THE HIGHER SECANT VARIETIES OF
AN ELLIPTIC NORMAL CURVE

TOM FISHER

ABSTRACT. We study the higher secant varieties of an elliptic nor-
mal curve, determining the form of their minimal free resolutions
and classifying their determinantal presentations.

1. INTRODUCTION

We work over an algebraically closed field k of arbitrary characteris-
tic. An elliptic normal curve C' C P! is a smooth curve of genus one
and degree n that is contained in no hyperplane. The rth higher secant
variety Sec"C' is the Zariski closure of the locus of all (r — 1)-planes
spanned by r points of C. It is shown in [L] that Sec"C' is an irreducible
variety of codimension max(n — 2r,0).

Let R = k[zy,...,x,] be the homogeneous co-ordinate ring of P"~!.
For M = @M, a graded R-module we write M(c) for the graded R-
module with M(c)y = M.y4. We give a new proof of the following
theorem that was recently proved independently by Graf v. Bothmer
and Hulek [vBH].

Theorem 1.1. Let C C P" ! be an elliptic normal curve of degree n.
Let m =n —2r. If m > 1 then the homogeneous co-ordinate ring of
Sec"C' has a minimal graded free resolution of the form

0— R(—n) = R(—n+r+ 1)1t — R(—n+1r+2)m-2 —
.— R(-r—2)"2 - R(—r — 1) - R — 0.

In particular Sec”C' is projectively Gorenstein of codimension m.

Our proof is different from that given in [vBH, §8] in that we build the
minimal free resolutions by induction on r and n. The induction step
is closely related to a technique of Kustin and Miller [KM, Theorem
1.5] for constructing new Gorenstein ideals from old. This approach
provides additional information that is essential to our subsequent work
on Pfaffian presentations of elliptic normal curves [F2]. It also serves
as a prototype for our forthcoming work on the the minimisation of

Date: 30th May 2006.



2 TOM FISHER

genus one curves. In this application we use the main results of [CS]
and [F1] to start the induction.

A great deal of information may be read off from Theorem 1.1. If
m > 2 then the theorem is equivalent to the statement that the homo-
geneous co-ordinate ring of Sec”"C' is an extremal Gorenstein ring (in
the sense of Schenzel [S]) with a-invariant 0. As we recall in §2, the
Betti numbers, Hilbert series and Hilbert polynomial of an extremal
Gorenstein ring are explicitly known. For instance we deduce that if
n — 2r > 1 then Sec”"C has degree

W = () () e

Alternative proofs are given in [Ro, §9.3] and [vBH, Proposition 8.5].
The numbers (G(r,n) are most conveniently thought of as the number
of ways of choosing r elements from Z/nZ such that no two elements
are adjacent. The expression as a sum of binomial coefficients is found
by considering the subsets that do or do not contain a given element.

We call a homogeneous polynomial of degree r an r-ic. Theorem 1.1
has the following consequence.

Theorem 1.2. Let C C P" ! be an elliptic normal curve of degree n.
The space of (r + 1)-ics containing Sec"C' has dimension B(r 4+ 1,n).
If n —2r > 2 then these (r + 1)-ics generate the homogeneous ideal of
Sec"C'.

In fact we prove Theorem 1.2 first, and then use it in the proof of
Theorem 1.1. Both proofs are by induction on r and n, and are guided
by the recurrence relation

B(r+1,n)=pr+1n—-1)+p(r,n—2).

We adapt the proof of Theorem 1.2 to give the following result on
determinantal presentations. First we fix some notation. We write
L(D) = H°C,0(D)) for the Riemann-Roch space associated to a
divisor D on C'. Let H be the divisor of a hyperplane section, and let
Dy, Dy be divisors on C with Dy + Dy = H. We write ®(Dy, Dy) for
the matrix of linear forms representing the multiplication map

L(Dy) x L(Ds) — L(H).

It is clear that ®(D;, Dy) has rank at most 1 on C, and so has rank
at most 7 on Sec"C. We write I(X) for the homogeneous ideal of a
projective variety X.

Definition 1.3. A matrix of linear forms is a determinantal presenta-
tion of Sec"C' if its (r + 1) x (r + 1) minors generate I(Sec"C').
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Determinantal presentations for curves of arbitrary genus have been
studied in [EKS]. A set-theoretic generalisation to higher secant vari-
eties is given in [Ra]. In §10 we establish the following analogue of the
main result of [EKS].

Theorem 1.4. Let n > 2r + 1. Then ®(Dq, Ds) is a determinantal
presentation of Sec"C' if and only if

(i) deg Dy, deg Dy > r + 2, and

(i) if deg Dy = deg Dy = 1 + 2 then Dy ¢ Ds.

An easy corollary of Theorem 1.4 is that if n > 2r + 1 then Sec"C
has singular locus Sec”'C. It follows that an elliptic normal curve is
uniquely determined by any one of its higher secant varieties that is
not the whole of projective space. Since the method is closely related
to that given in [vBH, Proposition 8.15] we omit the details. The case
r = 2 was previously treated in [GP, Proposition 5.1].

If r =1 then Sec"C' = C. Theorems 1.1 and 1.2 are well known in
this case. Theorem 1.1 is stated in [GP, Theorem 5.5] and supported
by a reference to [E, Exercise A2.22]. It can also be deduced from the
fact C' has trivial canonical sheaf. Theorem 1.2 asserts that the space
of quadrics vanishing on an elliptic normal curve of degree n > 3 has
dimension n(n — 3)/2, and that if n > 4 then these quadrics generate
the homogeneous ideal. Generalisations are known both for curves of
genus g [M, Corollary to Theorem 8], and for abelian varieties [LB,
Chapter 7, Section 4]. The statement that an elliptic normal curve of
degree n > 4 is defined by quadrics is proved in [H, IV.1.3].

If 7 = 2 then Sec’?C' = Sec C is the ordinary secant variety. In this
case, it is shown in [GP, Theorem 5.5] that Theorem 1.1 holds for all
but finitely many j-invariants. They compute the degree of the secant
variety by the following method, of which [vBH, Proposition 8.5] is
a generalisation. Projecting C' away from a general (n — 4)-plane we
obtain a plane curve C” with d nodes. Then computing the arithmetic
genus of C’ in two different ways gives d+ 1 = (n — 1)(n — 2)/2. So
Sec C' has degree d = n(n — 3)/2 = $(2,n) as claimed.

The special cases where Sec’C' C P"! has small codimension are
also of interest.

If m = 1 then Theorem 1.1 asserts that Sec"C' is a hypersurface of
degree n. This was previously known when the characteristic of k does
not divide n. (The proof for n = 7 given in [GP, Example 2.10] gener-
alises immediately.) We remove this restriction on the characteristic.

If m = 2 then Theorem 1.1 asserts that Sec"C' is the complete inter-
section of two (r 4 1)-ics. This is a result of Room (see §7).
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If m = 3 then Theorem 1.1 asserts that the homogeneous ideal I =
I(Sec"C) is Gorenstein of codimension 3, and that [ is generated by
a space of (r + 1)-ics of dimension n. By the Buchsbaum-Eisenbud
structure theorem [BE1], [BE2] we can write these (r + 1)-ics as the
submaximal Pfaffians of an n x n alternating matrix of linear forms on
P"~1. This application, explained further in [F2], was the motivation
for the present work.

Let us also note that our practical algorithm for computing the Ja-
cobian of an elliptic normal curve of degree 5 (see [F3]) relies on a geo-
metric “accident” that we initially checked by a generic calculation over
the modular curve X (5), but is explained here in Corollary 7.5. This
application is of course an arithmetic one, since over an algebraically
closed field a smooth curve of genus one is its own Jacobian.

