THE INVARIANTS OF A GENUS ONE CURVE
TOM FISHER

ABSTRACT. It was first pointed out by Weil [26] that we can use
classical invariant theory to compute the Jacobian of a genus one
curve. The invariants required for curves of degree n = 2, 3,4 were
already known to the nineteenth centuary invariant theorists. We
have succeeded in extending these methods to curves of degree
n = 5, where although the invariants are too large to write down
as explicit polynomials, we have found a practical algorithm for
evaluating them.

1. INTRODUCTION

We work throughout over a perfect field K with algebraic closure K.
In this introduction we further assume that char (K') # 2,3. Let C be
a smooth curve of genus one defined over K and let D be a K-rational
divisor on C' of degree n. If n = 1 then C(K) # 0, and C' is defined
by a Weierstrass equation. If n > 2 then the complete linear system
|D| defines a morphism C' — P"~1. If n > 3 then this morphism is an
embedding and we call the image a genus one normal curve of degree n.
For n <5 the pair (C, D) is described by data of the following form.

Definition 1.1. A genus one model of degree n = 1,2,3,4,5 is

(i) if n = 1 a Weierstrass equation

(ii) if n = 2 a binary quartic

(iii) if n = 3 a ternary cubic

(iv) if n = 4 a pair of quadrics in 4 variables

(v) if n =5 a 5 x 5 alternating matrix of linear forms in 5 variables.

The equations defined by a genus one model of degree 5 are the 4 x 4
Pfaffians of the matrix. It is a classical fact that every genus one normal
quintic is defined by equations of this form. An algorithm for comput-
ing these matrices is given in [12], based on the Buchsbaum-Eisenbud
structure theorem [5], [6] for Gorenstein ideals of codimension 3.

We write X, for the (affine) space of all genus one models of degree n
and K[X,] for its co-ordinate ring. In §4 we specify a linear algebraic
group G, acting on X,,. In each case we find that the ring of invariants
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K[X,,]%" is a polynomial ring in two variables. (This could be deduced
by a theorem of Kempf [18, Theorem 2.4] if char (K) = 0.) We label the
generators ¢4 and cg. In the case n = 1 these are the usual polynomials
defined in [24, Chapter I1I]. In the cases n = 2, 3,4, 5 we find that ¢4 and
¢ are homogeneous polynomials of degree 4n/(6 —n) and 6n/(6 —n).
Moreover, as first pointed out by Weil [26] in the case n = 2, the
invariants ¢4 and cg give a formula for the Jacobian. The invariants
for n = 2, 3,4 have been known since the nineteenth century, and are
surveyed in [1].

Our work has two main goals. The first is to describe the ring of
invariants in a way that emphasises the similarities between the cases
n=1,2,3,4,5. The second is to give practical methods for evaluating
the invariants. In both instances our main original contribution is in
the case n = 5.

A relatively easy argument (reduction to the case n = 1) shows that
if invariants ¢4 and cg of the expected degrees exist then they generate
the ring of invariants. In the cases n = 2,3 the existence of these
invariants is settled by writing them down as explicit polynomials. In
the case n = 4 there is a classical trick for reducing to the case n = 2.
But in the case n = 5 the invariants are too large to write down as
explicit polynomials. This makes it difficult to show they exist.

One of the tools of classical invariant theory is the so-called symbolic
notation, as described in [14]. This is an extremely compact notation
for specifying invariants. For example in the case n = 3 the invariants
may be written (see [22, §§220,221] or [25, §4.5])

ca = b4 x (abc)(bed)(cda)(dab)
c6 = 972 x (abe)(abd)(bee)(caf)(def)?.

By introducing non-commuting symbols it is possible to write down
similar expressions in the case n = 5. But we have no way of show-
ing these invariants are non-zero without expanding them as explicit
polynomials. As remarked above, this is not feasible.

In principle we could use the representation theory of Lie algebras,
specifically the Weyl character formula, to compute the dimension of
the vector space of invariants of any given degree. For details in the
case n = 3 we refer to [13, Exercise 13.20] or [25, §4.4]. Unfortunately,
when we tried this approach in the case n = 5, we were again defeated
by combinatorial explosion.

The plan of the paper is as follows. In §2 we explain the role played
by the invariant differential in computing the Jacobian of a genus one
curve. In §3 we revisit and motivate our definition of a genus one model.
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Notice that we modify the definition in the case n = 2 to accommodate
fields of characteristic 2.

In §4 we study the ring of invariants. We show that it is generated by
invariants ¢4 and cg of the expected degrees and that these invariants
give a formula for the Jacobian. We also show (in all characteristics)
that a genus one model defines a smooth curve of genus one if and only
if its discriminant A = (¢} — ¢2)/1728 is non-zero. The proofs rely on
geometric results proved in §5 and formulae recorded in §6.

In §7 we recall some classical methods for computing the invariants
in the cases n = 2,3,4. These formulae have already been surveyed
in [1], but are included here to demonstrate our preferred choice of
scalings. In the case n = 5 we have found an algorithm for evaluat-
ing the invariants. Our algorithm, presented in §8, is inspired by the
methods of nineteenth century invariant theory, in that we approach
the invariants through the construction of certain covariants. The key
step relies on a geometric “accident” satisfied by the secant variety of
a genus one normal quintic. In §9 we compare our invariant-theoretic
approach with some other methods for computing the Jacobian of a
genus one curve.

Finally in §10 we include a brief note on the invariants in character-
istics 2 and 3. We find in these cases that the invariants are insufficient
to compute the Jacobian. Instead it should be possible to find a for-
mula for the Jacobian that works in all characteristics by modifying
the formulae in characteristic 0. This has been carried out by Artin,
Rodriguez-Villegas and Tate [3] in the case n = 3.

The formulae and algorithms presented in §§7,8 have been con-
tributed to MAGMA [19, Version 2.13] by the author.

2. GEOMETRIC INVARIANTS

Let C' be a smooth curve of genus one defined over K, and let w be
a non-zero regular 1-form on C, also defined over K. We say that w
is an invariant differential. Over K, the pair (C,w) may be put in the
form

(1) 2+ azy + asy = 23 + asr? + aux + ag
with w = dz/(2y + a1 + ag3).
Definition 2.1. The geometric invariants of the pair (C,w) are

Cq4 = b% — 24b4
Cg — —bg + 36bzb4 - 216[)6

where by = a? + 4as, by = 2a4 + ajaz and bg = a% + 4ag.
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It is clear from the formulae in [24, Chapter III] that ¢4 and cq
depend only on the pair (C,w) and not on the choice of Weierstrass
equation (1). We deduce by Galois theory that ¢4, cs € K.

Lemma 2.2. [f (C,w) has geometric invariants ¢, and cg, and A € K*,
then (C,A\"'w) has geometric invariants Ac,; and Nc.

PRrOOF: This is again clear from [24, Chapter I1I]. O

We show in §5.4 that if a genus one model of degree n defines
a smooth curve of genus one, then it also defines an invariant dif-
ferential on the curve. This enables us to construct the invariants
¢y, c6 € K[X,] as the geometric invariants of the generic genus one
model of degree n. In particular we treat the cases n = 2,3,4,5 in a
uniform manner, and avoid the problem of combinatorial explosion in
the case n = 5.

The geometric invariants give a formula for the Jacobian.

Proposition 2.3. Assume char (K) # 2,3. If (C,w) has geometric
invariants ¢, and cg then C' has Jacobian

y? = 2® — 27c,x — Hicg.
The proof relies on two easy lemmas.

Lemma 2.4. Assume char (K) # 2,3. Let E be an elliptic curve
defined over K with invariant differential w. Let o be an automorphism
of E. Then « is a translation map if and only if o*w = w.

Proor: We write 7p : F — FE for translation by P € E. The map
P — 715 (w)/w is a morphism E — G,,. It must therefore be constant.
Specialising to P = 0 we deduce that 7j(w) = w for all P € E. (An
alternative proof is given by writing 7p as the commutator of 7 and
[—1] where 2Q = P.)

Conversely if « is not a translation then o — 1 is not constant, and
therefore surjective. So « has a fixed point. Conjugating by a transla-
tion, we may suppose that the fixed point is 0 € E. Since char (K) #
2,3 we can put F in shorter Weierstrass form y? = 2® + Az + B. Then
the only automorphisms of (E,0) are of the form (z,y) — (uz,u’y).
Since w is a multiple of dx/y the result is now clear. O

Lemma 2.5. Assume char (K) # 2,3. Let E be an elliptic curve and
C a smooth curve of genus one, both defined over K. Let wg and wc
be invariant differentials on E and C, also defined over K. If there is
an isomorphism o : C =2 E defined over K with a*wp = we then E is

the Jacobian of C.
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PROOF: Let &, = o(a)a™? for 0 € Gal(K/K). Since wg and w¢ are
both K-rational we deduce that wgp = wg. It follows by Lemma 2.4
that &, is a translation. So C' is the twist of E by the class of {¢,} in
H'(K, E). In particular C' is a torsor under F, the action 1 : Ex C' —
C being given by

1(P,Q) =a(P+a7'Q).
It follows that F is the Jacobian of C. O

PROOF OF PROPOSITION 2.3: We are given (C,w) with geometric
invariants ¢4 and c¢g. Let E be the elliptic curve over K with Weierstrass
equation

y? = 2® — 27c,x — Hicg.

The pairs (C,w) and (F,3dz/y) have the same geometric invariants,

and are therefore isomorphic over K. It follows by Lemma 2.5 that E
is the Jacobian of C. O

Before we can use Proposition 2.3 to compute the Jacobian of a
genus one curve, we first need to compute an invariant differential on
the curve. It is easy to generalise the construction of §5.4 to genus one
normal curves of arbitrary degree. An alternative is the following.

