MINIMISATION OF 2-COVERINGS OF GENUS 2 JACOBIANS
TOM FISHER AND MENGZHEN LIU

ABSTRACT. An important problem in computational arithmetic geometry is to
find changes of coordinates to simplify a system of polynomial equations with
rational coefficients. This is tackled by a combination of two techniques, called
minimisation and reduction. We give an algorithm for minimising certain pairs
of quadratic forms, subject to the constraint that the first quadratic form is
fixed. This has applications to 2-descent on the Jacobian of a genus 2 curve.

1. INTRODUCTION

1.1. Models for 2-coverings. We work over a field K with char(K) # 2. Let C
be a smooth curve of genus 2 with equation y* = f(x) = fea+ fs2°+. ..+ fix+ fo
where f € K[z] is a polynomial of degree 6. We fix throughout the polynomial

(1) G = 212234 — Z13204 + 223214
The following two definitions are based on those in [FY, Section 2.4].
Definition 1.1. A model (for a 2-covering of the Jacobian of C) is a pair (A, H)
where A € K* and H € K|[z19, 213, 223, 214, 224, 234] 1s a quadratic form satisfying
det(\aeG — H) = =X f; 1 f(z)

where G and H are the matrices of second partial derivatives of G and H.

We identify the space of column vectors of length 6 and the space of 4 x 4
alternating matrices via the map

212

213 0 z12 213 214

293 0 223 2
A:z= —

214 0 23

294 0

234
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so that G(z) is the Pfaffian of A(z). Then each 4 x 4 matrix P uniquely determines
a 6 x 6 matrix A?P such that
PA(2)PT = A((A*P)z)

for all column vectors z. For F' € K[zy,...,z,] and M € GL,,(K) we write F'o M
for the polynomial satisfying (F' o M)(x) = F(Mx) for all column vectors x. The
Pfaffian Pf(A) of an alternating matrix A has the properties that Pf(A4)? = det(A)
and Pf(PAPT) = (det P) Pf(A). The latter tells us that G o A>P = (det P)G. It
is also not hard to show that det(A?P) = (det P)3.

Definition 1.2. Two models are K-equivalent if they are in the same orbit for
the action of K* x PGL4(K) via

) ¢ 2
(e, P): (\ H) (c)\, —SH oA p),

It may be checked using the above observations that this is a well defined (right)
group action on the space of models (for a fixed choice of genus 2 curve ().

The following remark summarises part of [F'Y, Section 2]. It serves to motivate
Definitions 1.1 and 1.2, but otherwise is not needed for what follows.

Remark 1.3. Assume for simplicity that f is irreducible and let L = K () where
6 is a root of f. If K is a number field then, as explained by Stoll and van Luijk
[SvL], the 2-Selmer group of J = Jac C' is naturally a subgroup of

{(&,m) € L* x KX|N/k(§) = m?}
{(rv?, r3Np g (v))|r € K*,v e L*}
Starting with a 2-Selmer element (£, m), we define quadratic forms Qo, Q1 ..., Q5 €
Klug,uy,...,us| by
E(ug +urf + ..+ us6°)? = Qo + Q10+ ... + Qs6°.
Then the matrices of second partial derivatives G and H of the quadratic forms
G =Qs5/2 and H = (fsQ4 — f5Q5)/(2fs) satisfy
det(xG — H) = — f; 'm? f(2).

,H:

It may further be shown (using the local conditions defining the 2-Selmer group,
and a suitable local global principle) that G has a 3-dimensional isotropic subspace.
We may therefore put G in the form (1) using a change of basis matrix with
determinant m. We apply the same transformation to H. Our 2-Selmer group
element (£, m) is now represented by the K-equivalence class of the model (1, H).
Formulae for going the other way, that is, converting a model (A, H) back into a
pair (£, m), are given in [FY, Section 2.5].
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We may associate to each point (z; : 9 : 23 : 4) € P? a 3-dimensional isotropic
subspace for G spanned by the rows of the matrix

0 0 Ty 0 —x3 a9

0 —=z 0 T 0 —x

(2) A _ 4 3 1
Ty 0 0 —XT2 T 0

—T3 T —T 0 0 0

Let A = AGAT and B = AHA”. By construction A is zero. The GCD of the 3 x 3
minors of B is a quartic form defining a twisted Kummer surface K¢, C P*. The
2-covering of J corresponding to (£, m) is the double cover J¢,,, — K¢, given by
setting any leading 2 x 2 minor of B equal to — fg times a square.

