
THE INVARIANTS OF A GENUS ONE CURVE

TOM FISHER

Abstract. It was first pointed out by Weil [26] that we can use
classical invariant theory to compute the Jacobian of a genus one
curve. The invariants required for curves of degree n = 2, 3, 4 were
already known to the nineteenth centuary invariant theorists. We
have succeeded in extending these methods to curves of degree
n = 5, where although the invariants are too large to write down
as explicit polynomials, we have found a practical algorithm for
evaluating them.

1. Introduction

We work throughout over a perfect field K with algebraic closure K.
In this introduction we further assume that char (K) 6= 2, 3. Let C be
a smooth curve of genus one defined over K and let D be a K-rational
divisor on C of degree n. If n = 1 then C(K) 6= ∅, and C is defined
by a Weierstrass equation. If n ≥ 2 then the complete linear system
|D| defines a morphism C → Pn−1. If n ≥ 3 then this morphism is an
embedding and we call the image a genus one normal curve of degree n.
For n ≤ 5 the pair (C, D) is described by data of the following form.

Definition 1.1. A genus one model of degree n = 1, 2, 3, 4, 5 is
(i) if n = 1 a Weierstrass equation
(ii) if n = 2 a binary quartic
(iii) if n = 3 a ternary cubic
(iv) if n = 4 a pair of quadrics in 4 variables
(v) if n = 5 a 5× 5 alternating matrix of linear forms in 5 variables.

The equations defined by a genus one model of degree 5 are the 4×4
Pfaffians of the matrix. It is a classical fact that every genus one normal
quintic is defined by equations of this form. An algorithm for comput-
ing these matrices is given in [12], based on the Buchsbaum-Eisenbud
structure theorem [5], [6] for Gorenstein ideals of codimension 3.

We write Xn for the (affine) space of all genus one models of degree n
and K[Xn] for its co-ordinate ring. In §4 we specify a linear algebraic
group Gn acting on Xn. In each case we find that the ring of invariants
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K[Xn]Gn is a polynomial ring in two variables. (This could be deduced
by a theorem of Kempf [18, Theorem 2.4] if char (K) = 0.) We label the
generators c4 and c6. In the case n = 1 these are the usual polynomials
defined in [24, Chapter III]. In the cases n = 2, 3, 4, 5 we find that c4 and
c6 are homogeneous polynomials of degree 4n/(6− n) and 6n/(6− n).
Moreover, as first pointed out by Weil [26] in the case n = 2, the
invariants c4 and c6 give a formula for the Jacobian. The invariants
for n = 2, 3, 4 have been known since the nineteenth century, and are
surveyed in [1].

Our work has two main goals. The first is to describe the ring of
invariants in a way that emphasises the similarities between the cases
n = 1, 2, 3, 4, 5. The second is to give practical methods for evaluating
the invariants. In both instances our main original contribution is in
the case n = 5.

A relatively easy argument (reduction to the case n = 1) shows that
if invariants c4 and c6 of the expected degrees exist then they generate
the ring of invariants. In the cases n = 2, 3 the existence of these
invariants is settled by writing them down as explicit polynomials. In
the case n = 4 there is a classical trick for reducing to the case n = 2.
But in the case n = 5 the invariants are too large to write down as
explicit polynomials. This makes it difficult to show they exist.

One of the tools of classical invariant theory is the so-called symbolic
notation, as described in [14]. This is an extremely compact notation
for specifying invariants. For example in the case n = 3 the invariants
may be written (see [22, §§220,221] or [25, §4.5])

c4 = 54× (abc)(bcd)(cda)(dab)
c6 = 972× (abc)(abd)(bce)(caf)(def)2.

By introducing non-commuting symbols it is possible to write down
similar expressions in the case n = 5. But we have no way of show-
ing these invariants are non-zero without expanding them as explicit
polynomials. As remarked above, this is not feasible.

In principle we could use the representation theory of Lie algebras,
specifically the Weyl character formula, to compute the dimension of
the vector space of invariants of any given degree. For details in the
case n = 3 we refer to [13, Exercise 13.20] or [25, §4.4]. Unfortunately,
when we tried this approach in the case n = 5, we were again defeated
by combinatorial explosion.

The plan of the paper is as follows. In §2 we explain the role played
by the invariant differential in computing the Jacobian of a genus one
curve. In §3 we revisit and motivate our definition of a genus one model.
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Notice that we modify the definition in the case n = 2 to accommodate
fields of characteristic 2.

In §4 we study the ring of invariants. We show that it is generated by
invariants c4 and c6 of the expected degrees and that these invariants
give a formula for the Jacobian. We also show (in all characteristics)
that a genus one model defines a smooth curve of genus one if and only
if its discriminant ∆ = (c3

4 − c2
6)/1728 is non-zero. The proofs rely on

geometric results proved in §5 and formulae recorded in §6.
In §7 we recall some classical methods for computing the invariants

in the cases n = 2, 3, 4. These formulae have already been surveyed
in [1], but are included here to demonstrate our preferred choice of
scalings. In the case n = 5 we have found an algorithm for evaluat-
ing the invariants. Our algorithm, presented in §8, is inspired by the
methods of nineteenth century invariant theory, in that we approach
the invariants through the construction of certain covariants. The key
step relies on a geometric “accident” satisfied by the secant variety of
a genus one normal quintic. In §9 we compare our invariant-theoretic
approach with some other methods for computing the Jacobian of a
genus one curve.

Finally in §10 we include a brief note on the invariants in character-
istics 2 and 3. We find in these cases that the invariants are insufficient
to compute the Jacobian. Instead it should be possible to find a for-
mula for the Jacobian that works in all characteristics by modifying
the formulae in characteristic 0. This has been carried out by Artin,
Rodriguez-Villegas and Tate [3] in the case n = 3.

The formulae and algorithms presented in §§7,8 have been con-
tributed to MAGMA [19, Version 2.13] by the author.

2. Geometric Invariants

Let C be a smooth curve of genus one defined over K, and let ω be
a non-zero regular 1-form on C, also defined over K. We say that ω
is an invariant differential. Over K, the pair (C, ω) may be put in the
form

(1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with ω = dx/(2y + a1x + a3).

Definition 2.1. The geometric invariants of the pair (C, ω) are

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3 and b6 = a2

3 + 4a6.
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It is clear from the formulae in [24, Chapter III] that c4 and c6

depend only on the pair (C, ω) and not on the choice of Weierstrass
equation (1). We deduce by Galois theory that c4, c6 ∈ K.

Lemma 2.2. If (C, ω) has geometric invariants c4 and c6, and λ ∈ K∗,
then (C, λ−1ω) has geometric invariants λ4c4 and λ6c6.

Proof: This is again clear from [24, Chapter III]. �

We show in §5.4 that if a genus one model of degree n defines
a smooth curve of genus one, then it also defines an invariant dif-
ferential on the curve. This enables us to construct the invariants
c4, c6 ∈ K[Xn]Gn as the geometric invariants of the generic genus one
model of degree n. In particular we treat the cases n = 2, 3, 4, 5 in a
uniform manner, and avoid the problem of combinatorial explosion in
the case n = 5.

The geometric invariants give a formula for the Jacobian.

Proposition 2.3. Assume char (K) 6= 2, 3. If (C, ω) has geometric
invariants c4 and c6 then C has Jacobian

y2 = x3 − 27c4x− 54c6.

The proof relies on two easy lemmas.

Lemma 2.4. Assume char (K) 6= 2, 3. Let E be an elliptic curve
defined over K with invariant differential ω. Let α be an automorphism
of E. Then α is a translation map if and only if α∗ω = ω.

Proof: We write τP : E → E for translation by P ∈ E. The map
P 7→ τ ∗P (ω)/ω is a morphism E → Gm. It must therefore be constant.
Specialising to P = 0 we deduce that τ ∗P (ω) = ω for all P ∈ E. (An
alternative proof is given by writing τP as the commutator of τQ and
[−1] where 2Q = P .)

Conversely if α is not a translation then α − 1 is not constant, and
therefore surjective. So α has a fixed point. Conjugating by a transla-
tion, we may suppose that the fixed point is 0 ∈ E. Since char (K) 6=
2, 3 we can put E in shorter Weierstrass form y2 = x3 + Ax + B. Then
the only automorphisms of (E, 0) are of the form (x, y) 7→ (u2x, u3y).
Since ω is a multiple of dx/y the result is now clear. �

Lemma 2.5. Assume char (K) 6= 2, 3. Let E be an elliptic curve and
C a smooth curve of genus one, both defined over K. Let ωE and ωC

be invariant differentials on E and C, also defined over K. If there is
an isomorphism α : C ∼= E defined over K with α∗ωE = ωC then E is
the Jacobian of C.



THE INVARIANTS OF A GENUS ONE CURVE 5

Proof: Let ξσ = σ(α)α−1 for σ ∈ Gal(K/K). Since ωE and ωC are
both K-rational we deduce that ξ∗σωE = ωE. It follows by Lemma 2.4
that ξσ is a translation. So C is the twist of E by the class of {ξσ} in
H1(K, E). In particular C is a torsor under E, the action µ : E×C →
C being given by

µ(P, Q) = α(P + α−1Q).

