HIGHER DESCENTS ON AN ELLIPTIC CURVE
WITH A RATIONAL 2-TORSION POINT

TOM FISHER

ABSTRACT. Let F be an elliptic curve over a number field K. Descent calcula-
tions on E can be used to find upper bounds for the rank of the Mordell-Weil
group, and to compute covering curves that assist in the search for generators
of this group. The general method of 4-descent, developed in the PhD theses
of Siksek, Womack and Stamminger, has been implemented in Magma (when
K = Q) and works well for elliptic curves with sufficiently small discriminant.
By extending work of Bremner and Cassels, we describe the improvements that
can be made when F has a rational 2-torsion point. In particular, when E has
full rational 2-torsion, we describe a method for 8-descent that is practical for
elliptic curves F/Q with large discriminant.

1. INTRODUCTION

Let E be an elliptic curve over a number field K. For each integer n > 2 there
is a short exact sequence of abelian groups

0 — E(K)/nE(K)— S"(E/K) — III(E/K)[n] — 0.

The n-Selmer group S™(E/K) is finite and effectively computable. It gives in-
formation about both the Mordell-Weil group E(K) and the Tate-Shafarevich
group III(E/K). The elements of S™(E/K) may be interpreted geometrically as
n-coverings of E. An n-covering of E is a pair (C,7), where C/K is a smooth
curve of genus one, and 7 : C' — F is a morphism defined over K, that fits in a
commutative diagram

C

EFE——F
[n]
where the vertical map is an isomorphism defined over K. The Selmer group
S (E/K) consists of those n-coverings (C, ) that are everywhere locally soluble,
ie. C(K,) # 0 for all places v of K. The subset of those n-coverings with
C(K) # 0 form the image of E(K)/nE(K). Thus if C/K is a counter-example to
the Hasse Principle then it represents a non-trivial element of III(E/K).
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A first descent computes the group S (E/K) and represents its elements as
pairs (C, 7). To compute the group F(K)/nE(K), and hence the rank of E(K),
we must decide which of these n-coverings has a rational point, that is, a point
with co-ordinates in K. Unfortunately there is no known algorithm guaranteed to
determine whether a genus one curve C'/K has a rational point. In practice one
starts by searching for rational points of small height. If no points are found, this
might be because C' has no rational points, or because the rational points all have
large height. We attempt to distinguish these two cases by a second descent.

Taking Galois cohomology of the short exact sequence

0— E[n]— E[n*|— E[n]—0,
and restricting to Selmer groups, gives an exact sequence
E(K)[n]—S™(E/K)—S")(E/K) - S™(E/K).
There are then inclusions
E(K)/nE(K) C Im(a) ¢ S™(E/K).
Moreover, the image of « is the kernel of the Cassels-Tate pairing
SM(E/K) x S"(E/K) — Q/Z.

If a maps (Cy, 12) to (Cy, m) then vy factors via m to give a commutative diagram

Cy ==y

RN

FE——sF——F
[n] [n]
where the vertical maps are isomorphisms defined over K.

A second descent computes the fibre of o above (C,m) and represents its
elements as pairs (Cy, mp). If the fibre is empty then C;(K) = (. Otherwise the
fibre is a coset of the image of S™(E/K). We can then try searching for rational
points on each of the genus one curves Cy. If we still do not find a rational point
then a third descent may be attempted, and so on. R

More generally, if ¢ : E — E’ is an isogeny of degree n, and ¢ : E' — FE is the
dual isogeny, then there are exact sequences
(1) 0— F'(K)/¢E(K) — SY(E/K) — II(E/K)[¢] — 0
and R

E(K)[¢p]—SP(E'/K)—S™(FE'/K) % SY(E/K).
Moreover, the image of « is the kernel of the Cassels-Tate pairing
SYE/K)x SYE/K) - Q/Z.

The terminology of first and second descents carries over as before.



HIGHER DESCENTS ON AN ELLIPTIC CURVE 3

In this paper we are concerned with ¢ : £ — E’ an isogeny of degree 2. Thus our
work applies to any elliptic curve with a rational 2-torsion point. The first descent
in this case is descent by 2-isogeny. This is very well known; see for example [C2,
§14] or [Sil, X.4.9]. The second descent is described in [BSD, §5] and [Cr], although
in neither case do the authors claim any particular originality. This corresponds
to a 2-descent on E. The starting point for our work is the paper of Bremner
and Cassels [BC] that carries out the third and fourth descents for elliptic curves
E/Q of the form y*> = x(x* — 4p), where p is a prime with p =5 (mod 8). This
corresponds to a 4-descent on E. As observed by Siksek [Sik, §4.6], their method
can be applied more generally.

The general method of 4-descent, developed in [Sik], [MSS], [Wo], [St], (see also
[F'2]), requires that we compute the class group and units of a degree 4 extension
of K. This has been implemented in Magma [BCP] (when K = Q) and works well
for elliptic curves with sufficiently small discriminant. In contrast the method of
Bremner and Cassels (specific to elliptic curves with a rational 2-torsion point)
requires no class group and unit calculations, beyond those for the field K itself.
Instead the global part of the calculation requires that we solve conics over K,
and over quadratic extensions of K.

We make the following improvements.

e We use the Cassels-Tate pairing to efficiently compute upper bounds for
the rank. This was not required in [BC], since for the curves considered
there, descent by 2-isogeny already shows that the rank is at most 1.

e We extend to a fifth descent, and in cases where E has full rational 2-
torsion, also a sixth descent. The latter corresponds to 8-descent on E.

e We replace the problem of solving a conic over a quadratic extension of K,
with that of solving a quadric surface over K. Taking K = Q the latter
can be solved efficiently using an algorithm of Simon [S2].

As discussed further in Section 10, the motivation for our work came from the
desire to find curves of large rank in certain families of elliptic curves over Q,
for example the family of elliptic curves with a given torsion subgroup (of even
order), or the quadratic twists of a given elliptic curve with a rational 2-torsion
point. The methods we describe can be used to quickly eliminate many curves
which on the basis of (say) descent by 2-isogeny appear to be candidates for large
rank, but which instead have large 2-primary part of I1I.

The paper is organised as follows. In the first three sections we let ¢ : £ — E’
be any isogeny of prime degree p. In Section 2 we introduce the higher descent
pairings we use to bound the rank of an elliptic curve. Then in Sections 3 and 4
we explain how these pairings are related to the Cassels-Tate pairing, and outline
our methods for computing them. In Section 5 we give a short self-contained
account of 4-descent on an elliptic curve with a rational 2-torsion point. This is
then related to the work of Bremner and Cassels in Section 6. In the next two
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sections we describe our refinements for carrying out the fifth and sixth descents.
In Section 9 we explain how to replace the conics over quadratic extensions by
quadric surfaces. Finally in Section 10 we give some examples.

Our implementation of the methods described in this paper (in the case K = Q)
has been contributed to Magma (version 2.21) and is available via the function
TwoPowerIsogenyDescentRankBound.

2. HIGHER DESCENT PAIRINGS

Let ¢ : E — E’ be an isogeny of elliptic curves defined over a number field K.
We suppose that deg ¢ = p is a prime. By [Sil, X.4.7] there is an exact sequence

0— B(K)[¢]— E(K) [p|—E'(K)[9]—
—>E’(K)/¢E(K)—>E(K)/pE(K)—>E(K)/$E'(K)—>O.
Writing dim for the dimension of an F)-vector space, it follows that

B | i ;};ﬁ@) — dim E(K)[¢] — dim E'(K)[3).

Let S = S®(E/K) and S} = S®(E'/K) be the Selmer groups attached to
the isogenies ¢ and g/g More generally let S,, C S; be the image of S®")(E'/K)
if m = 2n is even, and the image of S¥"9(E/K) if m = 2n + 1 is odd. The
subspaces S/ C 57 are defined in the same way, after swapping the roles of £
and E’. There are inclusions of F,-vector spaces

rank F(K) = dim SE(E)

(2) fE/(([l(()) C...CS3C S8 =8S9E/K)
and
(3) ;;@) c...cS,c8,cS =SYEK).

As we prove in Section 3, the Cassels-Tate pairing induces the following pairings
of F,-vector spaces.

Theorem 2.1. Let m > 1 be an integer.