Remark 1.4. Our fixed quadratic form (1) differs by a sign choice from that in
[FY]. The convention there (following [BG, SW]) was that the matrix G should
have all 1’s on the antidiagonal, whereas here it is more convenient that GG is the
Pfaffian. We have switched the sign of the 5th column of (2) accordingly. The
change is otherwise not important.

Example 1.5. Let C'/Q be the genus 2 curve given by y? = f(z) where
f(z) = —282° + 842° — 3232 + 5062° — 4712% + 2322 — 60.
One of the elements of the 2-Selmer group of Jac C' is represented by the model
(A1, Hy) = (42336, 2512822, + 24480215215 + 14031219203 + 15408215214
+ 13959219294 + 25407219234 + 2232253 — 16407213203 + 4464213214
— 22815213294 + 1161213234 + 232925, + 15282293214 + 7687223204
— 19547293234 — 230427, — 17838214204 — 22590214234 — 13423,
+ 41978204234 — 9958423,).
Applying the transformation (¢, P) with ¢ = 1/3024 and
2 -19 2 5
4 4 =31 38
2 2 37 40
-7 =7 =14 7

(3) pP=

gives the Q-equivalent model
(A2, Hy) = (14, 210203 + 2219214 — 219204 + 8212234 — 7255 — 13213223
— 12213214 — 15213224 — 20213234 — 5253 — 2223214 — 25223224

— 59223234 — 42%4 — 14214224 — 18214234 + 17234 - 37224234 — 11234)
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Remark 1.6. This is a deliberately small example, chosen to illustrate our def-
initions and algorithms. As discussed in Remark 1.3, converting a Selmer group
element to a model involves solving a local global problem. This means that the
models we first compute (analogous to (A, H;) in Example 1.5) can have very
large coefficients.

1.2. Relation to previous work. The change of coordinates (3) was found by
a combination of two techniques, called minimisation and reduction. Minimisa-
tion seeks to remove prime factors from a suitably defined invariant (usually the
discriminant). The prototype example is using Tate’s algorithm to compute a
minimal Weierstrass equation for an elliptic curve. Reduction seeks to a make a
final unimodular substitution so that the coefficients are as small as possible. The
prototype example is the reduction algorithm for positive definite binary quadratic
forms.

Algorithms for minimising and reducing 2-, 3-, 4- and 5-coverings of elliptic
curves are given by Cremona, Fisher and Stoll [CFS], and Fisher [F1], building
on earlier work of Birch and Swinnerton-Dyer [BSD] for 2-coverings. Algorithms
for minimising some other representations associated to genus 1 curves are given
by Fisher and Radicevié¢ [FR]. A general framework for minimising hypersurfaces
is described by Kollar [K], and this has been refined by Elsenhans and Stoll [ES];
in particular they give practical algorithms for plane curves (of arbitrary degree)
and for cubic surfaces. Algorithms for minimising Weierstrass equations for general
hyperelliptic curves are given by Q. Liu [L].

In this paper we give an algorithm for minimising 2-coverings of genus 2 Ja-
cobians. These are represented by pairs of quadratic forms (see Definition 1.1)
where the first quadratic form is fixed. We only consider minimisation and not
reduction, since the latter is already treated in [FY, Remark 4.3].

Our minimisation algorithm plays a key role in the work of the first author and
Jiali Yan [FY] on computing the Cassels-Tate pairing on the 2-Selmer group of
a genus 2 Jacobian. Indeed the method presented in loc. cit. for computing the
Cassels-Tate pairing relies on being able to find rational points on the correspond-
ing twisted Kummer surfaces (see Remark 1.3). Minimising and reducing our
models for the 2-Selmer group elements simplifies the equations for these surfaces,
and so makes it more likely that we will be able to find such rational points.

Earlier works on minimisation (see in particular [CFS]) considered both minimi-
sation theorems (i.e., general bounds on the minimal discriminant) and minimi-
sation algorithms (i.e., practical methods for finding a minimal model equivalent
to a given one). For 2-coverings of hyperelliptic Jacobians, some minimisation
theorems have already been proved; see the papers of Bhargava and Gross [BG,
Section 8], and Shankar and Wang [SW, Section 2.4]. We will not revisit these
results, as our focus is on the minimisation algorithms.
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Remark 1.7. As noted in [CF, Lemma 17.1.1], [FH, Section 19.1] and [FY, Sec-
tion 2.4] the quadratic form G = 219234 — 2132024 + 293214 has two algebraic families
of 3-dimensional isotropic subspaces. (One of these is specified in (2).) Moreover,
the transformations considered in Definition 1.2 do not describe the full projective
orthogonal group of G, but only the index 2 subgroup that preserves (rather than
swaps over) these two algebraic families. Restricting attention to this index 2
subgroup (when defining equivalence) makes no difference to the minimisation
problem (see Remark 3.2), but is important in the context of 2-descent, since it
means we can distinguish between the pairs (£, m) and (£, —m) in Remark 1.3.