The plan of the paper is as follows. In §2 we give the necessary
background on extremal Gorenstein ideals. (This will only be needed
in §83,9.) The results of Gross and Popescu [GP] in the case r = 2
were obtained by letting an elliptic normal curve degenerate to a Néron
polygon. We give details in §3. In §4 we make some general remarks
on higher secant varieties. Then in §§5,6 we restrict to the case of an
elliptic normal curve and prove the first part of Theorem 1.2. The
second part of Theorem 1.2 is proved in §§7.8. Finally in §9 and §10
we present our proofs of Theorem 1.1 and Theorem 1.4.

2. EXTREMAL (GORENSTEIN IDEALS

Let R = k[zy,...,x,| be the homogeneous co-ordinate ring of P"~1.
Let Ry = ®4>1R4 be the irrelevant ideal and let M be a finitely gen-
erated graded R-module.

Definition 2.1. A graded free resolution of M is a complex of graded
free R-modules

F, - B R R —0

that is exact except at Fy where the homology is M. The resolution
F, is called minimal if ¢;(F;) C R, F;_; for all i.

Lemma 2.2. Let F, be a minimal graded free resolution of M. Then
any graded free resolution of M is a direct sum of Fy and a trivial com-
plex. In particular minimal resolutions are unique up to isomorphism.

PROOF: See [E, §20.1]. O

The common length of all minimal resolutions is called the projective
dimension of M and denoted proj dim M. Hilbert’s syzygy theorem
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asserts that proj dim M < n. We write codim I for the codimension,
or height, of an ideal I C R. It is equal to n — dim R/I.

Proposition 2.3. Let I C R be a homogeneous ideal. The following
are equivalent.

(i) The quotient ring R/I is a Cohen-Macaulay ring.

(#) proj dim R/I = codim I.

ProOF: This follows from [BH, Corollary 2.2.15] or the graded ana-
logue of [E, Corollary 19.5]. O
Definition 2.4. If the conditions of Proposition 2.3 are satisfied then

we say that [ is a perfect ideal.

Proposition 2.5. Let I C R be a perfect ideal with minimal graded
free resolution

F,: 0—F,—F,1—...—F, — Fy,—0.

The following are equivalent.

(i) The quotient ring R/ is a Gorenstein ring.
(ii) The graded free R-module F,, has rank 1.

(i1i) The complex of free R-modules Fy is self-dual.

PRroOOF: This is the graded analogue of [E, Corollary 21.16]. O
Definition 2.6. If the conditions of Proposition 2.5 are satisfied then
we say that [ is a Gorenstein ideal.

We recall from [BH, Definition 4.4.4]:

Definition 2.7. Let I C R be a homogeneous ideal. The a-invariant
a(R/I) is the degree of the Hilbert series of R/I viewed as a rational
function.

Lemma 2.8. Let I C R be a Gorenstein ideal of codimension m > 2
with 1 =0 for all d < r. Then

a(R/I) > m+2r —n.
In the case of equality I is generated in degree r + 1.

PRrROOF: Let R/I have minimal graded free resolution

F, : 0—F,—F,1—...> F—F—0.
Let d; be the smallest integer such that R(—d;) appears as a direct sum-
mand of F;. Since F, is a minimal resolution the sequence dy, ds, ..., d,,

is strictly increasing. We are given that d; > r+1. Since F, is self-dual
it follows that d,, > dp,—1 + (r +1). Thus d,,, > m + 2r. Using this
resolution to compute the Hilbert series we find

a(R/I)=dy, —n>m+2r—n.
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In the case of equality we have d; + d,,_; = m + 2r for all 0 <7 < m.
Then since F, is self-dual it must also be pure, i.e. each Fj is a direct
sum of copies of R(—d;). In particular I is generated in degree d; =
r+ 1. O]

Definition 2.9. If equality holds in Lemma 2.8 then we say that [ is
an extremal Gorenstein ideal, and that R/I is an extremal Gorenstein
ring.

It is shown in [BH, Proposition 4.1.12] that the a-invariant is the
largest integer for which the Hilbert function and Hilbert polynomial
differ. So our definition of an extremal Gorenstein ring is equivalent
to that originally made by Schenzel. The numerical properties of an
extremal Gorenstein ring were determined by Schenzel [S, Theorem BJ.
We rewrite some of his expressions using the numbers 3(r,n) defined
in the introduction.

Proposition 2.10. Let I C R be an extremal Gorenstein ideal of codi-
mension m, generated in degree r + 1. Let a = a(R/I) = m + 2r — n.
(i) The minimal graded free resolution of R/I takes the form

0— R(—m —2r) — R(—=m —r + 1)1 — R(—m — 1+ 2)bm—2 — .

.— R(=r—2)"2 - R(—r — 1) - R —0.

(ii) The Betti numbers b; = b;(r,m) are given by

1 m+ 2r (m+r—1)!
rl(i+r)m—i+r) (i—1l(m—i—1)"
In particular 1,11 has dimension by(r,m) = B(r + 1,n+ a).

(11i) The Hilbert series of R/I is

bi(r,m) =

B(t) = (1= 1S Blp.n+a)t? /(1 — ).

(iv) The Hilbert polynomial of R/ is

H(d) = zr;ﬁ(p’n+a)(d22p__6l€l_—11)‘

In particular R/I has multiplicity B(r,n + a).

PRrOOF: (i) This is a consequence of equality in Lemma 2.8.
(ii) By [BH, Theorem 4.1.15(a)] we have

m~+r—1
m 4+ 2r

J
brm) = "2
meAT =i ST lr+i—j|
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(iii) The Hilbert series of R/I is
m—1
h(t) = (14 (=1t 4 (=1)m¢™ ") /(1 — t)".
i=1

Since b;(0,m) = (), this reduces in the case r =0 to
h(t)=(1—-t)""=(1—-1)"

The general case follows by induction on r using the identity
bi(r,m) + by (r — 1,m +2) = B(r,m+ 2r) (m)
1
(iv) This follows from (iii) and the binomial theorem. O

Remark 2.11. Schenzel [S] takes the proof in a different order, leading
to different (but of course equivalent) expressions. By reducing to the
zero-dimensional case he computes the Hilbert series as

T

h(t) = Z (m —l=r+ ’p’>tr+l’/(1 —

Pt m—1

He then computes the Betti numbers from the Hilbert series, and leaves
the answer in terms of binomial coefficients.

I[f n—2r > 2 then Theorem 1.1 is equivalent to the statement that the
homogeneous co-ordinate ring of Sec”C' is an extremal Gorenstein ring
with a-invariant 0. The Hilbert series, Hilbert function and degree of
Sec"C' are found by setting a = 0 in the above formulae. In particular
Theorem 1.2 may be deduced from Theorem 1.1.

3. NERON POLYGONS AND CYCLIC POLYTOPES

Definition 3.1. Let n > 3 be an integer. A Néron polygon C' C P!
of degree n is the union of n lines ¢4, . . ., ¢, spanning P"~! and arranged
such that ¢; meets ¢; if and only if i — j = +£1 (mod n).

It is well known that Néron polygons arise as degenerations of el-
liptic normal curves. In this section we show, following [GP], that
Theorems 1.1 and 1.2 hold when C' is replaced by a Néron polygon.
This provides a valuable heuristic and explains the appearance of the
numbers 3(r,n). However our proofs of Theorems 1.1 and 1.2 are in-
dependent of the results in this section.