1) If m is odd then there are alternating pairings
(i) If g pairing
Ot Sy X Sy, = ) and @;n:S;nxS;n%Fp

with kernels Sp1 and S, ;.
(ii) If m is even then there is a pairing

Op 1 S x S, = TF,
with left kernel Sy,11 and right kernel S, ;.
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It is clear that each time we compute one of the pairings ©,, or ©/  our upper
bound for the rank of F(K) either stays the same (if the pairing is identically zero)
or decreases by an even integer. The following lemma is useful for comparing our
bounds on the rank with those obtained by other methods.

Lemma 2.2. The upper bound on the rank of E(K) obtained by p™-descent is
rank E(K) < dim Sa,_; + dim S5, — dim E(K)[¢] — dim E'(K)[4).
PROOF: From the commutative diagram with exact rows

E'(K)[¢] —= S®" T (E/K) — SP)(B/K) — SO(E' | K)
| | | R
E'(K)[§] — SY(E/K) SV(E/K) — SO(E'/K)

we obtain an exact sequence

~

0—E(K)[¢p]—FE(K)[p|— E'(K)[¢]— S2n—1—> Im(3)—55,, —0.
Therefore the upper bound obtained by p"-descent,
rank F(K) < dimIm(8) — dim E(K)[p],
is the same as that in the statement of the lemma. O

The filtrations (2) and (3) also give information about the Tate-Shafarevich
groups of £ and E'. Let 111, C III; = III(E/K)[¢] be the image of III(E'/K)[p"|
if m = 2n is even, and the image of III(E/K)[p"¢] if m = 2n 4+ 1 is odd. The
subspaces III/, C [T} = HI(E’/K)[¢| are defined in the same way, after swapping
the roles of E and E’. For each integer m > 1 we have short exact sequences

0—F'(K)/pE(K)—S,,—11,,—0
and R

0—E(K)/¢E' (K)—S,,—1II,—0.
In situations where we succeed in computing the rank of F(K) we have I, =
I/, = 0 for all m sufficiently large.

Remark 2.3. Suppose we have computed III,, and III for all m > 1. Then
from the exact sequences

0— (B /K)[p" ] — LL(E'/ K)[p"]— T, —90,
0—II(E/K)[p"|—HL(E/K)[p"¢]— 211 —0,
and their analogues for I, , we can read off the orders of HI(E/K)[p"] and

II(E'/K)[p"] for all n > 1. This information determines the group structure of
the p-primary parts of III(E/K) and III(E'/K).
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In this paper we take p = 2. We show how to compute S,, and S, for m <5,
by a method whose global part only requires that we solve quadratic forms of
ranks 3 and 4 over K. When E has full rational 2-torsion we also compute S;. By
Lemma 2.2 the upper bound rank F(K) < dim S5 + dim S§ — 2 is then the same
as that obtained by 8-descent on E.

3. THE CASSELS-TATE PAIRING

Let E be an elliptic curve over a number field K. The Cassels-Tate pairing is
an alternating bilinear pairing

(,):II(F/K)x II(F/K) = Q/Z.
It has the following properties.

Theorem 3.1. Let ¢y : C — D be an isogeny of elliptic curves over K.
(i) (x,y) = (x,¢y) for all z € I(C/K) and y € II(D/K).
(ii) x € HI(D/K) belongs to the image of ¢ : II(C/K) — II(D/K) if and
only if (x,y) = 0 for all y in the kernel of ¢ : II(D/K) — II(C/K).
PRrROOF: For (i) see [C1, Section 2|, and for (ii) see [F1, Theorem 3]. These results
do not depend on finiteness of I1I. O

PROOF OF THEOREM 2.1: We keep the notation of Section 2, except that the
pairings ©,, and ©/, will take values in %Z/ Z instead of F,. We make frequent
implicit use of the exact sequence (1). In particular it makes sense to evaluate the
Cassels-Tate pairing on Selmer group elements.

(i) Let m = 2n + 1. Let £, € S,,, and let &,y € SP"9)(E/K) with & ~ ¢ and
n — n. We define ©,,(&,n) = (&1,17) = (&,m1). These last two expressions are
equal by Theorem 3.1(i) with ¢» = p". Therefore ©,,(£,n) is independent of the
choices of & and 7;. By Theorem 3.1(ii) the kernel of ©,, is

{€€ S, |{&m)=0forall g € SP")NE/K)} = Sy

Now let ¢ = p™/? or p"~1/2¢ according as n is even or odd. By Theorem 3.1(i)
we have

O (£,€) = (€1, P0E)) = (€1, 0E) = 0.

Therefore ©,, is alternating. The definition and properties of ©! are obtained in
the same way, after swapping the roles of E and E’.

(ii) Let m = 2n. Let £ € S,, and n € S/, and let & € SP)(E'/K) and 1, €
SENE/K) with & — & and m — 7. We define ©,(5,m) = (&1,m) = (&, m).
These last two expressions are equal by Theorem 3.1(i) with 1) = p"~'¢. Therefore
O.,(&,7n) is independent of the choices of & and 7. By Theorem 3.1(ii) the left

kernel of ©,, is
{€€ S| m)=0forall g € S (E/K)} = Spis.
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Likewise the right kernel is S, ;. O

Next we describe a mel;\hod for computing the Cassels-Tate pairing. Suppose
that E[¢] = p, and E'[¢] = Z/pZ as Galois modules. Then H'(K, E[¢]) =
K*/(K*)P and H*(K,E[¢]) = Br(K)[p]. If ¥ : E' — F is an isogeny defined

over K then from the short exact sequence
0 — El¢] = Epg] — E'[¢] = 0
we obtain a long exact sequence
(4) o= K J(K*)Y — HY (K, E[¢¢]) — H (K, E'[{)]) — Br(K)[p] — ...

Let z € SY(E'/K) and y € S@(E’/K). By the local-to-global principle for
the Brauer group, z lifts to 2/ € H' (K, E[t¢]). Let C' and D; be the covering
curves corresponding to x and z’. These fit in a commutative diagram

D1L>C

where the vertical maps are isomorphisms defined over K, but all other maps are
morphisms defined over K.

Let T be a generator for E’(K)[q/i;] >~ 7,/pZ, and let b € Div’(C) correspond to
T under the isomorphism of Galois modules Pic’(C') = E’. Since T € E'(K) and
C' is everywhere locally soluble, we may choose b to be K-rational. Then there
exists f € K(C) with div(f) = pb. We say that f is a pushout function. If we
scale f suitably then 7*f = ¢” for some g € K(D;). In other words, if we identify
K(C) as a subfield of K(D;) via pull-back by 7, then K(D;) = K(C)(/f).

For each place v of K there is a local pairing

(5) () ot HY(K,, E[g]) x H'(K,, E'[¢]) = 1Z/Z

given by the Weil pairing, cup product and the local invariant map. We identify
HY(K,,E[¢]) = K} /(K))P. The Cassels-Tate pairing is given by

(@,y) =Y (F(P),y)
where for each place v of K we choose a local point P, € C(K,) avoiding the
zeros and poles of f. This is a sum over all places of K, but in fact there is no
contribution from the primes outside a finite set of primes where C' and f have
bad reduction.
The Selmer group attached to ¢ is

SONE/K)={¢ € K*/(K*) | € Im(d,,) for all places v}
where 04, : E'(K,) — K /(K))P is the local connecting map.
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Let D¢ be the covering of C' that is K-birational to {f(P) = &2} C C' x G,,.
The Selmer set associated to the pair (C, f) is

S(C, f)={&€ K*/(K*)P| D¢(K,) # 0 for all places v }
={{e K*/(K*)|¢{ = f(P,) mod Im(dy,) for all places v }.

The Selmer set tells us which twists of D; (as a covering of C) are everywhere

locally soluble. If (z,y) # 0 for some y € S®(E'/K) then there are no such twists,
and the Selmer set S(C, f) is empty. Otherwise S(C, f) is a coset of S (E/K)
in K*/(K*)P. If we have already computed the pairing (using the formula above)
then we can solve for a coset representative by linear algebra over IF,,.