It follows that E is the Jacobian of C. �

Proof of Proposition 2.3: We are given (C, ω) with geometric
invariants c4 and c6. Let E be the elliptic curve over K with Weierstrass
equation

y2 = x3 − 27c4x− 54c6.

The pairs (C, ω) and (E, 3dx/y) have the same geometric invariants,
and are therefore isomorphic over K. It follows by Lemma 2.5 that E
is the Jacobian of C. �

Before we can use Proposition 2.3 to compute the Jacobian of a
genus one curve, we first need to compute an invariant differential on
the curve. It is easy to generalise the construction of §5.4 to genus one
normal curves of arbitrary degree. An alternative is the following.

Let C ⊂ Pn−1 be a genus one normal curve of degree n with hyper-
plane section H. We identify the Riemann-Roch space L(H) with the
space of linear forms on Pn−1. If we fix ω then there is a linear map

∧2L(H) → L(2H) ; f ∧ g 7→ fdg−gdf
ω

.

By Lemma 5.5 with d = 2 the natural map S2L(H) → L(2H) is
surjective. Thus there is an alternating matrix of quadrics Ω = (Ωij)
with

ω =
x2

jd(xi/xj)

Ωij

for all i 6= j. This matrix has the property that(
∂f
∂x1

. . . ∂f
∂xn

)
Ω ≡ 0 (mod I(C))

for all f ∈ I(C). Starting from generators for I(C) we can use this
property to solve for Ω by linear algebra. Then Ω is the data we use to
specify ω. Notice that the entries of Ω are determined only up to the
addition of quadrics in I(C).

In §9 we compare our invariant-theoretic approach with some other
methods for computing the geometric invariants.



6 TOM FISHER

3. Genus one models

Let C be a smooth curve of genus one defined over K, and let D
be a K-rational divisor on C of degree n. In each of the cases n =
1, 2, 3, 4, 5 we find equations for the pair (C, D), and use the form of
these equations to motivate our definition of a genus one model.

3.1. Genus one models of degree 1. If n = 1 then we pick x, y ∈
K(C) such that L(2D) and L(3D) have bases 1, x and 1, x, y. The 7
elements 1, x, y, x2, xy, x3, y2 in the 6-dimensional space L(6D) satisfy
a linear dependence relation. Moreover the coefficients of x3 and y2 are
non-zero. Rescaling x and y if necessary we find that C has Weierstrass
equation

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

A genus one model of degree 1 is a tuple φ = (a1, a2, a3, a4, a6). We
write Cφ ⊂ P2 for the curve with Weierstrass equation (2). Genus
one models φ and φ′ of degree 1 are equivalent if they are related by
substitutions

x = u2x′ + r
y = u3y′ + u2sx′ + t

and φ′ = u−6φ, with u 6= 0. We write G1 for the group of all such
transformations [u; r, s, t].

3.2. Genus one models of degree 2. If n = 2 then we pick x, y ∈
K(C) such that L(D) and L(2D) have bases 1, x and 1, x, y, x2. The 9
elements 1, x, x2, y, x3, xy, x4, x2y, y2 in the 8-dimensional space L(4D)
satisfy a linear dependence relation. Moreover the coefficient of y2 is
non-zero. We find that C has equation

y2 + (α0x
2 + α1x + α2)y = ax4 + bx3 + cx2 + dx + e.

A genus one model of degree 2 is a pair of homogeneous polynomials
φ = (p(x, z), q(x, z)) of degrees 2 and 4. We write Cφ ⊂ P(1, 1, 2) for
the curve defined by

y2 + p(x, z)y = q(x, z).

Here the ambient space P(1, 1, 2) is a weighted project plane, with
degrees 1, 1, 2 assigned to the co-ordinates x, z, y. Genus one models φ
and φ′ of degree 2 are equivalent if they are related by substitutions

x = B11x
′ + B21z

′

z = B12x
′ + B22z

′

y = µ−1y′ + r0x
′2 + r1x

′z′ + r2z
′2
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and φ′ = µ2φ, with µ det B 6= 0. We write G2 for the group of all such
transformations [µ, r, B].

If char (K) 6= 2 then by completing the square it suffices to con-
sider models of the form (0, q(x, z)). These are the binary quartics of
Definition 1.1.

If n ≥ 3 then the complete linear system |D| determines an embed-
ding C → Pn−1. We identify C with its image, which is called a genus
one normal curve of degree n. Some basic facts about these curves are
recalled in §5.1.

3.3. Genus one models of degree 3. If n = 3 then C ⊂ P2 is a
plane cubic. A genus one model of degree 3 is a single homogeneous
polynomial φ = (f(x1, x2, x3)) of degree 3. We write Cφ ⊂ P2 for the
variety defined by f = 0. Genus one models φ and φ′ of degree 3
are equivalent if they are related by substitutions φ′ = µφ and xj =∑3

i=1 Bijx
′
i with µ det B 6= 0. We write G3 = Gm × GL3 for the group

of all such transformations.

3.4. Genus one models of degree 4. If n = 4 then C ⊂ P3 is the
complete intersection of two quadrics. A genus one model of degree 4
is a pair of homogeneous polynomials

φ =

(
q1(x1, x2, x3, x4)
q2(x1, x2, x3, x4)

)
of degree 2. We write Cφ ⊂ P3 for the variety defined by q1 = q2 = 0.
Genus one models φ and φ′ of degree 4 are equivalent if they are related
by substitutions φ′ = Aφ and xj =

∑4
i=1 Bijx

′
i with det A det B 6= 0.

We write G4 = GL2×GL4 for the group of all such transformations.

3.5. Genus one models of degree 5. If n = 5 then C ⊂ P4 is defined
by the 4×4 Pfaffians of a 5×5 alternating matrix of linear forms. (See
for example [12] and the references cited there.) A genus one model
of degree 5 is a 5× 5 alternating matrix of linear forms in 5 variables.
We write Cφ ⊂ P4 for the variety defined by its 4× 4 Pfaffians. Genus
one models φ and φ′ of degree 5 are equivalent if they are related by
substitutions φ′ = AφAT and xj =

∑4
i=1 Bijx

′
i with det A det B 6= 0.

We write G5 = GL5×GL5 for the group of all such transformations.

4. The ring of invariants

Let Xn be the space of genus one models of degree n. For n =
1, 2, 3, 4, 5 this is an affine space of dimension N = 5, 8, 10, 20, 50. The
co-ordinate ring K[Xn] is a polynomial ring in N variables. For n =
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3, 4, 5 we give this ring its usual grading by degree. In the cases n = 1, 2
the rings are

K[X1] = K[a1, a2, a3, a4, a6]
K[X2] = K[α0, α1, α2, a, b, c, d, e].

We assign degrees deg(ai) = i, deg(αi) = 1, deg(a) = . . . = deg(e) = 2.
In §3 we defined a linear algebraic group Gn acting on Xn. We now
write Gn for the commutator subgroup, i.e.

G1 = {[1; r, s, t] ∈ G1}
G2 = {[1, r, B] ∈ G2 : B ∈ SL2}
G3 = SL3

G4 = SL2 × SL4

G5 = SL5 × SL5.

Definition 4.1. The ring of invariants is

K[Xn]Gn = {F ∈ K[Xn] : F ◦ g = F for all g ∈ Gn(K)}.

The definition is extended to an integral domain R by putting

R[Xn]Gn = R[Xn] ∩K[Xn]Gn .

where K is the field of fractions of R.

We define a rational character det : Gn → Gm

n = 1 [u; r, s, t] 7→ u−1

n = 2 [µ, r, B] 7→ µ det B
n = 3 [µ, B] 7→ µ det B
n = 4 [A, B] 7→ det A det B
n = 5 [A, B] 7→ (det A)2 det B.

Definition 4.2. The vector space of invariants of weight k is

K[Xn]Gn
k = {F ∈ K[Xn] : F ◦ g = (det g)kF for all g ∈ Gn(K)}.

Lemma 4.3. Every homogeneous invariant of degree d is an invariant
of weight k where

d =

 k if n = 1, 2, 3
2k if n = 4
5k if n = 5.

In particular the ring of invariants is graded by weight, i.e.

K[Xn]Gn = ⊕k≥0K[Xn]Gn
k .
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Proof: We treat the cases n = 4, 5. Since the only rational characters
of Gn are of the form [A, B] 7→ (det A)p(det B)q we have

F ◦ [A, B] = (det A)p(det B)qF

for some integers p, q. Considering [A, B] in the centre of Gn we deduce

n = 4

{
d = 2p

2d = 4q

n = 5

{
2d = 5p
d = 5q

We are done by the definition of det : Gn → Gm. The cases n = 1, 2, 3
are similar. �

We are ready to state our main theorem.

