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Abstract. We study the higher secant varieties of an elliptic nor-
mal curve, determining the form of their minimal free resolutions
and classifying their determinantal presentations.

1. Introduction

We work over an algebraically closed field k of arbitrary characteris-
tic. An elliptic normal curve C ⊂ Pn−1 is a smooth curve of genus one
and degree n that is contained in no hyperplane. The rth higher secant
variety SecrC is the Zariski closure of the locus of all (r − 1)-planes
spanned by r points of C. It is shown in [L] that SecrC is an irreducible
variety of codimension max(n− 2r, 0).

Let R = k[x1, . . . , xn] be the homogeneous co-ordinate ring of Pn−1.
For M = ⊕Md a graded R-module we write M(c) for the graded R-
module with M(c)d = Mc+d. We give a new proof of the following
theorem that was recently proved independently by Graf v. Bothmer
and Hulek [vBH].

Theorem 1.1. Let C ⊂ Pn−1 be an elliptic normal curve of degree n.
Let m = n − 2r. If m ≥ 1 then the homogeneous co-ordinate ring of
SecrC has a minimal graded free resolution of the form

0 → R(−n) → R(−n+ r + 1)bm−1 → R(−n+ r + 2)bm−2 → . . .
. . .→ R(−r − 2)b2 → R(−r − 1)b1 → R→ 0.

In particular SecrC is projectively Gorenstein of codimension m.

Our proof is different from that given in [vBH, §8] in that we build the
minimal free resolutions by induction on r and n. The induction step
is closely related to a technique of Kustin and Miller [KM, Theorem
1.5] for constructing new Gorenstein ideals from old. This approach
provides additional information that is essential to our subsequent work
on Pfaffian presentations of elliptic normal curves [F2]. It also serves
as a prototype for our forthcoming work on the the minimisation of
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genus one curves. In this application we use the main results of [CS]
and [F1] to start the induction.

A great deal of information may be read off from Theorem 1.1. If
m ≥ 2 then the theorem is equivalent to the statement that the homo-
geneous co-ordinate ring of SecrC is an extremal Gorenstein ring (in
the sense of Schenzel [S]) with a-invariant 0. As we recall in §2, the
Betti numbers, Hilbert series and Hilbert polynomial of an extremal
Gorenstein ring are explicitly known. For instance we deduce that if
n− 2r ≥ 1 then SecrC has degree

(1) β(r, n) =

(
n− r

r

)
+

(
n− r − 1

r − 1

)
=
n(n− r − 1)!

r!(n− 2r)!
.

Alternative proofs are given in [Ro, §9.3] and [vBH, Proposition 8.5].
The numbers β(r, n) are most conveniently thought of as the number
of ways of choosing r elements from Z/nZ such that no two elements
are adjacent. The expression as a sum of binomial coefficients is found
by considering the subsets that do or do not contain a given element.

We call a homogeneous polynomial of degree r an r-ic. Theorem 1.1
has the following consequence.

Theorem 1.2. Let C ⊂ Pn−1 be an elliptic normal curve of degree n.
The space of (r + 1)-ics containing SecrC has dimension β(r + 1, n).
If n− 2r ≥ 2 then these (r + 1)-ics generate the homogeneous ideal of
SecrC.

In fact we prove Theorem 1.2 first, and then use it in the proof of
Theorem 1.1. Both proofs are by induction on r and n, and are guided
by the recurrence relation

β(r + 1, n) = β(r + 1, n− 1) + β(r, n− 2).

We adapt the proof of Theorem 1.2 to give the following result on
determinantal presentations. First we fix some notation. We write
L(D) = H0(C,O(D)) for the Riemann-Roch space associated to a
divisor D on C. Let H be the divisor of a hyperplane section, and let
D1, D2 be divisors on C with D1 + D2 = H. We write Φ(D1, D2) for
the matrix of linear forms representing the multiplication map

L(D1)× L(D2) → L(H).

It is clear that Φ(D1, D2) has rank at most 1 on C, and so has rank
at most r on SecrC. We write I(X) for the homogeneous ideal of a
projective variety X.

Definition 1.3. A matrix of linear forms is a determinantal presenta-
tion of SecrC if its (r + 1)× (r + 1) minors generate I(SecrC).
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Determinantal presentations for curves of arbitrary genus have been
studied in [EKS]. A set-theoretic generalisation to higher secant vari-
eties is given in [Ra]. In §10 we establish the following analogue of the
main result of [EKS].

Theorem 1.4. Let n ≥ 2r + 1. Then Φ(D1, D2) is a determinantal
presentation of SecrC if and only if
(i) degD1, degD2 ≥ r + 2, and
(ii) if degD1 = degD2 = r + 2 then D1 6∼ D2.

An easy corollary of Theorem 1.4 is that if n ≥ 2r + 1 then SecrC
has singular locus Secr−1C. It follows that an elliptic normal curve is
uniquely determined by any one of its higher secant varieties that is
not the whole of projective space. Since the method is closely related
to that given in [vBH, Proposition 8.15] we omit the details. The case
r = 2 was previously treated in [GP, Proposition 5.1].

If r = 1 then SecrC = C. Theorems 1.1 and 1.2 are well known in
this case. Theorem 1.1 is stated in [GP, Theorem 5.5] and supported
by a reference to [E, Exercise A2.22]. It can also be deduced from the
fact C has trivial canonical sheaf. Theorem 1.2 asserts that the space
of quadrics vanishing on an elliptic normal curve of degree n ≥ 3 has
dimension n(n − 3)/2, and that if n ≥ 4 then these quadrics generate
the homogeneous ideal. Generalisations are known both for curves of
genus g [M, Corollary to Theorem 8], and for abelian varieties [LB,
Chapter 7, Section 4]. The statement that an elliptic normal curve of
degree n ≥ 4 is defined by quadrics is proved in [H, IV.1.3].

If r = 2 then Sec2C = SecC is the ordinary secant variety. In this
case, it is shown in [GP, Theorem 5.5] that Theorem 1.1 holds for all
but finitely many j-invariants. They compute the degree of the secant
variety by the following method, of which [vBH, Proposition 8.5] is
a generalisation. Projecting C away from a general (n − 4)-plane we
obtain a plane curve C ′ with d nodes. Then computing the arithmetic
genus of C ′ in two different ways gives d + 1 = (n − 1)(n − 2)/2. So
SecC has degree d = n(n− 3)/2 = β(2, n) as claimed.

The special cases where SecrC ⊂ Pn−1 has small codimension are
also of interest.

If m = 1 then Theorem 1.1 asserts that SecrC is a hypersurface of
degree n. This was previously known when the characteristic of k does
not divide n. (The proof for n = 7 given in [GP, Example 2.10] gener-
alises immediately.) We remove this restriction on the characteristic.

If m = 2 then Theorem 1.1 asserts that SecrC is the complete inter-
section of two (r + 1)-ics. This is a result of Room (see §7).
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If m = 3 then Theorem 1.1 asserts that the homogeneous ideal I =
I(SecrC) is Gorenstein of codimension 3, and that I is generated by
a space of (r + 1)-ics of dimension n. By the Buchsbaum-Eisenbud
structure theorem [BE1], [BE2] we can write these (r + 1)-ics as the
submaximal Pfaffians of an n×n alternating matrix of linear forms on
Pn−1. This application, explained further in [F2], was the motivation
for the present work.

Let us also note that our practical algorithm for computing the Ja-
cobian of an elliptic normal curve of degree 5 (see [F3]) relies on a geo-
metric “accident” that we initially checked by a generic calculation over
the modular curve X(5), but is explained here in Corollary 7.5. This
application is of course an arithmetic one, since over an algebraically
closed field a smooth curve of genus one is its own Jacobian.

The plan of the paper is as follows. In §2 we give the necessary
background on extremal Gorenstein ideals. (This will only be needed
in §§3,9.) The results of Gross and Popescu [GP] in the case r = 2
were obtained by letting an elliptic normal curve degenerate to a Néron
polygon. We give details in §3. In §4 we make some general remarks
on higher secant varieties. Then in §§5,6 we restrict to the case of an
elliptic normal curve and prove the first part of Theorem 1.2. The
second part of Theorem 1.2 is proved in §§7,8. Finally in §9 and §10
we present our proofs of Theorem 1.1 and Theorem 1.4.