Let C C P"! be a genus one normal curve of degree n with hyper-
plane section H. We identify the Riemann-Roch space £(H) with the
space of linear forms on P"~!. If we fix w then there is a linear map

NL(H) — L2H); fA g L0l

By Lemma 5.5 with d = 2 the natural map S?L(H) — L(2H) is
surjective. Thus there is an alternating matrix of quadrics Q = ()
with

 a2d(wi/a;)

S
for all ¢ # j. This matrix has the property that

0 ) _
(8—;’1 8—f> Q=0 (mod I(C))

for all f € I(C). Starting from generators for I(C') we can use this
property to solve for €) by linear algebra. Then () is the data we use to
specify w. Notice that the entries of {2 are determined only up to the
addition of quadrics in 1(C).

In §9 we compare our invariant-theoretic approach with some other
methods for computing the geometric invariants.
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3. GENUS ONE MODELS

Let C' be a smooth curve of genus one defined over K, and let D
be a K-rational divisor on C' of degree n. In each of the cases n =
1,2,3,4,5 we find equations for the pair (C, D), and use the form of
these equations to motivate our definition of a genus one model.

3.1. Genus one models of degree 1. If n = 1 then we pick z,y €
K(C) such that £(2D) and £(3D) have bases 1,z and 1,z,y. The 7
elements 1, z,y, % zy, 3,y in the 6-dimensional space L(6D) satisfy
a linear dependence relation. Moreover the coefficients of 23 and y? are
non-zero. Rescaling = and y if necessary we find that C' has Weierstrass
equation

(2) Y2+ azy + asy = 3 + asx? + agx + ag.

A genus one model of degree 1 is a tuple ¢ = (ay, as, as, aq, ag). We
write Cy, C P? for the curve with Weierstrass equation (2). Genus
one models ¢ and ¢ of degree 1 are equivalent if they are related by
substitutions

r = v +r

y = udy +ulsx’ +t
and ¢/ = u%p, with u # 0. We write G; for the group of all such
transformations [u;r, s, t].

3.2. Genus one models of degree 2. If n = 2 then we pick x,y €
K(C) such that £(D) and £(2D) have bases 1,z and 1, x,y,z*. The 9
elements 1, x, 22, y, 23, zy, 2%, 2%y, y? in the 8-dimensional space £(4D)
satisfy a linear dependence relation. Moreover the coefficient of y? is
non-zero. We find that C' has equation

y? + (pr® + aqx + o)y = az’ + b + cx? + dw +e.

A genus one model of degree 2 is a pair of homogeneous polynomials
¢ = (p(z, 2),q(x, 2)) of degrees 2 and 4. We write Cy C P(1,1,2) for
the curve defined by

y* +p(r,2)y = qla, 2).
Here the ambient space P(1,1,2) is a weighted project plane, with

degrees 1, 1,2 assigned to the co-ordinates x, z,y. Genus one models ¢
and ¢’ of degree 2 are equivalent if they are related by substitutions

= Bz’ + By
= DBioa’ + B2’
y = ply +rer? 4l + oy

ST

2
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and ¢ = p2¢, with pdet B # 0. We write G, for the group of all such
transformations [y, r, BJ.

If char (K) # 2 then by completing the square it suffices to con-
sider models of the form (0, ¢(z, z)). These are the binary quartics of
Definition 1.1.

If n > 3 then the complete linear system |D| determines an embed-
ding C' — P!, We identify C' with its image, which is called a genus
one normal curve of degree n. Some basic facts about these curves are
recalled in §5.1.

3.3. Genus one models of degree 3. If n = 3 then C' C P? is a
plane cubic. A genus one model of degree 3 is a single homogeneous
polynomial ¢ = (f(z1, 2, x3)) of degree 3. We write Cy C P? for the
variety defined by f = 0. Genus one models ¢ and ¢’ of degree 3
are equivalent if they are related by substitutions ¢’ = p¢ and z; =
2?21 B;jz; with pdet B # 0. We write G3 = G,, x GL3 for the group
of all such transformations.

3.4. Genus one models of degree 4. If n = 4 then C' C P? is the
complete intersection of two quadrics. A genus one model of degree 4
is a pair of homogeneous polynomials

o Q1<$1a$2>$37$4)
¢ =
qa(1, T, T3, T4)
of degree 2. We write Cy C P? for the variety defined by ¢; = ¢o = 0.
Genus one models ¢ and ¢’ of degree 4 are equivalent if they are related
by substitutions ¢’ = A¢ and z; = Z?Zl B;jx! with det Adet B # 0.
We write G4 = GLy x GLy4 for the group of all such transformations.

3.5. Genus one models of degree 5. If n = 5 then C' C P*is defined
by the 4 x 4 Pfaffians of a 5 x 5 alternating matrix of linear forms. (See
for example [12] and the references cited there.) A genus one model
of degree 5 is a 5 x 5 alternating matrix of linear forms in 5 variables.
We write Cy C P* for the variety defined by its 4 x 4 Pfaffians. Genus
one models ¢ and ¢’ of degree 5 are equivalent if they are related by
substitutions ¢' = ApAT and z; = 3.1, Bj;x} with det Adet B # 0.
We write G5 = GL5 x GLj5 for the group of all such transformations.

4. THE RING OF INVARIANTS

Let X,, be the space of genus one models of degree n. For n =
1,2,3,4,5 this is an affine space of dimension N = 5,8, 10, 20, 50. The
co-ordinate ring K[X,] is a polynomial ring in N variables. For n =
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3,4, 5 we give this ring its usual grading by degree. In the casesn =1, 2
the rings are

K[Xl] = K[a17a27a3)a47a6]
K[X3] = Klag,a1,9,a,b,¢,d, €.
We assign degrees deg(a;) = i, deg(a;) = 1, deg(a) = ... = deg(e) = 2.

In §3 we defined a linear algebraic group G, acting on X,,. We now
write GG,, for the commutator subgroup, i.e.

Gy = {[l;r,s,t] € G}

Gy = {[1,7‘,B] € Gy 2B€SL2}
G3 - SL3

G4 = SL2 X SL4

G5 = SL5 X SL5

Definition 4.1. The ring of invariants is
K[X,|% ={F € K[X,]: Fog=F for all g € G,(K)}.
The definition is extended to an integral domain R by putting
R[X,]% = R[X,] N K[X,]".
where K is the field of fractions of R.

We define a rational character det : G, — G,,

-1

n=1 [u;r, s, t] — u

n=2 i, 7, B] — pdetB

n=3 n, B] — pdetB

n=4 [A,B] — detAdetB
n=>5 [A,B] + (det A)?det B.

Definition 4.2. The vector space of invariants of weight £ is
K[X,)$" = {F € K[X,] : Fog = (det g)*F for all g € G,(K)}.

Lemma 4.3. Fvery homogeneous invariant of degree d is an invariant
of weight k where

ko ifn=1,2,3
d=1{ 2k ifn=4
5k if n=05.

In particular the ring of invariants is graded by weight, i.e.

K[X,) = @0 K[ X, )5
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PROOF: We treat the cases n = 4, 5. Since the only rational characters
of G, are of the form [A, B] — (det A)?(det B)? we have

Fo[A, B] = (det A)P(det B)F

for some integers p, q. Considering [A, B] in the centre of G,, we deduce

n_4{d:2p

2d = 4q

a 2d = bp

n=>=5 { d = 5q
We are done by the definition of det : G,, — G,,,. The casesn =1,2,3
are similar. O

We are ready to state our main theorem.

Theorem 4.4. There are invariants c4,cs, A € K[X,]9" of weights 4,
6 and 12, related by ¢ — ¢z = 1728, such that

(i) If char (K) # 2,3 then K[X,]% = K]|cu, cs).

(11) The variety C, defined by ¢ € X,, is a smooth curve of genus one
if and only if A(¢) # 0.

(111) If char (K') # 2,3 and ¢ € X,, with A(¢p) # 0 then Cy has Jacobian

y* =1 — 27cy(9)x — Bdc ().
The proof depends on the following geometric statements.

Proposition 4.5. Assume K = K. Let X" be the set of all models
¢ € X,, which do not define a smooth curve of genus one. Then X5m8
is an irreducible Zariski closed subset of X,,. In particular the generic
genus one model of degree n defines a smooth curve of genus one.

PRrROOF: The cases n = 1,2, 3 are well known. A proof for n = 3,4,5
is given in §5.3. U

Let P(X,,) be the projective space determined by X,. (This is a
weighted projective space in the cases n = 1,2.) We recall that ele-
ments of X, are equivalent if they lie in the same G,-orbit.

Proposition 4.6. Assume K = K. Let ¢,¢' € X,, with Cyg and Cy
either smooth curves of genus one or rational curves with a single node.
Then Cy and Cy are isomorphic as curves if and only if ¢ and ¢ are
equivalent. Moreover the stabiliser of ¢ for the action of G,, on P(X,)
is finite.

PROOF: The cases n = 1,2 are straightforward. A proof forn = 3,4,5
is given in §5.2. U
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We identify K[X,]% as a subring of K[X;]“'. To do this we start
with an elliptic curve E in Weierstrass form

y2 + a1y + azy = x? + a2x2 + asx + ag.

The complete linear system |n.0| determines a morphism F — P*~ 1,
The image is described by a genus one model of degree n. In §6 we
specify such a model and hence define a morphism m, : X; — X,,. The
models m,(¢) for ¢ € X; are called Weierstrass models. Collectively
they form the Weierstrass family.