Let P"~! have co-ordinates (zy : ... : x,), where the subscripts are
read modulo n. Let I, be the standard Néron polygon, that is to say,
with vertices P, =(1:0:0:...:0),P,=(0:1:0:...:0),...,P, =
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(0:0:...:0:1) and edges ¢; = P;P;y, for i € Z/nZ. The following
definitions are recalled from [BH, §5.1].

Definition 3.2. A simplicial complex A on vertex set V' = {v1,...,v,}
is a collection of subsets of V, called faces, such that

(i) If F € Aand G C F then G € A.

(ii) All singleton sets {v;} belong to A.

Definition 3.3. Let A be a simplicial complex on vertex set {1,...,n}.
The Stanley-Reisner ring of A is k[A] = k[xy,...,2z,]/Ia where I is
the ideal generated by all monomials ], z; with F' ¢ A.

For r > 1 and n > 2r + 1 we put
A ={ACZ/nZ:AC BU(1+ B) for some |B| <r}.

Then A, , is a simplicial complex on vertex set Z/nZ and k[A, ] is the
homogeneous co-ordinate ring of Sec'T’,,.

Lemma 3.4. Let A C Z/nZ be a proper subset.
(i) There is a unique subset A* C Z/nZ satisfying

A*CACA U+ A" and A*N(1+ A" =0.

(i1) |A*| = min{|B| : AC BU(1+ B)}.
(iii) |A*| = max{|B|: B C A,BN (1+ B) = 0}.

PROOF: (i) We may assume that 0 ¢ A. Initially we take A* = ().
Then fori=1,2,...,n—1weaddito A*ifi € Aandi—1 ¢ A*. This
construction yields the unique subset A* with the stated properties.

(ii) and (iii). It is clear that the righthand side of (iii) is at most the
righthand side of (ii). The existence of A* establishes equality. O

Lemma 3.5. The mazimal faces (facets) of A,,, are
{BU(1+B):BCZ/nZ,|B|=r,BN(1+ B) = 0}.
In particular Sec'T',, is the union of 3(r,n) (2r — 1)-planes.
PROOF: Since Z/nZ is not a face we have
A, ={ACZ/nZ: |A*| <r}.

By Lemma 3.4(ii) every maximal face A satisfies |A*| = r. Since A C
A*U (14 A*) the maximality of A then gives A= A*U (1+ A4*). O

If n = 2r +1 then A,,, consists of all proper subsets of Z/nZ and
I(Sec'T),) is generated by [, ;.
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Lemma 3.6. If n > 2r + 2 then the minimal non-faces of A, are
{B:BCZ/nZ,|Bl|=r+1,BN(1+ B) = 0}.

In particular I(Sec'T',) is generated by a space of (r+ 1)-ics of dimen-
sion B(r+1,n).

Proor: The non-faces of A, ,, are
{ACZ/nZ : A=7Z/nZ or |A*| > r+ 1}.

Since n > 2r + 2 the non-face Z/nZ is not minimal. By Lemma 3.4(iii)
every minimal non-face A satisfies |A*| = r + 1. Since A D A* the
minimality of A then gives A = A*. 0

Lemma 3.7. (i) The Hilbert series of k[A, ] is
=Y Blp,n)t? /(1 —t)*
p=0

(i) The Hilbert function of k[A,.,] is

(1 ifd=0
Hd) _{ ST Bl m) (50 ifd> 0.

Qn
n

supp(m) = {i € Z/nZ : a; # 0}.

We must count the monomials of degree d with supp(m) € A, ,,. Notice
that supp(m)* = B if and only if m is the product of [],.;#; and a
monomial m’ with supp(m’) C BU (1 + B). So for d > 1,

deg(m) = d,
> e s

|B|<r BN(14+B)=

). deg(m') =d—p
- Z Z #{m : , 9
=1 |B|=p,BA(1+B)=0 supp(m’) € BU (1 + B)

— Zﬁ (d” 1 )

The expression for the Hilbert series h(t) = 3_,-, H(d)t* follows. [

PROOF: The support of a monomial m = z7* ... z%" is

To show that k[A, ] is Gorenstein, we quote

Proposition 3.8. If A is a simplicial complex whose geometric reali-
sation is homeomorphic to a sphere, then k[A] is a Gorenstein ring.
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PRrROOF: See [BH, Corollary 5.6.5]. O
The moment curve M, is the image of
bg: R — RE: s (12,17,

Definition 3.9. Let 2 < d < n — 1. The cyclic polytope C'(n,d) is the
convex hull of any n distinct points on the moment curve M.

Lemma 3.10. The vertex scheme of C(n,2r) is isomorphic (as a sim-
plicial complex) to A, ,,.

PRrROOF: Let C(n,2r) be the convex hull of the points ¢4(7;) with
T < Ty <...<T, By|[BH,5.2.7,5.2.10] the vertex scheme of C'(n, 2r)
is a simplicial complex on V' = {¢4(7;) : 1 < i < n}. We identify the
vertex sets V' and Z/nZ via ¢4(7;) < ¢. The lemma now follows from

the descriptions of the maximal faces (facets) given in Lemma 3.5 and
[BH, Theorem 5.2.11]. O

It follows by Proposition 3.8 and Lemma 3.10 that k[A,.,,] is a Goren-
stein ring. Let m = n — 2r and suppose that m > 2. We saw in Lem-
mas 3.5 and 3.6 that I(Sec'T",,) has codimension m and is generated in
degree r+1. It is clear from the Hilbert series, computed in Lemma 3.7,
that k[A,,] has a-invariant 0. This gives equality in Lemma 2.8, so
k[A,,] is an extremal Gorenstein ring. The analogue of Theorem 1.1
for Néron polygons now follows from Proposition 2.10(i).

4. HIGHER SECANT VARIETIES

Let C C P"! be any variety. The rth higher secant variety Sec’C' is
the Zariski closure of the locus of all (r — 1)-planes spanned by r points
of C.

Proposition 4.1 (Lange). Let C C P"! be an irreducible curve con-
tained in no hyperplane. Then Sec"C is an irreducible variety of di-
mension min(2r — 1,n — 1).

PROOF: See [L]. O

For future reference, we outline a proof of Proposition 4.1 in the case
C' is an elliptic normal curve. Let H be the divisor of a hyperplane
section. For D an effective divisor on C we write D for the linear
subspace of P! cut out by L(H — D) C L(H). If D is a sum of

distinct points then D is simply the linear span of these points.

Lemma 4.2. Let C C P" ! be an elliptic normal curve of degree n,
and let D, Dy, Dy be effective divisors on C'. Then
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degD —1 if degD <n
(i) dimD = { n—2 if D~ H
n—1 otherwise.
(ii) The linear span of Dy and Dy is lem(Dy, Ds).
(iii) D1 N Dy = ged(Dy, Dy) if lem(Dy, Dy) has degree at most n and
15 not linearly equivalent to H.

PRrROOF: (i) This is immediate from Riemann-Roch.

(ii) We have L(H — D1) N L(H — Dy) = L(H — lem(Dy, Ds)).

(iii) The inclusion “D” is clear. Equality follows by counting dimensions
using (i) and (ii). O

We identify the set of effective divisors on C' of degree r with the rth
symmetric power S"C'. Let

7Z ={(D,P)e€ S"C xP"'|P € D}

and write py, py for the first and second projections. If » < n then each
fibre of p; is an (r — 1)-plane. So dim Z = 2r — 1, and Sec"C' = ps(2)
is an irreducible variety of dimension at most 2r — 1.

