 0.

(i) The module of covariants N>V @W — Y is a free K|c4, cg]-module of rank
m = dim Y5,
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(ii) Let Fy,...,F,, be homogeneous covariants for Y. Then Fi,... F,, are a
free basis for the module in (i) if and only if for each ¢ with C, either
an elliptic normal quintic or rational nodal quintic, Fy(¢), ..., F,(¢) are

linearly independent over K.

Proof. (i) The fact we obtain a free module is a standard result in invariant theory.
We have assumed char K = 0 so that SL(V') x SL(WW) is linearly reductive, i.e. it
has a Reynolds operator. Applying the Reynolds operator to the free K[A?V @ W]-
module of polynomial maps A’V ® W — Y shows that the covariants form a
projective K|[cy, cg]-module and hence a free Ky, ¢g]-module. By Theorem 2.6
the rank is the same as for the integer weight discrete covariants. We proved in
[10, Lemma 4.5] that this rank is m.

(ii) Let Fi,..., F,, be homogeneous covariants that are a basis for the module
in (i) and let ¢ be a genus one model with Cy either an elliptic normal quintic
or rational nodal quintic. Suppose for a contradiction that there is a dependence
relation

MEU(D) + ...+ A Fn(6) =0

for some Ay, ..., \,, € K not all zero. Let
(15) d=< 4 ifc(p)=0

2 otherwise.

Since ¢ is equivalent to a Weierstrass model we see by [8, Proposition 4.7] that
for every ¢ € pq there exists g = (gv,gw) € SL(V) x GL(W) with g¢ = ¢ and
det gy = (. Let F; have weights (p;, ;). Applying g to the above dependence
relation we obtain

CNFLG) + .+ € A Fon(6) = 0.

We may therefore reduce to the case where all the ¢; are congruent mod d. This
implies by (3) that the degrees of the F; are congruent mod 5d. We recall that
¢4 and cg have degrees 20 and 30. It follows by (15) that there is a homogeneous
covariant

F=LFK+. . +1,F,

with F'(¢) = 0 where each /; is a monomial in ¢, and ¢g and I;(¢) # 0 for some
t. Then F' is divisible by the invariant I constructed in Lemma 1.4. Since we
are assuming Fy, ..., F,, are a basis for the module of covariants it follows that I
divides [; and so I;(¢) = 0 for all 4. This is the required contradiction.

Conversely suppose Fi,...,F,, are covariants whose specialisations at ¢ are
linearly independent over K whenever Cy is an elliptic normal quintic or rational
nodal quintic. If there is a relation

LF+...+1,F,=0
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for some invariants Ii,..., I, then these invariants vanish on all non-singular
models and so are identically zero by Theorem 1.3. Thus Fi,..., F},, generate a
free submodule of rank m. By (i) it remains to show that if

L+ ... +1,F,=1F

for some covariant F' and invariants I, [y, ..., I, then I divides I; for all i. We
prove this by specialising to the genus one model in Lemma 1.5. U

Remark 6.2. (i) The result that Fi(¢), ..., F,,(¢) are linearly independent for ¢
non-singular could equally be proved using discrete covariants. However this proof
does not generalise to the case Uy is a rational nodal quintic.

(ii) We can remove the hypothesis char K’ = 0 from Theorem 6.1 (but still of course
requiring char K # 2,3,5) by applying the Reynolds operator for SLy(Z/57Z) to
the free K|[a®, b%]-module of (T')-equivariant maps A2 — Y5 that pass the test of
Theorem 4.4. See also Remark 4.5.