Data availability statement. Some Magma [BCP] code accompanying this ar-
ticle, including an implementation of our algorithm, is available from [F2].

Acknowledgements. This work originated as a summer project carried out by
the second author and supervised by the first author. We thank the Research in
the CMS Programme for their support.

Conflict of interest statement. On behalf of all authors, the corresponding
author states that there are no conflicts of interest.

2. STATEMENT OF THE ALGORITHM

We keep the notation of Section 1.1, but now let K be a field with discrete
valuation v : K* — Z, valuation ring Of, uniformiser 7 (i.e., v(w) = 1), and
residue field k. If F' is a polynomial with coefficients in K then we write v(F') for
the minimum of the valuations of its coefficients.

Definition 2.1. A model (A, H) is integral if v(H) > 0. It is minimal if v(\) is
minimal among all K-equivalent integral models.

Using the action of K* (see Definition 1.2) to clear denominators it is clear
that any model is K-equivalent to an integral model. By Definition 1.1 we have
v(A) = (v(fs) —v(fi))/(6 —i) for all i = 0,1,...,5. We cannot have fy = ... =
f5 = 0 since C is a smooth curve of genus 2. Therefore v(\) is bounded below,
and minimal models exist.

It also follows from Definition 1.1 that if v(fs) = v(disc f) = 0 then any inte-
gral model (A, H) has v(\) > 0. Therefore, in global applications, minimality is
automatic at all but a finite set of primes, which we may determine by factoring.

Returning to the local situation, there is an evident recursive algorithm for
computing minimal models if we can solve the following problem.
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Minimisation problem. Given an integral quadratic form H € Og|z19,. .., 234]
determine whether there exists P € PGL,(K) such that

|
H o AZP
”(detp oN )>O

and find such a matrix P if it exists.

Our solution to this problem (see Algorithm 2.4) is an iterative procedure that
computes the required transformation as a composition of simpler transformations.
These simpler transformations are either given by a matrix in GL4(Of), in which
case we call the transformation an integral change of coordinates, or given by one
of the following operations, corresponding to P = Diag(1, 1,1, ), Diag(1, 1, m, )
or Diag(1,m, m, 7).

Definition 2.2. We define the following three operations on quadratic forms H:

e Operation 1. Replace H by %H(Zlg, 213, 293, T214, T4, TZ34),
e Operation 2. Replace H by H (7 219, 213, 223, 214, 224, T234),
e Operation 3. Replace H by %H(Zlg, 213, T 223, 214, T4, TZ34),

In this section we outline our algorithm. For further details, including how to
find the required integral changes of coordinates, see Section 3.

The following subalgorithm suggests some transformations that we might try
applying to H. In applications W C k% will be a subspace determined by the
reduction of H mod 7. We write eqa, €13, €23, €14, €24, €34 for the standard basis of
]{?6, and 1dent1fy the dual basis with 2192, 213, 223, 2145 224, 234-

We write G, H € k[z1s, . .., z34) for the reductions of G, H mod .

Algorithm 2.3. (Subalgorithm to suggest some transformations.) We take as
input an integral quadratic form H € Og|z12, ..., 234] and a vector space W C k°
that is isotropic for G. When we make an integral change of coordinates we apply
the same transformation (or rather its reduction mod 7) to W. The output is
either one or two transformations P € PGL,(K).

o If dim W = 1 then make an integral change of coordinates so that W =
(e12). Then apply Operation 2.

e If dimW = 2 then make an integral change of coordinates so that W =
(€12, €13). Then apply either Operation 1 or Operation 3.

e If dim W = 3 then either make an integral change of coordinates so that
W = (e1s, €13, €23) and apply Operation 1, or make an integral change of
coordinates so that W = (ejs, €13, €14) and apply Operation 3.

If char(k) # 2 then the rank and kernel of H are defined as the rank and kernel
of the corresponding 6 x 6 symmetric matrix. If char(k) = 2 then we assume that
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k is perfect, so that

g OH _  _0H _

.= 0
0212 3234

defines a k-vector space, which we call ker H. We then define

rank H = 6 — dim ker H.