Theorem 4.4. There are invariants c4, c6, ∆ ∈ K[Xn]Gn of weights 4,
6 and 12, related by c3

4 − c2
6 = 1728∆, such that

(i) If char (K) 6= 2, 3 then K[Xn]Gn = K[c4, c6].
(ii) The variety Cφ defined by φ ∈ Xn is a smooth curve of genus one
if and only if ∆(φ) 6= 0.
(iii) If char (K) 6= 2, 3 and φ ∈ Xn with ∆(φ) 6= 0 then Cφ has Jacobian

y2 = x3 − 27c4(φ)x− 54c6(φ).

The proof depends on the following geometric statements.

Proposition 4.5. Assume K = K. Let Xsing
n be the set of all models

φ ∈ Xn which do not define a smooth curve of genus one. Then Xsing
n

is an irreducible Zariski closed subset of Xn. In particular the generic
genus one model of degree n defines a smooth curve of genus one.

Proof: The cases n = 1, 2, 3 are well known. A proof for n = 3, 4, 5
is given in §5.3. �

Let P(Xn) be the projective space determined by Xn. (This is a
weighted projective space in the cases n = 1, 2.) We recall that ele-
ments of Xn are equivalent if they lie in the same Gn-orbit.

Proposition 4.6. Assume K = K. Let φ, φ′ ∈ Xn with Cφ and Cφ′

either smooth curves of genus one or rational curves with a single node.
Then Cφ and Cφ′ are isomorphic as curves if and only if φ and φ′ are
equivalent. Moreover the stabiliser of φ for the action of Gn on P(Xn)
is finite.

Proof: The cases n = 1, 2 are straightforward. A proof for n = 3, 4, 5
is given in §5.2. �
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We identify K[Xn]Gn as a subring of K[X1]
G1 . To do this we start

with an elliptic curve E in Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The complete linear system |n.0| determines a morphism E → Pn−1.
The image is described by a genus one model of degree n. In §6 we
specify such a model and hence define a morphism πn : X1 → Xn. The
models πn(φ) for φ ∈ X1 are called Weierstrass models. Collectively
they form the Weierstrass family.

Proposition 4.7. There are morphisms πn : X1 → Xn and γn : G1 →
Gn with the following properties.
(i) If φ′ = πn(φ) then Cφ and Cφ′ are isomorphic as curves.
(ii) γn is a group homomorphism.
(iii) (γng)(πnφ) = πn(gφ) for all g ∈ G1 and φ ∈ X1.
(iv) det(γng) = det(g) for all g ∈ G1.

Proof: The proposition is checked by direct computation using the
formulae in §6. �

The map πn : X1 → Xn induces a homomorphism of polynomial
rings π∗n : K[Xn] → K[X1] ; F 7→ F ◦πn. By Proposition 4.7 it restricts
to a homomorphism of graded rings

π∗n : K[Xn]Gn → K[X1]
G1

where the grading is by weight.

Lemma 4.8. The map π∗n : K[Xn]Gn → K[X1]
G1 is an injective ho-

momorphism of graded rings.

Proof: We must show that π∗n is injective. For this we are free to as-
sume that K is algebraically closed. If F ∈ K[Xn]Gn is a homogeneous
invariant vanishing on the Weierstrass family then by Propositions 4.6
and 4.7 it also vanishes at every φ ∈ Xn for which Cφ is a smooth curve
of genus one. Proposition 4.5 tells us that the latter are Zariski dense
in Xn. It follows that F is identically zero and hence π∗n is injective. �

Computing the ring K[X1]
G1 is entirely routine. We recall that

K[X1] = K[a1, a2, a3, a4, a6].

Following Tate’s formulaire [24, Chapter III] we put

(3)

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4
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and

(4)
c4 = b2

2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

It is well known that c4, c6, ∆ ∈ Z[X1]
G1 and c3

4 − c2
6 = 1728∆.

Lemma 4.9. If char (K) 6= 2, 3 then K[X1]
G1 = K[c4, c6].

Proof: This is Theorem 4.4(i) in the case n = 1. It is an immediate
consequence of the standard procedure for putting a Weierstrass equa-
tion in the shorter form y2 = x3 + Ax + B. The required isomorphism
is ι∗ where

ι : A2 → X1 ; (c4, c6) 7→ (0, 0, 0,−c4/48,−c6/864).

�

We have reduced the proof of Theorem 4.4(i) to showing that π∗n is
surjective. Equivalently, we must show that K[Xn]Gn contains invari-
ants of weights 4 and 6. One method would be to split into the cases
n = 2, 3, 4, 5 and use the explicit constructions presented in §§7,8. This
makes the theorem appear an accident, especially in the case n = 5.
Instead we give a construction based on Proposition 4.6.

Lemma 4.10. Assume K = K. Let φ, φ′ ∈ Xn with Cφ and Cφ′ either
smooth curves of genus one or rational curves with a single node. Then
the Zariski closure of the Gn-orbit of φ is the zero locus of an irreducible
homogeneous invariant F ∈ K[Xn]Gn. Moreover F (φ′) = 0 if and only
if φ and φ′ are equivalent.

Proof: By Proposition 4.6 the morphism Gn → P(Xn); g 7→ g(φ) has
zero-dimensional fibres. But for each n we find

dim(Gn) = dim(Xn)− 2.

So the Gn-orbit of φ in P(Xn) has codimension 1. Moreover since
Gn is irreducible, every Gn-orbit is irreducible. Therefore the Zariski
closure of the orbit of φ is the zero locus of an irreducible homogeneous
polynomial F ∈ K[Xn]. Since the equivalence class of φ determines F
uniquely up to scalars, and Gn is the commutator subgroup of Gn, it
follows that F is an invariant.

If φ and φ′ are equivalent then clearly F (φ′) = 0. For the converse
we suppose F (φ′) = 0. Then the Gn-orbits of φ and φ′ in P(Xn) have
the same Zariski closure, Z say. A standard argument (see e.g. [23,
Chapter I, §5.3, Theorem 6]) shows that each of these orbits contains
a non-empty open subset of Z. Since Z is irreducible these open sets
must intersect. It follows that φ and φ′ are equivalent. �
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We restrict these invariants to the Weierstrass family.

Lemma 4.11. Assume K = K and char (K) 6= 2, 3. Then there are
irreducible invariants F4, F6 ∈ K[Xn]Gn and integers p, q ≥ 1 such that
F4 ◦ πn = cp

4 and F6 ◦ πn = cq
6.

Proof: By Proposition 4.7 we can pick φ ∈ Xn with Cφ a smooth
curve of genus one with j-invariant 0. Let F4 ∈ K[Xn]Gn be the invari-
ant constructed from φ in Lemma 4.10. Then F4 ◦πn is a homogeneous
element of K[X1]

G1 = K[c4, c6]. Rescaling F4 we can write

F4 ◦ πn = cp
4 cq

6 ∆r

s∏
ν=1

(c3
4 − jν∆)

for some integers p, q, r, s ≥ 0 and constants j1, . . . js 6= 0, 1728.
Now let φ′ = πn(φ1) be a Weierstrass model with Cφ′ a smooth

curve of genus one. If this curve has j-invariant not equal to 0 then by
Lemma 4.10 we have F4(φ

′) 6= 0. By varying the choice of φ1 we deduce
that q = s = 0. We then repeat the argument for Cφ′ a Weierstrass
model with a node. This shows that r = 0. The statement for c6 is
proved similarly, starting with j-invariant 1728. �

The proof of Theorem 4.4(i) now reduces to showing that p = q = 1
in Lemma 4.11. For this we quote a geometric result whose proof uses
properties of the invariant differential.

Definition 4.12. Genus one models φ, φ′ ∈ Xn are properly equivalent
if there exists g ∈ Gn with gφ = φ′ and det(g) = 1.

Proposition 4.13. Assume K = K and char (K) 6= 2, 3. Let φ ∈ Xn

with Cφ a smooth curve of genus one. Then φ is properly equivalent to
πn(0, 0, 0, A,B) for some unique A, B ∈ K.

Proof: The existence is already clear from Propositions 4.6 and 4.7.
We prove uniqueness in §5.4. �

Lemma 4.14. Assume K = K and char (K) = 0. Then the map
π∗n : K[Xn]Gn → K[X1]

G1 is surjective.

Proof: Let φ ∈ Xn(K) be the generic model defined over the function
field K = K(Xn). We have assumed char (K) = 0 so that K is perfect.
Proposition 4.5 tells us that Cφ is a smooth curve of genus one. So by
Proposition 4.13, φ is properly equivalent to πn(0, 0, 0, A,B) for some
unique A, B ∈ K. The uniquess statement shows that A and B are
fixed by Gal(K/K) and hence A, B ∈ K.
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Let F4, F6 ∈ K[Xn]Gn be the irreducible invariants constructed in
Lemma 4.11. Then F4 = fp

4 and F6 = f q
6 where

f4 = c4(0, 0, 0, A,B) = −48A
f6 = c6(0, 0, 0, A,B) = −864B.