7. QUINTIC COVARIANTS

We give further details of the covariants in the case Y = S°W. We already
noted in the proof of Proposition 5.2 that the integer weight discrete covariants
form a free K|[cy4, cg]-module of rank 6 generated in degrees 10, 10, 20, 20, 30, 30. A
basis for Y5 is

Fi1=> wj —30]]wo, Fo = 10> wiwywy, Fz =10 > wiwows,
G = > wy + 20 ] wo, Go = 10> wow?w?, Gs = 10> wowiw3.
In terms of this basis we have generators
Fig = (a'® — 36a°0® — b'°)F; + 5ab(a® — 3b°) Fy + 5ab?(3a® + b°) F3,
Fao = (a2 + 11406 + 114a%0% — b20)F,
—a'b(a®® + 171a'°b° + 247a°b*° — 5701°) F,
—ab*(57a"® + 247405 — 171a°0'° + b'5) F3,
Fyo = D(10a%b*(9a° + 26a°° — 9b10) F,
+a3(a'® 4 126a'°0° + 117a°° — 12b'5) F,
—b%(12a" + 117a'°b° — 126a°b'° + b'°) F3),
Gro = (' + 14a°0° — b'°)G) + 5a°0*(a® + 20°)G, + 5a°b°(2a° — b°)Gs,
Gao = (a2 — 136056 — 136a7b" — b2)G,
— a3 (7a® + 2720005 — 221070 + 26b'5)G,
—a23(26a% + 22116 + 2724710 — TH15)Gs,
G30 = 2D2(10a353g1 + CL(CE5 — 3b5)gg — b(3a5 + b5)(]3)
We recall from Section 5 that a discrete covariant is a covariant if and only if the
coefficient of Y wj is divisible by a®. Therefore the K|cy4, ¢g]-module of covariants
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for Y = S°W has basis
S10 = Fio — Gio, S30 = Fz0 — Gao, Sao = c6F10 + caFo,

16
(16) Soo = Fog — Gag, Siy = Fs0 + Gzo, Ss0 = CiFlo + ceFo.

If we evaluate these covariants at a non-singular model ¢ then by Theorem 6.1
we obtain a basis for the space of Heisenberg invariant quintics. The space of
Heisenberg invariant quintics relative to a fized elliptic normal quintic was studied
by Hulek [11]. We show that our basis obtained by specialising the covariants
picks out some of the quintic hypersurfaces to which Hulek was able to attach a
geometric meaning.

Lemma 7.1. Let ¢ € N>V @ W be non-singular and write S, ..., Sso for the
quintic forms obtained by evaluating the covariants (16) at ¢.

(1) Sio is (a scalar multiple of ) the determinant of the Jacobian matriz of the
quadrics defining C.
(ii) The Heisenberg invariant quintics vanishing on the tangent variety of C,
are linear combinations of Sig, Sa0, S4y-
iii) The quintics Sig, S20, S30 are singular along Cy.
@
iv) The quintics Sig, Sag, S30, Shy, Sag vanish on Cy.
30 ¢

Proof. For the proof we may take ¢ = u(a,b) a Hesse model. Let py, ..., ps be the
equations for Uy, i.e. p; = abw? + b*w; 1 wip g — a*w;owi 3.

(i) We compute Sy = 25 det(9p;/0w;).

(ii) The tangent line to Cy at P = (0:a:b: —b: —a) also passes through

Q = (5a°b* : 0: —b(2a° — b°) : —b(a” + 2b°) : a(a® — 3b°)).

Evaluating the quintic forms at AP 4+ Q) we find that Sig, Sa0, S5, vanish on the
tangent line whereas S30, S40, S50 give polynomials in A\ of degrees 0, 2, 4.

(iii) We may write these quintics as linear combinations of > p2wg, > pipswg and
> Pap3wo.

(iv) We may write these quintics as linear combinations of Y pow3, > powowwy,
S™ powowaws, > po(wiws + wow?) and > po(wiws + wiwy). O

Theorem 7.2. Let C = Cy be an elliptic normal quintic. Let Tan C and Sec C' be
the tangent and secant varieties of C. Let F be the locus of singular lines of the
rank 3 quadrics containing C'. Then