~

In this paper we take p = 2. Then E|[¢] = E'[¢] = Z /27 and the local pairing (5)
is the usual (i.e. quadratic) Hilbert norm residue symbol. As above, let C' be the
covering curve corresponding to z € S (E'/K). Suppose we know equations
for C'. Then by computing a pushout function f on C', and using it to compute
the Cassels-Tate pairing, we can determine whether x lifts to 2’ € SW*)(E/K). If
it does lift then the covering curve corresponding to 2’ is of the form D, for some
¢ € S(C, f). In particular we know equations for De. We can then replace ¢ by
1@, swap the roles of £ and E’, and repeat.

At each stage we have a basis for S, C K*/(K*)?, and for each basis element &,
equations for an everywhere locally soluble 2"-isogeny covering of E'’ that factors
via the ¢-covering of £’ corresponding to £. Using this data we can compute the
pairing ©,, in Theorem 2.1, and hence the subspace S,,11 C S,,. For the next
iteration we need to compute an everywhere locally soluble 2" *1-isogeny covering
for each basis element of S,,.;. It often happens that these curves are degree-2
coverings of some of the curves we already found. However, in general a rather
subtle iterative procedure is required. This is the subject of Section 4.

The two key issues we must address are the following.

e How do we find “nice” equations for the covering curves?
e How do we compute the pushout functions?

These questions are related, in that a good answer to the first question helps with
answering the second. The proof that pushout functions exist uses the local-to-
global principle for Br(K)[2]. So one might expect that the second question comes
down to solving conics over K. Indeed if K is a number field, then every element
of Br(K)[2] can be represented by a conic. However this last statement is not true
over arbitrary fields, and the proof over number fields itself uses the local-to-global
principle for the Brauer group. So the best we can say for arbitrary m (see [SD])
is that the second question reduces to that of finding rational points on certain
Brauer-Severi varieties.
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4. AN ITERATIVE PROCEDURE

In this section we describe the structure of our program for computing the
subspaces S, and S/ . The bookkeeping is somewhat involved, but is needed to
get around the fact that the formula we gave in Section 3, for computing the
Cassels-Tate pairing, only applies when one of the arguments is killed by the
p-isogeny ¢ or its dual ¢.

First we lighten our notation by writing

Sel(m) SPNE/K) or SP")(E'/K) if m = 2n,
el(m) = >
SE(E/K) or SP"O(E'/K) if m =2n+ 1.
Which of the two groups we mean is often determined by the context. For example
when we write

... — Sel(3)— Sel(2)— Sel(1)

this could either mean

. — SN (EB/K)—SP(E' /K)—S9(E/K)
or - R

. —SPINE JK)—SP(E/K)—SY(E'/K),
whereas

Sel(1)— Sel(2)— Sel(3)— . ..

could either mean

SOE/K)—SP(E/K)—S")(E/K)— ...

or
SOF|K)—SP(F'|K)—SP)(E'|K)— .. ..

Let S,, be the image of Sel(m) — Sel(1). This F,-vector space was denoted
Sy, or S!in Section 2. We also write ©,, : S, x S, — F, for the pairings in
Theorem 2.1, even though some of the S,, and ©,,, should really be S/, and ©/,.
These abuses of notation are made to simplify the results in this section, and (with
the exception of Lemma 8.1) will not be used elsewhere in the paper.

Let o, 81 € Sy Then ©,,(a1, 51) = (@m, B1) where a,,, € Sel(m) is any lift of
a1. In order to compute ©,,, and hence by Theorem 2.1 the subspace 5,11, we
must describe how to lift a; to «,,. In the case m = 3 it is convenient to break
this down into the following steps.

(i) Solve for ay € Sel(2) with ag — a;.
(ii) Solve for £ € Sy with (€ + ay,n) =0 for all n € 5.
(iii) Solve for a3 € Sel(3) with az — & + as.

For general m > 1 we use the following algorithm.
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Algorithm 4.1. INPUT: oy € S,, and the pairings ©, for ¢ < m.
OUTPUT: «, € Sel(m) with a,, — a;.

(1) if m = 1 then return «;; end if

(2) k+1
(3) t1 < m-—1
(4) while true do
(5)  solve for ayi1 € Sel(k+ 1) with agyq — ag
6) k<« k+1
(7)  if k= m then return «,,; end if
(8) t, 1
(9) while t;_1 =t do
(10) k—k—1
(11) f by + 1
(12)  end while
(14)  solve for £ € Sy with ©4(&,n) + (te—1,m) =0 for all n e Sy.
(15) QL < 6 + oy
(16) end while

The next two lemmas are used to show that Algorithm 4.1 is correct.

Lemma 4.2. Suppose oy, € Sel(k) lifts to axe1 € Sel(k+ € —1). Let £ € Sel(1).
The following are equivalent.

(i) (€4 ag, B) =0 for all 5 € Sel({),

(i) € € Sy and ©4(&,n) + (Agre-1,m) = 0 for alln € Sy.
Moreover, if oy — cy—1 € Sel(k—1) and (ag—1,3) =0 for all § € Sel({+ 1), then
(i) and (ii) hold for some & € Sel(1).

PrROOF: We make repeated use of Theorem 3.1. Since ay lifts to Sel(k + ¢ — 1)
we have (ay, 5) = 0 for all 8 € Sel(¢ — 1). Assuming (i) we have (£, ) = 0 for all
f € Sel(¢ — 1), and therefore £ € Sy. If g € Sel(¢) and n € Sy with § — 7 then

(€ + o, B) = (€, 8) + (o, B) = Oul&,m) + (o1, 7).

This proves the equivalence of (i) and (ii). For the last part, Theorem 3.1(ii) shows
there exists agi, € Sel(k + ¢) with g — ag_1. Let oy € Sel(k) be the image of
ag1e. By Theorem 3.1(i) we have (ay, 8) = 0 for all § € Sel(¢). Since a; and ay,
have the same image in Sel(k — 1) we have a; = £ + oy, for some & € Sel(1). This
proves (i). O
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Lemma 4.3. At the start and end of the main loop in Algorithm 4.1, we have
O > Q1 > ... — g — oy and

(6) (aj,B) =0 for all B € Sel(t;) and 1 < j < k.

PROOF: Initially we have k = 1 and t; = m — 1. Since a4 is in 5, it satisfies
(o, B) =0 for all B € Sel(m — 1). At the end of each loop it suffices to prove (6)
with j = k, since the cases j < k carry over from the previous iteration. It is
easy to check that each time we reach line 14, we have k > 2 and t,_1 > t, = (.
Moreover ayy¢—1 is the element computed in line 5. By (6) from the previous
iteration we have (ay_1, ) = 0 for all 5 € Sel({+1). Lemma 4.2 shows that there
exists £ € Sy satisfying the condition on line 14, and that after modifying oy on
line 15, the new «y, satisfies (6) with j = k. O

As a special case of Lemma 4.3 we have (ay, 5) = 0 for all g € Sel(ty). Since
tr > 1, the element oy, in line 5 exists by Theorem 3.1(ii). This completes the
proof that Algorithm 4.1 is correct.

The reader is encouraged to write out the sequence ty,...,%; at each stage of
the algorithm (for some small values of m). It is not hard to show that if m > 2
then we start the main loop exactly 2™~2 times. This exponential growth does
not concern us much, since (even in the case p = 2) the computation of pushout
functions (required in lines 5 and 14, as explained in Section 3) is only practical
for small values of m.

In practice we can often take & = 0 in line 14. In such cases we may already
know a1 € Sel(k+1) with a1 +— ag. There is then no need to recompute oy
in line 5.

5. COMPUTING 4-COVERINGS

In this section we give a brief self-contained account of 4-descent on an elliptic
curve with a rational 2-torsion point. As we discuss in Section 6, it is based on
work of Bremner and Cassels [BC]. See the introduction for further references.

Let E be an elliptic curve over a field K with a rational 2-torsion point T, say

(7) E: y*=ux(z*+axr+0) T =(0,0)

for some a,b € K. The discriminant condition is 2b(a* — 4b) # 0. Let ¢ : E — E'
be the 2-isogeny with kernel {0, 7} and let (5 : B/ — FE be the dual isogeny. The
connecting map ¢ : E(K)/¢E'(K) — K*/(K*)? is given by P = (z,y) + « for
all P+ 0,T.