Since K[Xn] is integrally closed (in its field of fractions K) and F4,
F6 ∈ K[Xn] are irreducible it follows that p = q = 1. �

Applying Lemma 4.14 with K = Q we learn that the invariants
c4, c6, ∆ ∈ Z[X1]

G1 extend to invariants in Q[Xn]Gn . These invariants
are again denoted c4, c6, ∆. Since π∗n is injective it follows by Galois
theory that c4, c6, ∆ ∈ Q[Xn]. In fact the coefficients are integers.

Lemma 4.15. c4, c6, ∆ ∈ Z[Xn].

Proof: Let F = c4, c6 or ∆. Let p be a prime and r ≥ 0 an integer.
We suppose for a contradiction that pr+1F ∈ Zp[Xn] yet prF 6∈ Zp[Xn].
Then each coefficient of π∗n(pr+1F ) ∈ Z[X1] is divisible by p. So if
G ∈ Fp[Xn] is the reduction of pr+1F mod p then π∗nG = 0. The
injectivity established in Lemma 4.8 shows that G = 0. Therefore
prF ∈ Zp[Xn]. This is the required contradiction. �

Remark 4.16. Since the original c4, c6, ∆ ∈ Z[X1] are primitive it is
clear that the new c4, c6, ∆ ∈ Z[Xn] are also primitive. This means it is
possible to specify our scalings of c4, c6, ∆, at least up to sign, without
the need to compute their restrictions to the Weierstrass family.

We revert to working over an arbitrary perfect field K.

Proof of Theorem 4.4: Let c4, c6, ∆ ∈ K[Xn] be the images of
c4, c6, ∆ ∈ Z[Xn]. These polynomials are invariants of weights 4, 6 and
12, satisfying c3

4 − c2
6 = 1728∆. They are non-zero by Remark 4.16.

(i) If char (K) 6= 2, 3 then by Lemmas 4.8 and 4.9 the map

π∗n : K[Xn]Gn → K[X1]
G1 = K[c4, c6]

is an isomorphism of graded rings.
(ii) We may assume that K is algebraically closed. If φ ∈ Xn with
Cφ a smooth curve of genus one then by Propositions 4.6 and 4.7 it is
equivalent to a Weierstrass model. We deduce ∆(φ) 6= 0. So there is
an inclusion

{∆ = 0} ⊂ Xsing
n .

But Proposition 4.5 asserts that Xsing
n is closed and irreducible. So the

inclusion is in fact an equality.
(iii) Let φ ∈ Xn with Cφ a smooth curve of genus one. In §5.4 we use
φ ∈ Xn to define an invariant differential ωφ on Cφ. In the case n = 5
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we must assume char (K) 6= 2. We then show that c4(φ) and c6(φ)
are the geometric invariants of the pair (Cφ, ωφ). The formula for the
Jacobian follows by Proposition 2.3. �

Theorem 4.4(iii) is proved in [1] for n = 2, 3, 4 by giving formulae for
the covering map (of degree n2) from a genus one curve to its Jacobian.
We have extended to the case n = 5 by taking a different approach,
based on properties of the invariant differential.

It turns out that the map π∗n : K[Xn]Gn → K[X1]
G1 is an isomor-

phism in all characteristics. The proof in characteristics 2 and 3 is
given in §10.

The remaining sections of the paper may be read in any order.

5. Geometry

The aim of this section is to prove the geometric results cited in §4.
We work over an algebraically closed field K. The homogeneous ideal
of a projective variety X is denoted I(X).

5.1. Genus one normal curves. We recall some basic facts about
genus one normal curves and rational nodal curves.

Definition 5.1. Let n ≥ 3 be an integer.
(i) A genus one normal curve C ⊂ Pn−1 is a smooth curve of genus one
and degree n that spans Pn−1.
(ii) A rational nodal curve C ⊂ Pn−1 is a rational curve of degree n
that spans Pn−1 and has a single node.

Remark 5.2. Equivalently, a genus one normal curve is a smooth curve
of genus one embedded by a complete linear system of degree n. A
rational nodal curve is the image of a morphism P1 → Pn−1 determined
by a linear system of the form

{f ∈ L(D)|f(P1) = f(P2)}
for D a divisor on P1 of degree n, and P1, P2 ∈ P1 distinct.

Proposition 5.3. Let C ⊂ Pn−1 be either a genus one normal curve
or a rational nodal curve. If n ≥ 4 then the ideal I(C) is generated by
a vector space of quadrics of dimension n(n− 3)/2.

This proposition is well known, at least for genus one normal curves.
Our proof, based on an argument in [17], has the advantage of working
for rational nodal curves at the same time. We write R = K[x1, . . . , xn]
and R′ = K[x1, . . . , xn−1] for the homogeneous co-ordinate rings of
Pn−1 and Pn−2. We give each ring its usual grading by degree, say
R = ⊕d≥0Rd and R′ = ⊕d≥0R

′
d.
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Lemma 5.4. Let X ⊂ Pn−2 be a set of n points in general position.
(i) The evaluation map πX : R′

d → Kn is surjective for all d ≥ 2.
(ii) If n ≥ 4 then the ideal I(X) ⊂ R′ is generated by quadrics.

Proof: We change co-ordinates so that X is the set of points (1 : 0 :
. . . : 0), (0 : 1 : . . . : 0), . . . , (0 : 0 : . . . : 1) and (1 : 1 : . . . : 1). The
proof is now straightforward. �

We show that the curves defined in Definition 5.1 are projectively
normal.

Lemma 5.5. Let C ⊂ Pn−1 be either a genus one normal curve or a
rational nodal curve. Let H be the divisor of a hyperplane section, say
cut out by a linear form h ∈ R1. Then the map

πC : Rd → L(dH) ; f 7→ f/hd

is surjective for all d ≥ 1.

Proof: The proof is by induction on d, the case d = 1 being clear
from Riemann-Roch. For the induction step we choose a hyperplane
{ξ = 0} meeting C in n distinct points disjoint from H. Again by
Riemann-Roch any n − 1 distinct points on C span a hyperplane. So
X = C ∩ {ξ = 0} satisfies the hypothesis of Lemma 5.4.

Let d ≥ 2. We are given f ∈ L(dH) and wish to show that it belongs
to the image of πC . By Lemma 5.4(i) it suffices to treat the case where
f vanishes on X. But then f = (ξ/h)f ′ for some f ′ ∈ L((d − 1)H).
Applying the induction hypothesis to f ′, we deduce that f is in the
image of πC as required. �

Proof of Proposition 5.3: We continue with the notation of the
last proof. Since C is contained in no hyperplane, the natural map

(5) I(C) ∩R2 → I(X) ∩R′
2

is injective. By Lemmas 5.4 and 5.5 these spaces each have dimension
n(n−3)/2. So (5) is an isomorphism. Now let f ∈ I(C)∩Rd. We must
show that f is in the ideal generated by I(C) ∩R2. By Lemma 5.4(ii)
and the surjectivity of (5) it suffices to treat the case where f vanishes
on X. But then f = ξf ′ for some f ′ ∈ I(C) ∩ Rd−1. The proposition
now follows by induction on d. �

We say that curves C, C ′ ⊂ Pn−1 are projectively equivalent if there
exists α ∈ PGLn with α(C) = C ′.

Lemma 5.6. (i) Genus one normal curves C, C ′ ⊂ Pn−1 are projec-
tively equivalent if and only if they have the same j-invariant.
(ii) Any two rational nodal curves C, C ′ ⊂ Pn−1 are projectively equiv-
alent.
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Proof: (i) Let C and C ′ have hyperplane sections H and H ′. If C and
C ′ are isomorphic as curves then composing with a translation map we
can find an isomorphism α : C ∼= C ′ with α∗H ′ ∼ H.
(ii) This is clear from Remark 5.2. �

Lemma 5.7. Let C ⊂ Pn−1 be either a genus one normal curve or a
rational nodal curve. Then there are only finitely many α ∈ PGLn with
α(C) = C.

Proof: We first treat the case C is a genus one normal curve, say
with hyperplane section H. We are interested in the automorphisms α
of C with α∗H ∼ H. The automorphism group of C sits in an exact
sequence

0 → E → Aut(C) → Aut(E, 0) → 0

where E is the Jacobian of C. The first map is P 7→ τP where τP is
translation by P . Since H is a divisor of degree n we have τ ∗P H ∼ H
if and only if nP = 0. The lemma follows from the fact that E[n] and
Aut(E, 0) are both finite.

If C is a rational nodal curve then without loss of generality it is the
image of

P1 7→ Pn−1 ; (s : t) 7→ (sn + tn : stn−1 : . . . : sn−1t).

The group of automorphisms of P1 that extend to automorphisms of
Pn−1 form a copy of the dihedral group generated by (s : t) 7→ (t : s)
and (s : t) 7→ (ζs : t) for ζ an nth root of unity. �

5.2. Minimal free resolutions. We recall that a genus one model of
degree n = 3, 4, 5 is a collection of homogenoeus polynomials in R =
K[x1, . . . , xn]. Splitting into the cases n = 3, 4, 5 we now use φ ∈ Xn to
define an ideal Iφ ⊂ R and a complex of graded free R-modules F•(φ).
We write R(d) for the graded R-module with R(d)e = Rd+e.