Let D° = D\ Up_pD. If n > 2r + 1 then we claim that the

restriction of py to the open subset
U={(D,P)ec S CxP"PeD}

is injective. Indeed it P € D} N D5 for some Dy, Dy € S"C then
Lemma 4.2(iii) gives P € ged(Dy, D) since deglem(Dy, Ds) < 2r < n.
It follows that D; = Dy and this proves our claim. Hence Sec"C' has
dimension 2r — 1. For the case n < 2r we still refer to [L].

We make some elementary observations concerning the homogeneous
ideal of a higher secant variety.

Definition 4.3. A hypersurface {f = 0} C P! contains a variety
C C P! with multiplicity r if (passing to affine co-ordinates) the
Taylor expansion of f at each point P € C begins with terms of order
greater than or equal to r.

Lemma 4.4. Let Py,...,P. span P"='. Then there are no hypersur-
faces of degree r + 1 containing { Py, ..., P} with multiplicity r.

PROOF: We choose co-ordinates (z; : ... : x,) on P""! such that
P=(1:0:...:0),...,P.=(0:0:...:1). The lemma reduces to
the statement that a monomial in xy,...,z, of degree r 4+ 1 cannot be

square-free. O
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Lemma 4.5. Let C C P* ! be a variety contained in no hyperplane.
(i) There are no r-ics containing Sec"C'.

(i1) An (r 4+ 1)-ic contains Sec"C' if and only if it contains C' with
multiplicity r.

PROOF: Let f € I(Sec"C') be a homogeneous polynomial. We choose
Py, ..., P, € C spanning P"~! and then choose co-ordinates (x; : ... :
z,) on P" 1 with L =(1:0:...:0),...,B,=(0:0:...:1). Then
every monomial appearing in f involves at least » + 1 of the x;. This
proves (i). If deg(f) = r+1 then f contains P; with multiplicity 7. The
first implication of (ii) follows since P, € C' is arbitrary. Conversely
if fis an (r + 1)-ic containing C' with multiplicity r, and IT~P"! is
spanned by r points of ', then f vanishes on II by Lemma 4.4. By
definition Sec”C' is the Zariski closure of the union of all such (r — 1)-
planes II. Thus f € I(Sec"C') as required. O

Remark 4.6. If f € I(Sec"C) and P = (ay : ... : a,) € C then it is
easy to show that Zai% € I(Sec”'C). Since C is contained in no
hyperplane we have:

fel(Sec"C) = g—i € I(Sec™ ().

This leads to an alternative proof of Lemma 4.5 in the case char (k) = 0.
See [CJ] for recent work in this area.

Corollary 4.7. Let C C P*! be an irreducible curve contained in no
hyperplane. Then any (r + 1)-ic containing Sec"C' is irreducible.

PROOF: We know by Proposition 4.1 that [(Sec"C') is a prime ideal,
and by Lemma 4.5 that it contains no r-ics. 0

5. THE UPPER BOUND
In this section we prove the following upper bound.

Proposition 5.1. Let C C P! be an elliptic normal curve of degree
n. Then the space of (r + 1)-ics containing Sec"C' has dimension at
most B(r + 1,n).

We state an elementary lemma to fix our notation.

Lemma 5.2. Let C,, C P"! be an elliptic normal curve of degree n.

Let P € C,, be any point, and choose co-ordinates (xy : ... : x,) on
P such that P=(0:0:...:0:1) and TpC,, = {(0:...:0:5:1)}.
Let

T PP e PR (L iay) e (T D)
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and

g i PP Py iay) e (T Tp)
be the projection maps away from P and TpC,,. We continue to write
7y, T for the morphisms obtained by restricting to C,,.
(i) If n > 4 then C,_; = 7 (C,) C P""2 is an elliptic normal curve of
degree n — 1. Moreover m(P) = (0:...:0:1) € P2
(ii) If n > 5 then C,_y = mo(C,,) C P2 is an elliptic normal curve of
degree n — 2.

We first prove Proposition 5.1 in the case r = 1.

Lemma 5.3. Let C C P" ! be an elliptic normal curve of degree
n. Then the space of quadrics containing C' has dimension at most

B(2,n) =n(n—3)/2.

PROOF: The proof is by induction on n, the case n = 3 being clear.
We may therefore suppose that n > 4. Let C, and C,,_; be as in
Lemma 5.2. Then every quadric vanishing on C,, can be written as

(2) Tng(T1, .o Tp2) + h(x1, ..., Tpo1)
where ¢ is a linear form and h is a quadric. But it is evident that
(3) I(Cn)ﬂk:[xl,...,xn_l] = I(On—l)

These observations, combined with the induction hypothesis, show that
the space of quadrics containing C,, has dimension at most

B(2,n—1)+ (n—2) = p(2,n).

O
We generalise (3) and (2) to higher secant varieties.
Lemma 5.4. Let C,, and C,_1 be as in Lemma 5.2.
(i) Sec"C,,_1 is the Zariski closure of m(Sec"C,,).
(ii) I(Sec"C,) Nklxy, ... ,xn_1] = I(Sec"C,—1).
PRrRoOOF: This is clear. O

Lemma 5.5. Let C,, and C,,_5 be as in Lemma 5.2. Let f € 1(Sec"C,,)
be a homogeneous polynomial and write

(4) fler, . a) = Z 37;—1%917(%, oy Tpg)
(4,9)<(p,9)

where (i,7) < (p,q) means that either j < q or j =q and i < p.
(i) If r =1 then g,, belongs to the irrelevant ideal.
(ii) If r > 2 then g,, € I(Sec"'C,_3).
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PrOOF: Let H be the divisor of a hyperplane section on C,,. By a
standard abuse of notation we identify zi,...,z, as a basis for L(H).
Then £L(H —iP) has basis x1,...,2,_; for i = 0,1,2. In particular we
have ordp(z,) < ordp(z,_1) < ordp(z;) for all 1 <i <n — 2.

(i) We must show that if deg(f) = p+ ¢ then g,, = 0. Suppose that

! = 2! ... 2" is a monomial appearing in f with

(5) ordp(x’) < ordp(2?_,2%).

n—1
We see from (4) that i, < ¢, and from (5) that i, > ¢. So i, = g,
and repeating the same arguments gives i, 1 = p. Thus 2@ ;2% is the
only such monomial. Since f € I(C,,) the coefficient of 2P ;27 must
therefore be zero, i.e. g,, = 0 as was to be shown.
ii) We continue to employ the multi-index notation ! = z%' ...
ploy 1 n
and write |I| = i3 + ...+ i,. We define homogeneous polynomials f;
via

1

f@ityn o tntya) = Zpfily,- oyl
Fixing (a; : ... : a,) € Sec" *C,, we put

.]?(Il, oo wxn) = Z|I|:p+q f](al, c. ,an)xl.

Then f € I(C,) and it follows by (i) that gyg(as,...,a,) = 0. But
(ay:...:a,) € Sec" 'C, was arbitrary. Thus

Gpq € 1(Sec" ' CL) NEk[xy, ..., 7, 0]
and we are done by a double application of Lemma 5.4(ii). O

PROOF OF PROPOSITION 5.1: The proof is by induction on r and n.
The case r = 1 was treated in Lemma 5.3. If n < 2r then Proposi-
tion 4.1 gives Sec"C' = P! in which case the result is trivial. We may
therefore suppose that » > 2 and n > 2r 4+ 1, and that the proposition
is known for all smaller values of r and n.

Let C,, C,—1 and C,,_5 as in Lemma 5.2. Let f € I(Sec"C,) be
an (r + 1)-ic. By Lemma 5.5(ii), and then Lemma 4.5(i) applied to
Sec"1C,,_s, we have

flzr, .o xn) =xpg(x1, ..o xp2) + h(xy, ... 2p1)

where g € I(Sec”'C,,_y) is an r-icand h € k[z1, ..., z,_1] is an (r+1)-
ic. By this observation, Lemma 5.4(ii) and the induction hypothesis,
we deduce that the space of (r+1)-ics containing Sec”C,, has dimension
at most

Br+1,n—1)+B(r,n—2)=p(r+1,n).
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6. THE LOWER BOUND
We present a simplified proof of the following theorem of Knight [K].

