INVARIANT THEORY FOR
THE ELLIPTIC NORMAL QUINTIC,
I. TWISTS OF X(5)

TOM FISHER

ABSTRACT. A genus one curve of degree 5 is defined by the 4 x 4 Pfaffians of
a b x 5 alternating matrix of linear forms on P*. We describe a general method
for investigating the invariant theory of such models. We use it to explain how
we found our algorithm for computing the invariants [12] and to extend our
method in [14] for computing equations for visible elements of order 5 in the
Tate-Shafarevich group of an elliptic curve. As a special case of the latter we find
a formula for the family of elliptic curves 5-congruent to a given elliptic curve
in the case the 5-congruence does not respect the Weil pairing. We also give an
algorithm for doubling elements in the 5-Selmer group of an elliptic curve, and
make a conjecture about the matrices representing the invariant differential on
a genus one normal curve of arbitrary degree.

1. INTRODUCTION

A genus one normal curve C C P! of degree n > 3 is a genus one curve
embedded by a complete linear system of degree n. If n > 4 then the homogeneous
ideal of C' is generated by a vector space of quadrics of dimension n(n — 3)/2.

Definition 1.1. A genus one model (of degree 5) is a 5 x 5 alternating matrix
of linear forms on P*. We write C;, C P* for the subvariety defined by the 4 x 4
Pfaffians of ¢, and say that ¢ is non-singular if Cy is a smooth curve of genus one.

It is a classical fact that (over C) every genus one normal curve of degree 5 is
of the form Cy for some ¢. Importantly for us, the proof using the Buchsbaum-
Eisenbud structure theorem [5],[6] shows that this is still true over an arbitrary
ground field.

There is a natural action of GL5 x GL5 on the space of genus one models. The
first factor acts as M : ¢ — M@M?" and the second factor by changing co-ordinates
on P4, To describe this situation we adopt the following notation. Let V and W
be 5-dimensional vector spaces with bases vg,...,vs and wy,...,ws. The dual
bases for V* and W* will be denoted v, ..., v; and wg,...,w;. We identify the
space of genus one models with A2V @ W via

¢ = (dij) < i (Vi A Vj) ® ij(wo, . ..., wa).

Date: 14th October 2011.



2 TOM FISHER

With this identification the action of GL5 x GL5 becomes the natural action of
GL(V) x GL(W) on A’V @ W. By squaring and then identifying A*V = V* there
is a natural map

(1) P NV R@W — V'@ S*W = Hom(V, S*W).

Explicitly Po(¢) = (v; — pi(wo,...,ws)) where pg,...,py are the 4 x 4 Pfaffians
of . Thus V may be thought of as the space of quadrics defining Cy and W
as the space of linear forms on P*. Despite this clear geometric distinction, we
show in this paper that certain covariants that mix up the roles of V and W have
interesting arithmetic applications.

We work over a perfect field K with characteristic not equal to 2, 3 or 5. The
co-ordinate ring K[A?V @ W] is a polynomial ring in 50 variables.

Theorem 1.2. The ring of invariants for SL(V') x SL(W) acting on K[\*V @ W]
is generated by invariants ¢y and cg of degrees 20 and 30. If we scale them as
specified in [12] and put A = (c3 — c2)/1728 then

(i) A genus one model ¢ is non-singular if and only if A(¢p) # 0.

(ii) If ¢ is non-singular then Cy has Jacobian elliptic curve

y® = 1° — 27cy(¢)x — Hdeg().
PROOF: See [12, Theorem 4.4]. O

The invariants ¢4 and cg are too large to write down as explicit polynomials.
Nonetheless we gave an algorithm for evaluating them in [12, Section 8]. By
Theorem 1.2 this gives an algorithm for computing the Jacobian. In [14] we
studied a covariant we call the Hessian. Explicitly it is a 50-tuple of homogeneous
polynomials of degree 11 defining a map H : A2V @ W — A2V @ W. Again rather
than write down these polynomials we gave an algorithm for evaluating them. The
Hessian allows us to compute certain twists of the universal family of elliptic curves
parametrised by X (5). We used it to find equations for visible elements of order 5
in the Tate-Shafarevich group of an elliptic curve, and to recover the formulae of
Rubin and Silverberg [20] for families of 5-congruent elliptic curves. However in
both these applications we were restricted to 5-congruences that respect the Weil
pairing. In this paper we remove this restriction.

In Sections 2, 3, 4 we explain a general method for investigating the covariants
associated to a genus one model. In particular we explain how we found the
algorithm for computing the invariants in [12, Section 8|. One key result on the
existence of covariants is left to a sequel to this paper [16]. Our account is still
however self-contained, since in Section 8 we give explicit constructions of each
of the covariants used in the second half of this paper. In Section 5 we use the
covariants to write down families of 5-congruent elliptic curves. In Section 6 we
give a formula for doubling in the 5-Selmer group of an elliptic curve and extend
our method in [14] for computing visible elements of the Tate-Shafarevich group.
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In particular we check local solubility for each of the visible elements of order 5
in the Weil-Chatelet group that were considered in [8]. In Section 7 we study a
covariant that describes the invariant differential. This is needed not only for some
of the constructions in Section 8, but also leads us to make a conjecture about
the matrices representing the invariant differential on a genus one normal curve of
arbitrary degree.

2. COVARIANTS

We recall that a rational representation of a linear algebraic group G is a mor-
phism of group varieties py : G — GL(Y).

Definition 2.1. Let Y be a rational representation of GL(V') x GL(W). A co-
variant (for Y) is a polynomial map F : A2V ® W — Y such that Fog = py(g)F
for all g € SL(V) x SL(W).

The covariants in the case Y = K is the trivial representation are the invariants
as described in Theorem 1.2. For general Y the covariants form a module over the
ring of invariants. In all our examples Y will be homogeneous by which we mean
there exist integers r and s such that

py (AMlv, ply) = X'p° Iy

for all A\, u € K*. A polynomial map F : A2V @ W — Y is homogeneous of degree
d if F(\¢) = MF(¢) for all A € K, equivalently F is represented by a tuple of
homogeneous polynomials of degree d.

Lemma 2.2. Let F: A2V @ W — Y be a covariant and suppose that both Y and
F are homogeneous. Then there exist integers p and q called the weights of F' such
that

Frog = (det gv)’(det gw)'py(g) o F
for all g = (gv, gw) € GL(V) x GL(W). Moreover if Y has degree (r,s) then

2) 2degF' = bp+r
deg ' = 5q+s.

PROOF: The only 1-dimensional rational representations of GL,, are integer powers
of the determinant. This proves the first statement. The second statement follows
from the special case where gy and gy, are scalar matrices. U

The first example of a covariant is the identity map
U:NVQW — AV o W.

It has degree 1 and weights (p, ¢) = (0,0). The Pfaffian map P, defined in (1) is a
covariant of degree 2 with weights (p, q) = (1,0). Subject to picking a basis for V,
¢ € N2V @ W is a 5 x 5 alternating matrix of linear forms and P(¢) is its vector
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of 4 x 4 Pfaffians. The determinant of the Jacobian matrix of these 5 quadrics
defines a covariant

(3) Slg . /\2V ® W — S5W

It has degree 10 and weights (p,q) = (4,1). It is shown in [19, VIII.2.5] that if
¢ € N’V @ W is non-singular then Sio(¢) is an equation for the secant variety of
C¢> C P4

Our initial motivation for studying the covariants was that by constructing a
large enough supply of covariants we might eventually arrive at an algorithm for
computing the invariants, and so by Theorem 1.2 an algorithm for computing the
Jacobian. This programme was successful, leading to the algorithm in [12]. We
have subsequently found that some of the covariants have interesting arithmetic
applications in their own right.

In the next two sections we explain our methods for studying the covariants.
The key idea is that although the covariants are routinely too large to write down,
their restrictions to the Hesse family, i.e. the universal family of elliptic curves
over X (5), are much easier to write down and are (nearly) characterised by their
invariance properties under an appropriate action of SLy(Z/5Z). Thus our work
resolves, albeit in one particular case, what is described in [1, Chapter V,§22] as
the “mysterious role of invariant theory”.