Suppose P = (z,y) € E(K) with 6(P) = & mod (K*)?. Then z = & (s/t)?
and y = & (rs/t?) where

(8) r? = &5 4 as*t? + (b/&)t
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Parametrising a conic over K gives

(9) (s* %) = (f(I,m) = g(l,m) : h(l,m))
where f, g and h are binary quadratic forms. Then
(10) fllym) = &s* and  g(l,m) = &t?

for some & € K*. Parametrising each of these conics over K gives
(l:m:s)=(pi(c,d) : pa(c,d) : ps(e,d))
(l sme t) = <QI(9a¢) : QQ(Qa,@Z)) : Q3(0a,¢)))

where the p; and ¢; are binary quadratic forms. Then

(11) y4! (C7 d) = €3q1 (07 ¢) and pQ(C, d) = 53(]2(0’ ,lvb)
for some &5 € K*.

Let L = K(1/b/&) and write f(l,m) = x(l —em)(l —&m) where k € K and
€, € L. Then

k(1 — ep2)(p1 — Ep2) = Eop}-
Since p; and py are coprime in KJc, d] it follows that
pi(c,d) — epa(c, d) = &ale + yd)?
for some o,y € L. Hence by (11) we have

ql(‘gv 77Z)> - 8(]2(8, ¢) = a(c + ’}/d)2

Parametrising a conic over L gives

0 :c+yd) = (Qr(\ 1) : Qa( N\ ) = Q3(\, p))

where ()1, ()2 and ()3 are binary quadratic forms. Then

(12) 0 =7mQi(\p) and ¥ =7Qa(\, p)
for some m € L*. Let 1,5 be a basis for L over K. Writing A = = 4+ By and
= u+ Pv we expand to give

ﬂ-Ql(Av :u) - F1(1’7 Y, u, U) + 6F2<I', Y, u, U)

7TQ2()\7 ,u) = Gl(xa Yy, u, U) + 6G2($a Yy, u, U)
where F, Fy, G1 and G4 are quadratic forms with coefficients in K. Since 8,19 € K
it follows by (12) that
(13) Fy(z,y,u,v) = Ga(x,y,u,v) = 0.
Up to linear changes of co-ordinates defined over K, this quadric intersection de-
pends only on the image of 7 in L*/K*(L*)?, and hence only on & := Np/k(7) €
K*/(K*)2. We may recover 7 from &, by solving a conic over K.

In the case K is a number field, there are at each stage (j = 1,2,3,4) only
finitely many &; € K*/(K*)? for which the corresponding covering curves are
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everywhere locally soluble. Thus each rational point on E lifts to one of only
finitely many quadric intersections (13).

The equations (8), (10), (11), (13) define covering curves Ci, ..., Cy that fit in
a commutative diagram

T4 3 T2

04 03 02 Cl
w TN
E-Y.p_ . p . p_* F

where the vertical maps are isomorphisms defined over K, and all other maps are
morphisms of degree 2 defined over K. Explicitly the C; have equations:

Cr={r* = &s" +as’® + (0/&)t"} = {y* = f(l.m)g(l,m)},

f<l7 m) = 6282
CQ = 9 ( = {5252 = f(Q1(07¢)7 QQ(GJ w>)}7
g(la m) = §2t

{pl(C,d):€3Q1<0,w)} C, — { FQ(Qf,y,U,U):O}

p2<c7 d) - §3QQ<07¢) 7 ! GQ(x7y7u7U) =0 .
Each of these curves is either a double cover of P!, or a quadric intersection in P3.

The pushout functions f; € K(C;_1) are as follows. In each case C; is K-
birational to {f;(P) = &;2°} C Cj_1 X G,,. On E = C} the pushout function is
fi = x. On C; the pushout function is fo = f(I,m)/m?. We may solve by linear
algebra for a, 5,7 € K so that

api(c,d) + Bpa(c, d) +yps(c,d) = d°.

Then Cs has pushout function f3 = (aqy(0, 1) + Bq2(0, 1) + vs)/¥?. Likewise we
may solve for r,s,t € L so that

TQl()‘> :u) + SQQ()‘> ,u) + tQ3<)‘7 M) = :u2'
Let £ = 10 + s1 + t(c + vd) and £ = 70 + 51 + t(c + Fd), where the bars denotes
the action of Gal(L/K). Then C3 has pushout function f; = £¢/1)%.
The formulae in this section can be used to compute S,, and S/, for m < 4, by
a method whose global part only requires that we solve conics over K, and over
quadratic extensions of K. In Section 7 we extend to the case m = 5, and in
Section 9 we replace the conics over quadratic extensions by quadric surfaces.

3 =

6. COMPARISON WITH WORK OF BREMNER AND CASSELS

The method used by Bremner and Cassels [BC] to find rational points of large
height on E' : y*> = z(2? + p), for p a prime with p =5 (mod 8), is a special case
of the method outlined in Section 5. We now explain the relationship. We have
tried to keep their notation, although in one place we switched a,b to s,t, since
we already used a,b in (7).
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We start with the elliptic curve E : y? = z(2? —4p) over K = Q. The first stage
of the argument in [BC] implicitly switches to this 2-isogenous curve. Then taking
& =pin (8) gives r? = ps? — 4t*. Since p =5 (mod 8) we can write p = u? + 4v?
where u, v are odd integers with v = 1 (mod 4). A suitable parametrisation (9) is
now given by

f(l,m) =1+ m?

g(l,m) = v(I* —m?) + ulm

h(l,m) = u(l* — m?) — 4vlm.
A local argument suggests taking & = 1. Then (10) becomes [* + m? = s*> and
v(I>—m?)+ulm = t*. The first of these conics is parametrised by p; (¢, d) = ¢ —d?,
p2(67 d) = QCdv p3(ca d) = +d27 and the second by a1 (9, ¢)7 QZ(97 QZ})? q3(9a ’lvb) (Say)'
If the ¢; are suitably scaled then by local considerations it suffices to take & = 1.
Then (11) becomes ¢, (0, 1) = ¢* — d? and ¢2(6,1) = 2cd, equivalently
(15) 0 (0,9) +ig2(0,9) = (c + id)*.

Parametrising a conic over L = Q(i) gives

(9 tP e+ Zd) = (Ql()‘nu) : QZ()\MU) : Q3<)‘7:u))'
Then 6 = 7Q1(\, ) and ¥ = 7Q2(A, ) for some 7 € Q(i). A suitable value of 7 is
determined by local considerations. Finally the procedure described in Section 5
(with 8 = i) furnishes a quadric intersection
(16) Fy(x,y,u,v) = Go(z,y,u,v) = 0.
defined over Q.

In summary, the examples of Bremner and Cassels are special in that, (i) some
of the conics can be parametrised “for free” and so do not appear explicitly in
their argument, (ii) the conics we do have to solve are defined over either Q or
Q(4), and (iii) by local considerations only one choice of &; € Q*/(Q*)? need be
considered at each stage (j = 1,2,3,4).

Bremner and Cassels give a worked example in the case p = 877. We record a
few brief details. Firstly they take u =29, v = —3 and

q1(0,1) = —30% + 60 — 21)°

@2(0,9) = —T70% — 40 — o

q3(0,v) = 276% — 116¢ — To)>.
15) is parametrised by
—4 — 3i)A% + (10 — 220) At + (29 + 64)
—1+20)A% + (=16 — 60) A\ + (6 — 29i) >
—15 4 60)A? + (=46 — T0i) Ay + (76 — 750) .

— —~ —~ T
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By local considerations it suffices to take 7 = 1 4 ¢. This leads to a quadric
intersection (16). Minimising and reducing, as described in [CFS], suggests making
the transformation

T =221+ 209 —4x3 — 614, U= —21 — 203 + 224,

(17) Yy =2x; — x93+ 63 — 4wy, V=129 — 203 — 224

whereupon (16) becomes

2 2

T1To + T1X3 + T1T4 — ToX3 + ToTy + T5 — 22374 — x5 = 0
(18) ) )
x] —4r1T9 + 31123 + 1174 — 5 — ToX3 + 3wex4 + dxzTy = 0.