If n = 3 then φ consists of a single polynomial f ∈ R. This polyno-
mial generates an ideal Iφ ⊂ R and defines a complex

F•(φ) : 0−→R(−3)
f−→ R−→ 0.

If n = 4 then φ consists of polynomials q1, q2. These polynomials
generate an ideal Iφ ⊂ R and define a complex

F•(φ) : 0−→R(−4)

−q2

q1


−→ R(−2)2

(
q1 q2

)
−→ R−→ 0.
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If n = 5 then φ is a 5 × 5 alternating matrix of linear forms. The
Pfaffian of a 4× 4 alternating matrix is

pf


0 a1 a2 a3

0 b3 b2

0 b1

0

 = a1b1 − a2b2 + a3b3.

We write φ{i} for the submatrix of φ obtained by deleting the ith row
and ith column. Then the vector of submaximal Pfaffians of φ is P =
(p1, . . . , p5) where

pi = (−1)i+1 pf(φ{i}).

These polynomials generate an ideal Iφ ⊂ R and define a complex

F•(φ) : 0−→R(−5)
P T

−→ R(−3)5 φ−→ R(−2)5 P−→ R−→ 0.

In each case n = 3, 4, 5, the variety Cφ ⊂ Pn−1 is that defined by the
ideal Iφ ⊂ R. We say that F•(φ) is a minimal free resolution of R/Iφ if
it is exact at every term except the final copy of R where the homology
is R/Iφ.

Lemma 5.8. Let n = 3, 4, 5 and let φ ∈ Xn.
(i) Every component of Cφ has dimension at least 1.
(ii) If every component of Cφ has dimension 1 then F•(φ) is a minimal
free resolution of R/Iφ.

Proof: (i) This is clear for n = 3, 4. For n = 5 we recall that the
4 × 4 Pfaffians of a generic 5 × 5 alternating matrix define the image
of the Plucker embedding Gr(2, 5) → P9. Then Cφ is the intersection
of this Grassmannian with a linear subspace P4. Since Gr(2, 5) has
dimension 6 we are done by [15, I, Theorem 7.2].
(ii) If n = 3, 4 then our claim is that f is non-zero, respectively that
q1, q2 are coprime. This is clear. The case n = 5 is an application of
the Buchsbaum-Eisenbud acyclicity criterion, for which we refer to [4,
Theorem 1.4.13] or [10, Theorem 20.9]. �

We recall that if A is a finitely generated graded K-algebra, say
A = ⊕d≥0Ad, then there is a polynomial hA(t), called the Hilbert poly-
nomial, with the property that hA(d) = dim(Ad) for all d � 0.

Lemma 5.9. (i) Let n = 3, 4, 5 and let φ ∈ Xn. If the complex F•(φ)
is a minimal free resolution of R/Iφ then

hR/Iφ
(t) = nt.

(ii) If C ⊂ Pn−1 is a curve of arithmetic genus g and degree d then

hR/I(C)(t) = dt + (1− g).
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Proof: (i) We compute the Hilbert polynomial from the minimal free
resolution in the usual way. For example in the case n = 5,

h(t) =

(
t + 4

4

)
− 5

(
t + 2

4

)
+ 5

(
t + 1

4

)
−

(
t− 1

4

)
= 5t.

(ii) This is a definition. See for example [15, I, §7]. �

Proposition 5.10. Let n = 3, 4, 5 and let φ ∈ Xn.
(i) If Cφ ⊂ Pn−1 is a smooth curve of genus one then it is a genus one
normal curve of degree n.
(ii) If Cφ ⊂ Pn−1 is a rational curve with a single node then it is a
rational nodal curve of degree n.

Proof: By Lemma 5.8 the complex F•(φ) is a minimal free resolution
of R/Iφ. Since Iφ ⊂ I(Cφ), a comparison of Hilbert polynomials as
described in Lemma 5.9 shows that Cφ has degree d ≤ n. If Cφ ⊂ Pn−1

spans a linear subspace of dimension m−1 it follows by Riemann-Roch
that 3 ≤ m ≤ d ≤ n. We must show that m = n. In the case n = 3 this
is already clear. If n = 4, 5 then Cφ is defined by quadrics. This enables
us to rule out the unwanted possibilities for (m, d), with the exception
of (m, d) = (4, 4) in the case n = 5. This possiblity is excluded by the
following lemma. �

Lemma 5.11. Let C ⊂ P3 be either a genus one normal curve or a
rational nodal curve. Then C cannot be defined by the 4× 4 Pfaffians
of a 5× 5 alternating matrix of linear forms on P3.

Proof: Let φ be such a matrix, with vector of submaximal Pfaffians
P = (p1, . . . , p5). Let C be defined by quadrics q1, q2. By Proposi-
tion 5.3 we have 〈p1, . . . , p5〉 = 〈q1, q2〉. Replacing φ by AT φA for suit-
able A ∈ GL5 we may suppose that P = (q1, q2, 0, 0, 0). Since Pφ = 0,
and q1, q2 are coprime, it follows that the first two rows of φ are zero.
But then every 4 × 4 Pfaffian of φ vanishes, which is a contradiction.

�

Lemma 5.12. Let n = 3, 4, 5 and let φ ∈ Xn. If Cφ ⊂ Pn−1 is either a
genus one normal curve or a rational nodal curve then Iφ is a radical
ideal, equivalently I(Cφ) = Iφ.

Proof: By Lemma 5.8 the complex F•(φ) is a minimal free resolution
of R/Iφ. If n = 3 then Iφ = (f) where f is an irreducible cubic. If
n = 4, 5 then Iφ is generated by a vector space of quadrics of dimension
d = 2, 5. Since Iφ ⊂ I(Cφ) we are done by Proposition 5.3. �
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Lemma 5.13. Let n = 3, 4, 5 and let φ, φ′ ∈ Xn. Suppose that
(i) there exists α ∈ PGLn with α(Cφ) = Cφ′,
(ii) F•(φ) and F•(φ

′) are minimal free resolutions of R/Iφ and R/Iφ′,
(iii) the ideals Iφ and Iφ′ are radical ideals.
Then φ and φ′ are equivalent.

Proof: By (i) we may assume Cφ = Cφ′ . Then (iii) gives Iφ = Iφ′ .
The cases n = 3, 4 are now clear. If n = 5 then there is an isomorphism
of complexes

0 // R(−5)
P T

//

c

��

R(−3)5 φ //

B
��

R(−2)5 P //

A
��

R // 0

0 // R(−5)
P ′T

// R(−3)5 φ′ // R(−2)5 P ′
// R // 0

The matrices A, B ∈ GL5 are uniquely determined. Comparing this
diagram with its dual gives B = cA−T . So φ′ = [A, c−1I5]φ. �

Lemma 5.14. Let n = 3, 4, 5 and let φ ∈ Xn. Suppose that
(i) there are only finitely many α ∈ PGLn with α(Cφ) = Cφ,
(ii) F•(φ) is a minimal free resolution of R/Iφ,
(iii) the ideal Iφ is a radical ideal.
Then the stabiliser of φ for the action of Gn on P(Xn) is finite.

Proof: This is clear for n = 3, 4. In the case n = 5 it suffices to show
that if [A, I5]φ = λφ for some A ∈ GL5 and λ ∈ K∗, then A is a scalar
matrix. Taking submaximal Pfaffians we obtain P adj A = λ2P . By
(ii) the components of P are linearly independent. It follows that adj A
and hence A is a scalar matrix. �

Proof of Proposition 4.6: (For n = 3, 4, 5.) We are given φ, φ′ ∈
Xn with Cφ and Cφ′ either smooth curves of genus one or rational curves
with a single node. By Proposition 5.10 these are either genus one
normal curves or rational nodal curves. The hypotheses of Lemmas 5.13
and 5.14 are satisfied by Lemmas 5.6, 5.7, 5.8 and 5.12. �

5.3. The generic model. We show that the generic genus one model
of degree n = 3, 4, 5 defines a smooth curve of genus one.
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Definition 5.15. Let n = 3, 4, 5. The Jacobian matrix Jφ of a genus
one model φ ∈ Xn is

n = 3 φ = (f) Jφ =
(

∂f
∂xj

)
n = 4 φ =

(
q1

q2

)
Jφ =

(
∂qi

∂xj

)
n = 5 pi = (−1)i+1 pf(φ{i}) Jφ =

(
∂pi

∂xj

)
.

Lemma 5.16. Let n = 3, 4, 5 and let φ ∈ Xn.
(i) If P ∈ Cφ then rank Jφ(P ) ≤ n− 2.
(ii) If rank Jφ(P ) = n− 2 for every P ∈ Cφ then Cφ is a smooth curve
of genus one.