3. THE EXTENDED HEISENBERG GROUP

We take n > 5 an odd integer. In this section we work over an algebraically
closed field K of characteristic not dividing n, and let {,, € K be a primitive nth
root of unity. We write E[n] for the n-torsion subgroup of an elliptic curve E and
e, : Eln| x E[n] — p, for the Weil pairing.

Definition 3.1. (i) The modular curve Y(n) = X(n) \ {cusps} parametrises
triples (F, Py, P») where E is an elliptic curve and P, P, are a basis for E[n] with
en(Pl,Pg) = Cn

(ii) Let Z(n) C P! be the subvariety defined by ag = 0, a,_; = —a; and
rank(a;_ja;4;) < 2 where (ag : ... : a,_1) are co-ordinates on P"! and the
subscripts are read mod n.

There is an action of SLy(Z/nZ) on Y (n) given by

d

Let S = (%¢)and T = (}1) be the usual generators for SLy(Z). By abuse of
notation we also write S and T for their images in SLy(Z/nZ).

(‘C‘ b) . (E, P, Py) — (E,dP, — cPy, —bP, + aP,).

Theorem 3.2. There is an embedding X (n) C P"~! such that
(i) X(n) C Z(n) with equality if n is prime.



INVARIANT THEORY FOR THE ELLIPTIC NORMAL QUINTIC 5

(ii) The action of SLo(Z/nZ) on X (n) is given by p : SLa(Z/nZ) — PGL,(K)
where

p(S) o< (¢F)ij=0..m1  P(T) o Diag(¢r/*)ico,..n 1
Moreover b lifts uniquely to a representation p : SLa(Z/nZ) — SL,(K).

PROOF: The condition for equality in (i) is due to Vélu [26]. The remaining
statements are proved in [15, Section 2]. Proofs that p lifts in the case n = 5 may
also be found in [18], [22]. O

The Heisenberg group of level n is

H, = (o,t|c" =71" =|o,|0,7]] = [, |0, 7]] = 1).

It is a non-abelian group of order n®. The centre is a cyclic group of order n

generated by ¢ = [0,7] = oro~'77!. We write H, for the quotient of H, by
its centre and identify H, = (Z/nZ)* via & — (1,0) and 7 — (0,1). Since each

automorphism of H,, induces an automorphism of H, there is a natural group
homomorphism 3 : Aut(H,) — GLy(Z/nZ). The kernel of 3 is H,, acting as the
group of inner automorphisms. We may thus identify Aut(H,) as a group of affine
transformations. Let ¢« € Aut(H,) be the involution given by (o) = o~ ! and
() = 771 (Any involution ¢ with 3(:) = —I would do, but we have picked one
for definiteness.) Since n is odd there is a unique section sg for g with sg(—1) = ¢.
(This means that sz : GLo(Z/nZ) — Aut(H,) is a group homomorphism with
B osg=1id.) Indeed the image of sz is the centraliser of ¢ in Aut(H,,).

Definition 3.3. The extended Heisenberg group is the semi-direct product
HY = H, x SLy(Z/nZ),
with group law (h,v)(h',~") = (hsg(7),v7).
Remark 3.4. (i) The map sg is explicitly given by
sa((24)) 1 0= P07t 7 (M0

(ii) The group H: was used by Horrocks and Mumford [18] in their construction
of an indecomposable rank 2 vector bundle on P. In fact the order of H. appears
in the title of their paper.

We now identify H,, as a subgroup of SL,,(K) via the Schrodinger representation
0 : H, — SL,(K) where

10 0 - 0 00 0 1
0¢ 0 - 0 10 00
4 0o)=]0 0 &G - 0 | gr)=|01 00
00 0 - ¢! 00 10



6 TOM FISHER

Since 6(¢) = (,1,, this identifies the centre of H,, with u,. Let N, be the normaliser
of H, in SL,(K). It may be checked that the automorphisms of H,, induced by
conjugation by elements of N,, are precisely those that preserve the commutator
pairing H,, x H, — ji,. This proves the surjectivity of the map « in the following
commutative diagram with exact rows and columns.

0 0
Hn Mn 0
0 H, N, 2 SLQ(Z/HZ) — 0

The restriction of sg to SLy(Z/nZ) defines a projective representation
p: SLy(Z/nZ) — PGL,(K).
Comparison with the proof of Theorem 3.2 shows that this is the same as the
projective representation considered there.

Lemma 3.5. The following objects are in natural 1-1 correspondence.

(i) Sections s, for a compatible with sg.
(i) Lifts of p: SLo(Z/nZ) — PGL,(K) to p: SLa(Z/nZ) — SL,(K).
(iii) Eatensions of 0 : H,, — SL,(K) to 8% : HI — SL,(K).

Proof. The projective representation p is defined by the requirement
(V) hp(y) t =s5(y)h  forall h € H,, v € SLy(Z/nZ).

But to say that s, is a section for av compatible with sg means

(5) sa(Y) hsa(y) ™t =ss(y)h  for all h € H,, v € SLy(Z/n7Z).

The correspondence between (i) and (ii) is clear. Now given s, compatible with
sg we define 67 (h, ) = hs,(y) and check using (5) that 6 is a homomorphism.
Conversely, given 6% we set s,(7) = 6%(1,v). This gives the correspondence
between (i) and (iii). O
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From the final statement of Theorem 3.2 we immediately deduce

Theorem 3.6. The Schridinger representation 0 : H,, — SL,(K) extends uniquely
to a representation 0 : HY — SL,(K). Moreover the normaliser of 0(H,) in
SL,(K) is 0T (H)).

Remark 3.7. The Schrodinger representation has ¢(n) conjugates obtained by
either changing our choice of (,, or precomposing with an automorphism of H,. We
may apply Theorem 3.6 to any one of these representations. This is important for
our applications and explains why we were careful to define H; before introducing
the Schrodinger representation.

4. DISCRETE COVARIANTS

In this section we work over an algebraically closed field of characteristic not
equal to 2, 3 or 5. The Hesse family of elliptic normal quintics (studied for example
in [14], [19]) is given by

u: A2 — AVeW
(a,b) — ad (v Avgwo~+ b (va A vsg)wy
where the sums are taken over all cyclic permutations of the subscripts mod 5.

The models u(a,b), called the Hesse models, are representative of all genus one
models in the following sense.

Lemma 4.1. Every non-singular genus one model is GL(V') x GL(W)-equivalent
to a Hesse model.

PROOF: See [14, Proposition 4.1] O

The Hesse models are invariant under the following actions of the Heisenberg
group Hs on V and W.

(6)

Our definition of the Hesse family differs from that in [14, Section 4] by a change
of co-ordinates. This is to make the formulae (6) more transparent than those
immediately preceding [14, Lemma 7.7].

Since 0y and 6y, are conjugates of the Schrodinger representation they extend
by Theorem 3.6 to representations of HS. By abuse of notation we continue to
write these representations as 6y and 6y,. Let Y be a rational representation of
GL(V) x GL(W). Then 6y and 6y define an action 6y of H: on Y. We write
Y5 for the subspace of Y fixed by Hs. Since H; sits in an exact sequence

Oy : Hs — SL(V);  o:vi— vy T:ivi— v
Ow : Hs — SL(W); o :w; — CGwi; 71w wigg.

O—>H5—>H;—>F—>0

there is an action of I' = SLy(Z/5Z) on Y5, In the case Y = A’V @ W we find
(by using Lemma 4.4 below to compute dim Y#) that Im(u) = (A*V @ W)%s.
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The action of I' is then described by a representation x; : I' — GLy(K) with the
defining property that

(7) uox1(7) = Orevew(y) o u
for all v € T.

Definition 4.2. Let 7 : I' — GL(Z) be a representation. A discrete covariant
(for Z) is a polynomial map f : A?2 — Z satisfying

woxi(y) =m(7)ou
for all vy € T".