Algorithm 2.4. (Minimisation algorithm.) We take as input an integral qua-
dratic form H € Og/[z19, . .., 234]. The output is TRUE/FALSE according as whether
there exists P € PGL4(K) such that

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

1 2

U(detPHO/\ P) > 0.
Compute r = rank H. If » = 0 then return TRUE. Otherwise, if we have
visited this step the first time and returned to it a further 4 times, then
return FALSE.
If r = 1 then try making an integral change of coordinates so that H = 22,.
If the reductions of G and 7 'H(z1,...,204,0) mod 7 have a common
3-dimensional isotropic subspace W C ker H, then (since running Algo-
rithm 2.3 on any such subspace W gives v(H) > 0) return TRUE.
If » = 2 then try running Algorithm 2.3 on each codimension 1 subspace
W C ker H that is isotropic for G. (There are at most 2 such codimension 1
subspaces; see Remark 3.4.) If one of the suggested transformations gives
v(H) > 0 then return TRUE.
If » € {1,2} and H factors as a product of linear forms defined over k,
say H = (1(5, then for each i = 1,2 try making an integral change of
coordinates so that ¢; = z34 and then apply Operation 2. If at least one of
these transformations gives v(H) > 0 then select one with rank H as small
as possible and go to Step 1.
If r € {2,3,4,5} then try running Algorithm 2.3 on W = ker H if this
subspace is isotropic for G, and otherwise on each codimension 1 subspace
W C ker H that is isotropic for G. (There are at most 2 such codimension 1
subspaces; see Remark 3.4.) If at least one of the suggested transformations
gives v(H) > 0 then select one with rank H as small as possible and go to
Step 1.
Return FALSE.

There is no difficulty in modifying the algorithm so that when it returns TRUE
the corresponding transformation P € PGL4(K) is also returned. In Section 3
we give further details of the implementation, in particular explaining how we
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make the integral changes of coordinates, and giving further details of Step 2. In
Sections 4 and 5 we prove that Algorithm 2.4 is correct.

3. REMARKS ON IMPLEMENTATION

In Algorithms 2.3 and 2.4 we are asked to try making various integral changes
of coordinates. It is important to realise that we are restricted to considering ma-
trices of the form AP for P € GL4(Of), and not general elements of GLg(O).
Therefore some care is required both in determining whether a suitable transfor-
mation exists, and in finding one when it does.

Since the natural map GL4(Ok) — GL4(k) is surjective, we may concentrate
on the mod 7 situation here. Notice however that in the global application with
K = Q and v = v, it is better to use the surjectivity of SL4(Z) — SL4(Z/pZ), so
that minimisation at p does not interfere with minimisation at other primes.

Let k* have basis ey, . .., e;. We identify A%k* = kS via e; Aej > e;;. Each linear
subspace W C k% determines a linear subspace V C k* given by

Vo={vek* vAw=0forall we W}

where A is the natural map k* x A’k* — A%k*. Let Vi be the analogue of V when
W is replaced by its orthogonal complement with respect to G.

Lemma 3.1. Let W C kS be a subspace, and let P € GLy4(k).
(i) If dimW = 1 then A*P sends W to (e12) if and only if P sends Vy to
(e1,€2).
(ii) If dim W = 2 or 3 then A*P sends W to a subspace of (€12, €13, €14) if and
only if P sends Vy to {(ey).
(iii) If dim W =5 then A*P sends W to {e12, €13, €14, €23, €24) if and only if P
sends Vi to (e, ea).

Proof. In (i) we have W = (ejq) if and only if Vi = (e, e2), and in (ii) we have
W C (e1s,e13,€14) if and only if Vj = (e1). Since the definition of V4 in terms
of W behaves well under all changes of coordinates this proves (i) and (ii). As
noted in Section 1.1, all transformations of the form A%P preserve G (up to a
scalar multiple). Therefore (iii) follows from (i) on replacing W by its orthogonal
complement with respect to G. U

Remark 3.2. Let G be the matrix of second partial derivatives of G, i.e., the
6 x 6 matrix with entries 1, —1,1,1, —1, 1 on the antidiagonal. A direct calculation
shows that for any 4 x 4 matrix P we have

A?(adj(P)T) = (det P)G(A?P)G.