Proof: (i) We saw in Lemma 5.8(i) that every component of Cφ has
dimension at least 1. Therefore dim TP (Cφ) ≥ 1. Since Iφ ⊂ I(Cφ) it
follows that rank Jφ(P ) ≤ n− 2.
(ii) The argument used in (i) shows that every component of Cφ has
dimension 1. So by Lemma 5.8(ii) the complex F•(φ) is a minimal free
resolution of R/Iφ. In particular R/Iφ is Cohen-Macaulay. It follows
by Serre’s criterion (see [10, §18.3]) that Iφ is a prime ideal. Hence
Cφ is an irreducible smooth curve and I(Cφ) = Iφ. It only remains
to check that Cφ has genus 1. We do this by computing the Hilbert
polynomial as described in Lemma 5.9. �

We define some “bad” subsets Bn ⊂ Xn.

Definition 5.17. (i) Let B3 ⊂ X3 consist of all models of the form

φ =
(
x1f1(x2, x3) + f2(x2, x3)

)
.

(ii) Let B4 ⊂ X4 consist of all models of the form

φ =

(
x1x2 + g1(x2, x3, x4)

g2(x2, x3, x4)

)
.

(iii) Let B5 ⊂ X5 consist of all models φ with φij(1, 0, 0, 0, 0) = 0 for
all {i, j} 6= {1, 2}, and φ45(x1, . . . , x5) ≡ 0.

Lemma 5.18. Let n = 3, 4, 5 and let φ ∈ Xn. The following are
equivalent.
(i) Cφ is not a smooth curve of genus one.
(ii) rank Jφ(P ) < n− 2 for some P ∈ Cφ.
(iii) φ is equivalent to a model in Bn.

Proof: (i) ⇒ (ii). This is a restatement of Lemma 5.16.
(ii) ⇒ (i). This follows from Proposition 5.10(i), Lemma 5.12 and the
Jacobian criterion for smoothness.
(iii) ⇒ (ii). Without loss of generality φ ∈ Bn. Then the point P =
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(1 : 0 : . . . : 0) belongs to Cφ and rank Jφ(P ) < n− 2.
(ii) ⇒ (iii). This is clear for n = 3, 4. We take n = 5. Since P ∈ Cφ

the 4× 4 Pfaffians of φ(P ) vanish. So rank φ(P ) = 0 or 2.
If rank φ(P ) = 2 then we may assume P = (1 : 0 : . . . : 0) and

φ =


0 x1 φ13 φ14 φ15

0 φ23 φ24 φ25

0 `3 −`2

− 0 `1

0


for some φij, `k ∈ 〈x2, x3, x4, x5〉. Since rank Jφ(P ) < 3 the linear forms
`1, `2, `3 are linearly dependent. Replacing φ by AφAT for suitable
A ∈ GL5 we may suppose that `1 = 0. Then φ ∈ B5 as required.

If rank φ(P ) = 0 then we may assume

φ =


0 φ12 φ13 φ14 `1

0 φ23 φ24 `2

0 φ34 `3

− 0 `4

0


for some φij ∈ 〈x2, x3, x4, x5〉 and `j ∈ 〈x3, x4, x5〉. It is clear that
`1, . . . , `4 are linearly dependent. Replacing φ by AφAT for suitable
A ∈ GL5 we may suppose that `4 = 0. Then φ ∈ B5 as required. �

Proof of Proposition 4.5: (For n = 3, 4, 5.) Let Xsing
n be the set

of all models φ ∈ Xn which do not define a smooth curve of genus one.
We consider the projective variety

Zn = {(φ, P ) ∈ P(Xn)× Pn−1|P ∈ Cφ and rank Jφ(P ) < n− 2}.

Let pr1 : Zn → P(Xn) be the first projection. Lemma 5.18 identifies
pr1(Zn) = P(Xsing

n ). Since the image of a projective variety is again
projective it follows that Xsing

n ⊂ Xn is a Zariski closed subset.
Lemma 5.18 also identifies Xsing

n as the image of a morphism

Gn ×Bn → Xn.

Since Gn and Bn are irreducible it follows that Xsing
n is irreducible. �

5.4. The invariant differential. We continue to work over an alge-
braically closed field K. In the case n = 5 we further suppose that
char (K) 6= 2.
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Let φ ∈ Xn with Cφ a smooth of curve genus one. We use φ to define
an invariant differential ωφ on Cφ. In the cases n = 1, 2 we put

n = 1 φ = (a1, a2, a3, a4, a6) ωφ = dx
2y+a1x+a3

n = 2 φ = (p(x, z), q(x, z)) ωφ = z2d(x/z)
2y+p(x,z)

.

In the cases n = 3, 4, 5 we start with the complex

F•(φ) : 0−→R
φn−2−→ Fn−3−→ . . . −→F1

φ1−→ R−→ 0

defined in §5.2. We identify the maps φi with the matrices of homoge-
neous polynomials that represent them. Then we define

ωφ =
x2

1d(x2/x1)
∂φ1

∂x3
◦ . . . ◦ ∂φn−2

∂xn

where the partial derivative of a matrix is the matrix of partial deriva-
tives. In the cases n = 3, 4 this formula works out as

ωφ =
x2

1d(x2/x1)
∂f
∂x3

and ωφ =
x2

1d(x2/x1)
∂q1

∂x4

∂q2

∂x3
− ∂q1

∂x3

∂q2

∂x4

.

Proposition 5.19. Let φ ∈ Xn with Cφ a smooth curve of genus one.
If φ′ = gφ for some g ∈ Gn then the isomorphism γ : Cφ′

∼= Cφ deter-
mined by g satisfies

γ∗ωφ = (det g)ωφ′ .

Proof: If the proposition holds for g1, g2 ∈ Gn then it holds for g1g2.
So we only need to consider g running over a set of generators for Gn.
Since the cases n = 1, 2 are well known we take n = 3, 4, 5. The result
is clear for g of the form [1, B] with

B =


µ1 λ

µ2

. . .
µn

 .

If n = 3 and g = [µ, I3] then the result is again clear. If n = 4 and
g = [A, I4] then there is an isomorphism of complexes

0 // R(−4)
φ′2 //

det A
��

R(−2)2
φ′1 //

AT

��

R // 0

0 // R(−4)
φ2 // R(−2)2 φ1 // R // 0

We deduce
γ∗ωφ = (det A)ωφ′ = (det g)ωφ′ .
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If n = 5 and g = [A, I5] then there is an isomorphism of complexes

0 // R(−5)
φ′3 //

(det A)2

��

R(−3)5
φ′2 //

(det A)AT

��

R(−2)5
φ′1 //

adj A
��

R // 0

0 // R(−5)
φ3 // R(−3)5 φ2 // R(−2)5 φ1 // R // 0

We deduce

γ∗ωφ = (det A)2ωφ′ = (det g)ωφ′ .

It only remains to prove the proposition for g = [1, B] with B a per-
mutation matrix. This in turn reduces to checking the result for a set
of transpositions generating the symmetric group Sn. The symmetry
(12) is already clear from the identity

x2
1d(x2/x1) + x2

2d(x1/x2) = 0.

Since the entries of φ1 belong to I(Cφ) we have

(6)
n∑

i=2

∂φ1

∂xi

d(xi/x1) = 0.

If n = 3 then (6) gives the symmetry (23). If n = 4 then the symmetry
(34) is clear. By (6) we have∣∣∣∣∣

∂q1

∂x2

∂q1

∂x4

∂q2

∂x2

∂q2

∂x4

∣∣∣∣∣ d(x2/x1) +

∣∣∣∣∣
∂q1

∂x3

∂q1

∂x4

∂q2

∂x3

∂q2

∂x4

∣∣∣∣∣ d(x3/x1) = 0

and this establishes the symmetry (23).
If n = 5 then the symmetry (35) is clear. Differentiating φ1φ2 = 0

and φ2φ3 = 0 we find

(7)
∂φ1

∂x3

∂φ2

∂x4

∂φ3

∂x5

+
∂φ1

∂x3

∂φ2

∂x5

∂φ3

∂x4

= φ1
∂φ2

∂x3

∂2φ3

∂x4∂x5

.

This establishes the symmetry (45). Using (6) we get

5∑
i=2

∂φ1

∂xi

∂φ2

∂x4

∂φ3

∂x5

d(xi/x1) = 0.

The terms for i = 4, 5 vanish since char (K) 6= 2 and analogous to (7)
we have

2
∂φ1

∂x4

∂φ2

∂x4

∂φ3

∂x5

=
∂2φ1

∂x2
4

∂φ2

∂x5

φ3 .

This establishes the symmetry (23). �
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Lemma 5.20. Let φ = πn(φ1) be a Weierstrass model with Cφ a smooth
curve of genus one. Then the natural isomorphism γ : Cφ1

∼= Cφ satis-
fies γ∗ωφ = ωφ1 .

Proof: We check this by direct calculation using the definition of ωφ

and the formulae of §6. �

Lemma 5.21. Let φ ∈ Xn with Cφ a smooth curve of genus one. Then
ωφ is an invariant differential on Cφ.