2. Extremal Gorenstein ideals

Let R = k[x1, . . . , xn] be the homogeneous co-ordinate ring of Pn−1.
Let R+ = ⊕d≥1Rd be the irrelevant ideal and let M be a finitely gen-
erated graded R-module.

Definition 2.1. A graded free resolution of M is a complex of graded
free R-modules

F• : . . . −→F2
φ2−→ F1

φ1−→ F0−→ 0

that is exact except at F0 where the homology is M . The resolution
F• is called minimal if φi(Fi) ⊂ R+Fi−1 for all i.

Lemma 2.2. Let F• be a minimal graded free resolution of M . Then
any graded free resolution of M is a direct sum of F• and a trivial com-
plex. In particular minimal resolutions are unique up to isomorphism.

Proof: See [E, §20.1]. �

The common length of all minimal resolutions is called the projective
dimension of M and denoted proj dimM . Hilbert’s syzygy theorem
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asserts that proj dimM ≤ n. We write codim I for the codimension,
or height, of an ideal I ⊂ R. It is equal to n− dimR/I.

Proposition 2.3. Let I ⊂ R be a homogeneous ideal. The following
are equivalent.
(i) The quotient ring R/I is a Cohen-Macaulay ring.
(ii) proj dimR/I = codim I.

Proof: This follows from [BH, Corollary 2.2.15] or the graded ana-
logue of [E, Corollary 19.5]. �

Definition 2.4. If the conditions of Proposition 2.3 are satisfied then
we say that I is a perfect ideal.

Proposition 2.5. Let I ⊂ R be a perfect ideal with minimal graded
free resolution

F• : 0 → Fm → Fm−1 → . . .→ F1 → F0 → 0.

The following are equivalent.
(i) The quotient ring R/I is a Gorenstein ring.
(ii) The graded free R-module Fm has rank 1.
(iii) The complex of free R-modules F• is self-dual.

Proof: This is the graded analogue of [E, Corollary 21.16]. �

Definition 2.6. If the conditions of Proposition 2.5 are satisfied then
we say that I is a Gorenstein ideal.

We recall from [BH, Definition 4.4.4]:

Definition 2.7. Let I ⊂ R be a homogeneous ideal. The a-invariant
a(R/I) is the degree of the Hilbert series of R/I viewed as a rational
function.

Lemma 2.8. Let I ⊂ R be a Gorenstein ideal of codimension m ≥ 2
with Id = 0 for all d ≤ r. Then

a(R/I) ≥ m+ 2r − n.

In the case of equality I is generated in degree r + 1.

Proof: Let R/I have minimal graded free resolution

F• : 0 → Fm → Fm−1 → . . .→ F1 → F0 → 0.

Let di be the smallest integer such that R(−di) appears as a direct sum-
mand of Fi. Since F• is a minimal resolution the sequence d1, d2, . . . , dm
is strictly increasing. We are given that d1 ≥ r+1. Since F• is self-dual
it follows that dm ≥ dm−1 + (r + 1). Thus dm ≥ m + 2r. Using this
resolution to compute the Hilbert series we find

a(R/I) = dm − n ≥ m+ 2r − n.
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In the case of equality we have di + dm−i = m + 2r for all 0 ≤ i ≤ m.
Then since F• is self-dual it must also be pure, i.e. each Fi is a direct
sum of copies of R(−di). In particular I is generated in degree d1 =
r + 1. �

Definition 2.9. If equality holds in Lemma 2.8 then we say that I is
an extremal Gorenstein ideal, and that R/I is an extremal Gorenstein
ring.

It is shown in [BH, Proposition 4.1.12] that the a-invariant is the
largest integer for which the Hilbert function and Hilbert polynomial
differ. So our definition of an extremal Gorenstein ring is equivalent
to that originally made by Schenzel. The numerical properties of an
extremal Gorenstein ring were determined by Schenzel [S, Theorem B].
We rewrite some of his expressions using the numbers β(r, n) defined
in the introduction.

Proposition 2.10. Let I ⊂ R be an extremal Gorenstein ideal of codi-
mension m, generated in degree r + 1. Let a = a(R/I) = m+ 2r − n.
(i) The minimal graded free resolution of R/I takes the form

0 → R(−m− 2r) → R(−m− r + 1)bm−1 → R(−m− r + 2)bm−2 → . . .
. . .→ R(−r − 2)b2 → R(−r − 1)b1 → R→ 0.

(ii) The Betti numbers bi = bi(r,m) are given by

bi(r,m) =
1

r!
.

m+ 2r

(i+ r)(m− i+ r)
.

(m+ r − 1)!

(i− 1)!(m− i− 1)!
.

In particular Ir+1 has dimension b1(r,m) = β(r + 1, n+ a).
(iii) The Hilbert series of R/I is

h(t) = (1− t)a
r∑

ρ=0

β(ρ, n+ a)tρ/(1− t)2ρ.

(iv) The Hilbert polynomial of R/I is

H(d) =
r∑

ρ=0

β(ρ, n+ a)

(
d+ ρ− a− 1

2ρ− a− 1

)
.

In particular R/I has multiplicity β(r, n+ a).

Proof: (i) This is a consequence of equality in Lemma 2.8.
(ii) By [BH, Theorem 4.1.15(a)] we have

bi(r,m) =
m+ 2r

m+ r − i

m+r−1∏
j=r+1,j 6=r+i

j

|r + i− j|
.
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(iii) The Hilbert series of R/I is

h(t) =
(
1 +

m−1∑
i=1

(−1)ibit
r+i + (−1)mtm+2r

)
/(1− t)n.

Since bi(0,m) =
(
m
i

)
, this reduces in the case r = 0 to

h(t) = (1− t)m−n = (1− t)a.

The general case follows by induction on r using the identity

bi(r,m) + bi+1(r − 1,m+ 2) = β(r,m+ 2r)

(
m

i

)
.

(iv) This follows from (iii) and the binomial theorem. �

Remark 2.11. Schenzel [S] takes the proof in a different order, leading
to different (but of course equivalent) expressions. By reducing to the
zero-dimensional case he computes the Hilbert series as

h(t) =
r∑

ρ=−r

(
m− 1− r + |ρ|

m− 1

)
tr+ρ/(1− t)n−m.

He then computes the Betti numbers from the Hilbert series, and leaves
the answer in terms of binomial coefficients.

If n−2r ≥ 2 then Theorem 1.1 is equivalent to the statement that the
homogeneous co-ordinate ring of SecrC is an extremal Gorenstein ring
with a-invariant 0. The Hilbert series, Hilbert function and degree of
SecrC are found by setting a = 0 in the above formulae. In particular
Theorem 1.2 may be deduced from Theorem 1.1.

3. Néron polygons and cyclic polytopes

Definition 3.1. Let n ≥ 3 be an integer. A Néron polygon C ⊂ Pn−1

of degree n is the union of n lines `1, . . . , `n spanning Pn−1 and arranged
such that `i meets `j if and only if i− j ≡ ±1 (mod n).

It is well known that Néron polygons arise as degenerations of el-
liptic normal curves. In this section we show, following [GP], that
Theorems 1.1 and 1.2 hold when C is replaced by a Néron polygon.
This provides a valuable heuristic and explains the appearance of the
numbers β(r, n). However our proofs of Theorems 1.1 and 1.2 are in-
dependent of the results in this section.

Let Pn−1 have co-ordinates (x1 : . . . : xn), where the subscripts are
read modulo n. Let Γn be the standard Néron polygon, that is to say,
with vertices P1 = (1 : 0 : 0 : . . . : 0), P2 = (0 : 1 : 0 : . . . : 0), . . . , Pn =
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(0 : 0 : . . . : 0 : 1) and edges `i = PiPi+1 for i ∈ Z/nZ. The following
definitions are recalled from [BH, §5.1].

Definition 3.2. A simplicial complex ∆ on vertex set V = {v1, . . . , vn}
is a collection of subsets of V , called faces, such that
(i) If F ∈ ∆ and G ⊂ F then G ∈ ∆.
(ii) All singleton sets {vi} belong to ∆.

Definition 3.3. Let ∆ be a simplicial complex on vertex set {1, . . . , n}.
The Stanley-Reisner ring of ∆ is k[∆] = k[x1, . . . , xn]/I∆ where I∆ is
the ideal generated by all monomials

∏
i∈F xi with F 6∈ ∆.