Proposition 6.1 (Knight). Let C C P"! be an elliptic normal curve
of degree n. Then the space of (r+ 1)-ics containing Sec”C' has dimen-
sion B(r +1,n).

Remark 6.2. Knight states his theorem in terms of the (r + 1)-ics
containing C' with multiplicity ». By Lemma 4.5(ii) this is equivalent
to our version.

Let C' be any smooth projective curve, and let H be a divisor on C'
such that £(H) has basis z1,...,x,. If D; and Dy are divisors on C
with Dy + Dy = H then the multiplication map

L(Dy) x L(Dy) — L(H)

is represented by a matrix of linear forms in k[xy,...,z,]. As in the
introduction, we call this matrix ®(D;, Dy). By the multilinearity of
determinants, the linear span of the (r+1) x (r+1) minors of ®(Dy, D)
is independent of our choice of bases for £(D;) and £(D3). The fol-
lowing elementary observation is made in [K], [EKS]:

Lemma 6.3. Let C C P"! be a smooth curve embedded by a complete
linear system. Let Dy and Dy be divisors on C with Di + Dy = H
where H is the hyperplane section. Then the (r + 1) X (r + 1) minors
of (D1, Dy) vanish on Sec"C.

ProOOF: The matrix ®(D;, Dy) has rank at most 1 on C, and so has
rank at most r on Sec"C'. O]

Lemma 6.4. Let C' be a smooth curve of genus one. Let H be a
divisor on C of degree n > 2. Let L(H) have basis x1,...,T,. Let V
be the vector space of r-ics in klxy, ..., x,]| spanned by the r X r minors
of all matrices ®(Dy, Dy) as Dy, Do run over all divisors on C' with
Dy + Dy = H and deg Dy, deg Dy > 1. Then dim'V > B(r,n).

PrOOF: We begin by treating the case r = 1. Let P; and P, be distinct
points on C' with Py + Py ¢ H. Then L(H) = L(H — P\) + L(H — P)
is spanned by the entries of ®(P, H — P;) and ®(P,, H — P,). So
dimV =n = ((1,n) as required.

The proof is now by induction on r and n. The case n < 2r is trivial
since B(r,n) = 0. We may therefore suppose that » > 2 and n > 2r,
and that the result is known for all smaller values of r and n.

Let P € C be any point. We may arrange that x1,...,x,_; is a basis
for L(H —iP) for i =0,1,2. Let g(xq,...,2,_2) bean (r—1) x (r—1)
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minor of ®(Dy, Dy) where D1+Dy = H—2P and deg D, deg Dy > 1. It
is determined by (r — 1)-dimensional subspaces W, C L(D;) and W5 C
L(Dy). Since deg Dy, deg Dy > 1 we may pick wy € L(D;+ P)\ L(D;)
and wy € L(Dy+ P)\L(D2). Then wywy € L(H)\L(H—P). Rescaling

w; if necessary we may assume that
wiwy = Xy + (X1, ..., Tp_q)

where / is a linear form. Let f be the r x r minor of ®(D; + P, Dy + P)
determined by Wi @ (w;) and W5 & (wsy). Then

f(ajla cee axn) - xng(xb s 7xn—2) + h(gjly s 7xn—l)

for some h € k[z1,...,x,_1]. This construction of f from g, combined
with the induction hypothesis shows that V N k[zy,...,x,_1] is a sub-
space of V' of codimension at least 5(r — 1,n — 2). But trivially, if
f(zq,...,2,—1) is an r X r minor of ®(Dy, D) with D1 + Dy = H — P,
then it is also an r x r minor of ®(D;, Dy + P). Thus

dimV > g(r,n—1) 4 8(r — 1,n —2) = B(r,n).
]

Lemmas 6.3 and 6.4 show that the inequality established in Propo-
sition 5.1 is in fact an equality. This completes our proof of Proposi-
tion 6.1.

Remark 6.5. In Knight’s analogue of Lemma 6.4 he takes H = nP
and only considers divisors D; and Dy that are multiples of P. It
turns out that not all (r 4 1)-ics vanishing on Sec”C' arise in this way.
This makes his proof of Proposition 6.1 more complicated than the one
presented here.

We record two immediate corollaries of our proof.

Corollary 6.6. Let C C P* ! be an elliptic normal curve of degree
n. Then the space of (r + 1)-ics containing Sec"C' is generated by the
(r+1) x (r+1) minors of the matrices ®(Dy, D3) as Dy, Dy Tun over
all divisors on C with Dy + Dy = H.

Corollary 6.7. Let C, and C,,_5 as in Lemma 5.2. Then for every
r-ic g € I(Sec" *C,_y) there exists an (r + 1)-ic h € k[zy,..., T 1]
such that x,g + h € I(Sec"C,,).

7. COMPLETE INTERSECTIONS

In this section we prove Theorem 1.1 in the cases m = 1 and m = 2.
Notice that we have not yet determined the degree of Sec"C'. Our proof
for m = 2 follows [Ro, §§9.22-9.26].
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Let C C P* ! be an elliptic normal curve of degree n, with hyper-
plane section H. As in §4 we write D for the linear span of an effective
divisor D. The following lemma is [Ro, 9.26.1].

Lemma 7.1 (Room). Let Dy, Dy be divisors on C with Dy + Dy = H
and deg Dy < deg Dy. Then

{rank ®(D;, D,) < deg D1} = | J D.

De|D4|

PROOF: A point P € P"! corresponds to a codimension 1 subspace
Vp C L(H). If ®(Dy, D) evaluated at P has rank less than deg Dy
then there exists f € £(D;) such that fg € Vp for all g € L(D,). Say
(f) = D — D,. Then L(H — D) C Vp, so P € D. The converse is
obtained by reversing these steps. 0

The next proposition is our version of [Ro, 9.22.1]. If n = 2r 4 2
then we already know by Proposition 6.1 that the space of (r + 1)-ics
vanishing on Sec"C' has dimension 3(r + 1,n) = 2.

Proposition 7.2 (Room). Let r > 1 and n = 2r + 2.
(i) If Dy, Dy are diwvisors on C' of degree v + 1 with Dy + Dy = H then

{det®(Dy, Dy) =0} = | J D = |J D.
De|D;| De| D]
(ii) If D1, Dy and Dy, D} as in (i) with Dy o D) and Dy o DY then
{det ®(Dy, Dy) = det ®(D}, D3) = 0} = Sec"C.

PROOF: (i) This is a special case of Lemma 7.1.

(ii) By Lemma 6.3 each of these (r+1)-ics contains Sec"C. Conversely,
if P belongs to the lefthand side, we know by (i) that P € DN D’ for
some D € |Dy| and D' € |Dj|. Then D + D’ o H and Lemma 4.2(iii)
gives P € ged(D, D’). Since D # D' it follows that P € Sec"C'. O

Proposition 7.2 tells us that if Sec"C' has codimension m = 2 then
it is set-theoretically the intersection of two (r + 1)-ics, say fi, fo. It
follows by the Nullstellensatz that

(6) I(Sec"C) = /(f1, f2).
To prove Theorem 1.1 in the case m = 2 we must show that [(Sec"C) =

(f1, f2). In fact we treat the case m = 1 at the same time. The notation
C,, C,_1, C,_5 is recalled from Lemma 5.2.