Proof: Our claim is that ωφ is a non-zero regular 1-form. By Propo-
sitions 4.6, 4.7 and 5.19 it suffices to prove this for φ a Weierstrass
model. Then Lemma 5.20 reduces us to the case n = 1, and in this
case the result is well known. �

We recall from Definition 4.12 that models φ, φ′ ∈ Xn are properly
equivalent if there exists g ∈ Gn with gφ = φ′ and det(g) = 1.

Lemma 5.22. Let φ, φ′ ∈ X1 with Cφ and Cφ′ smooth curves of genus
one. Then φ and φ′ are properly equivalent if and only if πn(φ) and
πn(φ′) are properly equivalent.

Proof: One implication is clear from Proposition 4.7. For the con-
verse we suppose πn(φ) and πn(φ′) are properly equivalent. Then by
Proposition 5.19 and Lemma 5.20 there is an isomorphism γ : Cφ

∼= Cφ′

with γ∗ωφ′ = ωφ. Composing with a translation we may suppose that
γ is determined by some g ∈ G1. It follows that φ and φ′ are properly
equivalent. �

Proof of Proposition 4.13: Let φ ∈ Xn with Cφ a smooth curve of
genus one. We must show that φ is properly equivalent to a Weierstrass
model πn(0, 0, 0, A,B) for some unique A, B ∈ K. The existence is
already clear from Propositions 4.6 and 4.7. To prove uniqueness we
use Lemma 5.22 to reduce to the case n = 1. In this case the result is
well known. �

In the proof of Theorem 4.4(iii) we used

Proposition 5.23. Let φ ∈ Xn with Cφ a smooth curve of genus one.
Then the geometric invariants of (Cφ, ωφ) are c4(φ) and c6(φ).

Proof: We are free to replace φ by any properly equivalent model.
So we may assume that φ is a Weierstrass model. Then Lemma 5.20
reduces us to the case n = 1. In this case the result is a tautology. �
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6. Weierstrass models

Let E be an elliptic curve with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

In the notation of §3 we have E = Cφ where φ = (a1, a2, a3, a4, a6).
The complete linear system |n.0| determines a morphism E → Pn−1

n = 2 (x, y) 7→ (x : 1)
n = 3 (x, y) 7→ (1 : x : y)
n = 4 (x, y) 7→ (1 : x : y : x2)
n = 5 (x, y) 7→ (1 : x : y : x2 : xy).

The image is defined by a genus one model

π2(φ) = (a1xz + a3z
2, x3z + a2x

2z2 + a4xz3 + a6z
4)

π3(φ) = (y2z + a1xyz + a3yz2 − x3 − a2x
2z − a4xz2 − a6z

3)

π4(φ) =

(
x1x4 − x2

2

x2
3 + a1x2x3 + a3x1x3 − x2x4 − a2x

2
2 − a4x1x2 − a6x

2
1

)

π5(φ) =


0 ` x5 x4 x3

0 x4 x3 x2

0 −x2 0
− 0 x1

0


where ` = a1x5 − a2x4 + a3x3 − a4x2 − a6x1.

These formulae define a morphism πn : X1 → Xn. A morphism
γn : G1 → Gn with the properties specified in Proposition 4.7 is given
by

γ2([u; r, s, t]) =

[
u−3, (0, u2s, t),

(
u2 0
r 1

)]

γ3([u; r, s, t]) =

u−6,

1 r t
0 u2 u2s
0 0 u3



γ4([u; r, s, t]) =

(
u−4 0
u−6r u−6

)
,


1 r t r2

0 u2 u2s 2u2r
0 0 u3 0
0 0 0 u4



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and γ5([u; r, s, t]) = [A5, B5] where

A5 = u−2


1 −s 2r − s2 rs− t −r2 + rs2 − st
0 u 2us −ur u(−2rs + t)
0 0 u2 0 −u2r
0 0 0 u3 u3s
0 0 0 0 u4


and

B5 = u−3


1 r t r2 rt
0 u2 u2s 2u2r u2(rs + t)
0 0 u3 0 u3r
0 0 0 u4 u4s
0 0 0 0 u5

 .

7. Formulae

We recall some formulae for the invariants in the cases n = 2, 3, 4.
In each case we scale the invariants so as to give the usual formulae
when restricted to the Weierstrass family. As noted in Remark 4.16
these are also the scalings, unique up to sign, for which c4, c6 and ∆
are primitive integer coefficient polynomials. We assume for simplicity
that char (K) 6= 2, 3.

7.1. Formulae for the invariants: case n = 2. The invariants in
the case n = 2 are classical. Here is one way to compute them. We
start with the binary quartic

f = ax4 + bx3z + cx2z2 + dxz3 + ez4

and compute (a scalar multiple of) its Hessian

H = (8ac− 3b2)x4 + (24ad− 4bc)x3z + (48ae + 6bd− 4c2)x2z2

+(24be− 4cd)xz3 + (8ce− 3d2)z4.

We then turn f into a differential operator by substituting ∂/∂z and
−∂/∂x for x and z. Letting this operator act on f and H gives the
invariants

c4 = 24(12ae− 3bd + c2)
c6 = 25(72ace− 27ad2 − 27b2e + 9bcd− 2c3).

The discriminant ∆ = (c3
4−c2

6)/1728 is 16 times the usual discriminant
of a degree 4 polynomial. If the cross terms α0, α1, α2 are included (by
computing the square) then c4, c6 and ∆ are primitive integer coefficient
polynomials in α0, α1, α2, a, b, c, d, e.
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7.2. Formulae for the invariants: case n = 3. The invariants in
the case n = 3 are again classical. The ternary cubic

U(x, y, z) = ax3 + by3 + cz3 + a2x
2y + a3x

2z
+b1xy2 + b3y

2z + c1xz2 + c2yz2 + mxyz

has Hessian

H(U) = (−1/2)×

∣∣∣∣∣∣∣∣
∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂x∂y

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂x∂z

∂2U
∂y∂z

∂2U
∂z2

∣∣∣∣∣∣∣∣ .

Putting c4 = c4(U), c6 = c6(U) and H = H(U) we find

H(λU + µH) = 3(c4λ
2µ + 2c6λµ2 + c2

4µ
3)U + (λ3 − 3c4λµ2 − 2c6µ

3)H.

This formula is classical: see [16, §II.7] or [22, §225]. It is easily verified
by restricting to any family of plane cubics covering the j-line, for
example the Weierstrass family defined in §6. We solve to find

c4 = −216abcm + 144abc1c2 + 144acb1b3 − 48ab1c
2
2 + . . .

. . . + 24a3b1c2m− 8a3b3m
2 + 16b2

1c
2
1 − 8b1c1m

2 + m4

c6 = 5832a2b2c2 − 3888a2bcb3c2 + 864a2bc3
2 + 864a2cb3

3 + . . .
. . . + 12a3b3m

4 + 64b3
1c

3
1 − 48b2

1c
2
1m

2 + 12b1c1m
4 −m6

where the full expressions have 25 terms and 103 terms respectively.
These polynomials are written out completely in [1], [9, §10.3], [22,
§§220,221] and [25, §§4.4,4.5].

We may compute the discriminant as ∆ = (c3
4 − c2

6)/1728. An alter-
native, taken from [22, §241], is the following. We compute the partial
derivatives of U and H = H(U), and arrange the coefficients of these
quadrics in a 6×6 matrix. Then this matrix has determinant ±1728∆.

7.3. Formulae for the invariants: case n = 4. We identify a genus
one model of degree 4 with a pair of 4×4 symmetric matrices. Explicitly

φ =

(
q1

q2

)
≡

(
A
B

)
where

q1(x1, . . . , x4) = 1
2
xT Ax and q2(x1, . . . , x4) = 1

2
xT Bx.

The invariants are found by computing the binary quartic

det(sA + tB) = as4 + bs3t + cs2t2 + dst3 + et4

and then using the formulae for n = 2. The correct scalings are

c4 = 12ae− 3bd + c2

c6 = 1
2
(72ace− 27ad2 − 27b2e + 9bcd− 2c3).
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Since b, d ∈ 2Z[X4] the coefficients of c4 and c6 are indeed integers as
predicted by Lemma 4.15

We may compute the discriminant as ∆ = (c3
4 − c2

6)/1728. An al-
ternative is the following. Let T1 and T2 be the symmetric matrices
defined in [1], [20] by

adj(s(adj A) + t(adj B)) = a2As3 + aT1s
2t + eT2st

2 + e2Bt3.

The corresponding quadrics are

q′1(x1, . . . x4) = 1
2
xT T1x and q′2(x1, . . . x4) = 1

2
xT T2x.

For a permutation π ∈ S4 we define

Ωπ(1),π(2) = sign(π)
(

∂q1

∂xπ(3)

∂q2

∂xπ(4)
− ∂q1

∂xπ(4)

∂q2

∂xπ(3)

)
.

Then we arrange the coefficients of the quadrics q1, q2, q′1, q′2 and Ωr,s

for 1 ≤ r < s ≤ 4 in a 10× 10 matrix. The determinant of this matrix
turns out to be ±16∆. As seen in §5.4, the quadrics Ωr,s arise naturally
in the construction of an invariant differential ωφ on Cφ.