For r ≥ 1 and n ≥ 2r + 1 we put

∆r,n = {A ⊂ Z/nZ : A ⊂ B ∪ (1 +B) for some |B| ≤ r}.

Then ∆r,n is a simplicial complex on vertex set Z/nZ and k[∆r,n] is the
homogeneous co-ordinate ring of SecrΓn.

Lemma 3.4. Let A ⊂ Z/nZ be a proper subset.
(i) There is a unique subset A∗ ⊂ Z/nZ satisfying

A∗ ⊂ A ⊂ A∗ ∪ (1 + A∗) and A∗ ∩ (1 + A∗) = ∅.

(ii) |A∗| = min{|B| : A ⊂ B ∪ (1 +B)}.
(iii) |A∗| = max{|B| : B ⊂ A,B ∩ (1 +B) = ∅}.

Proof: (i) We may assume that 0 6∈ A. Initially we take A∗ = ∅.
Then for i = 1, 2, . . . , n−1 we add i to A∗ if i ∈ A and i−1 6∈ A∗. This
construction yields the unique subset A∗ with the stated properties.
(ii) and (iii). It is clear that the righthand side of (iii) is at most the
righthand side of (ii). The existence of A∗ establishes equality. �

Lemma 3.5. The maximal faces (facets) of ∆r,n are

{B ∪ (1 +B) : B ⊂ Z/nZ, |B| = r, B ∩ (1 +B) = ∅}.

In particular SecrΓn is the union of β(r, n) (2r − 1)-planes.

Proof: Since Z/nZ is not a face we have

∆r,n = {A ⊂ Z/nZ : |A∗| ≤ r}.

By Lemma 3.4(ii) every maximal face A satisfies |A∗| = r. Since A ⊂
A∗ ∪ (1 + A∗) the maximality of A then gives A = A∗ ∪ (1 + A∗). �

If n = 2r + 1 then ∆r,n consists of all proper subsets of Z/nZ and
I(SecrΓn) is generated by

∏n
i=1 xi.
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Lemma 3.6. If n ≥ 2r + 2 then the minimal non-faces of ∆r,n are

{B : B ⊂ Z/nZ, |B| = r + 1, B ∩ (1 +B) = ∅}.

In particular I(SecrΓn) is generated by a space of (r+ 1)-ics of dimen-
sion β(r + 1, n).

Proof: The non-faces of ∆r,n are

{A ⊂ Z/nZ : A = Z/nZ or |A∗| ≥ r + 1}.

Since n ≥ 2r+2 the non-face Z/nZ is not minimal. By Lemma 3.4(iii)
every minimal non-face A satisfies |A∗| = r + 1. Since A ⊃ A∗ the
minimality of A then gives A = A∗. �

Lemma 3.7. (i) The Hilbert series of k[∆r,n] is

h(t) =
r∑

ρ=0

β(ρ, n)tρ/(1− t)2ρ.

(ii) The Hilbert function of k[∆r,n] is

H(d) =

{
1 if d = 0∑r

ρ=1 β(ρ, n)
(
d+ρ−1
2ρ−1

)
if d > 0.

Proof: The support of a monomial m = xa1
1 . . . xan

n is

supp(m) = {i ∈ Z/nZ : ai 6= 0}.

We must count the monomials of degree d with supp(m) ∈ ∆r,n. Notice
that supp(m)∗ = B if and only if m is the product of

∏
i∈B xi and a

monomial m′ with supp(m′) ⊂ B ∪ (1 +B). So for d ≥ 1,

H(d) =
∑

|B|≤r,B∩(1+B)=∅

#

{
m :

deg(m) = d,
supp(m)∗ = B

}

=
r∑

ρ=1

∑
|B|=ρ,B∩(1+B)=∅

#

{
m′ :

deg(m′) = d− ρ,
supp(m′) ⊂ B ∪ (1 +B)

}

=
r∑

ρ=1

β(ρ, n)

(
d+ ρ− 1

2ρ− 1

)
.

The expression for the Hilbert series h(t) =
∑

d≥0H(d)td follows. �

To show that k[∆r,n] is Gorenstein, we quote

Proposition 3.8. If ∆ is a simplicial complex whose geometric reali-
sation is homeomorphic to a sphere, then k[∆] is a Gorenstein ring.
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Proof: See [BH, Corollary 5.6.5]. �

The moment curve Md is the image of

φd : R → Rd; t 7→ (t, t2, . . . , td).

Definition 3.9. Let 2 ≤ d ≤ n− 1. The cyclic polytope C(n, d) is the
convex hull of any n distinct points on the moment curve Md.

Lemma 3.10. The vertex scheme of C(n, 2r) is isomorphic (as a sim-
plicial complex) to ∆r,n.

Proof: Let C(n, 2r) be the convex hull of the points φd(τi) with
τ1 < τ2 < . . . < τn. By [BH, 5.2.7, 5.2.10] the vertex scheme of C(n, 2r)
is a simplicial complex on V = {φd(τi) : 1 ≤ i ≤ n}. We identify the
vertex sets V and Z/nZ via φd(τi) ↔ i. The lemma now follows from
the descriptions of the maximal faces (facets) given in Lemma 3.5 and
[BH, Theorem 5.2.11]. �

It follows by Proposition 3.8 and Lemma 3.10 that k[∆r,n] is a Goren-
stein ring. Let m = n− 2r and suppose that m ≥ 2. We saw in Lem-
mas 3.5 and 3.6 that I(SecrΓn) has codimension m and is generated in
degree r+1. It is clear from the Hilbert series, computed in Lemma 3.7,
that k[∆r,n] has a-invariant 0. This gives equality in Lemma 2.8, so
k[∆r,n] is an extremal Gorenstein ring. The analogue of Theorem 1.1
for Néron polygons now follows from Proposition 2.10(i).

4. Higher secant varieties

Let C ⊂ Pn−1 be any variety. The rth higher secant variety SecrC is
the Zariski closure of the locus of all (r−1)-planes spanned by r points
of C.

Proposition 4.1 (Lange). Let C ⊂ Pn−1 be an irreducible curve con-
tained in no hyperplane. Then SecrC is an irreducible variety of di-
mension min(2r − 1, n− 1).

Proof: See [L]. �

For future reference, we outline a proof of Proposition 4.1 in the case
C is an elliptic normal curve. Let H be the divisor of a hyperplane
section. For D an effective divisor on C we write D for the linear
subspace of Pn−1 cut out by L(H − D) ⊂ L(H). If D is a sum of
distinct points then D is simply the linear span of these points.

Lemma 4.2. Let C ⊂ Pn−1 be an elliptic normal curve of degree n,
and let D, D1, D2 be effective divisors on C. Then
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(i) dimD =

 degD − 1 if degD < n
n− 2 if D ∼ H
n− 1 otherwise.

(ii) The linear span of D1 and D2 is lcm(D1, D2).

(iii) D1 ∩ D2 = gcd(D1, D2) if lcm(D1, D2) has degree at most n and
is not linearly equivalent to H.

Proof: (i) This is immediate from Riemann-Roch.
(ii) We have L(H −D1) ∩ L(H −D2) = L(H − lcm(D1, D2)).
(iii) The inclusion “⊃” is clear. Equality follows by counting dimensions
using (i) and (ii). �

We identify the set of effective divisors on C of degree r with the rth
symmetric power SrC. Let

Z = {(D,P ) ∈ SrC × Pn−1|P ∈ D}

and write p1, p2 for the first and second projections. If r < n then each
fibre of p1 is an (r − 1)-plane. So dimZ = 2r − 1, and SecrC = p2(Z)
is an irreducible variety of dimension at most 2r − 1.

Let D◦ = D \
⋃
D′<DD

′. If n ≥ 2r + 1 then we claim that the
restriction of p2 to the open subset

U = {(D,P ) ∈ SrC × Pn−1|P ∈ D◦}

is injective. Indeed if P ∈ D◦
1 ∩ D◦

2 for some D1, D2 ∈ SrC then

Lemma 4.2(iii) gives P ∈ gcd(D1, D2) since deg lcm(D1, D2) ≤ 2r < n.
It follows that D1 = D2 and this proves our claim. Hence SecrC has
dimension 2r − 1. For the case n ≤ 2r we still refer to [L].

We make some elementary observations concerning the homogeneous
ideal of a higher secant variety.