Theorem 4.3. Let F : N2V QW — Y be a covariant. Then f = Fou : A2 — Y
s a discrete covariant. Moreover F is uniquely determined by f.

PROOF: Since F' is a covariant it is SL(V) x SL(W)-equivariant (by definition)
and therefore H-equivariant. So its restriction to (A?2V @ W)5 takes values in
Y5 and this restriction is I'-equivariant.

If I} and F; restrict to the same discrete covariant f then by Lemma 4.1 they
agree on all non-singular models. By Theorem 1.2 the non-singular models are
Zariski dense in A’V @ W and from this we deduce that F} = F5. O

For any given Y it is easy to compute the discrete covariants using invariant
theory for the finite groups Hs and I'. We say that a discrete covariant f : A% —
YHs s a covariant if it arises from a covariant F' : A2V @ W — Y as described
in Theorem 4.3. It is important to note that not every discrete covariant is a
covariant. We give examples below.

We recall the character table of H,, for p an odd prime. There are p*4+p—1 conju-
gacy classes with representatives ¢* and o/7% for i, j, k € Z/pZ with (4, k) # (0,0).
There are p? one-dimensional characters indexed by (r, s) € (Z/pZ)?. The remain-

ing p — 1 irreducible characters are conjugates of the Schrédinger representation.
These are indexed by ¢ € (Z/pZ)*.

‘ Cz O'ka
/\7“78 1 Cgrqtks
0, pCif 0

The dual of 0, is 0_;. From the character table we also deduce

Lemma 4.4. Let t,t' € (Z/pZ)*.
: ~ | POrv ift+1"#0 (mod p)
(1) 00 ® O = D, s ift+1 =0 (mod p)

y 0.0 ifd=0ord=p
dg ~ )
(ZZ)/\Qt—{l(p)gdt fl<d<p-—1

p\d
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1(rrd-Tyg, if d £ 0 (mod p)
i) §dp, >~ ) p\ d t P
(iii) S0, = { oo @ #((p-i—j—l) — 1)@, Ars  ifd=0 (mod p).

By (6) the representations W, V,V* W* are equivalent to 6, for t = 1,2,3,4.
In the examples at the end of this section we use Lemma 4.4 to compute the
dimension of Y5 and then find a basis by inspection.

The representation x; : I' = GLo(K') defined by (7) works out as

xi(9): (a,b) = (pa+ba—wb)/((5—C)

XI(T) : (CL, b) = (<§a7 gb)
where p = 1+ (5 + (2. To fix our notation for the other irreducible characters we
recall the character table for I' = SLy(Z/5Z). In the first row we list the sizes of

the conjugacy classes. The same symbols are used to denote both a representation
and its character. We have written p =1 — ¢.

1 1 20 20 30 12 12 12 12

I -1 ST -ST S T -T T* -T?
v 11 1 I 1 1 1 1 1
vy 4 4 1 1 0 -1 -1 -1 -1
Y5 5 5 -1 -1 1 0 0 0 0
Yo 33 0 0 -1 ¢ ¢ » P
Y5 3 3 0 0 -1 ®» » ¢ v
xi| 2 =2 -1 L0 —p » -
X2 2 =2 -1 1 0 - @ —p o
xs| 4 -4 1 -1 0 -1 1 -1 1
x4 6 =6 0 0 0 1 -1 1 -1

The discrete covariants in the case Y = K is the trivial representation form the
ring of discrete invariants R = Kla,b]'. This ring was already studied by Klein.
We noted in [14, Section 3] that R is generated by

D = ab(a" — 11a°b° — b'°)
(8)  c1=a”+228a""b’ + 494ab" — 228a°b" + b
g = —a”® +522a*°b° 4 10005a*°b" 4 10005a°b* — 522a°6* — b

subject only to the relation ¢ — ¢2 = 1728D°. The discrete invariants ¢, and cg

are the restrictions of the invariants ¢4 and cg in Theorem 1.2. Our use of the
same notation for both a covariant and its restriction to the Hesse family should
not cause any confusion in view of the uniqueness statement in Theorem 4.3.

For an arbitrary representation = : I' — GL,,(K) the discrete covariants form
an R-module M. We write M, = ®4>0M 4 for the grading by degree. For any
given 7 and d it is easy to compute a basis for M, 4 by linear algebra.
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Lemma 4.5. Let 7 : ' — GL,,(K) be a representation. Then
(i) My is a free K[D,c4]-module of rank 2m.
(ii) M, is a free K[D, cg]-module of rank 3m.
(i) M, is a free K|cy,cg]-module of rank 5m.
Moreover if M,(r) C M, is the direct sum of the graded pieces My 4 with d = r
(mod b5), then M.(r) is a free K|[c4, cg|-module of rank m.

Proof. In [14, Lemma 5.3] we showed that M, is a free K{c4, ¢g]-module. Since
the same method (recalled from [3]) works in general it only remains to compute
the ranks. Let K = K (a,b)" be the field of fractions of R. By the normal basis
theorem the K[I']-module K (a,b) is a copy of the regular representation. So if I'
acts on Z = K™ via m then

K® Z~(K(a,b)® 2)" =K& M,.
In particular dimg (K ® M, ) = m. Statements (i)-(iii) follow since
[K: K(D,cq)] =2, [K: K(D,cg)] =3, K : K(cq,c6)] = 5.

Finally we observe that the M, (r) for r € Z/5Z are free K |[cy, cg]-modules with
ranks m, (say) adding up to 5m. Multiplication by D shows that m, < m, o for
all . Therefore mg = ... = my4 = m as required. U

The Hilbert series of M, can be computed using Molien’s theorem:

> Trm(y
h(My,t) =S (dim M, ) .
) (M ?) ;( im Mra)t 0 Z1—T1r><1 )+ 2

For example taking = = y; we find

t+ 1
(1 —¢12)(1 —¢29)

b M 19 2D g2 g

B (1 —t12)(1 —¢39)

) (P )+ (0 ) + (T ) 4 (8 1)

B (1 —t20)(1 — 30) '
The numerators of these three expression give the degrees of the generators in
each part of Lemma 4.5.

There are essentially two ways in which a discrete covariant can fail to be a

covariant. The first is that the weights computed using (2) might fail to be integers.
For example the discrete invariant D has weights (p,q) = (24/5,12/5) and so

cannot be an invariant. (However Theorem 1.2 tells us that ¢4, ¢g and A = D°
are invariants.) Likewise taking Y = S°W the discrete covariant

(a,b) — ab > wh — bb* > wiwiwy + 5a? > wiwews — 30ab [ ] wo.

h<Mx1at) =
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has weights (p,q) = (4/5,—3/5) and so cannot be a covariant. The second is
that the discrete covariant f might arise from a fractional covariant by which
we mean an SL(V) x SL(W)-equivariant rational map F : A’V @ W — =Y. It
can happen that f is regular even when F' is not. For example decomposing
(S5 as a T-module we find it contains a copy of the trivial representation.
So there is a discrete covariant of degree 0. But there are clearly no covariants
ANV @ W — SPW of degree 0.

In [16] we prove that these are the only two obstructions. More precisely we
show that if f : A2 — Y5 is an integer weight discrete covariant then AFf is
a covariant for some integer k > 0. Moreover we give a practical method for
determining the least such k.

If Y is homogeneous of degree (r, s) and Y5 2 0 then the action of the centre of
Hjs shows that 2r+s =0 (mod 5). We see by (2) that p is an integer if and only if
q is an integer. So the integer weight condition is just a congruence mod 5 on the
degree of a covariant. In particular Lemma 4.5 shows that the K¢y, cg]-module of
integer weight discrete covariants is a free module of rank m = dim Y %5,

In this article we are primarily concerned with the rational representations Y
in the following table. In each case Lemma 4.4 shows that dim Y = 2 or 3.
We list a basis for Y5 (the sums are taken over all cyclic permutations of the
subscripts mod 5) followed by its character as a I-module. In the final column we
list the degrees of the generators for the K¢y, ¢g]-module of integer weight discrete
covariants, as computed using Molien’s theorem.