Proposition 7.3. Letr > 1 and n = 2r + 2. Then
(i) Sec"C,,_1 is a hypersurface of degree n — 1.
(i1) Sec"C,, is the complete intersection of two (r + 1)-ics.
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PrOOF: The proof is by induction on r, the case r = 1 being well
known. We have already seen that I(Sec”C),) contains linearly inde-
pendent (r + 1)-ics fi, fo. As in §5 we write

fi(.’lfl, Ce ,an) = :Cngl-(xl, Ce ,an,Q) -+ hi<x1, e 7(L'n,1)
for i = 1,2 where g, gy € I(Sec" 'C,,_5). Lemma 5.4(ii) asserts that
(7) I(Sec"Cy) NEk[xy, ..., xp1] = I(Sec"Ch—y).

By Proposition 6.1 this ideal contains no (r + 1)-ics. It follows that
g1, g2 are linearly independent. By induction hypothesis they generate
I(Sec"'C,_5). Moreover g;, go are irreducible by Corollary 4.7. Thus

(8) (f1, f2) NE[z1, .o 2] = (1R — g2ha).
From (6), (7) and (8) we deduce

[(SGCT nfl) = \/(gth — gghl).

Proposition 4.1 tells us that Sec"C),_; is an irreducible hypersurface,
say with equation s(z1, ..., z,_1) = 0. Since s is irreducible, g;ha—gohy
is a power of s. But deg(g1hy — goh1) = 2r +1 = n — 1 and we know
by Lemma 4.5(i) that deg(s) >+ 1. Thus

(9) I(Sec"Cy—1) = (g1ha — g2h1)

and this completes the proof of (i).

To prove (ii) we must show that I(Sec"C,,) = (fi, f2). We suppose,
for a contradiction, that f € I(Sec"C},) is a homogeneous polynomial
with f & (f1, f2). By Lemma 5.5 we have

f(xlw"’xn) = Z x;flxigij<‘r17"'7xn72)
(4.5)<(p.q)
with g,, € I(Sec"'C,,_5). We may suppose that f is chosen with (p, q)

minimal. Since I(Sec"'C,_5) is generated by g1, g2, we can write
Gpg = E101 + &2go. T ¢ > 1 then f — b 2071 (& fi + & f2) contradicts

our minimal choice of f. Therefore ¢ = 0. So f € k[xy,...,zn 1]
and it follows by (7), (8), (9) that f € (fi, f2). This is the required
contradiction. U

Remark 7.4. An alternative proof of Proposition 7.3 uses properties
of the Heisenberg group in place of Proposition 7.2. It is necessary to
split into cases char (k)1 (n — 1) and char (k){n. We omit the details.

We obtain a strengthening of Remark 4.6 that is of independent
interest. For instance it explains why, as found in the proof of [H,
VI.3.2], the quintic defining Sec C5 belongs to I(Cj)?.
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Corollary 7.5. Letr > 2 and n = 2r+2. Let Sec"C,,_1 have equation

s(x1,...,xp_1) = 0. Then 8‘9—; € I(Sec"'C,,_1)? for all i.

Proor: Keeping the notation of the previous proof we may assume
that s = g1hy — gohy1. Then
s __ of: of
OTpn_1 g1 anil — 9 aa:nl,l :
Since fi, fo € I(Sec"C,,) and g1, 9o € I(Sec” *C,_3), it follows by Re-

mark 4.6 and Lemma 5.4 that 72— € I(Sec’'C,_1)*. But we can

make our choice of co-ordinates in Lemma 5.2 so that m;(P) is any
point on C),_;. Since C,_; is contained in no hyperplane, it follows
that 2= € I(Sec”'C,_1)? for all i. O

8. PROOF OF THEOREM 1.2

Let C' C P! be an elliptic normal curve of degree n. When we write
Sec"C' it has so far been implicit that » > 1. To avoid unnecessary
repetition of our arguments we adopt the convention that if »r = 0
then Sec"C' is the empty set and I(Sec"C) is the irrelevant ideal. To
complete the proof of Theorem 1.2 we prove

Proposition 8.1. Let C C P" ! be an elliptic normal curve of degree
n, and letr > 0. If n—2r > 2 then I(Sec"C) is generated by (r+1)-ics.

PROOF: In view of the above convention, the case r = 0 is clear. The
case n = 2r + 2 was proved in Proposition 7.3(ii). We may therefore
suppose that » > 1 and n > 2r 4 3, and that the proposition is known
for all smaller values of r and n.

Let C,, C,_1 and C,,_5 as in Lemma 5.2. By induction hypothesis
I(Sec”C,,_1) is generated by (r-+1)-ics, say fi, ..., fs, and I(Sec” *C,,_5)
is generated by r-ics, say g1, . .., g;. By Corollary 6.7 there exist (r+1)-
ics hi,...,hy € klxy, ..., x,q] with x,9; + h; € I(Sec"C,,). We must
show that I(Sec"C,,) is equal to

[/ = (fl,...,fs,xngl—I—hl,...,xngt—l—ht).

Suppose for a contradiction that f € I(Sec"C,,) is a homogeneous poly-
nomial with f & I’. By Lemma 5.5 we have

Fonm) = 5 o slgulne s
(4.5)<(p.q)
with g, = > &9g;. We suppose that f is chosen with (p, ¢) minimal. If

g > 1then f—ab 29713 & (2,9; + h;) contradicts our minimal choice
of f. Therefore ¢ =0 and

feI(Sec"C,) Nklxy, ..., xn1] = I(Sec"C,—y) C I'.
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This is the required contradiction. 0

Theorem 1.2 is obtained by combining Propositions 6.1 and 8.1.

Definition 8.2. Let Z be an ideal in a polynomial ring R = R[z]. The
leading coefficient ideal of 7 is the set of leading coefficients of elements
of Z. It is an ideal in R.

Corollary 8.3. Let n — 2r > 1 and C,,, C,,_o as in Lemma 5.2. If
R =kl[zy,...,7,1] and R = R[z,] then I(Sec" ' C,_)R is the leading
coefficient ideal of I(Sec"C,,).

PROOF: We have shown that I(Sec”'C,,_5) is generated by r-ics, so by
Corollary 6.7 it is contained in the leading coefficient ideal of I(Sec"C},).
The inclusion of the leading coefficient ideal in I(Sec”'C,_5)R then
follows by Lemma 5.5. O

9. MINIMAL FREE RESOUTIONS
The induction step in the proof of Theorem 1.1 is given by:

Proposition 9.1. Let r > 1 and m > 3. Let I and J be extremal
Gorenstein ideals in R = k[z1,...,x,_1]. Let Z be a prime ideal in
R = R[x,]. Suppose that

(i) I, J and I are generated in degrees v+ 1, r and r + 1,

(i1) I, J and I have codimensions m — 1, m and m,

(iii) INR =1,

(iv) J is the leading coefficient ideal of T.

Then I is an extremal Gorenstein ideal.

PROOF: Let R/I have minimal graded free resolution
Pm—1

F,: O—>Fm_1—>Fm_2—>...—>F1£>FO—>O.

We identify Fy = R, and fix a basis a4, ..., a, for F}. Then [ is gener-
ated by the (r + 1)-ics f1,..., fs where f; = ¢1(a;).
Let R/J have minimal graded free resolution

Ym

G.: 0—>Gm—>Gm_1—>...—>G’1£>G0—>O.