Definition 4.3. A hypersurface {f = 0} ⊂ Pn−1 contains a variety
C ⊂ Pn−1 with multiplicity r if (passing to affine co-ordinates) the
Taylor expansion of f at each point P ∈ C begins with terms of order
greater than or equal to r.

Lemma 4.4. Let P1, . . . , Pr span Pr−1. Then there are no hypersur-
faces of degree r + 1 containing {P1, . . . , Pr} with multiplicity r.

Proof: We choose co-ordinates (x1 : . . . : xr) on Pr−1 such that
P1 = (1 : 0 : . . . : 0), . . . , Pr = (0 : 0 : . . . : 1). The lemma reduces to
the statement that a monomial in x1, . . . , xr of degree r + 1 cannot be
square-free. �
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Lemma 4.5. Let C ⊂ Pn−1 be a variety contained in no hyperplane.
(i) There are no r-ics containing SecrC.
(ii) An (r + 1)-ic contains SecrC if and only if it contains C with
multiplicity r.

Proof: Let f ∈ I(SecrC) be a homogeneous polynomial. We choose
P1, . . . , Pn ∈ C spanning Pn−1 and then choose co-ordinates (x1 : . . . :
xn) on Pn−1 with P1 = (1 : 0 : . . . : 0), . . . , Pn = (0 : 0 : . . . : 1). Then
every monomial appearing in f involves at least r + 1 of the xi. This
proves (i). If deg(f) = r+1 then f contains P1 with multiplicity r. The
first implication of (ii) follows since P1 ∈ C is arbitrary. Conversely
if f is an (r + 1)-ic containing C with multiplicity r, and Π'Pr−1 is
spanned by r points of C, then f vanishes on Π by Lemma 4.4. By
definition SecrC is the Zariski closure of the union of all such (r − 1)-
planes Π. Thus f ∈ I(SecrC) as required. �

Remark 4.6. If f ∈ I(SecrC) and P = (a1 : . . . : an) ∈ C then it is
easy to show that

∑
ai

∂f
∂xi

∈ I(Secr−1C). Since C is contained in no
hyperplane we have:

f ∈ I(SecrC) =⇒ ∂f
∂xi

∈ I(Secr−1C).

This leads to an alternative proof of Lemma 4.5 in the case char (k) = 0.
See [CJ] for recent work in this area.

Corollary 4.7. Let C ⊂ Pn−1 be an irreducible curve contained in no
hyperplane. Then any (r + 1)-ic containing SecrC is irreducible.

Proof: We know by Proposition 4.1 that I(SecrC) is a prime ideal,
and by Lemma 4.5 that it contains no r-ics. �

5. The upper bound

In this section we prove the following upper bound.

Proposition 5.1. Let C ⊂ Pn−1 be an elliptic normal curve of degree
n. Then the space of (r + 1)-ics containing SecrC has dimension at
most β(r + 1, n).

We state an elementary lemma to fix our notation.

Lemma 5.2. Let Cn ⊂ Pn−1 be an elliptic normal curve of degree n.
Let P ∈ Cn be any point, and choose co-ordinates (x1 : . . . : xn) on
Pn−1 such that P = (0 : 0 : . . . : 0 : 1) and TPCn = {(0 : . . . : 0 : s : t)}.
Let

π1 : Pn−1− →Pn−2; (x1 : . . . : xn) 7→ (x1 : . . . : xn−1)
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and

π2 : Pn−1− →Pn−3; (x1 : . . . : xn) 7→ (x1 : . . . : xn−2)

be the projection maps away from P and TPCn. We continue to write
π1, π2 for the morphisms obtained by restricting to Cn.
(i) If n ≥ 4 then Cn−1 = π1(Cn) ⊂ Pn−2 is an elliptic normal curve of
degree n− 1. Moreover π1(P ) = (0 : . . . : 0 : 1) ∈ Pn−2.
(ii) If n ≥ 5 then Cn−2 = π2(Cn) ⊂ Pn−3 is an elliptic normal curve of
degree n− 2.

We first prove Proposition 5.1 in the case r = 1.

Lemma 5.3. Let C ⊂ Pn−1 be an elliptic normal curve of degree
n. Then the space of quadrics containing C has dimension at most
β(2, n) = n(n− 3)/2.

Proof: The proof is by induction on n, the case n = 3 being clear.
We may therefore suppose that n ≥ 4. Let Cn and Cn−1 be as in
Lemma 5.2. Then every quadric vanishing on Cn can be written as

(2) xng(x1, . . . , xn−2) + h(x1, . . . , xn−1)

where g is a linear form and h is a quadric. But it is evident that

(3) I(Cn) ∩ k[x1, . . . , xn−1] = I(Cn−1).

These observations, combined with the induction hypothesis, show that
the space of quadrics containing Cn has dimension at most

β(2, n− 1) + (n− 2) = β(2, n).

�

We generalise (3) and (2) to higher secant varieties.

Lemma 5.4. Let Cn and Cn−1 be as in Lemma 5.2.
(i) SecrCn−1 is the Zariski closure of π1(SecrCn).
(ii) I(SecrCn) ∩ k[x1, . . . , xn−1] = I(SecrCn−1).

Proof: This is clear. �

Lemma 5.5. Let Cn and Cn−2 be as in Lemma 5.2. Let f ∈ I(SecrCn)
be a homogeneous polynomial and write

(4) f(x1, . . . , xn) =
∑

(i,j)≤(p,q)

xin−1x
j
ngij(x1, . . . , xn−2)

where (i, j) ≤ (p, q) means that either j < q or j = q and i ≤ p.
(i) If r = 1 then gpq belongs to the irrelevant ideal.
(ii) If r ≥ 2 then gpq ∈ I(Secr−1Cn−2).
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Proof: Let H be the divisor of a hyperplane section on Cn. By a
standard abuse of notation we identify x1, . . . , xn as a basis for L(H).
Then L(H − iP ) has basis x1, . . . , xn−i for i = 0, 1, 2. In particular we
have ordP (xn) < ordP (xn−1) < ordP (xi) for all 1 ≤ i ≤ n− 2.

(i) We must show that if deg(f) = p+ q then gpq = 0. Suppose that
xI = xi11 . . . x

in
n is a monomial appearing in f with

(5) ordP (xI) ≤ ordP (xpn−1x
q
n).

We see from (4) that in ≤ q, and from (5) that in ≥ q. So in = q,
and repeating the same arguments gives in−1 = p. Thus xpn−1x

q
n is the

only such monomial. Since f ∈ I(Cn) the coefficient of xpn−1x
q
n must

therefore be zero, i.e. gpq = 0 as was to be shown.
(ii) We continue to employ the multi-index notation xI = xi11 . . . x

in
n

and write |I| = i1 + . . . + in. We define homogeneous polynomials fI
via

f(x1 + y1, . . . , xn + yn) =
∑

I fI(y1, . . . , yn)x
I .

Fixing (a1 : . . . : an) ∈ Secr−1Cn we put

f̃(x1, . . . , xn) =
∑

|I|=p+q fI(a1, . . . , an)x
I .

Then f̃ ∈ I(Cn) and it follows by (i) that gpq(a1, . . . , an) = 0. But
(a1 : . . . : an) ∈ Secr−1Cn was arbitrary. Thus

gpq ∈ I(Secr−1Cn) ∩ k[x1, . . . , xn−2]

and we are done by a double application of Lemma 5.4(ii). �

Proof of Proposition 5.1: The proof is by induction on r and n.
The case r = 1 was treated in Lemma 5.3. If n ≤ 2r then Proposi-
tion 4.1 gives SecrC = Pn−1 in which case the result is trivial. We may
therefore suppose that r ≥ 2 and n ≥ 2r+ 1, and that the proposition
is known for all smaller values of r and n.

Let Cn, Cn−1 and Cn−2 as in Lemma 5.2. Let f ∈ I(SecrCn) be
an (r + 1)-ic. By Lemma 5.5(ii), and then Lemma 4.5(i) applied to
Secr−1Cn−2, we have

f(x1, . . . , xn) = xng(x1, . . . , xn−2) + h(x1, . . . , xn−1)

where g ∈ I(Secr−1Cn−2) is an r-ic and h ∈ k[x1, . . . , xn−1] is an (r+1)-
ic. By this observation, Lemma 5.4(ii) and the induction hypothesis,
we deduce that the space of (r+1)-ics containing SecrCn has dimension
at most

β(r + 1, n− 1) + β(r, n− 2) = β(r + 1, n).