(i) SecC' is the degree 5 hypersurface defined by Sho.
(ii) TanC and F' are irreducible surfaces of degrees 10 and 15 and their union
is the complete intersection defined by Sio and Sa.
(iii) The space of Heisenberg invariant quintics containing TanC' has basis
S10, Sa0, Sty -
(iv) The space of Heisenberg invariant quintics containing F', equivalently that
are singular along C', has basis S1g, Sag, S30-
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(v) The space of Heisenberg invariant quintics containing C' has basis Sho,
SQO} 530; SéO; 540-

Proof. This follows by Lemma 7.1 and work of Hulek [11]. O

8. THE COVERING MAP

We call the covariants A2V @W — SYW covariants of order d. The action of the
Heisenberg group shows that the order must be a multiple of 5. By Theorem 6.1
and [10, Lemma 4.4], the K|[ey, cg]-modules of covariants of orders 5,10, 15 have
ranks 6,41,156. Fortunately we do not need to classify all these covariants since
most of them vanish on Cy and therefore are of no use for describing the covering
map.

Lemma 8.1. Let C C P! be an elliptic normal curve. Then the space of Heisen-
berg invariant polynomials of degree nd, quotiented out by the subspace vanishing
on C', has dimension d.

Proof. Let m: C' — E be the covering map of degree n? from C to its Jacobian E.
Then 7%(d.0g) ~ ndH where H is the hyperplane section for C. So if fi,..., f4
is a basis for the Riemann-Roch space L£(d.0g) then 7*fi, ..., 7" f; are basis for
the space of forms of degree nd in K|z, ...,2,—1]/I(C) that are invariant under
the action of E[n|. Applying the Reynold’s operator for the Heisenberg group
shows that every such form has a representative in Kz, ..., x, 1] that is itself
Heisenberg invariant. U

Lemma 8.2. Let C C P* ! be either an elliptic normal curve or a rational nodal
curve, and let P € C' be a smooth point. Suppose Z, X,Y are homogeneous poly-
nomials in Klxo,...,x,—1] of degrees n,2n,3n with ordp(Z) = 1, ordp(X) = 0,
ordp(Y) = 0. Then for each d > 1 the forms

{(XY/ZF ik >0,5€{0,1},2i +3j + k= d}

are linearly independent in the co-ordinate ring Klxo, ..., x,-1]/1(C).
Proof. This is clear since ordp(X'Y7Z*) = k and the forms listed have distinct
values of k. O

Lemma 8.3. There are covariants Z, X,Y of orders 5,10,15 and degrees 50, 110,
165 such that whenever Cy is an elliptic normal quintic or rational nodal quintic
there is a smooth point P € Cy such that the evaluations of Z, XY at ¢ satisfy
OI‘dp(Z) = 1, OI‘dp(X> = O, OI‘dp(Y) = 0.

Proof. We start with the covariants U, H : A2V @ W — A2V @ W and Qg :
ANV @ W — S?V @ W where U is the identity map and (on the Hesse family)

H = —(0D/0b) > (v1 Avg)wy + (0D /0a) > (va A vs)wy
Qe = >_(5a®b*v3 + a(a® — 3b°)vyvy — b(3a® + b°)vav3)wy.
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There are covariants Py, Pio, Poy : A2V @ W — V* @ S?W where P, is the Pfaffian
map (2) and Pjy, Py satisfy

PQ()\U + ,UH) = )\2P2 + 2)\IMP12 -+ IU2P22.

We define covariants Msy : A2V @ W — S°V and N3o : A2V @ W — S°V* where
M3y = det Qg and N3 is the coefficient of ¢ in det(P, + tPsy). We also define T3
and Thg taking values in V ® S®W by

(@V @W) x (V'@ S*W) -V e S*W
(U, P22) — T3
(Qﬁ, P22) — Tog.
We then put
Z = (1/2)Q6(Paz2, Pa2)
X = (33/26)M30(P12, Pry, Pia, P, Poy)
Y = (33/28)N30(T23, Ths, T287T28>T28>-

As required these are covariants of orders 5, 10, 15 and degrees 50, 110, 165.
Suppose Cy is a rational nodal quintic. By Lemma 1.2 we may assume that ¢
is as given in Section 4, i.e. ¢ =u1(0,1,1,1,1). Then Cy is parametrised by