We identify Gy = R, and fix a basis by,...,b; for G;. Then J is
generated by the r-ics gy, ..., g where g; = 11 (b;).
By (i), (iii) and (iv) there exist (r + 1)-ics hq, ..., h; such that

(10) I:(fh"'?fsaxngl+h17"‘7xngt+ht)‘

The proof works by constructing a minimal graded free resolution of
R/Z. First we must define certain graded R-module maps «;, 3; and
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vi. Let a1 : G1(—1) — Fjy be given by a;(b;) = h;. We extend oy to a
map of complexes

P P P
(11) - = Gs(—1) == Ga(—1) == G1(—1) —= Gy(-1)
Sl
j2) o2 P o1 P 0
The construction of ay is as follows. Let eq,...,e, be a basis for Gj.

Then ¢s(e;) = > &;b; for some &;; € R. Since ¢11P, = 0 it follows that
Z SUQZ = 0. Then

a1tha(ej) = Z&jhi = Z&j(%gi +h)EINR=1I.

Since I = im ¢, we can choose oy with a1y = ¢1as. The remaining
a; are constructed by standard diagram chasing. (These maps are not
unique.)

Lemma 9.2. The map oy, : G (—1) — F,—1 is an isomorphism.

PRrROOF: The graded R-modules G,,(—1) and F},_; are both copies of
R(—m—2r+1). So it suffices to show that a, is non-zero. We suppose
for a contradiction that a,, = 0. Since I and J are Gorenstein ideals
the following diagram, dual to (11), has exact rows.

h 1

F; - Fr Fr

m m—1

* * * *
loﬁ J{% lam1 \Lam

. G " ¥3 . ¥ Vi .
Go(1) — G1(1) —G5(1) —= - —= G, (1) == G (1)

m—1

Since o, = 0, this map of complexes is homotopic to zero. Specifically,
we construct maps p; : F — Gf(1) with p,,—1 = 0 and

a; = pi®; + Ui pia

for all 7 < m — 1. Then oy = ¢1p] + piy1. Since we have identified
Fy = Gy = R, the map p, : Go(—1) — Fp is multiplication by some
linear form ¢ € R. Then

Lgi — hi = pohr(bi) — ar (b)) = —1pi(bi) € I C T.

Since z,g; + h; € Z it follows that (¢ + x,)g; € Z. But Z is a prime
ideal generated by (r + 1)-ics, so £ = —x,, € R and this is the required
contradiction. ]
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It follows from (iii) and (iv) that I C J. The natural map R/I —
R/J extends to a map of complexes

(12) o F F Fy 0

b

Gy —= Gy —= Gy 0

where (3; is the identity map on Fy = Go = R.
Composing the o; and the (; gives a map of complexes that we claim
is homotopic to zero.

e By(—1) =25 By(—1) 2= Fy(—1) 2 Ry(—1)

J{a3ﬁ4 J{a2ﬁ3 \Lal,ﬁb

F 2 £ b1 Fo 0

Specifically, we construct v; : F;_1(—1) — F;_; with 3 = 0 and

(13) ;i1 = OiYig1 + Vi

for all ¢ > 1. The construction of v, is as follows. We have (2(a;) =
>~ &ijb; for some &;; € R. Then

fi = Bigu(a) = 1 Balay) = > &g
and
alﬁ?(ag’) = Zfi]’hi = Zfij(itngi + hi) — Toff €EITNR=1.

Since I = im ¢y we can choose v, with a3 = ¢172. The remaining ~;
are constructed by standard diagram chasing.

We have constructed graded R-module maps «;, ; and ~;. We now
pass from working over R to working over R = R[z,|. Let F; = F;®gR
and G; = G; ®g R. We continue to write ¢;, 5, oy, i, v for the
extensions of these maps to the category of R-modules. We put

0 =i+ (1) : Fia(=1) = Fiy
so that (13) becomes

(14) a;Bit1 = $idix1 + ;0.
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We consider the diagram

and form the total complex

= F®G(-1)8F 1 (—1) 2 Fii @G 1 (1)@ F a(—1) — ...
with differential

¢ i =0
di=|0 —vi p
0 0 @i

Since F, and G, are complexes, it follows from (14), and the commu-
tativity of the diagrams (11) and (12), that d;d;11 = 0, i.e. this total
complex really is a complex.

Lemma 9.3. The total complex is a graded free resolution of R/Z.

PROOF: The exactness of F, and G, gives exactness of the total com-
plex at all terms up to and including Fo @ Go(—1) & F1(—1). It remains
to consider

Fo®Go(-1) & Fi(-1) 2 Fr @ Gi(—1) @ Fo(—1) 2 Fo @ Go(—1)
where d;(u,v,w) = (¢1(u) + oy (v) + xw, =11 (v) +w). We must show
that (i) imdy = kerd; and (ii) cokerd; ~R /.

(i) Let (u,v,w) € kerd;. Then
(15) w=11(v) and ¢ (u) +ai(v) + ¢i(v)z, = 0.

We must show that (u,v,w) € imds. We write
u=uprh + ... +ux, + uo
and
V=02 + ...+ T, + 0

with wug,...,u, € Fy and vp,...,v, € G;. The proof is by induction
on A(u,v) := max(2p,2q + 1). We start the induction by noting that
if p=¢q = 0then u € Fi, v € Gy. So (15) gives w = 0, whence
(u,v,0) € imdy by the exactness of F, and G,.
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We split the induction step into two cases. If p > ¢ we put (uv/, 0", w') =
(u, v, w) + do (0,0, upzP™). Then A(u',v") < A(u,v) since

d>(0,0, upxﬁ_l) = (—upzh — yg(up)xﬁ_l, 62(Up)xfz_la ¢1(up)xﬁ_l)'
If p < ¢ then (15) gives 91(v,) = 0. So v, = s(e) for some e € Gs.
We put (v, v, w") = (u,v,w) + da(0,ex?,0). Then A(u',v") < A(u,v)
since
(0, ex, 0) = (az(e)ay, —vgzy, 0).
(ii) We identify Fo @ Go(—1) = R@® R(—1). Then imd, is generated
by the pairs (f;,0), (h;, —g;) and (z,,1). It follows by (10) that

R ®R(—1)

im d1

cokerd, = ~R/T.

O

The total complex is not minimal. This is rectified by eliminating
the isomorphisms «,, and (;. If m > 4 we put

o —1(5 Oy _5m71
d’/,n — (/G’rn (;Dmolém 17’L>7 d’/'n_1 — _wm—l ﬁm—l ’
" 0 ¢m72

d'z—(q?f v %?)’ = (b1 a1 =15 d),

and d; = d; for 3 < i < m — 2. Then R/Z has minimal graded free
resolution

d L

0—>fm_1(—1) — gm_l(—l)@fm_g(—]_> —_— ...
R G(-D)aF(-1) & Fac(-1) X F—o.

The modifications for m = 3 are similar.
Since Frp—1(—1) ¥ R(—m—2r) it follows that Z is an extremal Goren-
stein ideal. This completes the proof of Proposition 9.1. U

Proposition 9.4. Let C C P*! be an elliptic normal curve of degree
n, and letr > 0. If n—2r > 2 then I(Sec"C') is an extremal Gorenstein
ideal.

PRrOOF: The proof is by induction on r and n. When r = 0 it is under-
stood (see §8) that I(Sec"C') is the irrelevant ideal. By inspection of the
Koszul complex, this is an extremal Gorenstein ideal. When n = 2r+2
we saw in Proposition 7.3(ii) that Sec"C' is the complete intersection
of two (r 4 1)-ics. So again I(Sec"C') is an extremal Gorenstein ideal.
We may therefore suppose that » > 1 and n > 2r + 3, and that the
proposition is known for all smaller values of r and n.
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Let C,, C,—1 and C),_5 as in Lemma 5.2. Let R = k[z1,...,2,_1]
and R = Rz,]. We put

I=1(Sec"C,_1), J=1I(Sec" 'Cn_2)R, I =1I1(Sec"C,).