�
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6. The lower bound

We present a simplified proof of the following theorem of Knight [K].

Proposition 6.1 (Knight). Let C ⊂ Pn−1 be an elliptic normal curve
of degree n. Then the space of (r+1)-ics containing SecrC has dimen-
sion β(r + 1, n).

Remark 6.2. Knight states his theorem in terms of the (r + 1)-ics
containing C with multiplicity r. By Lemma 4.5(ii) this is equivalent
to our version.

Let C be any smooth projective curve, and let H be a divisor on C
such that L(H) has basis x1, . . . , xn. If D1 and D2 are divisors on C
with D1 +D2 = H then the multiplication map

L(D1)× L(D2) → L(H)

is represented by a matrix of linear forms in k[x1, . . . , xn]. As in the
introduction, we call this matrix Φ(D1, D2). By the multilinearity of
determinants, the linear span of the (r+1)×(r+1) minors of Φ(D1, D2)
is independent of our choice of bases for L(D1) and L(D2). The fol-
lowing elementary observation is made in [K], [EKS]:

Lemma 6.3. Let C ⊂ Pn−1 be a smooth curve embedded by a complete
linear system. Let D1 and D2 be divisors on C with D1 + D2 = H
where H is the hyperplane section. Then the (r + 1)× (r + 1) minors
of Φ(D1, D2) vanish on SecrC.

Proof: The matrix Φ(D1, D2) has rank at most 1 on C, and so has
rank at most r on SecrC. �

Lemma 6.4. Let C be a smooth curve of genus one. Let H be a
divisor on C of degree n ≥ 2. Let L(H) have basis x1, . . . , xn. Let V
be the vector space of r-ics in k[x1, . . . , xn] spanned by the r× r minors
of all matrices Φ(D1, D2) as D1, D2 run over all divisors on C with
D1 +D2 = H and degD1, degD2 ≥ 1. Then dimV ≥ β(r, n).

Proof: We begin by treating the case r = 1. Let P1 and P2 be distinct
points on C with P1 +P2 6∼ H. Then L(H) = L(H −P1) +L(H −P2)
is spanned by the entries of Φ(P1, H − P1) and Φ(P2, H − P2). So
dimV = n = β(1, n) as required.

The proof is now by induction on r and n. The case n < 2r is trivial
since β(r, n) = 0. We may therefore suppose that r ≥ 2 and n ≥ 2r,
and that the result is known for all smaller values of r and n.

Let P ∈ C be any point. We may arrange that x1, . . . , xn−i is a basis
for L(H− iP ) for i = 0, 1, 2. Let g(x1, . . . , xn−2) be an (r−1)× (r−1)
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minor of Φ(D1, D2) whereD1+D2 = H−2P and degD1, degD2 ≥ 1. It
is determined by (r−1)-dimensional subspaces W1 ⊂ L(D1) and W2 ⊂
L(D2). Since degD1, degD2 ≥ 1 we may pick w1 ∈ L(D1 +P )\L(D1)
and w2 ∈ L(D2+P )\L(D2). Then w1w2 ∈ L(H)\L(H−P ). Rescaling
w1 if necessary we may assume that

w1w2 = xn + `(x1, . . . , xn−1)

where ` is a linear form. Let f be the r× r minor of Φ(D1 +P,D2 +P )
determined by W1 ⊕ 〈w1〉 and W2 ⊕ 〈w2〉. Then

f(x1, . . . , xn) = xng(x1, . . . , xn−2) + h(x1, . . . , xn−1)

for some h ∈ k[x1, . . . , xn−1]. This construction of f from g, combined
with the induction hypothesis shows that V ∩ k[x1, . . . , xn−1] is a sub-
space of V of codimension at least β(r − 1, n − 2). But trivially, if
f(x1, . . . , xn−1) is an r× r minor of Φ(D1, D2) with D1 +D2 = H −P ,
then it is also an r × r minor of Φ(D1, D2 + P ). Thus

dimV ≥ β(r, n− 1) + β(r − 1, n− 2) = β(r, n).

�

Lemmas 6.3 and 6.4 show that the inequality established in Propo-
sition 5.1 is in fact an equality. This completes our proof of Proposi-
tion 6.1.

Remark 6.5. In Knight’s analogue of Lemma 6.4 he takes H = nP
and only considers divisors D1 and D2 that are multiples of P . It
turns out that not all (r + 1)-ics vanishing on SecrC arise in this way.
This makes his proof of Proposition 6.1 more complicated than the one
presented here.

We record two immediate corollaries of our proof.

Corollary 6.6. Let C ⊂ Pn−1 be an elliptic normal curve of degree
n. Then the space of (r + 1)-ics containing SecrC is generated by the
(r+ 1)× (r+ 1) minors of the matrices Φ(D1, D2) as D1, D2 run over
all divisors on C with D1 +D2 = H.

Corollary 6.7. Let Cn and Cn−2 as in Lemma 5.2. Then for every
r-ic g ∈ I(Secr−1Cn−2) there exists an (r + 1)-ic h ∈ k[x1, . . . , xn−1]
such that xng + h ∈ I(SecrCn).

7. Complete Intersections

In this section we prove Theorem 1.1 in the cases m = 1 and m = 2.
Notice that we have not yet determined the degree of SecrC. Our proof
for m = 2 follows [Ro, §§9.22-9.26].
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Let C ⊂ Pn−1 be an elliptic normal curve of degree n, with hyper-
plane section H. As in §4 we write D for the linear span of an effective
divisor D. The following lemma is [Ro, 9.26.1].

Lemma 7.1 (Room). Let D1, D2 be divisors on C with D1 +D2 = H
and degD1 ≤ degD2. Then

{rank Φ(D1, D2) < degD1} =
⋃

D∈|D1|

D.

Proof: A point P ∈ Pn−1 corresponds to a codimension 1 subspace
VP ⊂ L(H). If Φ(D1, D2) evaluated at P has rank less than degD1

then there exists f ∈ L(D1) such that fg ∈ VP for all g ∈ L(D2). Say
(f) = D − D1. Then L(H − D) ⊂ VP , so P ∈ D. The converse is
obtained by reversing these steps. �

The next proposition is our version of [Ro, 9.22.1]. If n = 2r + 2
then we already know by Proposition 6.1 that the space of (r + 1)-ics
vanishing on SecrC has dimension β(r + 1, n) = 2.

Proposition 7.2 (Room). Let r ≥ 1 and n = 2r + 2.
(i) If D1, D2 are divisors on C of degree r+ 1 with D1 +D2 = H then

{det Φ(D1, D2) = 0} =
⋃

D∈|D1|

D =
⋃

D∈|D2|

D.

(ii) If D1, D2 and D′
1, D

′
2 as in (i) with D1 6∼ D′

1 and D1 6∼ D′
2 then

{det Φ(D1, D2) = det Φ(D′
1, D

′
2) = 0} = SecrC.

Proof: (i) This is a special case of Lemma 7.1.
(ii) By Lemma 6.3 each of these (r+1)-ics contains SecrC. Conversely,
if P belongs to the lefthand side, we know by (i) that P ∈ D ∩D′ for
some D ∈ |D1| and D′ ∈ |D′

1|. Then D +D′ 6∼ H and Lemma 4.2(iii)

gives P ∈ gcd(D,D′). Since D 6= D′ it follows that P ∈ SecrC. �

Proposition 7.2 tells us that if SecrC has codimension m = 2 then
it is set-theoretically the intersection of two (r + 1)-ics, say f1, f2. It
follows by the Nullstellensatz that

(6) I(SecrC) =
√

(f1, f2).

To prove Theorem 1.1 in the case m = 2 we must show that I(SecrC) =
(f1, f2). In fact we treat the case m = 1 at the same time. The notation
Cn, Cn−1, Cn−2 is recalled from Lemma 5.2.

Proposition 7.3. Let r ≥ 1 and n = 2r + 2. Then
(i) SecrCn−1 is a hypersurface of degree n− 1.
(ii) SecrCn is the complete intersection of two (r + 1)-ics.
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Proof: The proof is by induction on r, the case r = 1 being well
known. We have already seen that I(SecrCn) contains linearly inde-
pendent (r + 1)-ics f1, f2. As in §5 we write

fi(x1, . . . , xn) = xngi(x1, . . . , xn−2) + hi(x1, . . . , xn−1)

for i = 1, 2 where g1, g2 ∈ I(Secr−1Cn−2). Lemma 5.4(ii) asserts that

(7) I(SecrCn) ∩ k[x1, . . . , xn−1] = I(SecrCn−1).