Letting PGL, act on the space of quadratic forms via P : H — deipH o A?P,

this tells us that applying P to a quadratic form H(z12, 213, 203, 214, 224, 234) has
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the same effect as applying P~7 to its dual quadratic form which we define to be
H(z34, — 224, 214, 223, — 213, 212). We note that the substitution used to replace H
by its dual swaps over the two families of isotropic subspaces in Remark 1.7.

We find the changes of coordinates in Algorithm 2.3 by using Lemma 3.1(i) and
(ii), and the analogue of (ii) after passing to the dual as in Remark 3.2. We find
the changes of coordinates in Steps 2 and 4 of Algorithm 2.4 using Lemma 3.1(iii).

Remark 3.3. In Step 2 of Algorithm 2.4 we must find if possible a 3-dimensional
subspace W C (eqa, €13, €14, €23, €24) that is isotropic for both G and H, where

Hl(Zlg, e ,ZQ4) == 7T71H(212, <oy 224, 0)

To be isotropic for G we need that (ey3) C W. So such a subspace W can only
exist if H1(1,0,...,0) = 0. We assume that this is the case and write

Hl(zm, cee 224) = 212h1(213, 223, 214, 224) + h2(213, 2235 214, 2’24)

where h; is a homogeneous polynomial of degree ¢. Our problem reduces to that
of finding a line contained in

{z13220 — 223214 = h1 = hy = 0} C P°.

The well known description of the lines on {13204 — 203214 = 0} C P3 suggests
that we substitute (213, 293, 214, 224) = (T1Y1, T1Y2, ToY1, T2Yo) into hy and he, take
the GCD, and factor into irreducibles. The lines of interest now correspond to
linear factors of the form axy 4+ Bxs or vy, + dys.

Remark 3.4. In Steps 3 and 5 of Algorithm 2.4, when ker H is not itself isotropic
for G, we must find all codimension 1 subspaces of ker H that are isotropic for G.
Since the restriction of G to ker H is a non-zero quadratic form, it can have at
most two linear factors. There are therefore at most two codimension 1 subspaces
we need to consider. In particular, the number of times that Algorithm 2.4 applies
one of the operations in Definition 2.2 is uniformly bounded.

4. WEIGHTS AND ADMISSIBILITY

Let H € Oklug,...,us| be an integral quadratic form and suppose that there
exists P € GL4(K) such that

1
Ho A’P .
U(detP oA )>0

Then P is equivalent to a matrix in Smith normal form, say
P = UDiag(n"“*, 72, 7 7))V

for some U,V € GL4(Ok) and wy, wy, w3, wy € Z. We say that the weight w =
(w1, ws, w3, wy) is admissible for H. It is clear that permuting the entries of w, or
adding the same integer to all entries, has no effect on admissibility.
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The following is based on similar definitions in [K, CFS, F1, FR, ES].

Definition 4.1. The weight w = (wy,ws, ws,wy) dominates the weight w' =
(wh, wh, wh, wy) if

max(1 + wy + we + w3 + wy — w; — w; — wy, — wy, 0)
(4) > max(1 + w) + wy + wz + wy — w; — w; — w, —wy, 0)

foralll1<i<j<4and 1 <k<lI<4

This definition is motivated by the fact that if w dominates w’ and w is ad-
missible for H then w’ is admissible for H. Our next lemma shows that (for the
purpose of proving that Algorithm 2.4 is correct) it suffices to consider finitely
many (in fact 12) weights.

Lemma 4.2. Every weight w = (0, a,b,c) € Z* with 0 < a < b < ¢ dominates one
of the following weights
(0,0,0,0), (0,0,0,1), (0,1,1,1), (0,0,1,1), (0,0,1,2), (0,1,2,2),
(0,1,1,2), (0,1,1,3), (0,2,2,3), (0,1,2,3), (0,1,2,4), (0,2,3,4).
Proof. We list the pairs (7, j) and (k,[) in Definition 4.1 in the order (1,2), (1, 3),

(2,3), (1,4), (2,4), (3,4). Taking w = (0,a,b,c), the left hand side of (4) is
max(§,0) where  runs over the entries of the following symmetric matrix.