A little searching finds the rational points
(x1:my a3 x4) = (—2:57:85:16), (57:2: —16: 85).
We substitute in (17) to recover the solutions
(x:y:u:v)=(324:—385:136:145), (385 :324 : —145: 136)

found by Bremner and Cassels. These points map down to the same point of
infinite order P = (xp,yp) on E(Q). The co-ordinates of P are

rp = —292214148680270491236/4612160965
yp = 20949922565086352416107761007588 /4612160965

The point recorded in [BC] is the image of P under the 2-isogeny ¢ : £ — E’, and
accordingly has (canonical) height twice that of P.

The general implementation of 4-descent in Magma (due to Womack [Wo] and
Watkins) is able to find the 4-covering (18) in a couple of seconds. However the
method it uses involves computing the class group and units of a degree 4 number
field; in this case Q(v/6 — 297). In contrast the method of Bremner and Cassels
only requires that we solve conics over Q and Q(7).

7. COMPUTING PUSHOUT FORMS

Let C' C P be a non-singular quadric intersection. The 4 singular fibres in the
pencil of quadrics defining C' are cones over conics I'y,...,I'y. Projecting from
the vertex of each cone gives a degree-2 morphism v; : C' — ['; with fibre a;. By
considering the tangent plane at a smooth point on the cone over I'; we see that
2a; ~ H where H is the hyperplane section on C. Therefore the differences a; —a;
represent elements of order 2 in Pic’(C).

Let E be the Jacobian of C'. By the previous paragraph {I';,..., T4} is a torsor
under £[2]. In particular, there is a Galois equivariant bijection between E[2]\ {0}
and the partitions of the singular fibres into 2 sets of 2. We are interested in elliptic
curves with a rational 2-torsion point. We therefore fix 0 # T' € F(K)[2], and
order the I'; so that T" corresponds to the partition (I'y, 's; '3, T'y). In other words
a; — ay ~ asg — ay represents the class of 7' in Pic’(C) & E.
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Let p : Gal(K/K) — S, describe the action of Galois on the I';. Since T is
K-rational we have Im(p) C ((1324), (12)). We now make the assumption that

(19) Im(p) < {(12), (34)).
We distinguish two possibilities.
e (split case) The conics I'; and T’y are defined over K.
e (non-split case) The conics I'y and I'y are defined over a quadratic extension
L/K, and are Gal(L/K)-conjugates.
Let I' = I'y x I'y, respectively Resy xI'y. If C/K is everywhere locally soluble
then by the Hasse Principle for conics, we have I'(K) # (). A point P € I'(K)
corresponds to a pair of points P, € I'y and P, € I's which are either defined
over K or are Gal(L/K)-conjugates. The tangent planes to P, and P,, as points
on the cones over I'y and I'y, are defined by linear forms ¢; and /5. In the split
case these are defined over K. In the non-split case we may arrange that they are
Gal(L/K)-conjugates.
We say that a quadratic form f € Klzy,...,z4] is a pushout form on C if
f/x3 € K(C) is a pushout function, i.e. div(f/x?) = 2b for some divisor b
representing the class of 7" in Pic’(C) = E.

Lemma 7.1. f = {10y € K[xy,...,24] is a pushout form on C.
PrOOF: We have div(f/z?) =2(a; +a; — H) and a; + a; — H ~ a; — a,. O

Let f = (1¢y as above and let # : D — (' be the degree-2 covering with
K(D) = K(C)(v/f). In other words D is the smooth curve of genus one K-
birational to {f(P) = 2%} C C x G,,. We now show how to write D as a quadric
intersection with hyperplane section 7*a; ~ 7*as,.

We suppose we are in the non-split case, the split case being similar. The
conic T'; is defined by a quadratic form ¢ € L[X,Y, Z], and the cone above T’y
has equation g(mq, mg,m3) = 0 for some linear forms my,my, msg € L{xy, ..., x4].
Since we have found an L-rational point on I';, we may parametrise this conic,
say

(XY Z) = (Q1(\ 1) : Qa(A, ) = Q3(A, )
where @1, Q2 and Q)3 are binary quadratic forms defined over L. If L = K(3) this

gives equations

(20) mi(xla"'axll) :Qz(x+ﬁyau+/8v)

for ¢+ = 1,2,3. Writing each side in terms of the basis 1,3 for L over K we
get 6 equations with coefficients in K. The left hand sides are linear forms in

x1,...,x4 and the right hand sides are quadratic forms in x,y,u,v. By taking
linear combinations we obtain equations

F(z,y,u,v) = G(z,y,u,v) =0

and z; = ri(z,y,u,v) for i =1,...,4.
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Theorem 7.2. The curve D = {F = G = 0} C P? is a non-singular quadric
intersection, and the map m = (r1 : ... :14) : D — C is a morphism of degree 2.
Moreover D has hyperplane section m*ay ~ m*a,.

PRrooF: For the proof we are free to extend our field K and to make changes of
co-ordinates. So we may suppose

(21) C—{f(l’m;:SQ}cP?’.

g(l,m) =1?

~—

= s? and g(I,m) = t* as

Y41 (C7 d) : pQ(Cv d) : pS(Cv d))7
Q1<971/}) : Q2(97¢) : %(971/1))

in the split case) we have

We parametrise the conics f (I, m
(l:m:s)=

(22) (l:m:t)=

~—~~ o~

Then by the above construction

pi(e,d) = qi(6,9) 3
(23) b= {p2(0a d) = CI2(9’1/1)} <

If a quadric intersection is given by 4 x 4 symmetric matrices A and B, then we
may associate to it the binary quartic F'(z,y) = det(Ax + By). To prove that the
quadric intersection is non-singular it suffices to show that F' has distinct roots
in P!. We write A for the discriminant of a binary quadratic form. Since the
linear combinations of p; and p, that are perfect squares can be computed from
the roots of f, we have

A(mpy — Ips) = £ f(l,m)

A(mq, — lgz) = K'g(l,m)
for some K,k € K*. Therefore the binary quartic associated to D is a scalar
multiple of f(I,m)g(l,m). Since C' defined by (21) is non-singular, it now follows

that D defined by (23) is non-singular.
The morphism 7 : D — (' is given by

(l:m:s:t)=(pi(c,d) : pa(c,d) : p3(e,d) = q3(0,1)).

It is easy to see that 7 has degree 2 with fibres of the form {(c : d : 6 : ¥),(c :
d:—60:—¢)}. Moreover ifa; = (l:m:s:t)+ (I :m:s:—t) then 7*a; is the
hyperplane section given by solving the first equation in (22) for (¢ : d). Likewise
ifag=(:m:s:t)+(l:m:—s:t)then 7*ay is the hyperplane section given by
solving the second equation in (22) for (6 : v). O

Let ¢ : E — E’ be the 2-isogeny with kernel {0,T}. Let ¢ : E' — E be the
dual isogeny, say with kernel {0,7"}.
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Theorem 7.3. The degree-2 covering m : D — C' constructed in Theorem 7.2 is
a ¢-covering, i.e. there is a commutative diagram

D—"=C

EF——F
where the vertical maps are isomorphisms defined over K.

ProOF: We give details in the non-split case. Recall that I'; is parametrised
by binary quadratic forms @i, Qs, Q3. We solve for r,s,t so that rQq(\, u) +
5Qo(\, 1) +tQ3(\, 1) = 2. We then take f = (10, where {; = rmy + smso + tms
and /5 is its Gal(L/K)-conjugate. By (20) we have

Oi(x1,. .., 24) = (u+ Bv)?
by, ... 24) = (u+ Bv)?
Then t = (u + Bv)(u + Bv) € K[z, y,u,v] is a quadratic form with
(24) f(ry,...,ry) =t* mod I(D).
Therefore 7*(f/z?%) is the square of a rational function in K (D). Since f is a
pushout form (corresponding to T'), the result follows. O

The pushout form f € Klzy,...,z4 and quadric intersection D C P3 were
constructed from a pair of points on I'y and I'y. We may equally construct a
pushout form fT € Klxy,...,24] and quadric intersection DT C P3 from a pair of
points on I's and T'y. We have div(f/z?) = 2b and div(fT/2?) = 2b' with b ~ b'
representing the class of 7" in Pic’(C') = E. Therefore f/fT = ch? for some c € K
and h € K(C). Scaling f and fT appropriately we may assume ¢ = 1. The quadric
intersections D and D' are now isomorphic as curves (indeed as gg—coverings of C)
but have different hyperplane sections H and H.