Proposition 4.7. There are morphisms 7, : X1 — X,, and v, : G, —
G, with the following properties.

(1) If ¢ = m,(¢) then Cy and Cy are isomorphic as curves.

(i) yy, is a group homomorphism.

(111) (Yng)(mn®) = mu(g@) for all g € Gy and ¢ € X;.

() det(v,g) = det(g) for all g € G.

PrROOF: The proposition is checked by direct computation using the
formulae in §6. d

The map 7, : X; — X, induces a homomorphism of polynomial
rings 7 : K[X,] — K[Xi]; F — Fom,. By Proposition 4.7 it restricts
to a homomorphism of graded rings

T KX, — K[X,]

n

where the grading is by weight.

Lemma 4.8. The map 7% : K[X,]% — K[X] is an injective ho-
momorphism of graded rings.

PRrROOF: We must show that 7" is injective. For this we are free to as-
sume that K is algebraically closed. If F' € K[X,,]" is a homogeneous
invariant vanishing on the Weierstrass family then by Propositions 4.6
and 4.7 it also vanishes at every ¢ € X,, for which Cy is a smooth curve
of genus one. Proposition 4.5 tells us that the latter are Zariski dense
in X,,. It follows that F' is identically zero and hence 7, is injective. [

Computing the ring K[X ;] is entirely routine. We recall that
K[Xl] - K[a’h G2, as, a4, a6]'
Following Tate’s formulaire [24, Chapter III] we put

b4 2a4 + aqag
(3) by = a2+ dag
by = a%aﬁ + 4asas — arazaq + a2a:22, - QZ
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and
Cy = b% — 24b4
(4) cg = —b3+ 36baby — 216b
A = —bibg — 8b3 — 27b2 + 9bobybg.

It is well known that ¢4, c, A € Z[X;]" and ¢} — 2 = 1728A.
Lemma 4.9. [f char (K) # 2,3 then K[X]% = K]cy, cg).

PROOF: This is Theorem 4.4(i) in the case n = 1. It is an immediate
consequence of the standard procedure for putting a Weierstrass equa-
tion in the shorter form y? = 23 + Az + B. The required isomorphism
is ¢* where

L A% — X1 (cy,c6) — (0,0,0, —cy /48, —cs/864).
O

We have reduced the proof of Theorem 4.4(i) to showing that 7 is
surjective. Equivalently, we must show that K[X,]%" contains invari-
ants of weights 4 and 6. One method would be to split into the cases
n = 2,3,4,5 and use the explicit constructions presented in §§7,8. This
makes the theorem appear an accident, especially in the case n = 5.
Instead we give a construction based on Proposition 4.6.

Lemma 4.10. Assume K = K. Let ¢,¢' € X,, with Cy and Cy either
smooth curves of genus one or rational curves with a single node. Then
the Zariski closure of the G, -orbit of ¢ is the zero locus of an irreducible
homogeneous invariant F € K[X,]% . Moreover F(¢') = 0 if and only
if ¢ and ¢’ are equivalent.

PRrROOF: By Proposition 4.6 the morphism G,, — P(X,,); g — ¢(¢) has
zero-dimensional fibres. But for each n we find

dim(G,,) = dim(X,) — 2.

So the G-orbit of ¢ in P(X,,) has codimension 1. Moreover since
G, is irreducible, every G,,-orbit is irreducible. Therefore the Zariski
closure of the orbit of ¢ is the zero locus of an irreducible homogeneous
polynomial F' € K[X,]. Since the equivalence class of ¢ determines F'
uniquely up to scalars, and G,, is the commutator subgroup of G, it
follows that F'is an invariant.

If ¢ and ¢’ are equivalent then clearly F(¢') = 0. For the converse
we suppose F'(¢') = 0. Then the G,,-orbits of ¢ and ¢ in P(X,,) have
the same Zariski closure, Z say. A standard argument (see e.g. [23,
Chapter I, §5.3, Theorem 6]) shows that each of these orbits contains
a non-empty open subset of Z. Since Z is irreducible these open sets
must intersect. It follows that ¢ and ¢’ are equivalent. 0
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We restrict these invariants to the Weierstrass family.

Lemma 4.11. Assume K = K and char (K) # 2,3. Then there are
irreducible invariants Fy, Fy € K[X,]% and integers p,q > 1 such that
Fyom, =¢; and Fgom, = cf.

Proor: By Proposition 4.7 we can pick ¢ € X,, with Cy a smooth
curve of genus one with j-invariant 0. Let Fy € K[X,]" be the invari-
ant constructed from ¢ in Lemma 4.10. Then F} o, is a homogeneous
element of K[X;] = K|cy, cg]. Rescaling F; we can write

Fiom,=¢) ¢d A" H(Ci — Q)

v=1

for some integers p,q,r,s > 0 and constants ji,... 7, # 0, 1728.

Now let ¢ = m,(¢1) be a Weierstrass model with Cy a smooth
curve of genus one. If this curve has j-invariant not equal to 0 then by
Lemma 4.10 we have Fy(¢’) # 0. By varying the choice of ¢; we deduce
that ¢ = s = 0. We then repeat the argument for Cy a Weierstrass
model with a node. This shows that r = 0. The statement for ¢4 is
proved similarly, starting with j-invariant 1728. U

The proof of Theorem 4.4(i) now reduces to showing that p = ¢ =1
in Lemma 4.11. For this we quote a geometric result whose proof uses
properties of the invariant differential.

Definition 4.12. Genus one models ¢, ¢’ € X, are properly equivalent
if there exists g € G,, with g¢ = ¢’ and det(g) = 1.

Proposition 4.13. Assume K = K and char (K) # 2,3. Let ¢ € X,,
with Cy a smooth curve of genus one. Then ¢ is properly equivalent to
m.(0,0,0, A, B) for some unique A, B € K.

PrOOF: The existence is already clear from Propositions 4.6 and 4.7.
We prove uniqueness in §5.4. O

Lemma 4.14. Assume K = K and char (K) = 0. Then the map
7t KX, — K[X1])9 is surjective.

n

ProoF: Let ¢ € X,,(K) be the generic model defined over the function
field K = K(X,,). We have assumed char (K) = 0 so that K is perfect.
Proposition 4.5 tells us that Cy is a smooth curve of genus one. So by
Proposition 4.13, ¢ is properly equivalent to 7,(0,0,0, A, B) for some
unique A, B € K. The uniquess statement shows that A and B are
fixed by Gal(K/K) and hence A, B € K.



THE INVARIANTS OF A GENUS ONE CURVE 13

Let Fy, Fs € K[X,]% be the irreducible invariants constructed in
Lemma 4.11. Then F; = f} and Fg = f¢ where

fi = c(0,0,0,4,B) = —484

fo = ¢(0,0,0,4,B) = —864B.
Since K[X,] is integrally closed (in its field of fractions K) and Fj,
Fy € K[X,,] are irreducible it follows that p = ¢ = 1. O

Applying Lemma 4.14 with K = Q we learn that the invariants
¢4, c6, A € 7[X1]% extend to invariants in Q[X,,]%". These invariants
are again denoted c4,cg, A. Since 7 is injective it follows by Galois
theory that ¢4, cg, A € Q[X,,]. In fact the coefficients are integers.

Lemma 4.15. ¢4, ¢, A € Z]X,,).

PRrROOF: Let ' = ¢4,c6 or A. Let p be a prime and » > 0 an integer.
We suppose for a contradiction that p"™' F € Z,[X,] yet p"F & Z,[X..].
Then each coefficient of 7% (p"t'F) € Z[X;] is divisible by p. So if
G € F,[X,] is the reduction of p"™'F mod p then 7:G = 0. The
injectivity established in Lemma 4.8 shows that G = 0. Therefore
p'F € Z,[X,]. This is the required contradiction. O

Remark 4.16. Since the original ¢4, cg, A € Z[X;] are primitive it is
clear that the new ¢y, ¢, A € Z[X,,| are also primitive. This means it is
possible to specify our scalings of ¢4, ¢, A, at least up to sign, without
the need to compute their restrictions to the Weierstrass family.

We revert to working over an arbitrary perfect field K.

PROOF OF THEOREM 4.4: Let c4,c6, A € K[X,] be the images of
¢4, c6, A € Z][X,,]. These polynomials are invariants of weights 4, 6 and
12, satisfying ¢ — ¢2 = 1728A. They are non-zero by Remark 4.16.

(i) If char (K) # 2,3 then by Lemmas 4.8 and 4.9 the map

o K[X,] — K[X1] = K]ey, cg]

is an isomorphism of graded rings.
(ii)) We may assume that K is algebraically closed. If ¢ € X, with
Cy a smooth curve of genus one then by Propositions 4.6 and 4.7 it is
equivalent to a Weierstrass model. We deduce A(¢) # 0. So there is
an inclusion

{A =0} Cc X5ine,
But Proposition 4.5 asserts that X8 is closed and irreducible. So the
inclusion is in fact an equality.
(iii) Let ¢ € X,, with Cy a smooth curve of genus one. In §5.4 we use
¢ € X,, to define an invariant differential wy on Cy. In the case n =5
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we must assume char (K) # 2. We then show that c4(¢) and ¢4(¢)
are the geometric invariants of the pair (Cy,wy). The formula for the
Jacobian follows by Proposition 2.3. O

Theorem 4.4(iii) is proved in [1] for n = 2,3, 4 by giving formulae for
the covering map (of degree n?) from a genus one curve to its Jacobian.
We have extended to the case n = 5 by taking a different approach,
based on properties of the invariant differential.