_1—|—b+c—a 1+c l+c—a 1+0b 1+b—a 1
1+c¢ l+a+c—b 1+c—0 1+a 1 1+a—-0
l1+c—a 14+c—b l+c—a—-10 1 1-a 1-0
1+0 14+a 1 l+a+b-c 1+b-c 1+a—-c
1+b—a 1 1—a 1+b—c 1+4b—a—c 1—c
1 1+a—-0 1-0 1+a—c 1-c 1+a—b—c_

We divide into 8 cases according as to which of the inequalities 0 < a < b < ¢

are equalities. In fact we make the following more precise claims.

e If 0 =a=0b=cthen w=(0,0,0,0).

e If 0 = a =b < ¢ then w dominates (0,0,0,1).
If 0 = a < b= c then w dominates (0,0,1,1).
If 0 =a < b < ¢ then w dominates (0,0, 1,2).
If 0 < @ =0b = c then w dominates (0,1,1,1).
If 0 < a="0b< cthen w dominates (0,1,1,3), (0,1,1,2) or (0,2,2,3).
If 0 < a < b= c then w dominates (0, 1,2,2).
If 0 < a <b< cthen w dominates (0, 1,2,4), (0,1,2,3) or (0,2,3,4).
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In each case where we list three possibilities, we further claim that these correspond
to the subcases a +b < ¢, a + b= c and a + b > ¢ (in that order).

Since the proofs are very similar, we give details in just one case. So suppose
that 0 <a<b<canda+b=c Thenwehavea >1,b>2,¢c>3,b—a > 1,
c—a>2and c—b > 1. Listing the pairs (¢,7) and (k,[) in the same order as
before, the left hand side of (4) is at least

5 4 3 3 2 1]
4 3 2 2 10
321100
321100
210000
10000 0
with equality if (a,b,c) = (1,2,3). Therefore w dominates (0, 1,2, 3). O

Our next remark further reduces the number of weights we must consider.

Remark 4.3. It is clear from Remark 3.2 that if w € Z* is admissible for H then
—w is admissible for the dual of H. We say that the weights w and —w (or any
weights equivalent to these, in the sense of permuting the entries, or adding the
same integer to all entries) are dual. The list of 12 weights in Lemma 4.2 consists
of 4 dual pairs (0,a,b,c) and (0,¢ — b,c — a,c) with a + b # ¢, and 4 self-dual
weights (0, a,b,a + b).

5. COMPLETION OF THE PROOF

In this section we complete the proof that Algorithm 2.4 is correct.

We first note that if H and H' are related by an integral change of coordinates,
and the algorithm works for H then it works for H’. This is because before
applying Operations 1, 2 or 3 we always make an integral change of coordinates
that, by Lemma 3.1, is unique up to an element of GL4(Ok) whose reduction mod
7 preserves a suitable subspace of k*. The following elementary lemma then shows
that the transformed quadratic forms are again related by an integral change of
coordinates.

Lemma 5.1. Let o = Diag(I,,71;_,) and P € GL4(Of). Then P € a GLy(Og)a™!
if and only if the reduction of P mod m preserves the subspace (e, ..., e.).

Proof. This is [CFS, Lemma 4.1]. O
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Let H € Oklz2,. .., 234) be a quadratic form. If there exists P € PGLy(K)
such that

1
Ho AP
(5) U(detP oA )>O,

then, as explained in Section 4, one of the 12 weights in Lemma 4.2 is admissible
for H. Since the analysis for dual weights (see Remark 4.3) is essentially identical,
we only need to consider one weight from each dual pair. It therefore suffices to
consider the 8 weights listed in the table below.

In the case of weight (wy, ..., w,) we may suppose, by an integral change of co-
ordinates, that (5) holds with P = Diag(7*,...,7"*). This implies certain lower
bounds on the valuations of the coefficients of H. To specify these (in a way that
is valid even when char(k) = 2), we relabel the variables 212, 213, 223, 214, 224, 234 88
z21,...,%2¢ and write H = qu ijzizj. We also put Hj; = H;;. Then the lower
bounds on the v(H;;) are as recorded in the table.

Case 1: (0,0,0,0) | Case 2: (0,0,0,1) | Case 3: (0,0,1,1) | Case 4: (0,1,1,2)
111111222111 32222 1][[33221 1]
11111 1]||222111||[211110][[332211
11111 1]||222111||[211110]]]221100
11111 1||t11000/|[211110f[]221100
11111 1]||t11000/|[211110[]|110000
1111 11]||t110o00/|[tooooo|l|[l1 10000
 r=0 | r=123 | r=12 | r=1234
Case 5: (0,0,1,2) | Case 6: (0,1,1,3) | Case 7: (0,1,2,3) | Case 8: (0,1,2,4)
(4332 2 1 _443211_ 5 4332 1||[6 5 4 3 2 1]
322110 |[443211/[la32210/]||543210
322110/ |[332100[[[321100]/|[432100
21 1000/|[221000[[[321100]/|[321000
21 1000/|[t1o0o0o0o0l[]210000/|]210000
100000/||t 10000 |[1toooool[|1ooo0o00
) r=3,4 B r=3,4 e r=3,4 e r=2>5 )