(zo:...:xy) = (8" — 7 sth: %17 1 =32 . —sh)
Evaluating Z, X, Y at ¢ we find
Z(s5 =17, st %3 =512, —s't) = —283%s10410(s° — 19)

(17) X (s — 17, st*, s7t%, =532 —sht) = 2103720479510 + 10s°¢° + ¢17)
Y (57 — 1%, sth, s%3, —s°%, —stt) = 2203155343 (s + 17).
The conclusions of the lemma are satisfied for P=(0:1:1:—1:—1).
Now suppose Cy is an elliptic normal quintic. Then by [9, Proposition 4.1] we

may assume that ¢ = u(a,b) is a Hesse model. There is a flex (i.e. hyperosculating
point) of Cp at P =(0:a:b: —b: —a). Evaluating Z, X, Y at ¢ we find
Z(0,a,b,—b,—a) =0
(18) X(0,a,b,—b, —a) = 2'*3°0 DY
Y (0,a,b,—b, —a) = —2*73 D
where D = ab(a'® — 11a°° — b'°). Since A = D? it is clear that X and Y do not
vanish at P. Now Cy C P* is a curve of degree 5 meeting the degree 5 hypersurface
defined by Z at the 25 flexes of C. So by Bezout’s theorem either ordp(Z) =1

or Z vanishes identically on Cy. To rule out the latter we write Z in terms of the
basis (16). Explicitly we find

7 = (39/10)¢2 S0 + 46520 — 54caS30 — (198/5)caShy + 12550
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By Theorem 6.1 the specialisations of Sig,..., S50 at ¢ are linearly independent.
It follows by Theorem 7.2(v) that Z does not vanish identically on Cj. O

Lemma 8.4. Let L/K be a finite Galois extension with Galois group I'. Let 'V be
a finite dimensional vector space over L. Suppose there is an action of I' on V
satisfying v(v +w) = v(v) +y(w) and y(Av) = y(A)y(v) for ally €', A € L and
v,w € V. Then dimg V' = dimp, V.

Proof. A generalised form of Hilbert’s Theorem 90 states that H'(T", GL,(LL)) =
{1}. See for example [12, Chapter X, Proposition 3]. We fix a basis for V over L,
and then compare this basis with its Galois conjugates. By writing the resulting
cocycle as a coboundary, we find a new basis for V over IL consisting of vectors

fixed by T O

Lemma 8.5. Let My be the K|cy, cg]-module of covariants for Y = S%W, quo-
tiented out by the submodule of covariants that vanish on the curve. Then My is
a free K|cy, cgl-module of rank d generated by

{XYIZ" 1 k> 0,5 € {0,1},2i + 3j + k = d}
where Z, XY are the covariants in Lemma 8.35.

Proof. Let Z = (S*W)#5 and m = dimZ. We apply Lemma 8.4 with K =
K(a,b)', L = K(a,b) and V either U= L ® Z or the subspace Uy of forms that
vanish on the curve defined by the generic Hesse model u(a,b). Since the action
of T" on A% (and hence on L = K (A?)) was defined so that u : A — (A?2V @ W)
is I'-equivariant, we do indeed have that I' acts on Uy. By Lemmas 8.1 and 8.4
we compute

dimg U" = dim;, U = m,

dimg [Ug =dimy, Uy =m — d.
Thus the K[a,b]"-module of discrete covariants A*> — Z has rank m, and the
submodule of discrete covariants vanishing on the curve has rank m —d. It follows
by Theorem 2.6, and the proof of [10, Lemma 4.5|, that the Klc4, cg]-module
of covariants A2V @ W — S%V has rank m, and the submodule of covariants
vanishing on the curve has rank m — d. Therefore M, has rank d.