By Proposition 6.1 this ideal contains no (r + 1)-ics. It follows that
g1, g2 are linearly independent. By induction hypothesis they generate
I(Secr−1Cn−2). Moreover g1, g2 are irreducible by Corollary 4.7. Thus

(8) (f1, f2) ∩ k[x1, . . . , xn−1] = (g1h2 − g2h1).

From (6), (7) and (8) we deduce

I(SecrCn−1) =
√

(g1h2 − g2h1).

Proposition 4.1 tells us that SecrCn−1 is an irreducible hypersurface,
say with equation s(x1, . . . , xn−1) = 0. Since s is irreducible, g1h2−g2h1

is a power of s. But deg(g1h2 − g2h1) = 2r + 1 = n − 1 and we know
by Lemma 4.5(i) that deg(s) ≥ r + 1. Thus

(9) I(SecrCn−1) = (g1h2 − g2h1)

and this completes the proof of (i).
To prove (ii) we must show that I(SecrCn) = (f1, f2). We suppose,

for a contradiction, that f ∈ I(SecrCn) is a homogeneous polynomial
with f 6∈ (f1, f2). By Lemma 5.5 we have

f(x1, . . . , xn) =
∑

(i,j)≤(p,q)

xin−1x
j
ngij(x1, . . . , xn−2)

with gpq ∈ I(Secr−1Cn−2). We may suppose that f is chosen with (p, q)
minimal. Since I(Secr−1Cn−2) is generated by g1, g2, we can write
gpq = ξ1g1 + ξ2g2. If q ≥ 1 then f − xpn−1x

q−1
n (ξ1f1 + ξ2f2) contradicts

our minimal choice of f . Therefore q = 0. So f ∈ k[x1, . . . , xn−1]
and it follows by (7), (8), (9) that f ∈ (f1, f2). This is the required
contradiction. �

Remark 7.4. An alternative proof of Proposition 7.3 uses properties
of the Heisenberg group in place of Proposition 7.2. It is necessary to
split into cases char (k) - (n− 1) and char (k) -n. We omit the details.

We obtain a strengthening of Remark 4.6 that is of independent
interest. For instance it explains why, as found in the proof of [H,
VI.3.2], the quintic defining SecC5 belongs to I(C5)

2.
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Corollary 7.5. Let r ≥ 2 and n = 2r+2. Let SecrCn−1 have equation
s(x1, . . . , xn−1) = 0. Then ∂s

∂xi
∈ I(Secr−1Cn−1)

2 for all i.

Proof: Keeping the notation of the previous proof we may assume
that s = g1h2 − g2h1. Then

∂s
∂xn−1

= g1
∂f2
∂xn−1

− g2
∂f1
∂xn−1

.

Since f1, f2 ∈ I(SecrCn) and g1, g2 ∈ I(Secr−1Cn−2), it follows by Re-
mark 4.6 and Lemma 5.4 that ∂s

∂xn−1
∈ I(Secr−1Cn−1)

2. But we can

make our choice of co-ordinates in Lemma 5.2 so that π1(P ) is any
point on Cn−1. Since Cn−1 is contained in no hyperplane, it follows
that ∂s

∂xi
∈ I(Secr−1Cn−1)

2 for all i. �

8. Proof of Theorem 1.2

Let C ⊂ Pn−1 be an elliptic normal curve of degree n. When we write
SecrC it has so far been implicit that r ≥ 1. To avoid unnecessary
repetition of our arguments we adopt the convention that if r = 0
then SecrC is the empty set and I(SecrC) is the irrelevant ideal. To
complete the proof of Theorem 1.2 we prove

Proposition 8.1. Let C ⊂ Pn−1 be an elliptic normal curve of degree
n, and let r ≥ 0. If n−2r ≥ 2 then I(SecrC) is generated by (r+1)-ics.

Proof: In view of the above convention, the case r = 0 is clear. The
case n = 2r + 2 was proved in Proposition 7.3(ii). We may therefore
suppose that r ≥ 1 and n ≥ 2r + 3, and that the proposition is known
for all smaller values of r and n.

Let Cn, Cn−1 and Cn−2 as in Lemma 5.2. By induction hypothesis
I(SecrCn−1) is generated by (r+1)-ics, say f1, . . . , fs, and I(Secr−1Cn−2)
is generated by r-ics, say g1, . . . , gt. By Corollary 6.7 there exist (r+1)-
ics h1, . . . , ht ∈ k[x1, . . . , xn−1] with xngi + hi ∈ I(SecrCn). We must
show that I(SecrCn) is equal to

I ′ = (f1, . . . , fs, xng1 + h1, . . . , xngt + ht).

Suppose for a contradiction that f ∈ I(SecrCn) is a homogeneous poly-
nomial with f 6∈ I ′. By Lemma 5.5 we have

f(x1, . . . , xn) =
∑

(i,j)≤(p,q)

xin−1x
j
ngij(x1, . . . , xn−2)

with gpq =
∑
ξigi. We suppose that f is chosen with (p, q) minimal. If

q ≥ 1 then f −xpn−1x
q−1
n

∑
ξi(xngi+hi) contradicts our minimal choice

of f . Therefore q = 0 and

f ∈ I(SecrCn) ∩ k[x1, . . . , xn−1] = I(SecrCn−1) ⊂ I ′.
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This is the required contradiction. �

Theorem 1.2 is obtained by combining Propositions 6.1 and 8.1.

Definition 8.2. Let I be an ideal in a polynomial ring R = R[x]. The
leading coefficient ideal of I is the set of leading coefficients of elements
of I. It is an ideal in R.

Corollary 8.3. Let n − 2r ≥ 1 and Cn, Cn−2 as in Lemma 5.2. If
R = k[x1, . . . , xn−1] and R = R[xn] then I(Secr−1Cn−2)R is the leading
coefficient ideal of I(SecrCn).

Proof: We have shown that I(Secr−1Cn−2) is generated by r-ics, so by
Corollary 6.7 it is contained in the leading coefficient ideal of I(SecrCn).
The inclusion of the leading coefficient ideal in I(Secr−1Cn−2)R then
follows by Lemma 5.5. �

9. Minimal free resoutions

The induction step in the proof of Theorem 1.1 is given by:

Proposition 9.1. Let r ≥ 1 and m ≥ 3. Let I and J be extremal
Gorenstein ideals in R = k[x1, . . . , xn−1]. Let I be a prime ideal in
R = R[xn]. Suppose that
(i) I, J and I are generated in degrees r + 1, r and r + 1,
(ii) I, J and I have codimensions m− 1, m and m,
(iii) I ∩R = I,
(iv) J is the leading coefficient ideal of I.
Then I is an extremal Gorenstein ideal.

Proof: Let R/I have minimal graded free resolution

F• : 0−→Fm−1
φm−1−→ Fm−2−→ . . . −→F1

φ1−→ F0−→ 0.

We identify F0 = R, and fix a basis a1, . . . , as for F1. Then I is gener-
ated by the (r + 1)-ics f1, . . . , fs where fi = φ1(ai).

Let R/J have minimal graded free resolution

G• : 0−→Gm
ψm−→ Gm−1−→ . . . −→G1

ψ1−→ G0−→ 0.

We identify G0 = R, and fix a basis b1, . . . , bt for G1. Then J is
generated by the r-ics g1, . . . , gt where gi = ψ1(bi).

By (i), (iii) and (iv) there exist (r + 1)-ics h1, . . . , ht such that

(10) I = (f1, . . . , fs, xng1 + h1, . . . , xngt + ht).

The proof works by constructing a minimal graded free resolution of
R/I. First we must define certain graded R-module maps αi, βi and
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γi. Let α1 : G1(−1) → F0 be given by α1(bi) = hi. We extend α1 to a
map of complexes

(11) . . . // G3(−1)
ψ3 //

α3

��

G2(−1)
ψ2 //

α2

��

G1(−1)

α1

��

ψ1 // G0(−1)

. . . // F2

φ2 // F1

φ1 // F0
// 0

The construction of α2 is as follows. Let e1, . . . , ep be a basis for G2.
Then ψ2(ej) =

∑
ξijbi for some ξij ∈ R. Since ψ1ψ2 = 0 it follows that∑

ξijgi = 0. Then

α1ψ2(ej) =
∑

ξijhi =
∑

ξij(xngi + hi) ∈ I ∩R = I.