By induction hypothesis, I and J are extremal Gorenstein ideals. By
Proposition 4.1, 7 is a prime ideal. Let m = n—2r. Hypotheses (i)-(iv)
of Proposition 9.1 follow from Theorem 1.2, Proposition 4.1, Lemma 5.4
and Corollary 8.3. Hence 7 is an extremal Gorenstein ideal. U

Theorem 1.1 follows from Proposition 7.3(i) in the case m = 1, and
from Propositions 9.4 and 2.10 in the case m > 2.

10. DETERMINANTAL PRESENTATIONS

Let C C P! be an elliptic normal curve of degree n. In the light
of Theorem 1.2 we may restate Corollary 6.6 as

Lemma 10.1. If n > 2r + 2 then I(Sec"C) is generated by the (r +
1) x (r + 1) minors of the matrices ®(Dy, Da) as Dy, Dy run over all
divisors on C with Dy + Dy = H.

The aim of this section is to prove Theorem 1.4. This theorem is
a variant of Lemma 10.1 giving necessary and sufficient conditions for
I(Sec"C) to be generated by the (r 4+ 1) x (r + 1) minors of a single
matrix (I)(Dl, Dg)

Let Cp C P2 be the elliptic normal curve of degree n — 1 obtained
by projecting away from a point P € C'. There is a natural inclusion
I(Sec"Cp) C I(Sec"C) where these ideals belong to different rings.

Lemma 10.2. If n > 2r 4+ 3 then I1(Sec"C) is generated by the ideals
I(Sec"Cp) as P runs over any n distinct points on C.

PROOF: Let X be a subset of C' with |X| > n. Let I be the ideal in
klxy,...,z,] generated by the I(Sec"Cp) for P € X. By Lemma 10.1
it suffices to show that if Dy + Dy = H then all (r+1) x (r+ 1) minors
of ®(Dq, Ds) belong to I. Swapping D; and D if necessary we may
assume that deg Dy > r 4+ 2. Let d = deg D;. We pick distinct points
P,,....,P;€ X with D; o P, + ...+ P;. Then

(L(D1— P) = LDy~ (Py+...+ Py)) =0.

So there exists a basis vy, ...,v4 for £(D;) such that £(D; — P;) has
basis vy, ..., 0;,...,v4. Then each (r+ 1) x (r+ 1) minor of ®(D;, Dy)
is an (r+1) x (r+ 1) minor of ®(D; — P, Dy) for some 1 < i < d. We
are done since the latter belong to I(Sec"Cp,). O
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Remark 10.3. The proof of Lemma 10.2 shows that it would be suf-
ficient for P to run over any n — r distinct points. This improvement
is irrelevant for our applications.

We obtain an alternative proof of [H, IV.1.3].

Corollary 10.4. If char (k) # 2 then the homogeneous ideal of an
elliptic normal curve of degree n > 4 is generated by rank 3 quadrics.

ProOOF: By Lemma 10.2 it suffices to prove the case n = 4. It is well
known (cf. Lemma 10.6 in the case » = 1) that there is a bijection
between the singular fibres of the pencil of quadrics containing an el-
liptic normal quartic, and the 2-torsion of its Jacobian. So provided
char (k) # 2 the pencil is spanned by rank 3 quadrics. O

We make a temporary definition.

Definition 10.5. A divisor pair (Dy, Ds) consists of divisors Dy, Dy on
C with Dy + Dy = H and deg D1, deg Dy > r + 1. We say that divisor
pairs (D1, D) and (D}, D)) are equivalent if Dy ~ D or Dy ~ Dj,.

If n = 2r 4+ 2 then Theorem 1.2 asserts that Sec”"C' is the complete
intersection of two (r + 1)-ics. We make some further observations.

Lemma 10.6. Let n = 2r + 2. Let V be the 2-dimensional vector
space of (r + 1)-ics generating I1(Sec"C). Then there is a bijection
between the set of equivalence classes of divisor pairs and P(V') given
by (Dl, DQ) — det (I)(Dl, DQ)

PRrROOF: The injectivity was shown in Proposition 7.2. For the surjec-
tivity we may assume that C' is the image of an elliptic curve (E,0)
embedded by |n.0|. We put D; = r.(0) 4+ (P) and Dy = r.(0) + (—P).
Then P+ det ®(Dy, Dy) is a non-constant morphism F — P(V) = P!
and is therefore surjective. 0

We strengthen Lemma 10.1.

Lemma 10.7. If n > 2r + 2 then I(Sec"C) is generated by the (r +
1) x (r 4+ 1) minors of ®(Dy, Dy) and ®(D}, D) where (Dy, Dy) and
(Dy, DY) are any two inequivalent divisor pairs.

PrOOF: The proof is by induction on n. The case n = 2r + 2 was
treated in Lemma 10.6. We may therefore suppose that n > 2r + 3
and deg Dy, deg D] > r + 2. Let P run over any n distinct points
on C with Dy — Dy o P. Then (Dy — P, D) and (D] — P, D}) are
inequivalent divisor pairs on Cp C P"2. By induction hypothesis the
(r+1) x (r + 1) minors of ®(D; — P, D) and ®(D; — P, D}) generate
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I(Sec"Cp). Since these are submatrices of ®(Dy, Ds) and ®(D], Dj)
we are done by Lemma 10.2. O

PrROOF OF THEOREM 1.4: We assume that deg Dy, deg Dy > r + 1
since otherwise there are no (r + 1) x (r 4+ 1) minors to consider. The
proof is divided into 4 cases.

(i) Suppose that deg Dy, deg Dy > r+2 and Dy ¢ Ds. Let P run over
any n distinct points on C. Then (D — P, D) and (Dy, Dy — P) are
inequivalent divisor pairs on Cp C P"~2. We know by Lemma 10.7 that
I(Sec"Cp) is generated by the (r+1) x (r+1) minors of ®(D; — P, D)
and ®(D;, Dy — P). Since these are submatrices of ®(D;, Dy) we are
done by Lemma 10.2.

(ii) Suppose that deg Dy, deg Dy > r + 3 and D; ~ Ds. Let P run
over any n distinct points on C'. We know by case (i) that I(Sec"Cp)
is generated by the (r 4+ 1) x (r 4+ 1) minors of ®(Dy, Dy — P). Since
this is a submatrix of ®(D;, Dy) we are done by Lemma 10.2.

(iii) Suppose that deg D; = r+1 and deg Dy > r+1. Then ®(Dy, D,)
has at most (”tﬂ) linearly independent minors where

t
t =deg Dy —deg Dy =n —2r — 2.

By Theorem 1.2 the vector space of (r+ 1)-ics generating I(Sec"C') has
dimension

B+ 1.m) = <r+i+1> N (r;i—t) - <r+i+1>.

Hence ®(D;, D,) is not a determinantal presentation of Sec"C'.

(iv) Suppose that deg Dy = deg Dy = r + 2 and D; ~ Dy. Choosing
suitable bases for £(D;) and L£(Ds) we may arrange that ®(D;, Dy)
is symmetric. Then ®(Dy, Dy) has at most (r + 2)(r + 3)/2 linearly
independent minors. By Theorem 1.2 the vector space of (r + 1)-ics
generating [ (Sec”C') has dimension

Br+1,n)=(+2)?2>(+2)(r+3)/2

Hence ®(Dy, D5) is not a determinantal presentation of Sec”C'.
This completes the proof of Theorem 1.4. O
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