It turns out that the map 7 : K[X,]% — K[X;]%® is an isomor-
phism in all characteristics. The proof in characteristics 2 and 3 is
given in §10.

The remaining sections of the paper may be read in any order.

5. GEOMETRY

The aim of this section is to prove the geometric results cited in §4.
We work over an algebraically closed field K. The homogeneous ideal
of a projective variety X is denoted I(X).

5.1. Genus one normal curves. We recall some basic facts about
genus one normal curves and rational nodal curves.

Definition 5.1. Let n > 3 be an integer.

(i) A genus one normal curve C' C P! is a smooth curve of genus one
and degree n that spans P 1.

(ii) A rational nodal curve C' C P""! is a rational curve of degree n
that spans P"~! and has a single node.

Remark 5.2. Equivalently, a genus one normal curve is a smooth curve
of genus one embedded by a complete linear system of degree n. A
rational nodal curve is the image of a morphism P! — P"~! determined
by a linear system of the form

{f e LD)|f(P) = [(P2)}
for D a divisor on P! of degree n, and P, P, € P! distinct.

Proposition 5.3. Let C C P! be either a genus one normal curve
or a rational nodal curve. If n > 4 then the ideal I(C') is generated by
a vector space of quadrics of dimension n(n — 3)/2.

This proposition is well known, at least for genus one normal curves.
Our proof, based on an argument in [17], has the advantage of working
for rational nodal curves at the same time. We write R = Klz1, ..., z,]
and R = Klz1,...,2,_1] for the homogeneous co-ordinate rings of
P! and P*~2. We give each ring its usual grading by degree, say
R = @dZORd and R’ = @dEOR&-



THE INVARIANTS OF A GENUS ONE CURVE 15

Lemma 5.4. Let X C P2 be a set of n points in general position.
(i) The evaluation map 7x : R — K" is surjective for all d > 2.
(i) If n > 4 then the ideal I(X) C R’ is generated by quadrics.

PROOF: We change co-ordinates so that X is the set of points (1: 0 :
o.20),0:1:...:0),...,(0:0:...:1)and (1 :1:...:1). The
proof is now straightforward. O

We show that the curves defined in Definition 5.1 are projectively
normal.

Lemma 5.5. Let C C P! be either a genus one normal curve or a
rational nodal curve. Let H be the divisor of a hyperplane section, say
cut out by a linear form h € Ry. Then the map

7o Ry — L(dH); f— f/h?
is surjective for all d > 1.

PROOF: The proof is by induction on d, the case d = 1 being clear
from Riemann-Roch. For the induction step we choose a hyperplane
{£ = 0} meeting C' in n distinct points disjoint from H. Again by
Riemann-Roch any n — 1 distinct points on C' span a hyperplane. So
X = CnN{¢ =0} satisfies the hypothesis of Lemma 5.4.

Let d > 2. We are given f € L£(dH) and wish to show that it belongs
to the image of m¢. By Lemma 5.4(i) it suffices to treat the case where
f vanishes on X. But then f = ({/h)f’ for some " € L((d — 1)H).
Applying the induction hypothesis to f’, we deduce that f is in the
image of 7o as required. U

PrROOF OF PROPOSITION 5.3: We continue with the notation of the
last proof. Since C'is contained in no hyperplane, the natural map

(5) I(C)N Ry — I(X)N R,

is injective. By Lemmas 5.4 and 5.5 these spaces each have dimension
n(n—3)/2. So (5) is an isomorphism. Now let f € I(C')N R;. We must
show that f is in the ideal generated by I(C') N Re. By Lemma 5.4(ii)
and the surjectivity of (5) it suffices to treat the case where f vanishes
on X. But then f = £f’ for some f' € I(C) N Ry—1. The proposition
now follows by induction on d. O

We say that curves C,C" C P! are projectively equivalent if there
exists o € PGL,, with a(C) = C".

Lemma 5.6. (i) Genus one normal curves C,C" C P"™! are projec-
tively equivalent if and only if they have the same j-invariant.

(11) Any two rational nodal curves C,C" C P" ! are projectively equiv-
alent.
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PROOF: (i) Let C' and C" have hyperplane sections H and H'. If C' and
C" are isomorphic as curves then composing with a translation map we
can find an isomorphism « : C =" with o*H' ~ H.

(ii) This is clear from Remark 5.2. O

Lemma 5.7. Let C C P! be either a genus one normal curve or a
rational nodal curve. Then there are only finitely many o € PGL,, with

a(C) =C.

Proor: We first treat the case C' is a genus one normal curve, say
with hyperplane section H. We are interested in the automorphisms «
of C' with a*H ~ H. The automorphism group of C sits in an exact
sequence

0— FE — Aut(C) — Aut(E,0) — 0

where E is the Jacobian of C. The first map is P +— 7p where 7p is
translation by P. Since H is a divisor of degree n we have 7, H ~ H
if and only if nP = 0. The lemma follows from the fact that E[n] and
Aut(E,0) are both finite.

If C'is a rational nodal curve then without loss of generality it is the
image of

P Pl (sit) e (8"t st L s ).

The group of automorphisms of P! that extend to automorphisms of
P! form a copy of the dihedral group generated by (s : t) — (¢ : s)
and (s :t) — (¢s : t) for ¢ an nth root of unity. O

5.2. Minimal free resolutions. We recall that a genus one model of
degree n = 3,4,5 is a collection of homogenoeus polynomials in R =
K[xq,...,x,). Splitting into the cases n = 3,4, 5 we now use ¢ € X,, to
define an ideal I, C R and a complex of graded free R-modules F,(¢).
We write R(d) for the graded R-module with R(d). = Rye.

If n = 3 then ¢ consists of a single polynomial f € R. This polyno-
mial generates an ideal I, C R and defines a complex

Fulé):  0—R(-3) L R—0.

If n = 4 then ¢ consists of polynomials ¢, qs. These polynomials
generate an ideal Iy C R and define a complex
()
7 , (0 @)
— —

Fold): 0— R(-4) R(-2) R—0.



THE INVARIANTS OF A GENUS ONE CURVE 17

If n =5 then ¢ is a 5 x 5 alternating matrix of linear forms. The
Pfaffian of a 4 x 4 alternating matrix is

0 ay as ag

0 b3 b
pf 5 bf = a1b1 — azbg + Clgbg.
0

We write ¢} for the submatrix of ¢ obtained by deleting the ith row
and ¢th column. Then the vector of submaximal Pfaffians of ¢ is P =
(p1,...,p5) where

p; = (_1)i+1 pf<¢{i}).
These polynomials generate an ideal I, C R and define a complex

Fol@): 00— R(—5) 25 R(=3)° % R(—2)° 5 R—0.

In each case n = 3,4, 5, the variety C;; C P"~! is that defined by the
ideal I, C R. We say that F,(¢) is a minimal free resolution of R/ if
it is exact at every term except the final copy of R where the homology
is R/I¢
Lemma 5.8. Letn =3,4,5 and let ¢ € X,,.

(1) Every component of Cy has dimension at least 1.

(1) If every component of Cy has dimension 1 then Fo(¢) is a minimal
free resolution of R/1.

PRrROOF: (i) This is clear for n = 3,4. For n = 5 we recall that the
4 x 4 Pfaffians of a generic 5 x 5 alternating matrix define the image
of the Plucker embedding Gr(2,5) — PY. Then C} is the intersection
of this Grassmannian with a linear subspace P*. Since Gr(2,5) has
dimension 6 we are done by [15, I, Theorem 7.2].

(i) If n = 3,4 then our claim is that f is non-zero, respectively that
q1,qe are coprime. This is clear. The case n = 5 is an application of
the Buchsbaum-Eisenbud acyclicity criterion, for which we refer to [4,
Theorem 1.4.13] or [10, Theorem 20.9). O

We recall that if A is a finitely generated graded K-algebra, say
A = @Bg>0A4, then there is a polynomial h4(t), called the Hilbert poly-
nomial, with the property that h4(d) = dim(A4,) for all d > 0.

Lemma 5.9. (i) Let n = 3,4,5 and let ¢ € X,,. If the complex Fo(¢)
is a minimal free resolution of R/I, then

hR/1¢(t) = nt.
(ii) If C C P"1 is a curve of arithmetic genus g and degree d then
hirjie)(t) = dt + (1 = g).
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PROOF: (i) We compute the Hilbert polynomial from the minimal free
resolution in the usual way. For example in the case n =5,

t+4 t+2 t+1 t—1
wo= (") s () () - (1) -
(i) This is a definition. See for example [15, I, §7]. O

Proposition 5.10. Let n = 3,4,5 and let ¢ € X,,.

(i) If C,y C P! is a smooth curve of genus one then it is a genus one
normal curve of degree n.

(ii) If Cy C P"! is a rational curve with a single node then it is a
rational nodal curve of degree n.

PROOF: By Lemma 5.8 the complex F,(¢) is a minimal free resolution
of R/14. Since I, C I(Cy), a comparison of Hilbert polynomials as
described in Lemma 5.9 shows that Cj has degree d < n. If C, C P**
spans a linear subspace of dimension m —1 it follows by Riemann-Roch
that 3 < m < d < n. We must show that m = n. In the case n = 3 this
is already clear. If n = 4,5 then C}, is defined by quadrics. This enables
us to rule out the unwanted possibilities for (m, d), with the exception
of (m,d) = (4,4) in the case n = 5. This possiblity is excluded by the
following lemma. ]

Lemma 5.11. Let C C P? be either a genus one normal curve or a
rational nodal curve. Then C' cannot be defined by the 4 x 4 Pfaffians
of a 5 x 5 alternating matriz of linear forms on P3.