Since I = imφ1 we can choose α2 with α1ψ2 = φ1α2. The remaining
αi are constructed by standard diagram chasing. (These maps are not
unique.)

Lemma 9.2. The map αm : Gm(−1) → Fm−1 is an isomorphism.

Proof: The graded R-modules Gm(−1) and Fm−1 are both copies of
R(−m−2r+1). So it suffices to show that αm is non-zero. We suppose
for a contradiction that αm = 0. Since I and J are Gorenstein ideals
the following diagram, dual to (11), has exact rows.

0 // F ∗
0

φ∗1 //

α∗1
��

F ∗
1

//

α∗2
��

. . . // F ∗
m−2

φ∗m−1 //

α∗m−1

��

F ∗
m−1

α∗m
��

G∗
0(1)

ψ∗1 // G∗
1(1)

ψ∗2 // G∗
2(1) // . . . // G∗

m−1(1)
ψ∗m // G∗

m(1)

Since α∗m = 0, this map of complexes is homotopic to zero. Specifically,
we construct maps ρi : F ∗

i → G∗
i (1) with ρm−1 = 0 and

α∗i = ρiφ
∗
i + ψ∗

i ρi−1

for all i ≤ m − 1. Then α1 = φ1ρ
∗
1 + ρ∗0ψ1. Since we have identified

F0 = G0 = R, the map ρ∗0 : G0(−1) → F0 is multiplication by some
linear form ` ∈ R. Then

`gi − hi = ρ∗0ψ1(bi)− α1(bi) = −φ1ρ
∗
1(bi) ∈ I ⊂ I.

Since xngi + hi ∈ I it follows that (` + xn)gi ∈ I. But I is a prime
ideal generated by (r + 1)-ics, so ` = −xn 6∈ R and this is the required
contradiction. �



22 TOM FISHER

It follows from (iii) and (iv) that I ⊂ J . The natural map R/I →
R/J extends to a map of complexes

(12) . . . // F2

φ2 //

β3

��

F1

φ1 //

β2

��

F0
//

β1

��

0

. . . // G2

ψ2 // G1

ψ1 // G0
// 0

where β1 is the identity map on F0 = G0 = R.
Composing the αi and the βi gives a map of complexes that we claim

is homotopic to zero.

. . . // F3(−1)
φ3 //

α3β4

��

F2(−1)
φ2 //

α2β3

��

F1(−1)
φ1 //

α1β2

��

F0(−1)

. . . // F2
φ2

// F1
φ1

// F0
// 0

Specifically, we construct γi : Fi−1(−1) → Fi−1 with γ1 = 0 and

(13) αiβi+1 = φiγi+1 + γiφi

for all i ≥ 1. The construction of γ2 is as follows. We have β2(aj) =∑
ξijbi for some ξij ∈ R. Then

fj = β1φ1(aj) = ψ1β2(aj) =
∑

ξijgi

and

α1β2(aj) =
∑

ξijhi =
∑

ξij(xngi + hi)− xnfj ∈ I ∩R = I.

Since I = imφ1 we can choose γ2 with α1β2 = φ1γ2. The remaining γi
are constructed by standard diagram chasing.

We have constructed graded R-module maps αi, βi and γi. We now
pass from working over R to working overR = R[xn]. Let Fi = Fi⊗RR
and Gi = Gi ⊗R R. We continue to write φi, ψi, αi, βi, γi for the
extensions of these maps to the category of R-modules. We put

δi = γi + (−1)ixn : Fi−1(−1) → Fi−1

so that (13) becomes

(14) αiβi+1 = φiδi+1 + δiφi.
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We consider the diagram

Fm−1(−1) //

βm

��

δm

����
��

��
��

��
��

��
��

��
�

// . . . // F1(−1)
φ1 //

β2

��

F0(−1)

δ1

����
��

��
��

��
��

��
��

��
β1

��
Gm(−1)

ψm //

αm

��

Gm−1(−1) //

αm−1

��

. . . // G1(−1)
ψ1 //

α1

��

G0(−1)

Fm−1

φm−1 // Fm−2
// . . . // F0

and form the total complex

. . . −→Fi⊕Gi(−1)⊕Fi−1(−1)
di−→ Fi−1⊕Gi−1(−1)⊕Fi−2(−1)−→ . . .

with differential

di =

φi αi −δi
0 −ψi βi
0 0 φi−1

 .

Since F• and G• are complexes, it follows from (14), and the commu-
tativity of the diagrams (11) and (12), that didi+1 = 0, i.e. this total
complex really is a complex.

Lemma 9.3. The total complex is a graded free resolution of R/I.

Proof: The exactness of F• and G• gives exactness of the total com-
plex at all terms up to and including F2⊕G2(−1)⊕F1(−1). It remains
to consider

F2 ⊕ G2(−1)⊕F1(−1)
d2→ F1 ⊕ G1(−1)⊕F0(−1)

d1→ F0 ⊕ G0(−1)

where d1(u, v, w) = (φ1(u) +α1(v) + xnw,−ψ1(v) +w). We must show
that (i) im d2 = ker d1 and (ii) coker d1'R/I.

(i) Let (u, v, w) ∈ ker d1. Then

(15) w = ψ1(v) and φ1(u) + α1(v) + ψ1(v)xn = 0.

We must show that (u, v, w) ∈ im d2. We write

u = upx
p
n + . . .+ u1xn + u0

and

v = vqx
q
n + . . .+ v1xn + v0

with u0, . . . , up ∈ F1 and v0, . . . , vq ∈ G1. The proof is by induction
on ∆(u, v) := max(2p, 2q + 1). We start the induction by noting that
if p = q = 0 then u ∈ F1, v ∈ G1. So (15) gives w = 0, whence
(u, v, 0) ∈ im d2 by the exactness of F• and G•.
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We split the induction step into two cases. If p > q we put (u′, v′, w′) =
(u, v, w) + d2(0, 0, upx

p−1
n ). Then ∆(u′, v′) < ∆(u, v) since

d2(0, 0, upx
p−1
n ) = (−upxpn − γ2(up)x

p−1
n , β2(up)x

p−1
n , φ1(up)x

p−1
n ).

If p ≤ q then (15) gives ψ1(vq) = 0. So vq = ψ2(e) for some e ∈ G2.
We put (u′, v′, w′) = (u, v, w) + d2(0, ex

q
n, 0). Then ∆(u′, v′) < ∆(u, v)

since
d2(0, ex

q
n, 0) = (α2(e)x

q
n,−vqxqn, 0).

(ii) We identify F0⊕G0(−1) = R⊕R(−1). Then im d1 is generated
by the pairs (fi, 0), (hi,−gi) and (xn, 1). It follows by (10) that

coker d1 =
R⊕R(−1)

im d1

'R/I.

�

The total complex is not minimal. This is rectified by eliminating
the isomorphisms αm and β1. If m ≥ 4 we put

d′m =

(
βm − ψmα

−1
m δm

φm−1

)
, d′m−1 =

 αm−1 −δm−1

−ψm−1 βm−1

0 φm−2

 ,

d′2 =

(
φ2 α2 −δ2
0 −ψ2 β2

)
, d′1 =

(
φ1 α1 − δ1β

−1
1 ψ1

)
,

and d′i = di for 3 ≤ i ≤ m − 2. Then R/I has minimal graded free
resolution

0−→Fm−1(−1)
d′m−→ Gm−1(−1)⊕Fm−2(−1)

d′m−1−→ . . .

. . . −→F2 ⊕ G2(−1)⊕F1(−1)
d′2−→ F1 ⊕ G1(−1)

d′1−→ F0−→ 0.

The modifications for m = 3 are similar.
Since Fm−1(−1)'R(−m−2r) it follows that I is an extremal Goren-

stein ideal. This completes the proof of Proposition 9.1. �

Proposition 9.4. Let C ⊂ Pn−1 be an elliptic normal curve of degree
n, and let r ≥ 0. If n−2r ≥ 2 then I(SecrC) is an extremal Gorenstein
ideal.