In our analysis of each case, we will assume we are not in an earlier case. The
possibilities for r = rank H will be justified below, but are recorded in the table
for convenience. We complete the proof that Algorithm 2.4 is correct by going
through the 8 cases. In fact we show that if the cases are grouped as
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Case 2 Case 5 | Case 7
Case 1 Case 4

Case 3 Case 6 | Case 8
then at each iteration of the algorithm we move at least one column to the left.
Therefore, if after visiting Step 1 the first time and returning to it a further 4
times we still do not have v(H) > 0 then the algorithm is correct to return FALSE.

Case 1: w = (0,0,0,0). In this case we already have v(H) > 0, so r = 0 and we
are done by Step 1.

Case 2: w = (0,0,0,1). We see from the table that (e, €13, €a3) C ker H and so
r < 3. We cannot have r = 0, otherwise we would be in Case 1. If r = 1 then we
are done by Step 2. If »r = 2 then we are done by Step 3. If » = 3 then Step 5
directly applies Operation 1. (By “directly” we mean that there is no preliminary
integral change of coordinates.) Since this gives v(H) > 0 we are in Case 1 on the
next iteration.

Case 3: w = (0,0,1,1). We see from the table that H = (234 for some linear form
£. One of the transformations considered in Step 4 is to directly apply Operation 2.
Since this gives v(H) > 0 we are in Case 1 on the next iteration.

Case 4: w = (0,1,1,2). We see from the table that (ejs,e13) C ker H and so
r < 4. If r = 4 then Step 5 directly applies Operation 1 or Operation 3. Then
on the next iteration either (0,0,0,1) or (0,1, 1, 1) is admissible, which means we
are in Case 2 or its dual. If » < 3 then by applying a block diagonal element of
GL4(Ok) with blocks of sizes 1, 2 and 1, we may suppose that Hszs = Hy; = 0
(mod 7). If 7 = 3 then ker H = (e12, €3, aegs + beiy) for some a,b € k. If a = 0 or
b = 0 then ker H is isotropic for G. Otherwise (e12, e13) is the unique codimension 1
isotropic subspace. Either way, Step 5 directly applies Operation 1 or Operation 3,
and we are done as before.
We now suppose that » < 2 and divide into the following cases.

e Suppose that Hzs Z 0 (mod ) and Hys # 0 (mod 7). Since r < 2 we
have H = (z3, for some linear form ¢. Since there is no integral change
of coordinates taking ¢ to z34 the only possible outcome of Step 4 is to
directly apply Operation 2. This brings us to Case 3.

e Suppose that Hzs = 0 (mod 7) and Hys # 0 (mod 7). Then v(Hssz) = 1,
otherwise we would be in Case 2. We again have H = (23, for some linear
form ¢. Although there does now exist an integral change of coordinates
taking ¢ to z34, following this up with Operation 2 does not preserve that
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v(H) > 0. So again the only possible outcome of Step 4 is to directly apply
Operation 2. This brings us to Case 3.

e Suppose that Hzs Z 0 (mod ) and Hys = 0 (mod m). This is essentially
the same as the previous case by duality.

e Suppose that Hss = Hys =0 (mod 7). Then H is a quadratic form in 2y,
and z34 only. If this factors over k then either of the transformations in
Step 4 brings us to Case 3. Otherwise we proceed to Step 5 which directly
applies Operation 1 or Operation 3. As before, this brings us to Case 2 or
its dual.

Case 5: w = (0,0,1,2). Applying a block diagonal element of GL4(Ok) with
blocks of sizes 2, 1 and 1, we may suppose that Hog =0 (mod 7). Then Hzg #Z 0
(mod 7) (otherwise we would be in Case 2) and Hyy, Hys, Hss cannot all vanish
mod 7 (otherwise we would be in Case 3). Therefore (e15,e13) C ker H and r = 3
or 4. The only 3-dimensional isotropic subspaces for G that contain (e;s, e13) are
(€12, €13, €23) and (eq9, €13, e14). Therefore one of the transformations considered
in Step 5 is to directly apply Operation 1 or Operation 3 (the latter only being
a possibility if Hyy = 0 (mod 7)). It follows that at the next iteration we have
r < 2, and so are in Case 4 or earlier.