Theorem 7.4. The divisor H — H' represents the class of T' in Pic’(D) = E'.

Proor: Let m: D — C' be the degree-2 covering as above. By Theorem 7.2 we
have

H ~7*a; ~7*a; and H' ~ 7¥a3 ~ 7¥ay.
Let E[2] = {0,T, S, Sy} with a; — as representing the class of S; in Pic’(C) = E.
By Theorem 7.3 there is a commutative diagram

Pic®(C') —— Pic’(D)
E— ~F
Then H — H' ~ 7*(a; — a3) represents the class of $S; = 7" in Pic’(D) = E'. O
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We will need explicit equations for the isomorphism between the quadric inter-
sections D and DT. We compute these as follows. The 2-uple embedding D C P*
is defined by 8 quadratic forms, chosen so that together with the equations for D
they give a basis for the space of all quadratic forms on P2. Since 2H ~ 2HT the
2-uple embeddings of D and D' are related by a change of co-ordinates on P7. We
now explain how to choose 8 quadratic forms for D in a particular way, so that
when we repeat for DF, the change of co-ordinates needed on P7 is trivial.

Since m : D — (' is a degree-2 Galois covering, the 8 quadratic forms may
be given as 4 “even” forms ri,...,7r4 and 4 “odd” forms si,...,s4. The even
forms ry,...,ry are those giving the morphism 7 : D — C' in Theorem 7.2. The
quadratic form ¢ computed in (24) is an example of an odd form. Further odd
forms may be computed as follows.

Once we have found one pushout form f on C| it is easy to find more by
computing Riemann-Roch spaces. (With the refinements in Section 9 it turns out
that we have this information anyway.) Let f; be another pushout form, scaled so
that ff; = h? mod I(C) for some quadratic form h;. Since 7*(f;/z?) is a square
in K(D), and D is projectively normal, there is a quadratic form s; such that

(25) fi(r1,...,ry) =s; mod I(D).
It follows by (24) and (25) that if we scale the forms s; appropriately then
hi(Tl,...,T4)ESZ’t mod [(D)

We use this last equation to solve for s; by linear algebra. Repeating for pushout
forms f1,..., fi gives odd forms s1, ..., s, are required.

We now have quadric intersections D C P? and D' C P? and an isomorphism
between their 2-uple embeddings, given by a change of co-ordinates on P7. We
say that D and DT are companion quadric intersections. Theorem 7.4 shows that,
under this change of co-ordinates, the square of a linear form on D' corresponds
to a pushout form on D. This is exactly what we need for the next stage of the
descent. N

The results of this section may be applied as follows. Let C'3 be the 2¢-covering
of E considered in Section 5. Then Cj satisfies the Galois hypothesis (19). So we
may construct a ¢-covering of Cs (and hence a 4-covering over F) in the form of
companion quadric intersections Cy and C’l . The construction of C; was already
described in Section 5. However the advantage of also computing C’l, is that the
square of a linear form on C’l corresponds to a pushout form on C;. We can
then compute the pairing ©4 : Sy x Sj — Fy in Theorem 2.1. In conclusion, we
can compute S, and S/ for m <5 by a method whose global part only involves
solving conics over K, and over quadratic extensions of K.
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8. EXTENSION TO 8-DESCENT

Suppose that E has full rational 2-torsion, say
E(K)[Q] = {07T1,T27T3}-

Let C C P? be an everywhere locally soluble 4-covering of E. Repeating the
method of Section 7 three times, gives pushout forms f; € Klzy,...,24] on C
with div(f;/2?) = 2b; where b; represents the class of T} in Pic’(C) = E. The
rational functions f;/z? are now exactly those required to compute the Cassels-
Tate pairing
SWE/K)x SP(E/K) - Q/Z

following Swinnerton-Dyer’s generalisation [SD] of the method of Cassels [C3].
This allows us to compute the pairing ©F : Sy x S{ — Fy and hence its kernel Sj,.
By Lemma 2.2 the upper bound

rank F(K) < dim S5 + dim S§ — 2

is the same as that obtained by 8-descent on E.
The following lemma, which we state and prove using the notation and conven-
tions of Section 4, describes the necessary bookkeeping.

Lemma 8.1. Let oy, 1 € S5. Suppose ay, By € Sel(4) and [y € Sel(2) with
ay — a1 and By By — (1. Then

(i) There exists & € Sy with ©3(&,n) + (Ba,n) =0 for alln € Ss.

(ii) For any & satisfying (i) we have

(26) Os(ay, f1) = (4, & + Ba).

PROOF: Let (35 € Sel(5) with 85 — (. The images of 5 in Sel(4) and Sel(2) are
¢ + B4 and & + By for some & € Sel(3) and & € Sel(1) with £ +— €. Then £ € S;
and for any n € S3 we have

©3(&,m) + (Ba,m) = (' + Ba,m) = 0.

Moreover Os(aq, 1) = {(aq,fs5) = (a4, & + 52). To complete the proof we must
show that if we replace £ by & + 7, for some 7 € S, then the formula (26) is
unchanged. However if 74 € Sel(4) with 4 — 71 then (ay4,v1) = {(a1,74) = 0
where for the second equality we use that a; € Ss. O

9. RESTRICTION OF SCALARS

Our methods so far rely on being able to solve conics over K, and over quadratic
extensions of K. In this section we show how to replace the latter problem with
that of solving a quadric surface over K. This is to our advantage since, in the
case K = Q, there is a particularly efficient method due to D. Simon [S2] for
solving rank 4 quadratic forms.
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Let I'; be a conic defined over a quadratic extension L/K. The restriction of
scalars I' = Resy kI is a degree 8 del Pezzo surface in ResL/KIP’2 C P8. Alter-
natively, by passing to an affine piece first, one gets that I' is birational to an
intersection of two quadrics in P* with 4 singular points at infinity. We show
however that for the conics arising in our descent calculations, we can write I" as
a quadric surface in P3.

Let E/K be an elliptic curve with a fixed rational 2-torsion point 7. Suppose C
and C' are companion quadric intersections with respect to 7. By this we mean
that C' and CT are isomorphic as curves, but the difference of their hyperplane
sections represents 7' in Pic’(C) = E. Let I'y,...,I'; be the conics associated to
C, ordered as specified at the start of Section 7. Suppose we are in the non-split
case, i.e. Iy and I'; are Gal(L/K)-conjugates. Let I' = Resy/kI'1. As described
in Lemma 7.1, each P € I gives rise to a pushout form on C. Since C' and Cf
are companion quadric intersections, this in turn corresponds to a linear form on
CT. There is therefore a natural map I' — (P3)V where (P?)V is the dual of the
ambient space for CT.

If {Q = 0} C P? is a non-singular quadric surface then mapping each point to
its tangent plane gives the dual quadric surface {Q’ = 0} C (P3)V. The symmetric
matrix representing ()’ is the inverse of that representing Q).

Theorem 9.1. The image of T' — (P*)V is a non-singular quadric surface, and is
dual to one of the quadrics in the pencil defining CT.

PRroOF: For the proof we are free to extend our field K and make changes of
co-ordinates. We may therefore suppose that C' and C' are the images of E :
y?> = x(2? + ax + b) under the linear systems [4.0] and |3.0 + T'| where T' = (0, 0).
Explicitly

L1y = T
C = 1;1 ? c p3
x5 = To(xy + axy + bxy)

is the image of F under (zy: 29 :23:14) = (1:2:y:2?%), and

L1Tl3 = Lok
(27) CT:{ls o }CIP3

T3T4 = 25 + awi Ty + bl

is the image of E under (1 : zo:x3:24) = (1:x:y:y/x).

Let P = (a1 :ag:0:ay) and P, = (0: 35 : B3 : B4) be points on the rank 3
quadrics defining C. The tangent planes at these points are defined by linear
forms

El = \4T1 — 20[21‘2 + 1Ty,

Uy = (By + aBa)xs + Bo(xy + azy + bxy) — 263x3.
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Using the relations ajay = a3 and 2 = B5(84 + af2) we find that
O‘4B2€1(17 z,Yy, $2)£2(1, x,y, 12) = m(17 €, Y, y/l’)2$
in K(E), where

m(xy,...,24) = uf3x1 — afs22 + ooy — ayfary.