Let Fi,..., Fy be the covariants in the statement of the lemma. Lemmas 8.2
and 8.3 show that if Cj is an elliptic normal quintic or rational nodal quintic then
Fi(¢),...,Fy(¢) are linearly independent over K. An argument similar to the
proof of Theorem 6.1(ii) now shows that F},..., Fy are a free basis for M. ]

We show that the covariants Z, XY give a formula for the covering map. The
formula for the Jacobian was already proved in [8] by a different method.

Theorem 8.6. Let ¢ € A*V @ W be non-singular. Then Cy has Jacobian elliptic
curve E with Weierstrass equation

(19) y* = 1% — 27cy(d)x — 5dcg()
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and the covering map Cy — E is given by (z,y) = (X/Z*Y/Z?) where Z,X,Y
are the evaluations at ¢ of the covariants in Lemma 8.3.

Proof. By Lemma 8.5 the K[cy, ¢g]-module Mg has basis
X3, XYZ X°7° YZ3 Xz* ZS.

Since Z, X, Y have degrees 50,110,165 and c4,cg have degrees 20,30 we must
therefore have

Y2 = AX3 4 ey X 24 + vegZ8

for some A, pu,v € K. We determine these scalars by specialising to the case
Cy is a rational nodal quintic. Using (17) we find A = 1,u = —27,v = —54.
Thus (z,y) = (X/Z?,Y/Z?) defines a morphism 7 : C; — E where E is the curve
defined by (19). The fibre above the point at infinity on E'is C,N{Z = 0}. By (18)
and Bezout’s Theorem this consists of the 25 flexes on Cy. Thus degm = 25.
Since Z, X, Y are covariants it is clear that m quotients out by the action of the
Heisenberg group on Cy. Hence E is the Jacobian of C and 7 is the covering
map. U

We gave algorithms for computing Qg and H in [8, Section 8] and [9, Section 11].
So we can evaluate the covariants Z, X, Y by following the proof of Lemma 8.3.
This gives a practical algorithm for computing the covering map. Although we
have been working over an algebraically closed field it is clear that Theorem 8.6
still holds without this assumption. We give an example in the case K = Q.

Example 8.7. Let C C P* be the elliptic normal quintic defined by the 4 x 4
Pfaffians of

0 2x9+ 324 2x9 + x3 + x4 + 425 Tr1 — x3 + 3T4 — T3 —T1 — Ty — T5
0 T1+2x9 —x3 — 24+ 25 201 —x20+ T3+ 34 —2x1 + X2 — T3+ TH
0 —2x9 + 3+ x4 + 275 —2x4 + x5
— 0 T2+ 23+ 224 — 75
0

The invariants of this model are ¢; = 21288863488 and ¢ = 3106257241074688.
Our Magma function CoveringCovariants evaluates the covariants of Lemma 8.3
to give forms Z, X,Y. The first of these is
7 = 208089517036452423241728x° + 481348375428118457413632x 125
— 1067331097433708461809664x 3 — 861565401032195664871424x 24
— 2713065303844178403139584x x5 — 115950936921526586872012825 12
+ ...+ 85118002593548552632524803.
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Evaluating these forms at (4013 : —2384 : —1616 : 1388 : 1021) € C(Q) we obtain

Z = 3412377609951638022163996178720787224832,

X = 12141242195111585999097107425889311253617470393872861501219624577\
3843080932512669892608,

Y = 13341702475842976696719854379608150742217144829049714776419935109\

10164201520123953599858396067352426339710162835468918162316066816.

The Jacobian of C' is the elliptic curve F with Weierstrass equation y? = 23 —

27cyx — S4cg and P = (X/Z%Y/Z3) € E(Q) is a point of canonical height
164.90718. ... In fact E(Q) has rank 1 and is generated by P.

Remark 8.8. The elliptic curve E in the above example is labelled 17472bz1 in
Cremona’s tables [6]. It satisfies a 5-congruence with the elliptic curve F' labelled
17472b22. In fact F has Weierstrass equation y? = x(z+16)(x —26) and the genus
one model in Example 8.7 may be constructed from the point (—2,28) € F(Q)
using visibility as described in [10].
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