PROOF: Let ¢ be such a matrix, with vector of submaximal Pfaffians
P = (p1,...,p5). Let C be defined by quadrics ¢i,q2. By Proposi-
tion 5.3 we have (py,...,ps) = (q1,¢2). Replacing ¢ by AT@A for suit-
able A € GL; we may suppose that P = (¢, ¢2,0,0,0). Since P¢ = 0,
and qi, g2 are coprime, it follows that the first two rows of ¢ are zero.

But then every 4 x 4 Pfaffian of ¢ vanishes, which is a contradiction.
O

Lemma 5.12. Letn = 3,4,5 and let ¢ € X,,. If Cy C P" ! is either a
genus one normal curve or a rational nodal curve then I, is a radical
ideal, equivalently I(Cy) = I,.

PROOF: By Lemma 5.8 the complex F,(¢) is a minimal free resolution
of R/I,. If n = 3 then I, = (f) where f is an irreducible cubic. If
n = 4,5 then I, is generated by a vector space of quadrics of dimension
d=2,5. Since I, C I(Cy4) we are done by Proposition 5.3. O
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Lemma 5.13. Let n = 3,4,5 and let ¢, ¢’ € X,,. Suppose that

(1) there exists o € PGL,, with a(Cy) = Cy,

(11) Fo(¢) and Fo(¢') are minimal free resolutions of R/I1, and R/1y,
(tit) the ideals 15 and Iy are radical ideals.

Then ¢ and ¢' are equivalent.

PROOF: By (i) we may assume Cy = Cy. Then (iii) gives Iy = Iy.
The cases n = 3,4 are now clear. If n = 5 then there is an isomorphism
of complexes

OHR(—5)LT>R(—3)5*¢>R 5 L Rp——0

oLl

p'T
0—>R(—5)—>R(—3)5—>R s P p——0

The matrices A, B € GLj are uniquely determined. Comparing this
diagram with its dual gives B = cA™T. So ¢/ = [A, ¢ 5] ¢. O

Lemma 5.14. Let n = 3,4,5 and let ¢ € X,,. Suppose that

(i) there are only finitely many o € PGL,, with a(Cy) = Cy,
(11) Fo(®) is a minimal free resolution of R/1,,

(tit) the ideal 14 is a radical ideal.

Then the stabiliser of ¢ for the action of G,, on P(X,,) is finite.

PRrOOF: This is clear for n = 3,4. In the case n = 5 it suffices to show
that if [A, I5]¢ = A¢ for some A € GLs and A € K*, then A is a scalar
matrix. Taking submaximal Pfaffians we obtain PadjA = \2P. By
(ii) the components of P are linearly independent. It follows that adj A
and hence A is a scalar matrix. O

PROOF OF PROPOSITION 4.6: (For n = 3,4,5.) We are given ¢, ¢’ €
X, with Cy and Cy either smooth curves of genus one or rational curves
with a single node. By Proposition 5.10 these are either genus one
normal curves or rational nodal curves. The hypotheses of Lemmas 5.13
and 5.14 are satisfied by Lemmas 5.6, 5.7, 5.8 and 5.12. O

5.3. The generic model. We show that the generic genus one model
of degree n = 3,4,5 defines a smooth curve of genus one.
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Definition 5.15. Let n = 3,4,5. The Jacobian matrix J, of a genus
one model ¢ € X, is

n=3 ¢=(f) Jo = (35)
vt o= (2 o= ()

n=5 p=(=1)"F (el Jy= ().

Lemma 5.16. Let n = 3,4,5 and let ¢ € X,,.

(1) If P € C then rank J,(P) <n — 2.

(1) If rank J,(P) = n — 2 for every P € Cy then Cy is a smooth curve
of genus one.

PROOF: (i) We saw in Lemma 5.8(i) that every component of Cy has
dimension at least 1. Therefore dim Tp(Cy) > 1. Since I, C I(Cy) it
follows that rank J,(P) <n — 2.

(ii) The argument used in (i) shows that every component of Cy has
dimension 1. So by Lemma 5.8(ii) the complex F,(¢) is a minimal free
resolution of R/I,. In particular R/I, is Cohen-Macaulay. It follows
by Serre’s criterion (see [10, §18.3]) that I, is a prime ideal. Hence
Cy is an irreducible smooth curve and 1(C,) = Is. It only remains
to check that C, has genus 1. We do this by computing the Hilbert
polynomial as described in Lemma 5.9. U

We define some “bad” subsets B,, C X,,.
Definition 5.17. (i) Let B3 C X3 consist of all models of the form

¢ = (z1f1(22, 23) + fo(22,23)) .
(i) Let By C X, consist of all models of the form
b= 17y + g1(22, T3, 74)
92('/1527 X3, fL’4> .
(iii) Let Bs C X5 consist of all models ¢ with ¢;;(1,0,0,0,0) = 0 for
all {7'7]} 7& {17 2}7 and ¢45(Z‘17 s 71:5) =0.
Lemma 5.18. Let n = 3,4,5 and let ¢ € X,,. The following are

equivalent.

(1) Cy is not a smooth curve of genus one.
(i1) rank J,(P) < n — 2 for some P € Cl.
(11i) ¢ is equivalent to a model in B,.

PROOF: (i) = (ii). This is a restatement of Lemma 5.16.

(ii) = (i). This follows from Proposition 5.10(i), Lemma 5.12 and the
Jacobian criterion for smoothness.

(iii) = (ii). Without loss of generality ¢ € B,. Then the point P =
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(1:0:...:0) belongs to Cy and rank J4(P) < n — 2.
(ii) = (iii). This is clear for n = 3,4. We take n = 5. Since P € Cy
the 4 x 4 Pfaffians of ¢(P) vanish. So rank ¢(P) =0 or 2.

If rank ¢(P) = 2 then we may assume P = (1:0:...:0) and

0 21 ¢13 Ouu 015
0 @23 O o5

¢ = 0 b3 —l
— 0 4
0

for some ¢;;, ), € (w2, w3, x4, x5). Since rank J4(P) < 3 the linear forms
01,05, 05 are linearly dependent. Replacing ¢ by AgpAT for suitable
A € GL5 we may suppose that /; = 0. Then ¢ € By as required.

If rank ¢(P) = 0 then we may assume

0 ¢12 ¢13 ¢14 61

0 o3 oy Lo

925 = 0 ¢34 l3
— 0 4

0

for some ¢;; € (w2, 23, 24,25) and {; € (r3,x4,25). It is clear that
(1, ...,0s are linearly dependent. Replacing ¢ by A¢pAT for suitable
A € GL5 we may suppose that £, = 0. Then ¢ € By as required. [

PROOF OF PROPOSITION 4.5: (For n = 3,4,5.) Let X5 be the set
of all models ¢ € X,, which do not define a smooth curve of genus one.
We consider the projective variety

Zn={(¢,P) € P(X,,) x P"!|P € Cy and rank Ju(P) < n — 2}.

Let pr; : Z, — P(X,) be the first projection. Lemma 5.18 identifies

pr,(Z,) = P(X:"). Since the image of a projective variety is again

projective it follows that X3¢ C X, is a Zariski closed subset.
Lemma 5.18 also identifies X5 as the image of a morphism

gn X Bn_>Xn

Since G, and B, are irreducible it follows that X5 is irreducible. [

5.4. The invariant differential. We continue to work over an alge-
braically closed field K. In the case n = 5 we further suppose that
char (K) # 2.
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Let ¢ € X,, with Cy a smooth of curve genus one. We use ¢ to define
an invariant differential wy, on Cy. In the cases n = 1,2 we put

dx
2y+air+as
22d(x/z
n=2  ¢=(p(r,2),q(r,2)  wy= pold,

In the cases n = 3,4,5 we start with the complex

Fu¢): 0—R™2F .  —F 2 R—0

defined in §5.2. We identify the maps ¢; with the matrices of homoge-
neous polynomials that represent them. Then we define

n = 1 (b: (a17a27a37a4ua’6) W¢:

e wid(xsy /1)
¢~ 3¢ Dr_
8_3031, o...0 —axHZ

where the partial derivative of a matrix is the matrix of partial deriva-
tives. In the cases n = 3,4 this formula works out as

) 2
wy=——p; — and ws =5 5 91 9
das Pradus v On

Proposition 5.19. Let ¢ € X,, with Cy a smooth curve of genus one.
If ¢' = g¢ for some g € G, then the isomorphism v : Cy = Cy deter-
maned by g satisfies
T'wey = (det g)wy .

PRrROOF: If the proposition holds for g1, g2 € G, then it holds for g;g-.
So we only need to consider g running over a set of generators for G,,.
Since the cases n = 1,2 are well known we take n = 3,4,5. The result
is clear for g of the form [1, B] with

pro A
B= 2
fin

If n =3 and g = [u, I3] then the result is again clear. If n = 4 and
g = [A, 1] then there is an isomorphism of complexes

¢ ;
0—> R(—4) —2- R(~2)? 2~ R ——~0

ldetA lAT

0 — R(—4) —2~ R(~2)? -~

We deduce
Ywg = (det A)wy = (det g)wy .
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If n=>5 and g = [A, I5] then there is an isomorphism of complexes

- & #
0—= R(=5) —> R(~3)° —= R(~2) —= R —=0
J{ (det A)? l (det A)AT ladj A
é

0 —= R(=5) —2= R(~3)> —2~

We deduce
Ywy = (det A)*wy = (det g)wy.
It only remains to prove the proposition for g = [1, B] with B a per-
mutation matrix. This in turn reduces to checking the result for a set

of transpositions generating the symmetric group S,,. The symmetry
(12) is already clear from the identity

rid(ze/wy) + 25d(21/29) = 0.
Since the entries of ¢ belong to I(Cy) we have

i=2 Oz

(6)

d(x;/x) = 0.