Table 4.6
Y basis for Y5 character degrees
NV QW D (vr Avgwe, Y. (v2 A vs)wg X1 1,11
V*Q AW S g (wy Awyg), Do v (wa A ws) X2 7,17
Vo NPW* S ve(wi Awy), S vg(ws A w}) X2 13,23

NVE @ W* ST (v Avhwg, S (vh A vd)w X1 19,29
V*® S*W S viwd, Y vgwiws, Y viwaws Wy 2,12,22
SEVF @ W* ST uitwg, S viviwg, . viviw (7 14,24, 34
82V® w ngwo, ZU1U4U)0, ZUQU;;’LUO 7,05 6, 16,26
V@ SEPW* S vwi?, Y vowiwy, D vowiws Wy 18,28,38

Checking the conditions in [16] it turns out that each of these discrete covariants
is a covariant. In [14] we gave an alternative proof in the cases Y = A’V @ W
and Y = A?V* @ W* using evectants. The explicit constructions in Section 8 also
show that each of these covariants exists at least as a fractional covariant.

The discrete covariant of degree 2 for Y = V* @ S?W is P, = > v/p; where

(10) pi = &bU)? + b2wi,1wi+1 - Cl2wi,2wi+2
and the discrete covariant of degree 6 for Y = S2V @ W is
Qs = >_(5a*b*v3 + a(a® — 3b°)vivy — b(3a® + b°)vaus)wy.
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Substituting v; = p; in Qg gives a covariant of degree 10 for Y = SW which turns
out to be (a scalar multiple of) the secant variety covariant (3). This suggested
to us the algorithm for computing Qg in [12, Section 8| that is the key step in our
algorithm for computing the invariants.

In the remainder of this article we are concerned with arithmetic applications of
the covariants in Table 4.6 and in algorithms for evaluating them on (non-singular)
genus one models.

5. FAMILIES OF 5-CONGRUENT ELLIPTIC CURVES
From now on K will be a field of characteristic 0 with algebraic closure K.

Definition 5.1. (i) Elliptic curves E and E’ over K are n-congruent if F[n| and
E’[n] are isomorphic as Galois modules.

(ii) The modular curve Yg) (n) = X](;)(n) \ {cusps} parametrises the family of
elliptic curves n-congruent to E via an isomorphism ) with e, (.S, ¢¥T) = €,(S,T)"

for all S, T € E|n|.

The curves Xg) (n) depend only on the class of r € (Z/nZ)* modulo squares.
In the cases r = £1 we denote them Xg(n) and Xz (n). Rubin and Silverberg
[20], [21], [23] computed formulae for the families of elliptic curves parametrised
by Yg(n) for n = 2,3,4,5. In [14] we gave a new proof of their result and extended
to Y (n) for n = 3,4,5. In the case n = 5 this is not so interesting since —1 is a
square mod 5. In Theorem 5.8 below we remedy this by giving a formula for the
family of elliptic curves parametrised by Yg)(f)).

First we need some preliminaries on Heisenberg groups. Since we have dropped
our earlier assumption that K is algebraically closed our point of view is slightly
different from that in Section 3.

Definition 5.2. A Heisenberg group is a Galois invariant subgroup H C SL,(K)
such that
(i) H is the inverse image of a subgroup A C PGL,(K) with A (Z/nZ)?.
(ii) Taking commutators in H induces a non-degenerate pairing A X A — u,,.

Let C' C P"! be a genus one normal curve of degree n. The Heisenberg group
defined by C'is the group of all matrices in SL,(K) that act on C as translation
by an n-torsion point of its Jacobian E. In this case the commutator pairing is
the Weil pairing e, : E[n] X E[n] — pu,. If C'is a curve of degree n = 5 then there
is another Heisenberg group determined by C' coming instead from the action of

E[5] on the space of quadrics defining C'.

Lemma 5.3. Let ¢ € A*°V @ W be non-singular and let E = Jac(Cy). Then there
are projective representations xy : E[5] — PGL(V) and xw : E[5] — PGL(W)
such that
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(i) The action of E[5] on C, C P(W™) is given by xw and
(i) Oxv(T), xw(T))¢ o< ¢ for all T € E[5].

ProOOF: If gy € GL(W) describes an automorphism of Cy, then by [14, Lemma 7.6]
there exists gy € GL(V), unique up to sign, such that (gv, gw )¢ = ¢. So once we
have used (i) to define xy, condition (ii) uniquely determines yy . d

The projective representations yy and yy determine Heisenberg groups
(11) H, C SL(W*) Hy Cc SL(V*) Hs C SL(V) H,; C SL(W)

where the first of these is the Heisenberg group defined by C,. It follows by (6)
that the commutator pairing on E[5] induced by H, is the rth power of the Weil
pairing.

Theorem 5.4. Let ¢ € A2V @ W be a non-singular genus one model determin-
ing Heisenberg groups Hy, ..., Hy as above. Then the genus one normal curves
with Heisenberg group H, are the Cy for ¢' a non-singular member of the pencil
spanned by Fi(¢) and Fy(¢p) where Fy and Fy are a basis for the Klcy, cg]-module
of covariants N\*V @ W — Y and

NV @ W ifr=1
Ve AW ifr=2
VEQ AW ifr=3
NV*QW*  ifr =4.

Y —

PRrROOF: This generalises [14, Theorem 8.2] where we treated the case r = 1.

For the proof we may assume that K is algebraically closed. By Lemma 4.1
and the covariance of F} and F» we may assume that ¢ = u(a, b) is a Hesse model.
Then each H, is the standard Heisenberg group generated by the matrices (4).
By [14, Lemma 7.5] the genus one normal curves with this Heisenberg group are
the Cy for ¢’ a non-singular Hesse model. Splitting into the cases r = 1,2, 3,4 we
checked by computing the discrete covariants (see Remark 5.5 below for the case
r = 3) that F}(¢) and Fy(¢) are linearly independent. They therefore span the
space of Hesse models. O

In [14] we studied the cases 7 = 1,4. We now work out explicit formulae in the
case r = 3. According to the table at the end of Section 4 the K|[cy, ¢g]-module of
covariants for Y = V* @ A2W is generated by covariants ¥; and ¥, of degrees 7
and 17. The corresponding discrete covariants are

(12) (a,b) = fa(a,0) > v (wr Aws) + gala,b) > vj(ws Aws)

where
fr(a,b) = 0*(7a® = b°),  fiz(a,b) = b*(17a™® + 187a'°0° + 119a°b'° + b'%),
gr(a,b) = a*(a@® + 7°), gir(a,b) = —a*(a'® — 119a'°0° + 187a°b" — 17b").
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Remark 5.5. Direct calculation shows that frg17 — g7 fir = —24D?*. We deduce
that if ¢ is non-singular then U;(¢) and Wy7(¢) are linearly independent. In [16]
we generalise this to arbitrary Y.

We recall that the ring of discrete invariants K[a,b]' is generated by the poly-
nomials D, ¢4 and ¢4 in (8).

Lemma 5.6. There are polynomials D(A, i), c4(\, i) and c(\, p) with coefficients
in K|[cq,cg] such that

D(\, u) =27 D\ fr + pufi7, Agr + pgi7)/ D(a, b)?
ca(\, 1) = 54% - ca( M fr + pfiz, Agr + pgi7)
co(\, 1) = 54% - cg(Afr + pfir, Agr + pgir)

PROOF: The coefficients are discrete invariants of degree a multiple of 5. We can
then therefore write them as polynomials in ¢; and cg. (The factors 27, 542, 543
are included to make D, ¢4, cg primitive polynomials in Zcy, cg, A, p].) O

The polynomials D(\, p), c4(A, 1) and cg(\, i) are easily computed from the
description in Lemma 5.6. We find

D(\, 1) = —(125¢; + 64c2) A2 — 1620cice A\ i — 66(25¢) + 56¢4ca) A0 p?
—220(11c3cs + 16c) N1 + 1485(5¢; + 4cica) Nt 4 792(53chcs + 28c4ci) AT 1
4 660(9c5 + 164c3c2 4 165) N0 u® + 2376(19¢c6 + 44cic) N’
4 495(27c] + 104cic2 + 112¢c4cp) N p® + 220(81cScq + 136c3cy + 80cg) A3
— 594(9¢} — 32¢ck — 16cicg) N2 'Y — 60(135c1c6 — 328¢cics + 112¢4c3) Aptt
— (729¢] + 108c5ci — 2896¢;ca + 16005 ) ',

1 82_2 9’D 1 oD 9D
o N2 9AOu - x ou
cy(A, p) = 112122 885393“ %QT? and  cg(\, pn) = 12-20 ac,4 %_c:‘ .