Case 6: w = (0,1,1,3). Applying a block diagonal element of GL4(Ok) with
blocks of sizes 1, 2 and 1, we may suppose that Hj5 = 0 (mod 72). We have Hy, #
0 (mod 7) (otherwise we would be in Case 4) and Hs; #Z 0 (mod 7) (otherwise
we would be in Case 5). Therefore (€15, e13) C ker H and r = 3 or 4. Exactly as
in Case 5 we find that at the next iteration we have r < 2, and so are in Case 4
or earlier.

Case 7: w = (0,1,2,3). We have Hy; # 0 (mod 7) (otherwise we would be in
Case 4), and Hss, Hys, Hss cannot all vanish mod 7 (otherwise we would be in
Case 3). Therefore r = 3 or 4, and {(e15) C ker H C (eqs, €13, €23, €14).

If 7 = 4 then ker H = (ey5, aei3 + beas + ceqy) for some a,b,c € k. If b,c # 0
then (ej5) is the unique codimension 1 subspace of ker H that is isotropic for G.
Therefore, Step 5 directly applies Operation 2, which brings us to Case 4. If b = 0
then ¢ # 0, and by applying a block diagonal element of GL4(Of) with blocks of
sizes 1, 1 and 2, we may suppose that a = 0. Then the 3-dimensional isotropic
subspaces for G containing ker H = (ey9, e14) are (ey, €13, e14) and (e, €14, €24).
Step 5 applies either Diag(1,m, 7w, 7) or Diag(1,1,m,1) bringing us to Case 5 or
Case 6. The case ¢ = 0 is similar by duality.
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If r = 3 then ker H = (€19, €93 +aeys, e14+beys) for some a,b € k. By applying a
block diagonal element of GL4(Of) with blocks of sizes 2 and 2, we may suppose
that « = b = 0. Then Hzs = H3s = Hys = Hyg = 0 (mod 7) and Hss Z£ 0
(mod 7). The codimension 1 subspaces of ker H = (e19, €3, €14) that are isotropic
for G are (e1s,e03) and (e, e14). The 3-dimensional isotropic subspaces for G
containing one of these spaces are

<€12,€13,€23>, <€12,€13,€14>, <€12,€23,624>, <€127€14,€24>-

The first two of these correspond to directly applying Operation 1 or Operation 3,
which brings us to Case 5 or its dual. The last two correspond to transformations
which fail to preserve that v(H) > 0, and so cannot be selected by Step 5.

Case 8: w = (0,1,2,4). We have H3; # 0 (mod 7) (otherwise we would be
in Case 5), Hys # 0 (mod 7) (otherwise we would be in Case 6), and Hyy # 0
(mod 7) (otherwise we would be in Case 7). Therefore 7 = 5 and ker H = (e15).
Step 5 directly applies Operation 2 which brings us to Case 6.

Example 5.2. We give three examples where Algorithm 2.4 takes the maximum
of 4 iterations to give v(H) > 0. The first two examples start in Case 7, with
rank H = 3 or 4, and the final one starts in Case 8. In the first two examples there
are two choices on the first iteration. We made an arbitrary choice in each case,
but in fact with the other choices the algorithm would still have taken 4 iterations.

Let K = Q and v = v, for any choice of prime number p. An arrow la-
belled (ws,...,ws) indicates that we replace H by mH o A’P where P =
Diag(p"t, ..., p"4).

(0,0,0,1)

P21y + 213734 + D2gs + paiy + 25y — D2ty + 2137aa + 255 + D724y + D73,
0 0,1 0
—$ »° Z12 + pz13234 + ngg + p214 + 224

(0,1,0,1)
—$ PP2ty + 213234 + D25y + P2y + P24

(0,0,1,1)
g p(zlz + 213234 + 7523 + 7514 + p224)

5 2 9 (0,0,0,1)
D 219 + 213234 + D253 + 214224 —3 P’ 2'12 + 213234 + 223 + PZ14224

(0,0,1,0)
24D P22y + p213234 + P2y + 214724

(0,1,0,1) 3 o 2
D° 219 + 213234 + D253 + PZ14224

(0,0,1,1)
—3 p(212 + 213234 + 223 + 214%24).
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62 2 (0,0,1,1) 4 o 2
P 29 + 213234 + Zozzoa + 21y —— P g + Priszaa + Zazzos + 214

0,001) 3 o 9
— " P 21 + Pzi3z3s + Zo3zos + D21y

(0,1,01) 3 o 2
D" 219 + 213234 + PRz + PRy

(0,0,1,1)
5 (s + 218781 + 223724 + 214).
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