If n = 3 then (6) gives the symmetry (23). If n = 4 then the symmetry
(34) is clear. By (6) we have

91 g1 91 g1

Oxrs  Oxy Oxrs Oxa .
oy g d(.’l?g/l’l) + dq2 g d(&?g/l’l) =0
8:62 a$4 8553 8$4

and this establishes the symmetry (23).
If n = 5 then the symmetry (35) is clear. Differentiating ¢;¢o = 0
and @203 = 0 we find
O¢1 ¢ O3 | D1 D D3 O¢s 0*¢s

(7) 8x3 8554 8x5 * 8[E3 8[E5 8%4 - ¢1 8x3 81'481’5 )

This establishes the symmetry (45). Using (6) we get

5
Op1 0o 093 B
Ox; 04 Ox5 d(wsfm) = 0.

i=2
The terms for i = 4,5 vanish since char (K) # 2 and analogous to (7)
we have

0¢1 0y O3 1 Oy

Oxy Oxy Oxs 027 Ons 03
This establishes the symmetry (23). O

2
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Lemma 5.20. Let ¢ = m,(¢1) be a Weierstrass model with Cy a smooth
curve of genus one. Then the natural isomorphism v : Cy, = Cy satis-

fies Y'wg = wg, -

PRrROOF: We check this by direct calculation using the definition of wy
and the formulae of §6. 0

Lemma 5.21. Let ¢ € X,, with Cy a smooth curve of genus one. Then
wg 15 an tmvariant differential on Cl.

PROOF: Our claim is that wy is a non-zero regular 1-form. By Propo-
sitions 4.6, 4.7 and 5.19 it suffices to prove this for ¢ a Weierstrass
model. Then Lemma 5.20 reduces us to the case n = 1, and in this
case the result is well known. O

We recall from Definition 4.12 that models ¢, ¢’ € X,, are properly
equivalent if there exists g € G,, with g¢ = ¢’ and det(g) = 1.

Lemma 5.22. Let ¢, ¢’ € X, with Cy and Cy smooth curves of genus
one. Then ¢ and ¢' are properly equivalent if and only if m,(¢) and
(@) are properly equivalent.

PRrROOF: One implication is clear from Proposition 4.7. For the con-
verse we suppose m,(¢) and 7,(¢’) are properly equivalent. Then by
Proposition 5.19 and Lemma 5.20 there is an isomorphism v : Cy = Cy
with y*wy = wy. Composing with a translation we may suppose that
~ is determined by some g € G;. It follows that ¢ and ¢’ are properly
equivalent. O

PROOF OF PROPOSITION 4.13: Let ¢ € X,, with Cy a smooth curve of
genus one. We must show that ¢ is properly equivalent to a Weierstrass
model 7,(0,0,0,A, B) for some unique A, B € K. The existence is
already clear from Propositions 4.6 and 4.7. To prove uniqueness we
use Lemma 5.22 to reduce to the case n = 1. In this case the result is
well known. O

In the proof of Theorem 4.4(iii) we used

Proposition 5.23. Let ¢ € X,, with Cy a smooth curve of genus one.
Then the geometric invariants of (Cy,wy) are c4(¢) and cs(@).

ProOOF: We are free to replace ¢ by any properly equivalent model.
So we may assume that ¢ is a Weierstrass model. Then Lemma 5.20
reduces us to the case n = 1. In this case the result is a tautology. [J
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6. WEIERSTRASS MODELS

Let E be an elliptic curve with Weierstrass equation
y2 + ar1xy + asy = z3 + ang + a4x + ag.

In the notation of §3 we have E = Cy where ¢ = (a1, az, as, as, ag).
The complete linear system |n.0| determines a morphism F — P*!

n=2 (x,y) — (x:1)

n=3 (x,y) — (1:z:9)

n =4 (r,y) — (1:2:y:2?)
n=>5 (z,y) — (1:x:y:2%:zy)

The image is defined by a genus one model

2 232 4 apr?2? + ayw2® + agz?)

3

WQ((b) = (G1IZ+CL32

m3(0) = (yPz + azyz + azyz® — 2° — a2z — agwz® — ag2?)

mio) = ( T~ 02 )

2 2 2
T3+ a122T3 + A3X1T3 — Taly — A2X5 — A4T1X2 — AT

0 ¢ Ts Ty T3
0 T4 T3 T2

7T5(¢) = 0 —zo O
- 0 I
0

where ¢ = a1T5 — A2X4 + A3T3 — A4T2 — AgT1-

These formulae define a morphism =, : X; — X,,. A morphism
Y G1 — G, with the properties specified in Proposition 4.7 is given
by

wllurost) = [ oatsn, ()

i 1 r t
ya([uyr,s,t]) = |ub [0 u? u’s
0 0
[ 1 r t 7
w0 0 u? u’s 2u’r
74([u; TS, t]) = (U_GT u—G) 1o 0 u3 0
0O 0 0 u?
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and s ([u;r, s,t]) = [As, Bs| where

1 —s 2r—s® rs—t —r?+rs®—st
0 w  2us —ur  u(—=2rs+t)
As=u2|0 0 u? 0 —u’r
0 0 0 u? uls
0 0 0 0 ut
and
1 r t 7 rt
0 w? u’s 2u’r u?(rs+t)
Bs=u2|0 0 «* 0 udr
o0 0 uts
0 0 0 0 u®

7. FORMULAE

We recall some formulae for the invariants in the cases n = 2,3, 4.
In each case we scale the invariants so as to give the usual formulae
when restricted to the Weierstrass family. As noted in Remark 4.16
these are also the scalings, unique up to sign, for which ¢4, ¢ and A
are primitive integer coefficient polynomials. We assume for simplicity
that char (K') # 2, 3.

7.1. Formulae for the invariants: case n = 2. The invariants in
the case n = 2 are classical. Here is one way to compute them. We
start with the binary quartic

f=ax' + b3z + ca’2® + do2® + e2?
and compute (a scalar multiple of) its Hessian

H = (8ac— 3b*)x* + (24ad — 4bc)xz + (48ae + 6bd — 4c?)x?2?
+(24be — ded)z2® + (8ce — 3d?)2*.

We then turn f into a differential operator by substituting 0/9z and
—0/0x for x and z. Letting this operator act on f and H gives the
invariants

cy = 2%12ae — 3bd + *)
cg = 2%(72ace —27ad* — 27b%e + 9bed — 2¢3).

The discriminant A = (¢ —¢2)/1728 is 16 times the usual discriminant

of a degree 4 polynomial. If the cross terms oy, g, g are included (by
computing the square) then ¢y, ¢g and A are primitive integer coefficient
polynomials in ag, a1, as, a,b, ¢, d, e.
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7.2. Formulae for the invariants: case n = 3. The invariants in
the case n = 3 are again classical. The ternary cubic
Ulr,y,z) = ax®+ by’ + cz® + asr’y + azx’z
+bzy? + bsy?z + crw2? + cpyz? + mayz

has Hessian

02U 9%U 22U

Ozx2 Ox0y Oxdz

_ ?U  9*U  d%U
H(U) - ( ]‘/2) X dzdy  Oy?  Oyoz
9°U  J*U  9%U

0x0z  Oydz 0z2

Putting ¢4, = c4(U), ¢ = ¢(U) and H = H(U) we find
HAU + pH) = 3(cs N+ 2c6A\p” + cip)U + (N — 3 A — 2c6p” ) H.
This formula is classical: see [16, §I1.7] or [22, §225]. It is easily verified

by restricting to any family of plane cubics covering the j-line, for
example the Weierstrass family defined in §6. We solve to find

cs = —216abem + 144abcicy + 144ach by — 48abic3 + . ..
...+ 24azbicom — 8azbsm? + 16b3c? — 8bycym? + m*

e = H832a%b*c? — 3888a’bebzcy + 864abcs + 864a’chi + . ..
oo+ 12a3bsm* + 64b3c3 — 48b3c3m? + 12bycym* — m®

where the full expressions have 25 terms and 103 terms respectively.
These polynomials are written out completely in [1], [9, §10.3], [22,
§6220,221] and [25, §§4.4,4.5].

We may compute the discriminant as A = (¢§ — ¢2)/1728. An alter-
native, taken from [22, §241], is the following. We compute the partial
derivatives of U and H = H(U), and arrange the coefficients of these
quadrics in a 6 X 6 matrix. Then this matrix has determinant £1728A.