These polynomials satisfy the relation

C4()‘7 M)g - CG()‘a /‘L> (Ci - 06) D()‘ /”L)
We have contributed them to Magma [4] as HessePolynomials (5,2, [c4,c6]).

Lemma 5.7. The K|cy, cg)-module of covariants N>V @ W — V* @ A°W is gen-
erated by covariants W7 and V7 satisfying

04(/\\117 + M\Ijn) = C4(/\7 ,u)/542
CG(/\\I/'y + ,LL\I/17) = CG(/\; ,u)/543

PRrROOF: By Lemma 4.1 and the covariance of U7 and Wy it suffices to check these
identities on the Hesse family. But in that case we are done by the definitions of
¢, and cg in Lemma 5.6. Il
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We say that elliptic curves E and E’ are indirectly 5-congruent if there is an
isomorphism of Galois modules ¢ : E[5] = E'[5] with e5(S,¢T) = e5(S,T)" for
some 1 € {2,3}. In the notation introduced at the start of this section the elliptic
curves indirectly 5-congruent to £ are parametrised by Yé})(5).

Theorem 5.8. Let E be an elliptic curve over K with Weierstrass equation
y2 = 23 — 274 — Hdcg.
Then the family of elliptic curves parametrised by Yg)(5) 15
By, vy =12 —12cs(\, p)z — 16¢6(\, )
where the coefficients of c4(\, 1) and cg(A, 1) are evaluated at cq,c6 € K.

PRrROOF: We embed E C P* via the complete linear system |5.0g|. The image is
defined by some ¢ € A2V @ W with invariants ¢4 and cg. Let Hy,..., Hy be the
Heisenberg groups (11) determined by ¢.

(i) Suppose that ¢' = AWz (¢)+pu¥17(¢) is non-singular. By Theorem 5.4 the genus
one normal curves Cy C P* and Cy C P* have Heisenberg groups H; and Hs. By
Theorem 1.2 and Lemma 5.7 the Jacobians of these curves are I and E) ,. Since
the Heisenberg group carries the information of both the action of Galois on the
5-torsion of the Jacobian, and the Weil pairing (via the commutator), it follows
that £/ and E) , are indirectly 5-congruent.

(ii) Let E' be an elliptic curve indirectly 5-congruent to E. By [9, Theorem 5.2]
there is a genus one normal curve C’ C P* with Jacobian E’ and Heisenberg group
H;. Then Theorem 5.4 shows that C' = Cy for some ¢' = AU7(¢) + pu¥i7(¢).
Taking Jacobians gives E' = E) ,. O

We also worked out formulae corresponding to the case r = 2 of Theorem 5.4.
We omit the details since the family of elliptic curves obtained is the same as
that in Theorem 5.8. (We encountered a similar situation in [14] with the cases
r==+l1.)

Example 5.9. Let F/Q be the elliptic curve y? + xy = 2% — 607z + 5721 labelled
2834cl in Cremona’s tables [7]. The invariants of this Weierstrass equation are
cy = 29137 and cg = —4986649. Substituting into the above expression for D and
then making a change of variables! to simplify we obtain

1
= —60647612 4+ 74183¢Mn — 3663446117 — 965800£%7°
4 1640430£%n* — 166188¢™n” + 1473362¢57° — 1041216&°n"

+ 122430064 ® 4 816860£31° — 474188¢%n'° 4 22692¢n'! — 5125672

IThis change of variables was found by minimising to make the numerical factor on the right
hand side of (13) a small integer, and reducing as described in [24].
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By Theorem 5.8 the family of elliptic curves indirectly 5-congruent to F' is
y? =23 — 27cy(&,m)x — 54cs(€,n) where

1 |22 23 1|2 2=

= 9E2  9Edn _ o¢  On
ca(§,m) = 112 |22 929 and  c6(§,m) = 20 %_? %&
O0n  On? Ui

These polynomials satisfy the relation
(13) ca(§,m)° — (€, m)* = 2131097 - 1728 D(€, n)".

We specialise £, n to integers with max(|¢|, |n|) < 100 and sort by conductor to
obtain a list of elliptic curves that begins

¢ mn | conductor lai,...,ag]

3 2 2834 [1,—1,1, 8109, —279017]

0 1 18157438 [1,—1,1,68377761, 119969009527]

1 0 171873598 [1,0,0, 895245563, 21917334070263]

2 1 205326134 [1,0,0, —637387852699482, —6550975667615204649116]
1 1 |1506404198 [1,0,0,—793652608607, —207340288851298727]

1 —1]6582143542 [1,0,0, —2705846635122, —1178369764561303100]

The first curve in this list is the elliptic curve F labelled 2834d1 in Cremona’s
tables. We discuss the elliptic curves E and F' further in Example 6.7.

6. DOUBLING IN THE 5-SELMER GROUP AND VISIBILITY

Let E/K be an elliptic curve. In [9] we interpreted the group H'(K, E[n])
as parametrising Brauer-Severi diagrams [C' — S| as twists of [E — P"7']. We
also studied the obstruction map Ob,, : H'(K, E[n]) — Br(K)[n| that sends the
class of [C' — S] to the class of the Brauer-Severi variety S. The diagrams with
trivial obstruction, i.e. S=P" ! are genus one normal curves of degree n. Strictly
speaking a diagram includes the choice of an action of £ on C'. So in general a
genus one normal curve of degree n with Jacobian E represents a pair of inverse
elements in H'(K, E[n]).

In the case n = 5 we obtain the following partial interpretation of H'(K, E[5]) in
terms of genus one models. We say that genus one models are properly equivalent
if they are related by (gv, gw) € GL(V) x GL(W) with (det gy )? det gy = 1.

Theorem 6.1. Let ¢y and cg be the invariants of a Weierstrass equation for E.
Then the genus one models over K with invariants cy and cg, up to proper K-
equivalence, are parametrised by ker(Obs) C H' (K, E[5]).

Proor: This is analogous to the case n = 3 treated in [11, Theorem 2.5]. The
proof given there relies on a statement about invariant differentials which is gen-
eralised to the case n =5 in [12, Proposition 5.19]. U

The obstruction map is not a group homomorphism and its kernel is not a group.
So given two genus one models with the same invariants, their sum in H'(K, E[5])
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need not be represented by a genus one model. However the obstruction map is
quadratic and in particular satisfies Ob,(a&) = a?Ob, () for a € Z. If ¢ is a genus
one model representing ¢ € ker(Ob;) then —¢ (which has the same invariants)
represents —¢. In this section we show how to find a model ¢’ representing +2¢£.
It turns out that Cy sits inside an ambient space P* that is naturally the dual of
the ambient space for Cj.

First we need to recall another of the interpretations of H!(K, E[n]) given in
[9]. A theta group for E[n] is a central extension of E[n] by G,, with commutator
given by the Weil pairing. The base theta group O C GL,(K) is the set of all
matrices that act on the base diagram [E — P"!] as translation by an n-torsion
point of E. Then H'(K, F[n]) parametrises the theta groups for E[n] as twists of
Op.

In Section 5 we saw that a non-singular genus one model ¢ determines Heisen-
berg groups Hy,...,H,. We write O, for the theta group generated by H, and
the scalar matrices. Writing £ = Jac(Cy) we see that ©, is a theta group for E[5]
where the latter is equipped with the rth power of the Weil pairing.