The map I' — (P3)Y is therefore given by

(P, Py) = (a4fls 1 —aafB3 0 cpfBa © —uyf32).

The image of this map has equation y,y3 = y2y4. This is dual to the first of the
quadrics in (27). O

Remark 9.2. The binary quartic associated to CT defines a double cover of P!,
again with Jacobian E. Translation by the 2-torsion point 7" induces an involution
of P'. The quadric in the pencil defining CT arising in Theorem 9.1 corresponds
to one of the fixed points of this involution. (The other fixed point corresponds
to the quadric that arises when we try to solve I'; and I'y.) This may be seen by
inspection of the above proof. Indeed the binary quartic associated to (27) is

F(u,v) = u* + 2au*v® + (a® — 4b)v*

and the involution induced by translation by 7" is (u : v) +— (u : —v). The fixed
point (u :v) = (1:0) then corresponds to the first of the quadrics in (27).

Solving the quadric surface in Theorem 9.1 gives a linear form on CT. Suppose
we know the change of co-ordinates relating the 2-uple embeddings of C' and CT.
This then converts the square of our linear form on CT to a pushout form f on C.
We write CN{f = 0} = 2b where b is a degree 4 effective divisor. By construction,
the push-forward of b via 14 : C' — I'y contains an L-rational point in its support.
We can then solve for P, € I'y (L) as required.

To make use of the above refinements, we must arrange that at each stage of
the descent, our covering curve is represented by a pair of companion quadric
intersections, and that we know the change of co-ordinates on P’ relating their
2-uple embeddings.

Let C : y* = f(I,m)g(l,m) be the g/b\—covering of E we called (' in Section 5.
Then C is a double cover of P! with fibre F and ramification points P, ..., Py, say
with P;, P, corresponding to the roots of f, and Pj, P, corresponding to the roots
of g. We have 2P, ~ F and P, + P, + P;+ P, ~ 2F. Moreover P, — P, ~ P; — P,
represents the class of 7" in Pic’(C) = E’. We now let C; and C’lT be the images
of C under the linear systems |2F| and |F + P, + P»|. Explicitly

T1T3 = Ty 3
Cl = 9 9 9 cP
ry = &y +aviws + (b/&)xs
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m) :y:g(l,m) : h(l,m)), and
T1Ty4 = T3
cl = { } c p
f(z1,12) = g(x3, 24)
is the image of C' under

(1122t @3 wg) = (yloym: f(Lm)l: f(I,m)m)
= (g(I,m)l : g(I,m)m : yl : ym).
It is straightforward to work out the change of co-ordinates relating the 2-uple
embeddings of C; and C’I .

Starting with C; and C’I we apply our method to compute a ¢-covering of C'
(and hence a 2-covering of F) in the form of companion quadric intersections
Cy and Cg . The curve C5 is the same as that in Section 5, and as there it is
computed by solving conics over K. To compute C’g we must solve the quadric
surface f(x1,x2) = g(xs, x4) that appears as the second equation for CI. Since we
already solved the conics f(I,m) = &s? and g(I,m) = &t? in Section 5, we can
read off a solution “for free”. R N

At the next stage we compute a ¢-covering of Cy (and hence a 2¢-covering of
E) in the form of companion quadric intersections C5 and Ci. The curve Cj is
the same as that in Section 5, and as there it is computed by solving conics over
K. However to compute C’; we must solve a quadric surface over K. In the final
stage, we compute a ¢-covering of C5 (and hence a 4-covering of E) in the form
of companion quadric intersections Cy and Cl. To compute each of these we must
solve a quadric surface over K.

This is the limit of our method since Cj does not satisfy the Galois hypothe-
sis (19). Indeed the singular fibres in the pencil defining Cy are in general defined
over a degree 4 extension of K. Solving a conic over a degree 4 number field is
not practical for the examples we have in mind. However if we could solve such

conics, then we could compute a 2-covering of Cy (and hence an 8-covering on F)
as described in [St].

is the image of C under (x; : x5 : 3 : x4) = (f(U,

10. EXAMPLES

We have written a program in Magma [BCP] for performing the higher descents
described in this paper, for elliptic curves over QQ with a rational 2-torsion point.
The Magma functions we use for solving quadratic forms of ranks 3 and 4 over Q
are based on [S1], [S2]. See also [CR] for the rank 3 case. Our program is available
in Magma (version 2.21) as the function TwoPowerIsogenyDescentRankBound.

We have used our program to help search for curves of large rank in certain
families of elliptic curves. For example, we found the first example of an elliptic
curve E/Q with F(Q) & Z/12Z x Z*. We also found 10 new examples of elliptic
curves E/Q with E(Q) & Z/27 x Z/8Z x 7Z?, including one where every point of



24 TOM FISHER

infinite order has canonical height greater than 100. These examples are listed on
Dujella’s website [D]. We have also contributed to a project run by Mark Watkins
[W+], searching for congruent number elliptic curves of large rank.

The main reason we need higher descents for these searches is that we would
otherwise be swamped by examples which, while appearing to be candidates for
large rank, turn out instead to have large 2-primary part of III. The examples
we have chosen to present in this section are therefore elliptic curves which our
program was quickly able to show do not have large rank.

We do not give details of every step in computing the covering curves and
pushout functions. However the answers may be checked as follows. Each of our
covering curves is either a double cover of P!, with equation y* = g(z, z) where g is
a binary quartic, or a quadric intersection in P2. In both cases classical invariant
theory gives a formula for the Jacobian. In the second case, we may represent
the quadric intersection C; C P? by a pair of 4 X 4 symmetric matrices A and
B. Then C, is a 2-covering of y? = g(x, z) where g(z,y) = det(Az + By). At
each stage our program makes changes of co-ordinates to simplify the equations
for these covering curves, using the algorithms in [CFS]. In checking the examples,
it is useful to note that there are algorithms implemented in Magma for testing
equivalence of binary quartics (see [CF]) and quadric intersections (see [F2]).

The pushout functions on y* = g(z, 2) take the form f = (y—X2(z, 2))/2* where
Ay is a binary quadratic form. The pushout functions on a quadric intersection
take the form f = \y(x1,...,24)/2? where \4 is a quadratic form. We say that y —
Xo(x,2) and A\y(xq,...,x4) are pushout forms. There are several ways of checking
that div(f) = 2b for some divisor b. For example in Magma one could compute
resultants, or use Groebner bases, or use the function field machinery. If f is
not a constant times the square of a rational function, and the Jacobian has only
one rational 2-torsion point 7', then such a calculation proves that f is a pushout
function corresponding to 7.

Example 10.1. Let £/Q be the elliptic curve y* = z(x? + az + b) where

a = 91502230365284038,
b = 489792722057841784540058275212361.
This is an example with F(Q)iors = Z/127. There is a 2-isogeny ¢ : E — FE’
where E’ has equation y? = x(2? + d'z + V) and o’ = —2a, V/ = a* — 4b. With
notation as in Section 2, we find that
S; =Sy = S5 = (15,73,87,231,28619) C Q*/(Q*)?,
St =8, = S, = (—272196179) C Q*/(Q*)2.
Therefore rank F(Q) < 4. To improve this upper bound for the rank we compute
the pairing O3 : S3 x S3 — Fs.
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Let & = 15 x 446602. Parametrising a conic, we find binary quadratic forms
f(1,m) = 1953468178651% — 4905168400681m + 33576198052m?,
g(l,m) = —14730711% 4 7386682lm — 925501 1m?,

h(l,m) = 348523798338106(20671%> — 10091lm + 12314m?)

satisfying & f2 + d'fg + (V//&1)g? = h®. Parametrising two further conics, gives
binary quadratic forms

pi(c,d) = 65928¢? + 582550cd + 115955442,
p2(c, d) = 13590¢% + 429375¢d — 202059d,
ps(c, d) = 8585676(2375¢% — 6774cd — 71700d?)
and
q1(0,%) = 8190% + 17176+ + 3725¢%,
q2(0,%) = 3290% + 7176¢ + 15109)°,
q3(0,v) = 11165(20% + 20+ — T¢?)
satisfying f(p1,p2) = p3 and g(q1,q2) = ¢5. It may then be checked that the curve
Oy = {]91(6, d) = Q1(9,¢)} c P
p2(c,d) = q2(0,v)

is everywhere locally soluble. This confirms that £ € S3. (For the purposes of
presenting this example, we adjusted the parametrisations so that & = &3 = 1.)