7.3. Formulae for the invariants: case n = 4. We identify a genus
one model of degree 4 with a pair of 4 x4 symmetric matrices. Explicitly

o=(2)=(5)

G (T1,...,04) = %XTAX and  qa(x1,...,14) = %XTBX.

where

The invariants are found by computing the binary quartic
det(sA + tB) = as* + bs*t + cs*t* + dst® + et*
and then using the formulae for n = 2. The correct scalings are

¢, = 12ae — 3bd + 2
e = x(T2ace — 2Tad® — 27b% + 9bed — 2¢3).
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Since b,d € 27Z[X4] the coeflicients of ¢4 and ¢4 are indeed integers as
predicted by Lemma 4.15

We may compute the discriminant as A = (¢} — ¢2)/1728. An al-
ternative is the following. Let 77 and 75 be the symmetric matrices
defined in [1], [20] by

adj(s(adj A) + t(adj B)) = a*As® + aT1s’t + eTyst? + e*Bt3.
The corresponding quadrics are

q(z1,...xy) = %XTTlx and  ¢4(z1,...14) = %XTTQX.
For a permutation w € Sy we define

o dq1 O dq1 O
Qe = sian(m) (5225 520 — 522 525 ).
Then we arrange the coeflicients of the quadrics ¢1, g2, q1, ¢, and ,
for 1 <r <s<4ina 10 x 10 matrix. The determinant of this matrix
turns out to be £16A. As seen in §5.4, the quadrics €2, ; arise naturally
in the construction of an invariant differential wy, on Cl.

8. AN EVALUATION ALGORITHM

In the case n = 5 the invariants ¢4 and cg are homogeneous polyno-
mials of degrees 20 and 30 in 50 variables. They are therefore too large
to write down as explicit polynomials. Nonetheless we have found a
practical algorithm for evaluating them. We assume throughout this
section that char (K) # 2,3, 5.

We identify X5 = A2V @ W where V and W are 5-dimensional vector
spaces. Explicitly

(¢ij(w1, ..., 25))ij=1,.5 = Z(Uz Avj) @ ¢y(21,. .., 25)
i<j
where vy, ...,v5 and x1, ..., x5 are fixed bases for V and W. The action
of G5 = GL(V) x GL(W) is the natural one. The commutator subgroup
of Q5 is G5 = SL(V) X SL(W)

Definition 8.1. Let (p,Y) be a rational representation of Gs. A covari-
ant is a polynomial map F : A2V @ W — Y such that Fog = p(g)o F
for all g € G5s.

Notice that the invariants are the covariants in the case of the trivial
representation. For a fixed representation (p,Y’) the covariants form a
module over the ring of invariants.

The 4 x 4 Pfaffians of ¢ are quadrics py, ..., ps satisfying

gb/\gb/\vi:pi(xl,...,%) 1)1/\.../\1)5.
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We may therefore define covariants
P:ANVRW = V*@S*W; ¢ S0 v @pi(ar,...,5)
SN VW — SW ¢|—>det(27p;)

where v}, ..., vZ is the basis for V* dual to vy, ..., vs.

Our method for evaluating the invariants relies on the following geo-
metric “accident”.

Lemma 8.2. Let ¢ € X5 with Cy a smooth curve of genus one and let
P1,--.,p5 be the 4 x 4 Pfaffians of ¢.

(1) The secant variety of Cy is the hypersurface defined by S(¢) = 0.
(ii) The partial derivatives %S((b) are quadrics in pi,...,ps.

PROOF: (i) See [12, Lemma 6.7] or [17, VIII.2.5].

(ii) The lemma may be checked by direct computation on any family of
models covering the j-line, for example the Weierstrass family defined
in §6. A more illuminating proof is given in [11, Corollary 7.5]. O

Lemma 8.2(ii) is accompanied by the following uniqueness statement.

Lemma 8.3. Let ¢ € X5 with 4 x 4 Pfaffians py,...,ps. If S(¢) # 0
then the quartics {p;p; : 1 <1i < j < 5} are linearly independent.

PROOF: The condition S(¢) # 0 gives that py,...,ps are linearly in-
dependent. Now suppose q(vy,...,vs) is a quadric in 5 variables with
q(p1,...,ps) = 0. We differentiate with respect to x; to obtain

Z?:l g_gi(pl’ e ,p5)g—§;(l‘17 e ,(L’5> = O

Our assumption S(¢) # 0 then gives %(pl, ..., ps) =0 for all 7. Since
P1, - - -, Ps are linearly independent, it follows that all partial derivatives
of ¢ are identically zero, and hence that ¢ itself is identically zero. [

Lemma 8.4. There is a covariant
Q:N VW = S2VeW;: ¢— > qlvr,...,v5) @
with the property that if ¢ € X5 with 4 x 4 Pfaffians p1,...,ps then

%S(@ = Qi(pla e ,p5)
for all i. Moreover Q) is uniquely determined by this property.

PROOF: Let ¢ € X;5(K) be the generic model defined over the function
field K = K(X5). By Proposition 4.5 we know that Cj is a smooth
curve of genus one. Then by Lemma 8.2 we can solve for quadrics
q1, - - -, qs with the required property. These quadrics define a rational
map

Q:NVoW—- =S VeW.
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By Lemma 8.3 the quadrics ¢y, ..., ¢5 are uniquely determined. So the
covariance property is clear. We must show that () is regular, and for
this we may work over an algebraically closed field.

We first claim that @ is regular at all ¢ € X5 with S(¢) # 0. The
coefficients of the quartics {p;p; : 1 <1i < j < 5} may be arranged in a
15 x 70 matrix. Let hy,...,hy € K[X5] be the 15 x 15 minors of this
matrix. If ¢ € X5 with S(¢) # 0 then Lemma 8.3 gives h;(¢) # 0 for
some 7. Our claim follows since () is regular on each of the open sets
{hi #0}.

Now let I € K[X5] be a homogeneous polynomial of least degree
such that F'Q is regular. Then @ is regular at ¢ if and only if F'(¢) # 0.
The above claim gives F(¢) # 0 whenever S(¢) # 0. But we know by
Lemma 8.2(i) that S(¢) # 0 for C} a smooth curve of genus one. By
Theorem 4.4(ii) and the irreducibility of A (which is inherited from the
case n = 1) it follows that F' is a power of A. To complete the proof it
only remains to show that S is not divisible by A. Since S has degree
10 and A has degree 60, this is clear. 0

Starting from P and ) we compute covariants M and N, taking
values in S°V* and S°V. We then use the natural identification S5V* =
(S5V)* to contract these covariants, and hence compute the invariants.
We arrive at the following algorithm.

Algorithm 8.5. Assume char (K) # 2,3,5.
INPUT: A genus one model ¢ € X5 = N>V @ W.

OUTPUT: The invariants c4(9), cs(9), A().
(1) Compute the 4 x 4 Pfaffians p1,...,ps of ¢.
(2) Check that the quartics {pip; : 1 < i < j < b} are linearly
independent. If not return 0,0, 0.
(3) Compute the secant quintic s = det(%).
(4) Solve for the auzxiliary quadrics qi, . . . ,]q5 satisfying
38_; = qi(pla s 7p5)-

(5) Compute the quintic M = det(3,_, %g’;jv,’;) € SV

(6) Compute the quintic Ny = det()\ggj +30 aa(iff v,) € S°V.
(7) Contract M and N to obtain

(M, N,) = 40c4\ — 320c6)* + 128cs)\°.

(8) Check that cg = 2.
(9) Return cy, cg, (c3 — c2)/1728.

It is easy to show that the quantities ¢4 and ¢ computed are invari-
ants of weights 4 and 6. By Theorem 4.4 the invariants of weights 4
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and 6 each form a 1-dimensional vector space. So it only remains to
check that the invariants computed are not identically zero, and that
they are correctly scaled. We did this by computing their restriction to
the Weierstrass family, but in fact it would suffice to compute a single
numerical example.

To complete the justification of Algorithm 8.5 we must show that if
the quartics in Step 2 are linearly dependent then the invariants are
necessarily zero. By Lemma 8.3 we have S(¢) = 0. Then A(¢) = 0
by Lemma 8.2(i). Since ¢} — ¢ = 1728A it only remains to show that

c4(¢) = 0. We do this by constructing a covariant
T:NVoW — SW*

of degree 30 with (S, T) = 3. We omit the (lengthy) details, since our
main interest is in applying Algorithm 8.5 in the case Cy is a smooth
curve of genus one.

An alternative method for computing the discriminant is the follow-
ing. Let ¢ € X5 with 4 x 4 Pfaffians py,...,ps5. For a permutation
m € S5 we define

. 5 Op; Odij Opj
Qe = sign(m) 227, O n(3) Di(1) Doim(s) "

The calculations of §5.4 show that (2, ; is well-defined up to the addi-
tion of quadrics in the space spanned by pq,...,ps. We arrange the
coefficients of py,...,ps and Q, s for 1 <r < s <51in a 15 x 15 matrix.
Then the determinant of this matrix is an invariant of degree 60, and
hence weight 12. We claim it is £32A. Since the invariants of weight 12
form a 2-dimensional vector space, our claim is verified by computing
two (suitably chosen) numerical examples. This method for computing
the discriminant is in practice much faster than using Algorithm 8.5.

9. COMPUTING THE GEOMETRIC INVARIANTS

Let C C P*! be a genus one normal curve of degree n > 3, and let
w be an invariant differential on C', both defined over a field K. The
geometric invariants ¢4 and c¢g of the pair (C,w) were defined in §2. We
are interested in computing geometric invariants for the following two
reasons.

Computing the Jacobian. Given equations defining a genus one
normal curve C' C P*! of degree n, we aim to compute a Weierstrass
equation for its Jacobian. The first step is to compute an invariant
differential w on C'. We can do this using either the method of §2
or the method of §5.4. Proposition 2.3 then reduces the problem of
computing the Jacobian to that of computing the geometric invariants.
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Minimisation. Let K be a local field with discrete valuation ord :
K* — Z. If n < 5 then by minimisation we mean the task of finding
an integer coefficient genus one model equivalent to a given one, with
ord(A) minimal. We refer to [8] for a treatment of this problem in the
case n = 2. In general the same question can be asked provided we
have a notion of genus one model with the following properties:

e a (non-singular) genus one model defines a pair (C,w),
e it is possible to decide whether a genus one model has integer
coefficients.