Lemma 6.2. Let ¢, ¢ € A2V @ W be non-singular genus one models determining
theta groups ©4,...,04 and ©},...,0). If Jac(Cy) = Jac(Cy) = E then there
exists £ € H'(K, E[5]) and isomorphisms v, : ©, 20" such that

(14) ()t w ey (&)
for all 0 € Gal(K/K) and r € (Z/5Z)*.

PROOF: The curves Cy and Cy are isomorphic over K. So by [12, Proposition 4.6]
there exists g = (gv, gw) € GL(V) x GL(W) with g¢ = ¢'. In fact we can choose g
so that it induces the identity map on the Jacobian E. The isomorphisms 71, ..., 74
are conjugation by g;VT, g;T, gv, gw where the superscript —7' indicates inverse
transpose. Then o(7,)v, ! is conjugation by an element of ©/ above &, € E[5],

with &, independent of 7. The conclusion (14) follows since the commutator pairing
for ©, is the rth power of the Weil pairing. O

Theorem 6.3. Let E and F be elliptic curves over K and v : E[5] = F[5] an iso-
morphism of Galois modules with e5(¢S,YT) = e5(S,T)" for some r € (Z/5Z)*.
Let ©4,...,04 be the theta groups determined by a non-singular genus one model
¢ € N2V @W with Jac(Cy) = E. If ©y is the twist of O by & € H (K, E[5]) then
O, is the twist of O by ¥.(§) € H (K, F[5])

PRrROOF: We first prove the case & = 0. We claim that if ¢ describes the image
of E C P* embedded by [5.0g| then ©, — E[5] has a Galois equivariant section
T +— My with MgMyp = e5(S, T)/?Mg,p. We recall the proof of this in the case
r =1 from [9, Lemma 3.11]. The [—1]-map on E lifts to ¢ € PGL;(K). Then
there is a unique scaling of Mz such that M2 = I and Y — MT_I. The
uniqueness ensures that 7' +— My is Galois equivariant. Now if MgMp = AMg 7
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then conjugating by ¢ gives Mg'Mz' = AMg ! and so A2 = MgMrMg' My =
e5(S,T). This proves the claim when r = 1. The cases r = 2,3,4 are similar
using that the [—1]-map induces involutions in PGL(V') and PGL(W). Applying
the claim to both F and F' we see that if ©; 2 Op then ©, =2 Op. This proves the
theorem in the case £ = 0. The general case follows by Lemma 6.2. U

According to Table 4.6 the K|cy, cg]-module of covariants for Y = A?V* @ W*
is generated by covariants I119 and Ilsg of degrees 19 and 29. The corresponding
discrete covariants are

(15) (a,0) = goo (G2 20 (v] Avp)ws + % X0 (v5 A v)wp)

for k = 4,6. As noted in [14] these are the evectants of ¢, and cg.

Theorem 6.4. Let 1149 = ﬁ(CG]:[lg — ¢cy4llyg) be the covariant of degree 49 whose

restriction to the Hesse family is

(a,b) = D*(b X2 (vf Avj)ws — a X5 (v5 Avs)wp)
If € A2V @ W is non-singular and ¢ = Tlu9(¢) then

(i) Cp and Cy have the same Jacobian elliptic curve E, and
(ii) the class of [Cy — P is twice the class of [Cy — P*] in H'(K, E[5]).

PROOF: (i) By considering ¢ a Hesse model we deduce

ca(d) = A(9)'%cu(9)
c6(0) = A(g)*cs(9)

It follows by Theorem 1.2 that the Jacobians are isomorphic.

(ii) We apply Theorem 6.3 in the case ¢ : E[5] — EI[5] is multiplication by 2. This
shows that the double of [C; — P*] has theta group ©4. By (i) and Theorem 5.4
this double is [Cy — P4]. O

Remarks 6.5. (i) Whether Theorem 6.4 is a formula for doubling or tripling in
H'(K, E[5]) depends on the choice of isomorphism Jac(C}) = Jac(Cy). We have
not attempted to resolve these sign issues.

(ii) If K is a number field then the n-Selmer group S™(E/K) is by definition
a subgroup H'(K, E[n]). It is well known that S (E/K) C ker(Ob,). Thus
Theorem 6.4 gives a formula for doubling/tripling in the 5-Selmer group.

(iii) Let g = (gv,gw) € GL(V) x GL(W) be any element defined over K with
(deg gv)?(det gw) = A(¢)*, for example a pair of diagonal matrices. Then in terms
of Theorem 6.1 the double/triple of ¢ is £g ' Tl49().

Example 6.6. Wuthrich [27] constructed an element of order 5 in the Tate-
Shafarevich group of the elliptic curve E/Q with Weierstrass equation

v  +ay +y =23 + 2 — 31462 + 39049.



INVARIANT THEORY FOR THE ELLIPTIC NORMAL QUINTIC 19

His example (also discussed in [12, Section 9]) is defined by the 4 x 4 Pfaffians of

0 310(131 + 35(72 + 162[E5 —341’1 — 5.172 — ]_45(75 1OZL'1 + 285[]4 + 161‘5 801’1 — 321‘4

0 6ZE1 + 3ZL‘2 + 21‘5 —6171 + 71’3 — 41‘4 —141'2 — 81‘3
0 —XI3 QIQ
- 0 —41'1
0

The algorithms in [17] suggest making a change of co-ordinates

T 0 4 -8 4 8 T
To 0 O 0 0 16 To
3| — |0 —4 4 0 12 T3
Ty 4 5 =15 2 7 Ty
Ts 4 —-12 20 —-12 -8 Ts
so that Wuthrich’s example becomes
0 Ty + s —T5 —X1 + Xo Ty
0 To—X3+Ty T1+To+T3—Ty—Ts X1 — Ty — T3 — Ty — T
0 T1— To + 223 — x4 — X5 —Xy — X4 + T5
- 0 —T3 — Ty — 2.735

0

Our Magma function DoubleGenusOneModel uses the algorithms in Section 8 to

evaluate 119 and Ily9 and then returns Il = ﬁ(c(;ﬂlg — ¢4lly9). Running it on

the above model ¢ gives a model ¢’ with entries

Py = 353413277811 + 358365194029 — 881947110z3 — 3230145384 + 33951153395

®3 = 507937922211 — 296553995025 + 1102220286023 + 1282159086814 + 64027647125

P14 = —10098238458x1 — 127496611029 — 787381617023 — 345692327234 — 6235392925

P15 = —12929747724x1 — 679051181029 — 1111330527023 — 1516176315674 + 324193703325
Phs = —3381247332x1 + 38106791602 + 59196345303 + 7532685224 — 124508542625

Phy = —357286025811 — 5569480730z — 95373960023 — 213804681274 — 85814524415

Phs = —467414926621 — 94363149029 — 675448816023 + 75153504624 + 11768556725

¢hy = —1851228934x; + 523814611022 — 165588410x3 — 20704115064 + 6781057485

Phs = —6992835070x1 — 3744630360z2 + 313020822023 — 4523781310z 4 + 4337394255

@5 = 780078472x1 + 2039763820x2 — 4500627903 — 710573172224 + 16254661115
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The algorithms in [17] suggest making a change of co-ordinates

T 92 —-36 —153 129 131 T
T —54 &4 3 —206 139 T
3| — | =63 —-174 —-60 =79 53 T3
Ty —111 106 206 —115 —162 Ty
Ts 314  —466 158 —328 —12 Ts

whereupon the model ¢ simplifies to

0 —xy+a5 23— x4+oT5 To2— x5 Xy — To+ T3 — Xy — 2X5

0 T+ T3 —T9 — X3 —T9 + 5
0 T4 —x
— 0 T+ T4 — X5
0

This is the double in HI(E/Q)[5] of Wuthrich’s example. If we double again then
we get back to the original example. Moreover the matrices needed to minimise
and reduce are the transposes of those used above.