By computing companion quadric intersections Cg and C’; as described in Sec-
tion 9, we find that C5 has pushout form

e, d, 0,v) = 522272234c* — 24659265¢d — 173984504
— 26417516% — 552455901) — 96706882

Let n € S3. By the formula for the Cassels-Tate pairing in Section 3, we have
O©3(&1,n) = >, (A(Py),n)y where P, € C5(Q,) and (, ), is the Hilbert norm
residue symbol QX /(QX)? x QX/(QX)? — F,. The bad primes of E are

S =1{2,3,5,7,11,29,71,73,127,28619, 30187}.

At all primes p ¢ S, we find that C3 has good reduction mod p, whereas the
two equations for C3 together with A\ are linearly independent mod p. These
primes therefore make no contribution to the pairing. Since n € (QX)? for all
v € {71,127,30187,00} there is also no contribution from these places. At each
of the remaining primes p we find a local point P € C5(Q,) with F(P) = u,
mod (Q;)2 where u; = 5 and v, is a quadratic non-residue for p odd. Therefore
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O3(&1,m) = w(n) (mod 2) where w(n) is the number of prime divisors of 7. (We
choose a representative modulo squares so that 7 is a square-free integer.) This
gives the first row in the following table. Repeating for & running over a basis for
Ss we find that O3 : S3 x S3 — Fy is given by

15 73 87 231 28619
15 0 1 0 1 1

73 1 0 1 0 0
87 0 1 0 0 1
231 |1 0 0 O 1
286191 0 1 1 0

This matrix has rank 4. Therefore dim Sy = 1 and rank £(Q) = 0. By Remark 2.3
the 2-primary parts of III(£/Q) and III(E'/Q) are (Z/4Z)* and (Z/27)*.
Example 10.2. Let £/Q be the elliptic curve y* = z(x? + az + b) where

a = —802175537664068731998722,

b = 160480561352940413879437222902216664489852408321.

This is an example with E(Q)ors = Z/27 x Z/8Z. Let ¢ : E — E' be the 2-
isogeny with kernel generated by T = (0,0). As subgroups of Q*/(Q*)? we find
that S, = Sy = (—10,5574) and

ST = (3841, 920641, 262404961, 289572953761, 9289, 6049, 31441),
S5, = (3841,920641, 262404961, 289572953761, 9289).

Therefore rank £(Q) < 5. Next we compute Oy : Sy x S5 — Fy. The elements
¢ = —10 and 7, = 5574 in S; = S®(E/Q) lift to 2-coverings of £’ given by

Co = {y* = Mi(x,2)* + 101 (2, 2)) }
Dy = {y* = Na(x, 2)* — 5574 (x, 2)*}
where
(1, 2) = 341696479062308(2? — 102%) + 3516978476959251 22,
(2, 2) = 21538029761160(x? — 102%) + 158658854157270x 2,
Ao, 2) = 1335842866662 (x> + 55742%) + 14399374201035437 2,
po(, 2) = 17631567180(x* + 55742%) + 18855731460270z2.

It may be checked, using the formulae in [CF], that Cy and D, do indeed corre-
spond to & and 7;. Since Cy and Dy are everywhere locally soluble, this confirms
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that & and n; are in Sy, Now y — Ai(z, z) and y — A\a(x, 2) are pushout forms on
C5 and D,. Evaluating these at local points, and then computing sums of Hilbert
norm residue symbols, we find that O, : Sy x S, — Fy is given by
‘ 3841 920641 262404961 289572953761 9289
—-10| O 0 0 0 1
55741 0 0 0 0 0

We further find that O3 and ©f are identically zero. Therefore S5 = S, = (5574)
and

Sy = Sy = (3841, 920641, 262404961, 289572953761).

Using the methods in Sections 7 and 9 we compute an everywhere locally soluble
2-covering Dy of Dy (and hence 4-covering of E’) with equations

9055x% 4+ 1396192129 + 394387 x w3 + 4702721204 — 94269x§
— 2344221513 + 2664387974 + 12775025 — 1307752314 — 13715023 = 0,
25517127 — 9611852129 + 297383z 25 + 2241912114 + 15202823
+ 4617453913 — 59967T024 + 37015875 — 3503502324 — 19893825 = 0.
We find that D4 has pushout form
A = 24714928507642862% — 5731480787301752, 25 + 136617115364660z 25
— 10437695394601192 24 — 33896500821067523 + 46036721190885x523
+ 1057225484721135m924 — 98967842471681923 + 2171876872481818x314
— 1169960121148148x73.
Using this we compute that ©4 : Sy x S — Fy is given by

\3841 020641 262404961 289572953761
5574\ 1 1 0 1

Therefore S; = 0, dim S{ = 3 and rank £(Q) < 1. If rank £(Q) = 1 then by
Remark 2.3 the 2-primary parts of III(F/Q) and III(E'/Q) are (Z/27)* x (Z/AZ)*
and (Z/27)* x (ZJAZ)*.

Example 10.3. Let E/Q be the elliptic curve y* = 23 — d*x where
d =743114132612994 = 2 x 3 x 19 x 953 x 1427 x 2137 x 2243.

This was one of the candidates in [W+] for a congruent number elliptic curve of
rank 6. Let ¢ : £ — E’ be the 2-isogeny with kernel generated by T" = (—d,0).
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We find that

S; = Sy = S5 = Sy = (1906,2137) C Q*/(Q*)?,

S = 8L =S5 =5 = (2,57,953,2137,4281,6729) C Q*/(Q*)2.
Therefore rank £(Q) < 6. (We note that 1906 = 2 x 953, 57 = 3 x 19, 4281 =
3 x 1427 and 6729 = 3 x 2243.) The elements 1906 and 2137 in S®)(E/Q) lift to
4-coverings of E' with equations

118823 + 1244135 + 7327125 + 55997174 — 153023

— 3687momw3 + 28247974 — 292875 + 17807374 + 488627 = 0,

3298z7 — 7382z 79 + 38817123 — 34702174 + 2025

4 2136z9x3 + 71472024 + 15171:§ — 4464x314 — 24551:?1 =0,

and

6827 + 41621 + 4227173 + 13723124 + 40125

+ 11462573 + 11542974 + 47525 + 15287374 — 2366275 = 0,
1886927 — 138707 75 — 14599773 — 2402774 + 2322775

+ 15142x5x3 — 16292924 — 122501:§ + 6366314 + 4913xi =0.

These have pushout forms

A = 2801171533047 + 6273765555721175 — 5348524205481 73
— 243764823891, 24 + 783095083423 — 165910883299z573
+ 2553035944262574 — 57495675720723 — 9235975683022
— 39816186511527,

and

A = 302992919273 + 1652254362179 — 5540845927 23 — 3000363446274
+ 25981670925 — 1891629098723 + 2507867060z924 — 133779714723
+ 5722693121374 — 134892092517

Using these we compute that O, : Sy x S} — Fy is given by
‘ 2 57 953 2137 4281 6729

1906 [0 1 1 0 0 0
213710 0 1 0 1 0
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This matrix has rank 2. Therefore S5 = 0, dimS;, = 4 and rank £(Q) < 2.
Searching for rational points on 2-coverings of F, and on 2-coverings of elliptic
curves isogenous to £, we find that F(Q) has independent points of infinite order

Py = (378998487378128086417/42%, 7378254260469086949865651299481 /42%),

Py = (4906543485739785817699690091987274941361019066993 /76947716 \
4003016122, 480965296472375270212047079501479961953600924
7328327459226000929166668023/76947716400301612?).

Therefore rank F(Q) = 2. By Remark 2.3 the 2-primary parts of III(£/Q) and
I(E’'/Q) are isomorphic to (Z/4Z)*. Similar calculations show that the other

two elliptic curves in the isogeny class have 2-primary parts of III isomorphic to
(Z/AZ)? x (Z/8Z)* and (Z/8Z)*.
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