Proof: The proof is by induction on r and n. When r = 0 it is under-
stood (see §8) that I(SecrC) is the irrelevant ideal. By inspection of the
Koszul complex, this is an extremal Gorenstein ideal. When n = 2r+2
we saw in Proposition 7.3(ii) that SecrC is the complete intersection
of two (r + 1)-ics. So again I(SecrC) is an extremal Gorenstein ideal.
We may therefore suppose that r ≥ 1 and n ≥ 2r + 3, and that the
proposition is known for all smaller values of r and n.



HIGHER SECANT VARIETIES OF AN ELLIPTIC NORMAL CURVE 25

Let Cn, Cn−1 and Cn−2 as in Lemma 5.2. Let R = k[x1, . . . , xn−1]
and R = R[xn]. We put

I = I(SecrCn−1), J = I(Secr−1Cn−2)R, I = I(SecrCn).

By induction hypothesis, I and J are extremal Gorenstein ideals. By
Proposition 4.1, I is a prime ideal. Let m = n−2r. Hypotheses (i)-(iv)
of Proposition 9.1 follow from Theorem 1.2, Proposition 4.1, Lemma 5.4
and Corollary 8.3. Hence I is an extremal Gorenstein ideal. �

Theorem 1.1 follows from Proposition 7.3(i) in the case m = 1, and
from Propositions 9.4 and 2.10 in the case m ≥ 2.

10. Determinantal presentations

Let C ⊂ Pn−1 be an elliptic normal curve of degree n. In the light
of Theorem 1.2 we may restate Corollary 6.6 as

Lemma 10.1. If n ≥ 2r + 2 then I(SecrC) is generated by the (r +
1)× (r + 1) minors of the matrices Φ(D1, D2) as D1, D2 run over all
divisors on C with D1 +D2 = H.

The aim of this section is to prove Theorem 1.4. This theorem is
a variant of Lemma 10.1 giving necessary and sufficient conditions for
I(SecrC) to be generated by the (r + 1) × (r + 1) minors of a single
matrix Φ(D1, D2).

Let CP ⊂ Pn−2 be the elliptic normal curve of degree n− 1 obtained
by projecting away from a point P ∈ C. There is a natural inclusion
I(SecrCP ) ⊂ I(SecrC) where these ideals belong to different rings.

Lemma 10.2. If n ≥ 2r + 3 then I(SecrC) is generated by the ideals
I(SecrCP ) as P runs over any n distinct points on C.

Proof: Let X be a subset of C with |X| ≥ n. Let I be the ideal in
k[x1, . . . , xn] generated by the I(SecrCP ) for P ∈ X. By Lemma 10.1
it suffices to show that if D1 +D2 = H then all (r+1)× (r+1) minors
of Φ(D1, D2) belong to I. Swapping D1 and D2 if necessary we may
assume that degD1 ≥ r + 2. Let d = degD1. We pick distinct points
P1, . . . , Pd ∈ X with D1 6∼ P1 + . . .+ Pd. Then

d⋂
i=1

L(D1 − Pi) = L(D1 − (P1 + . . .+ Pd)) = 0.

So there exists a basis v1, . . . , vd for L(D1) such that L(D1 − Pi) has
basis v1, . . . , v̂i, . . . , vd. Then each (r+ 1)× (r+ 1) minor of Φ(D1, D2)
is an (r+ 1)× (r+ 1) minor of Φ(D1−Pi, D2) for some 1 ≤ i ≤ d. We
are done since the latter belong to I(SecrCPi

). �



26 TOM FISHER

Remark 10.3. The proof of Lemma 10.2 shows that it would be suf-
ficient for P to run over any n − r distinct points. This improvement
is irrelevant for our applications.

We obtain an alternative proof of [H, IV.1.3].

Corollary 10.4. If char (k) 6= 2 then the homogeneous ideal of an
elliptic normal curve of degree n ≥ 4 is generated by rank 3 quadrics.

Proof: By Lemma 10.2 it suffices to prove the case n = 4. It is well
known (cf. Lemma 10.6 in the case r = 1) that there is a bijection
between the singular fibres of the pencil of quadrics containing an el-
liptic normal quartic, and the 2-torsion of its Jacobian. So provided
char (k) 6= 2 the pencil is spanned by rank 3 quadrics. �

We make a temporary definition.

Definition 10.5. A divisor pair (D1, D2) consists of divisors D1, D2 on
C with D1 +D2 = H and degD1, degD2 ≥ r+ 1. We say that divisor
pairs (D1, D2) and (D′

1, D
′
2) are equivalent if D1 ∼ D′

1 or D1 ∼ D′
2.

If n = 2r + 2 then Theorem 1.2 asserts that SecrC is the complete
intersection of two (r + 1)-ics. We make some further observations.

Lemma 10.6. Let n = 2r + 2. Let V be the 2-dimensional vector
space of (r + 1)-ics generating I(SecrC). Then there is a bijection
between the set of equivalence classes of divisor pairs and P(V ) given
by (D1, D2) 7→ det Φ(D1, D2).

Proof: The injectivity was shown in Proposition 7.2. For the surjec-
tivity we may assume that C is the image of an elliptic curve (E, 0)
embedded by |n.0|. We put D1 = r.(0) + (P ) and D2 = r.(0) + (−P ).
Then P 7→ det Φ(D1, D2) is a non-constant morphism E → P(V ) = P1

and is therefore surjective. �

We strengthen Lemma 10.1.

Lemma 10.7. If n ≥ 2r + 2 then I(SecrC) is generated by the (r +
1) × (r + 1) minors of Φ(D1, D2) and Φ(D′

1, D
′
2) where (D1, D2) and

(D′
1, D

′
2) are any two inequivalent divisor pairs.

Proof: The proof is by induction on n. The case n = 2r + 2 was
treated in Lemma 10.6. We may therefore suppose that n ≥ 2r + 3
and degD1, degD′

1 ≥ r + 2. Let P run over any n distinct points
on C with D1 − D′

2 6∼ P . Then (D1 − P,D2) and (D′
1 − P,D′

2) are
inequivalent divisor pairs on CP ⊂ Pn−2. By induction hypothesis the
(r+ 1)× (r+ 1) minors of Φ(D1 − P,D2) and Φ(D′

1 − P,D′
2) generate
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I(SecrCP ). Since these are submatrices of Φ(D1, D2) and Φ(D′
1, D

′
2)

we are done by Lemma 10.2. �

Proof of Theorem 1.4: We assume that degD1, degD2 ≥ r + 1
since otherwise there are no (r + 1)× (r + 1) minors to consider. The
proof is divided into 4 cases.

(i) Suppose that degD1, degD2 ≥ r+2 andD1 6∼ D2. Let P run over
any n distinct points on C. Then (D1 − P,D2) and (D1, D2 − P ) are
inequivalent divisor pairs on CP ⊂ Pn−2. We know by Lemma 10.7 that
I(SecrCP ) is generated by the (r+1)× (r+1) minors of Φ(D1−P,D2)
and Φ(D1, D2 − P ). Since these are submatrices of Φ(D1, D2) we are
done by Lemma 10.2.

(ii) Suppose that degD1, degD2 ≥ r + 3 and D1 ∼ D2. Let P run
over any n distinct points on C. We know by case (i) that I(SecrCP )
is generated by the (r + 1) × (r + 1) minors of Φ(D1, D2 − P ). Since
this is a submatrix of Φ(D1, D2) we are done by Lemma 10.2.

(iii) Suppose that degD1 = r+1 and degD2 ≥ r+1. Then Φ(D1, D2)
has at most

(
r+t+1
t

)
linearly independent minors where

t = degD2 − degD1 = n− 2r − 2.

By Theorem 1.2 the vector space of (r+1)-ics generating I(SecrC) has
dimension

β(r + 1, n) =

(
r + t+ 1

t

)
+

(
r + t

t

)
>

(
r + t+ 1

t

)
.

Hence Φ(D1, D2) is not a determinantal presentation of SecrC.
(iv) Suppose that degD1 = degD2 = r + 2 and D1 ∼ D2. Choosing

suitable bases for L(D1) and L(D2) we may arrange that Φ(D1, D2)
is symmetric. Then Φ(D1, D2) has at most (r + 2)(r + 3)/2 linearly
independent minors. By Theorem 1.2 the vector space of (r + 1)-ics
generating I(SecrC) has dimension

β(r + 1, n) = (r + 2)2 > (r + 2)(r + 3)/2.

Hence Φ(D1, D2) is not a determinantal presentation of SecrC.
This completes the proof of Theorem 1.4. �
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