Let E and F' be a pair of n-congruent elliptic curves. In terminology introduced
by Mazur [8] the wvisible subgroup of H'(K, E) explained by F(K) is the image of
the composite

F<K) 4 1 ~ 771 L 1
nF(K) — H (K,F[n]):H (K,E[n])—>H (K,E)[n]

where the maps § and ¢ come from the Kummer exact sequences for F and F', and
the middle isomorphism is induced by the congruence. Our interest is in using vis-
ibility to compute explicit elements of H'(K, E). In [14] we gave examples in the
cases n = 2,3,4,5 assuming in the case n = 5 that the congruence E[5] = F'[5] re-
spects the Weil pairing. Using Theorems 5.4 and 6.3 and the explicit constructions
in Section 8 we may now remove this restriction.

Example 6.7. We start with the pair of elliptic curves E = 2834d1 and F =
2834cl taken from [8, Table 1]. We have already seen in Example 5.9 that FE
and F' are indirectly 5-congruent. Alternatively this may be checked as follows.
Let c4(A, 1) and cg(A, 1) be the polynomials defined in Section 5 with coefficients
specialised to the invariants ¢, = 29137 and ¢g = —4986649 of F. Then writing
Je = —3892173/(2-13-109%) for the j-invariant of E we find that the binary form
of degree 60

(1728 — jp)ca(A, 1)® + jpcs(A, p)* =0

has a unique Q-rational root. Substituting this root (A : ) = (3563 : 19) into
Theorem 5.8 confirms that £ and F' are indirectly 5-congruent.
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Our method is now the same as that in [14, Section 15] except that in place of
the Hessian we use the covariants

U, U APV QW — V@ AP

We have F(Q)=7Z? generated by P, = (—10,109) and P, = (—28,45). If we em-
bedding F' C P* via the complete linear system |4.0p+ P| with P = P, then the im-
age is defined by a genus one model ¢. Our Magma function GenusOneModel (5,P)
computes such a model

0 zo042x4—3x5 3x1 — a0+ 8x3+ 204 —3x5 x1 — 224+ 3T5 T3 — T4+ T5

0 3xg + 223 + 224 + 375 T9 + I3 Ts
0 T3 + 224 + 225 T4+ T5

— 0 0

0

with the same invariants as F. The algorithms in Section 8 for evaluating W,
and W, are implemented in our Magma function HesseCovariants(phi,2). We
use them to compute ¢ = 3563¥7(¢) + 19V;7(¢). The algorithms in [17] suggest
making a change of co-ordinates

1 —-16 16 -9 —4 -8 T
T2 0 0 -2 —4 0 i)
xs|—\|1 24 0 7 -4 8 T3
Ty 8 0 2 0 0 X4
xT5 0 0 1 0 0 xIs
so that ¢’ becomes
0 —zo+4+ 23 1 — T To — 2x5 To — Ty — Ty
0 —r1+x2+ 23+ 285 —r2twgta5 —X1— T2
0 —x1 + T2+ 24 T3+ x4
- 0 T

0

This genus one model has the same invariants as F. In particular its 4 x 4
Pfaffians define a curve C' C P* with good reduction at all primes p # 2,13, 109.
For p = 2,13,109 we checked directly that C(Q,) # 0. Since E(Q) = 0 it
follows that C' represents a non-trivial element of III(E/Q)[5]. Repeating for
P =7rP,+1ryP, for 0 < ry,ry <4 we similarly find equations for all elements in
a subgroup of III(E/Q) isomorphic to (Z/5Z)*.

The following corollary was already proved in many (but not all) cases in the
appendix to [2].

Corollary 6.8. Let (E, F,n) be any of the triples listed in [8, Table 1]. Then E
and F are n-congruent, and the visible subgroup of H'(Q, E) explained by F(Q)
is contained in TI(E/Q).
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PrROOF: The examples in this table all have n = 3 or 5. Using the methods in
[14] and in this paper, we verified the congruences and computed equations for
all relevant elements of H'(Q, E'). We then checked directly that these curves are
everywhere locally soluble. U

7. THE INVARIANT DIFFERENTIAL

The following definition is suggested by the discussion in [12, Section 2].

Definition 7.1. Let C C P"! be a genus one normal curve with hyperplane
section H. An Q-matriz for C' is an n x n alternating matrix of quadratic forms
representing the linear map

NLH) — L2H); fAgr —fdg;gdf

where w is an invariant differential on C.

Since the natural map S2L(H) — L(2H) is surjective it is clear that -matrices
exist. However for n > 3 their entries are only determined up to the addition of
quadrics vanishing on C'. Nonetheless we claim in Conjecture 7.4 below that there
is a canonical choice.

From an (2-matrix we may recover the invariant differential w using the rule

2
xid(x;/x;
w:M for any i # j.
We may also characterise (2-matrices as alternating matrices of quadratic forms
such that

(0f 0wy -+ Of)Oxn 1) Q=0

in K(C) for all f € I(C), and 2 has rank 2 at all points on C.

Returning to the case n = 5 this suggests looking for covariants in the case
Y = A2W* @ S?W. By Lemma 4.4 we have A%0, ® 5?0, =205 ® 30,226 Zns Ar.s
and so dim Y5 = 6. A basis for Y5 is

2@t Aaag, (e Axpwirs, (] Axi)Taws,
(s Aag)ag,  Do(ws Axp)eirs,  DI(ws A xh)Taws.

Since —I,T € I" act on Y5 with traces —6 and 1 it is easy to see from the character
table for I' that Y5 has character x4, = S®x1. The K|cy, cg]-module of integer
weight discrete covariants is generated in degrees 5, 15,15, 25,25, 35. Checking the
conditions in [16] shows that all of these are covariants.



INVARIANT THEORY FOR THE ELLIPTIC NORMAL QUINTIC 23

The discrete covariant of degree 5 is

0 az b B —a

—az 0 ay P =5
QB=|-6 —as 0 ap s
By —f2 —ag 0 aq
Q2 Bo —fB5 —o 0

where
a; = 5a4bwi2 - 10a3b2wi_1w1+1 + (Cl5 - 3b5)wi_2wi+2

1
( 6) ﬁz = 56Lb4 22 - (3@5 + b5)wi_1wi+1 + 10a2b3wi_2w,~+2.

Proposition 7.2. If ¢ € A2V @ W is non-singular then Q5(¢) is an Q-matriz for
C¢ c P

ProOF: By Lemma 4.1 and the covariance of €25 it suffices to prove this for ¢ a
Hesse model. Let py,...,ps be the quadrics (10) defining C, and J = (dp;/0w;)
the Jacobian matrix. We checked by direct calculation that all the entries of J(25
belong to the homogeneous ideal I(Cy) = (po, . .., ps). Since C;y C P* is a smooth
curve the Jacobian matrix J has rank 3 at all points of Cy. So 25 has rank at
most 2 on Cyp. Since an alternating matrix always has even rank it only remains
to show that Q5 is non-zero on Cy. By (10) and (16) it suffices to show that

ab b? —a?
(17) det | 5a*b  —10a3h* a® —30° | = 18D
5ab* —3a® —b°  10a%b®

is non-zero. Since A = D?® this is clear by Theorem 1.2 and our assumption that
¢ is non-singular. U

Taking the 4 x 4 Pfaffians of 5 and identifying A*WW* = W gives a covariant
for Y = W ® S*W. This is a scalar multiple of the vector of partial derivatives of
the secant variety covariant (3). This observation not only gives an algorithm for
computing €25 (used in Section 8) but also suggested to us the following conjecture
about ()-matrices for genus one normal curves of arbitrary degree. The rth higher
secant variety Sec"C' of a curve C'is the Zariski closure of the locus of all (r —1)-
planes spanned by r points on C. Thus the usual secant variety is Sec*C.

Lemma 7.3. Let C C P* ! be a genus one normal curve of degree n > 3.

(a) If n = 2r + 1 is odd then Sec"C C P"! is a hypersurface {F = 0} of
degree n.

(b) If n = 2r+2 is even then Sec"C C P"~! is a complete intersection {Fy =
Fy =0} where Fy and Fy each have degree n/2.

PROOF: See [10] or [25]. O
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Let R = K|zo, ..., 2, 1] be the co-ordinate ring of P"~! and write R = @g>0Rq4
for its usual grading by degree. We require that morphisms of graded R-modules
have degree 0 and write R(d) for the R-module with eth graded piece Rg,..