We will not discuss the possible definitions of genus one model for
n > 5, but merely note that if we are to keep track of our progress in
minimising, we must be able to compute geometric invariants.

We have compiled the following list of methods for computing geo-
metric invariants. By Lemma 2.2 we are free to rescale w at any stage
(provided we keep track of the scalars).

9.1. The invariants method. We assume that C' has degree n < 5.
The first step is to compute a genus one model ¢ € X,, with C' = Cj.
For n < 4 this is trivial. For n = 5 we use the algorithm described in
[12]. Then the formulae and algorithms of §§7,8 are used to compute
c4(¢) and cg(¢). By Proposition 5.23 these are the geometric invariants
of (C¢, w¢).

The main disadvantage of the invariants method is that we are cur-
rently restricted to n < 5.

9.2. The projection method. Extending our field (if necessary) we
first find a rational point P € C(K). For instance we might find P
by intersecting our curve with a random hyperplane, or by taking the
generic point defined over the function field. Then we project away
from P to obtain a genus one normal curve Cp C P"~2 of degree n — 1.
Explicitly, we change co-ordinates on P"~! so that P = (0: 0 : ... :
0 : 1) and the tangent line at P is 1 = ... = z,_o = 0. Then the
projection map

PPl P2 (@ i@y i) (0 )

restricts to an isomorphism 7 : C = Cp with 7(P) =(0:0:...:0:1).
We eliminate z,, from the quadrics generating I(C') by linear algebra.
If n > 5 then by Proposition 5.3 the remaining quadrics are sufficient
to generate I(Cp). The invariant differential w on C' is specified by
an n X n matrix of quadrics, as described in §2. The corresponding
invariant differential on Cp is obtained by deleting the last row and
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column of this matrix. We eliminate z,, from the remaining entries by
subtracting suitable elements of I(C').

At this stage we may either project away from m(P) or switch to
another method. If we keep projecting away from a rational point,
then eventually we obtain a curve in Weierstrass form. (The final stages
of this process are described in [7, §8].) Alternatively if a method for
computing Riemann-Roch spaces is available, then we may pass directly
to a Weierstrass equation by computing £(mP) for m = 1,2, 3.

The main disadvantage of the projection method is that it requires
a field extension.

9.3. The covering method. Suppose we are given pairs (C7,w;) and
(Cy,ws), and a morphism 7 : Cy — Cy. Further suppose that 7 is
a twist of the multiplication-by-m map on an elliptic curve. Then
(Cy, 7 wy) and (Cy,mwy) have the same geometric invariants. This
enables us to compute the geometric invariants of (C},w;) from those
of (CQ, u)2>.

The main disadvantage of the covering method is that we need to
know a suitable map 7 : ¢y — (5. However if the curve (] is found by
a descent calculation then it is likely that such a map will be known.
In this setting we already know the Jacobian, and the application we
have in mind is minimisation.

9.4. The Wronskian method. The invariant differential w deter-
mines a derivation f +— df /w on the function field K (C'). Anderson [2]
gives a formula in terms of Wronskian determinants for the covering
map of degree n? from C to its Jacobian. From this data it is easy to
read off the geometric invariants.

The main disadvantage of the Wronskian method is that it requires
extensive calculations in the function field.

An example. Wuthrich [27] has constructed an element of order 5
in the Tate-Shafarevich group of an elliptic curve E over QQ, where the
elliptic curve £ does not admit any rational 5-isogenies. Written as a
genus one normal quintic his example has equations

S — 31'% + X1T5 — Ty — :L'%

pr = 1722 — 102,23 + Tw125 — Tr9xy — 4075 + 41374

P33 = 2151’% — 161’11’2 — 801’11’3 —+ 161’1&34 + 811’11’5 — 491'233'4
—281’21'5 — 16I31’5 — 16.73[21

Ps = 601‘% + 48$1I2 - 34(1]1[E3 - 24[51(1)4 + 20$1$5 - 8%% - 5$2$3
—12ZL'21E4 + 16I2[E5 - 14[)331]5 - 81’41’5
pPs = 181‘% + 91‘1{[’3 — 4[1)1]74 — 4ZE1$5 — 4ZE2I3 — 81721‘4 — 61’21‘5

+8x3w5 — 4%
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We use the algorithm in [12] to write these quadrics as the 4 x4 Pfaffians
of a matrix of linear forms:

0 310x1 4+ 3xz2 + 162x5 —34x1 — dbxg — 14z 10z + 2824 + 1625 80x1 — 3224

0 6x1 + 3x2 + 275 —6x1 + Txs — 4y —14x9 — 8x3
0 —x3 2xo
— 0 —4xq

0

Algorithm 8.5 then computes the invariants
ey = 2% % 151009, cg = —250 x 34871057.

Thus the Jacobian is the elliptic curve of conductor 1289 106508 910
with minimal Weierstrass equation

y: + zy +y = 23 + 2? — 31462 + 39049.

According to MAGMA [19] this elliptic curve has rank 0 and the analytic
order of its Tate-Shafarevich group is 25. It is also the only elliptic
curve in its isogeny class.

We were also able to compute this example using the projection
and Wronskian methods. In our current implementation (written in
MAGMA [19], and available from the author’s website) the invariants
method is slightly faster than the projection method, each taking around
a second. The Wronskian method is much slower, taking around 30
seconds in this case, but has the advantage of giving equations for the
covering map. These timings are of course heavily dependent on details
of the implementation we have not described here.

10. INVARIANTS IN CHARACTERISTICS 2 AND 3

In §4 we showed that there is an injective homomorphism of graded
rings
o K[X,])% — K[X,]%".

n

We also recalled the usual formulae for by, by, bg, bg and ¢y, cg, A as poly-
nomials in

K[Xl] = K[a1,a2,a37a4,a6]-

In Lemma 4.9 we saw that if char (K) # 2,3 then K[X;]% = K|cy, cg).
The analogue of this result in characteristics 2 and 3 is the following.

Lemma 10.1. The ring of invariants is

.| Klai,A] if char (K) =2
K[Xl]G _{ K%bQ,A]] z’fcharEK%zS.
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PROOF: It is easy to show that a; and A, respectively by and A, are
invariants. We must show that they generate the ring of invariants.
As in the proof of Lemma 4.9, this is deduced from the existence of a
suitable normal form.

Case char (K') = 2. We start with the general Weierstrass equation

y2 + a1y + asy = x?’ + a2x2 + asx + ag.

One easily computes j = al?/A. We assume j # 0 and following [24,
Appendix A] make substitutions z = ' + r and y = 3 + ¢ so that
az = ag4 = 0. We are free to suppose that K is algebraically closed.
Then a further substitution y = ¢’ + sz’ gives as = 0. We arrive at the
normal form

y2 +ajzy = 2% + ag
with A = aSag. It follows that every invariant is a polynomial in a,
and A/a%. We are done since a; does not divide A.
Case char (K) = 3. We start with a general Weierstrass equation and
complete the square to obtain

y2 =23 + a2:c2 + a4 + ag.
One easily computes j = a$/A. We assume j # 0 and following [24,
Appendix A] make a substitution x = 2’ + r so that ay = 0. We arrive
at the normal form
y2 = 2% + ay2® + ag
with by = ay and A = —a3ag. It follows that every invariant is a
polynomial in by and A/b3. We are done since by does not divide A. [J

Theorem 10.2. Let n = 2,3,4,5. Then the map 7 : K[X,] —
K[X1]% is an isomorphism in all characteristics.

PROOF: In §4 we saw that cy,c5, A € K[X;]9 extend to invariants
cs,¢6, A € K[X,,]%. Soit only remains to show that in characteristics 2
and 3 there are invariants in K[X,]" of weights 1 and 2.

If char (K) = 2 or 3 then ¢} — ¢Z = 1728A = 0. So an invariant of
weight 2 exists by unique factorization in K[X,].

We now take char (K) = 2 and split into the cases n = 2,3,4,5. In
the cases n = 2, 3 the coefficient of xyz is an invariant of weight 1. In
the case n = 4 we write

ql(l‘l, e ,ZE4) = Zigj CLijZL‘il'j
G2(21,. .., 24) > i<y bijwiz;

and find

a1 = a12b3s + a13bay + a1abos + agsbig + az4bis + asabia.
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If n = 5 then our genus one model is a matrix of linear forms, say
¢ = (¢yj(x1,...,25)). Let T be a set of left coset representatives for
D5 = ((12345),(25)(34)) as a subgroup of S5. Then a, is the coefficient

5 . 5
of JTioy @i in >0 cr ITisy @oti) aivn)- O

Remark 10.3. If char (K') = 2 or 3 then the invariants do not suffice to
compute the Jacobian. For example the elliptic curves y? +zy = 23 +1
and % + 2y = 23 + 2% + 1 over Fy have invariants a; = A = 1, but
are not isomorphic. Similarly the elliptic curves y? = 2° — 2 4= 1 over
F3 have invariants b, = 0 and A = 1, but are not isomorphic. These
examples should be seen as a consequence of the failure of Lemma 2.4
in characteristics 2 and 3.

As we noted in the introduction, it should instead be possible to
find a formula for the Jacobian that works in all characteristics by
modifying the formulae in characteristic 0. This has been carried out
by Artin, Rodriguez-Villegas and Tate [3] in the case n = 3.

Acknowledgements. [ would like to thank Nick Shepherd-Barron for
introducing me to this problem. The computer calculations in support
of this work were performed using MAGMA [19] and PARI [21].
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