Conjecture 7.4. Let C C P! be a genus one normal curve of degree n > 3,
and let F', respectively Fy and Fy, be as in Lemma 7.5.

(a) If n is odd then there is a minimal free resolution

pPT n n P
0— R(—2n) — R(—n—-1)" — R(-—n+1)" — R
where Q is an alternating matriz of quadratic forms and
Moreover P is (a scalar multiple of ) the vector of (n—1) x (n—1) Pfaffians
of Q, and Q) is an Q-matrixz for C'.
(b) If n is even then there is a minimal free resolution

0— R(-n)? = R(=52)" = R(=52) = 12

where €2 1s an alternating matriz of quadratic forms and

p— 8F1/8x0 8F1/8$n,1
o 8F2/8$0 8F2/8:17n,1 ’

Moreover the 2 x 2 minors of P are (a fized scalar multiple of ) the (n —
2) x (n — 2) Pfaffians of 2, and Q is an Q-matriz for C.

Remarks 7.5. (i) If n = 3,4 then the equations in Lemma 7.3 are the equations
for Sec!C' = C. The conjecture reduces to some well known formulae for the
invariant differential.

(i) If n = 2r + 1 is odd then it is known (see [25, Section 8]) that Sec”"C' has
singular locus Sec” 'C and the latter is Gorenstein of codimension 3. It follows by
the Buchsbaum-Eisenbud structure theorem [5], [6] that a minimal free resolution
of the stated form exists. The content of the conjecture is that the alternating
matrix constructed in this way is an (-matrix.

(iii) If n = 5 then it suffices to take C' = Cy4 with ¢ a Hesse model. We have
already observed that the 4 x 4 Pfaffians of (25(¢) are the partial derivatives of
F = S10(¢). Combined with (ii) this proves the conjecture in the case n = 5.

(iv) We have tested the conjecture in some numerical examples over finite fields
forn =6,7,8,10,12.

8. EXPLICIT CONSTRUCTIONS

We give evaluation algorithms for each of the covariants in Table 4.6 (as repro-
duced below). This is mainly of interest for the covariants IT;9 and Iy used in
Example 6.6 and the covariants W; and W7 used in Example 6.7.
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Y degrees  covariants
NV W 1,11 U H
V¥ ANPW o T,17 U7, Uy

Ve ANW* 13,23 S13, So3
NV @ W* 19,29 ITg, I3
V*@S*W 212,22 P, Py, Py
SQV®W 6,16726 QG,Qlﬁ,QQ6
V@ S*W* 18,2838 Ryg, Rog, Rag
% QK W* 14, 24, 34 814, 5287 Sgg
We fix our choice of generators by specifying them on the Hesse family. The
covariant U is the identity map, whereas the Hessian is given by

H= —%—g (Ul VAN v4)w0 + %—5 Z(’UQ AN Ug)U}().
The corresponding formulae for WUr, Wy7, II;9 and Ilyg are given in (12) and (15).
We put
Eq = fa(a,b) > vo(wi Awy) + gala, b)Y vo(wi A w})

where fi3(a,b) = b*(26a'® + 39a°6° — b'°), g13(a,b) = a®(a'® + 39a°b°> — 26b'°) and

fas(a,b) = —b*(46a*° + 1173a"b° — 391a'°b'° 4 207a°b"® + b*),

gos(a,b) = a*(a®® — 207a*b° — 391a'°b'° — 1173a°b"® + 460%°).

We recall that P, is the map taking a genus one model to its vector of 4 x 4

Pfaffians. The remaining generators in the above table are uniquely determined
by the following “Pfaffian identities”.

Po(AU + uH) = NPy + 2\ Pio + p1* Pao
Py(AU7 + pWi7) = A2S14 + 2AuSas + p1* Sas
Py(AZ13 + (1223) = NQa6 — Mu(csQs + Q1) + 117 (c1Qs + c6Q16 — €4Qa6)
Py(Mlyg + pllpg) = A*(caRis + Rs) + Au(cgRus + caRag) + 1*(csRas — caRsg)
The evaluation algorithms below are justified by checking them on the Hesse
family, and then appealing to Lemma 4.1 and the appropriate covariance properties

to show that they work for all non-singular models. (We do not consider the case
where the input is singular.)

Lemma 8.1. Let (F,G) = (P, Pis) or (Qs, Q16)- If ¢ € N2V @W is non-singular
and F(¢) and G(¢) are represented by quadratic forms fo, ..., f4 and go, ..., g4 in
variables o, . .., x4 then the 75 quintic forms {(fig; + figi)xr 11 < j} are linearly
independent.

PRrOOF: It suffices to check this for ¢ = u(a,b) a Hesse model.
We arrange the coefficients of the quintic forms in a 75 x 126 matrix. The entries
are homogeneous polynomials in Q[a, b]. In principle we could finish the proof by
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computing the GCD of the 75 x 75 minors. In practice we first decompose the
space of quintic forms into its eigenspaces for the action of z; +— (iz;. This leaves
us with one 15 x 26 matrix and four 15 x 25 matrices. Rather than compute all
15 x 15 minors we compute just those that correspond to sets of monomials that
are invariant under cyclic permutations of the x;. In each case we find that the
GCD of these minors divides a power of the discriminant. O

We gave algorithms for evaluating the invariants ¢4 and ¢ in [12, Section 8] and
the Hessian H in [14, Section 11]. We compute P», Pjo and P by taking 4 x 4
Pfaffians of linear combinations of U and H as indicated in the first of the Pfaffian
identities above. We compute Qg as described in [12, Section 8]. Lemma 8.1 shows
that we can solve for Q16 and Qb = 5(4Q26 + 3¢4Q) using the identities

Q16( Py, Pri2) = Qo(Piz, Pr2),
Qo6(Pa, Pri2) = Qg(Pra, Pas) + 4Q16(Pr2, Pr2).

Next we use the determinant map V& (V®W) — S°V to compute some covariants
taking values in S°V:

det(AU + pQsg) = N Mg — 272 Myg + p1° Mgy,

det(AH + pQs) = N Mg + 20> 1® Mg + pi° Mo,

det(AU + Q1) = N Mg + 2\ M + 11° M.
Lemma 8.1 shows that we can solve for Rig and Rag using the identities

Ris(Qs, Q1) = 55 (56 Mg + 14ca Moy + Myp),
RQS(Q6, QlG) = %(9@%]\410 + 62006M20 — 27OC4M30 -+ M50 — 216Méo)
Then we compute Il;9 and Ilyg using the natural map
(NV QW) x (Ve S*W*) — A2V @ W*
(U; R18) — 21159
(U7 st) — 211a.

In Section 7 we constructed a covariant Qs : A2V @W — A2W*®S?W. Conjec-
ture 7.4 (which is a theorem in the case n = 5) gives an algorithm for computing
Q25 (up to sign) using minimal free resolutions. We may represent P and Psy as
5-tuples of quadrics and {25 as a 5 x 5 alternating matrix of quadrics. Then U

and Wy tell us how to write the quadrics in Pjo and P,y as linear combinations of
the quadrics in 25. In basis-free language there is a natural map

(V¥ NPW) x (NNW* @ S*PW) — V* @ S*°W
(V7,95) — P
(V17,95) — %(PZQ +caP).
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The proof of Proposition 7.2 shows that if ¢ is non-singular then the entries of
Q5(¢) above the diagonal are linearly independent. We can therefore solve for W
and W7 by linear algebra. We then compute =13 and =Zy3 using the natural map

(V@A W) x (SPV e W) — Ve APW*
(\1]77 Qﬁ) = 2513
(U7, Q16) — —2Zas3.

Since we only computed €25 up to sign we have only computed ¥,, ¥;;, =3 and
Eo3 up to sign. Fortunately this does not matter for our applications. (See Exam-
ple 6.7.)

The remaining covariants Si4, Sa4, S34 and R3gs may be computed using the Pfaf-
fian identities.
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