8. An evaluation algorithm

In the case n = 5 the invariants c4 and c6 are homogeneous polyno-
mials of degrees 20 and 30 in 50 variables. They are therefore too large
to write down as explicit polynomials. Nonetheless we have found a
practical algorithm for evaluating them. We assume throughout this
section that char (K) 6= 2, 3, 5.

We identify X5 = ∧2V ⊗W where V and W are 5-dimensional vector
spaces. Explicitly

(φij(x1, . . . , x5))i,j=1,...,5 ≡
∑
i<j

(vi ∧ vj)⊗ φij(x1, . . . , x5)

where v1, . . . , v5 and x1, . . . , x5 are fixed bases for V and W . The action
of G5 = GL(V )×GL(W ) is the natural one. The commutator subgroup
of G5 is G5 = SL(V )× SL(W ).

Definition 8.1. Let (ρ, Y ) be a rational representation of G5. A covari-
ant is a polynomial map F : ∧2V ⊗W → Y such that F ◦ g = ρ(g) ◦F
for all g ∈ G5.

Notice that the invariants are the covariants in the case of the trivial
representation. For a fixed representation (ρ, Y ) the covariants form a
module over the ring of invariants.

The 4× 4 Pfaffians of φ are quadrics p1, . . . , p5 satisfying

φ ∧ φ ∧ vi = pi(x1, . . . , x5) v1 ∧ . . . ∧ v5.
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We may therefore define covariants

P : ∧2V ⊗W → V ∗ ⊗ S2W ; φ 7→
∑5

i=1 v∗i ⊗ pi(x1, . . . , x5)

S : ∧2V ⊗W → S5W ; φ 7→ det( ∂pi

∂xj
)

where v∗1, . . . , v
∗
5 is the basis for V ∗ dual to v1, . . . , v5.

Our method for evaluating the invariants relies on the following geo-
metric “accident”.

Lemma 8.2. Let φ ∈ X5 with Cφ a smooth curve of genus one and let
p1, . . . , p5 be the 4× 4 Pfaffians of φ.
(i) The secant variety of Cφ is the hypersurface defined by S(φ) = 0.
(ii) The partial derivatives ∂

∂xi
S(φ) are quadrics in p1, . . . , p5.

Proof: (i) See [12, Lemma 6.7] or [17, VIII.2.5].
(ii) The lemma may be checked by direct computation on any family of
models covering the j-line, for example the Weierstrass family defined
in §6. A more illuminating proof is given in [11, Corollary 7.5]. �

Lemma 8.2(ii) is accompanied by the following uniqueness statement.

Lemma 8.3. Let φ ∈ X5 with 4 × 4 Pfaffians p1, . . . , p5. If S(φ) 6= 0
then the quartics {pipj : 1 ≤ i ≤ j ≤ 5} are linearly independent.

Proof: The condition S(φ) 6= 0 gives that p1, . . . , p5 are linearly in-
dependent. Now suppose q(v1, . . . , v5) is a quadric in 5 variables with
q(p1, . . . , p5) = 0. We differentiate with respect to xj to obtain∑5

i=1
∂q
∂vi

(p1, . . . , p5)
∂pi

∂xj
(x1, . . . , x5) = 0.

Our assumption S(φ) 6= 0 then gives ∂q
∂vi

(p1, . . . , p5) = 0 for all i. Since
p1, . . . , p5 are linearly independent, it follows that all partial derivatives
of q are identically zero, and hence that q itself is identically zero. �

Lemma 8.4. There is a covariant

Q : ∧2V ⊗W → S2V ⊗W ; φ 7→
∑

qi(v1, . . . , v5)⊗ xi

with the property that if φ ∈ X5 with 4× 4 Pfaffians p1, . . . , p5 then
∂

∂xi
S(φ) = qi(p1, . . . , p5)

for all i. Moreover Q is uniquely determined by this property.

Proof: Let φ ∈ X5(K) be the generic model defined over the function
field K = K(X5). By Proposition 4.5 we know that Cφ is a smooth
curve of genus one. Then by Lemma 8.2 we can solve for quadrics
q1, . . . , q5 with the required property. These quadrics define a rational
map

Q : ∧2V ⊗W− →S2V ⊗W.
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By Lemma 8.3 the quadrics q1, . . . , q5 are uniquely determined. So the
covariance property is clear. We must show that Q is regular, and for
this we may work over an algebraically closed field.

We first claim that Q is regular at all φ ∈ X5 with S(φ) 6= 0. The
coefficients of the quartics {pipj : 1 ≤ i ≤ j ≤ 5} may be arranged in a
15× 70 matrix. Let h1, . . . , hN ∈ K[X5] be the 15× 15 minors of this
matrix. If φ ∈ X5 with S(φ) 6= 0 then Lemma 8.3 gives hi(φ) 6= 0 for
some i. Our claim follows since Q is regular on each of the open sets
{hi 6= 0}.

Now let F ∈ K[X5] be a homogeneous polynomial of least degree
such that FQ is regular. Then Q is regular at φ if and only if F (φ) 6= 0.
The above claim gives F (φ) 6= 0 whenever S(φ) 6= 0. But we know by
Lemma 8.2(i) that S(φ) 6= 0 for Cφ a smooth curve of genus one. By
Theorem 4.4(ii) and the irreducibility of ∆ (which is inherited from the
case n = 1) it follows that F is a power of ∆. To complete the proof it
only remains to show that S is not divisible by ∆. Since S has degree
10 and ∆ has degree 60, this is clear. �

Starting from P and Q we compute covariants M and Nλ taking
values in S5V ∗ and S5V . We then use the natural identification S5V ∗ =
(S5V )∗ to contract these covariants, and hence compute the invariants.
We arrive at the following algorithm.

Algorithm 8.5. Assume char (K) 6= 2, 3, 5.
INPUT: A genus one model φ ∈ X5 = ∧2V ⊗W .
OUTPUT: The invariants c4(φ), c6(φ), ∆(φ).

(1) Compute the 4× 4 Pfaffians p1, . . . , p5 of φ.
(2) Check that the quartics {pipj : 1 ≤ i ≤ j ≤ 5} are linearly

independent. If not return 0, 0, 0.
(3) Compute the secant quintic s = det( ∂pi

∂xj
).

(4) Solve for the auxiliary quadrics q1, . . . , q5 satisfying
∂s
∂xi

= qi(p1, . . . , p5).

(5) Compute the quintic M = det(
∑5

k=1
∂2pk

∂xi∂xj
v∗k) ∈ S5V ∗.

(6) Compute the quintic Nλ = det(λ ∂qi

∂vj
+

∑5
k=1

∂φjk

∂xi
vk) ∈ S5V .

(7) Contract M and Nλ to obtain

〈M, Nλ〉 = 40c4λ− 320c6λ
3 + 128c8λ

5.

(8) Check that c8 = c2
4.

(9) Return c4, c6, (c3
4 − c2

6)/1728.

It is easy to show that the quantities c4 and c6 computed are invari-
ants of weights 4 and 6. By Theorem 4.4 the invariants of weights 4
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and 6 each form a 1-dimensional vector space. So it only remains to
check that the invariants computed are not identically zero, and that
they are correctly scaled. We did this by computing their restriction to
the Weierstrass family, but in fact it would suffice to compute a single
numerical example.

To complete the justification of Algorithm 8.5 we must show that if
the quartics in Step 2 are linearly dependent then the invariants are
necessarily zero. By Lemma 8.3 we have S(φ) = 0. Then ∆(φ) = 0
by Lemma 8.2(i). Since c3

4 − c2
6 = 1728∆ it only remains to show that

c4(φ) = 0. We do this by constructing a covariant

T : ∧2V ⊗W → S5W ∗

of degree 30 with 〈S, T 〉 = c2
4. We omit the (lengthy) details, since our

main interest is in applying Algorithm 8.5 in the case Cφ is a smooth
curve of genus one.

An alternative method for computing the discriminant is the follow-
ing. Let φ ∈ X5 with 4 × 4 Pfaffians p1, . . . , p5. For a permutation
π ∈ S5 we define

Ωπ(1),π(2) = sign(π)
∑5

i,j=1
∂pi

∂xπ(3)

∂φij

∂xπ(4)

∂pj

∂xπ(5)
.

The calculations of §5.4 show that Ωr,s is well-defined up to the addi-
tion of quadrics in the space spanned by p1, . . . , p5. We arrange the
coefficients of p1, . . . , p5 and Ωr,s for 1 ≤ r < s ≤ 5 in a 15× 15 matrix.
Then the determinant of this matrix is an invariant of degree 60, and
hence weight 12. We claim it is ±32∆. Since the invariants of weight 12
form a 2-dimensional vector space, our claim is verified by computing
two (suitably chosen) numerical examples. This method for computing
the discriminant is in practice much faster than using Algorithm 8.5.

9. Computing the geometric invariants

Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3, and let
ω be an invariant differential on C, both defined over a field K. The
geometric invariants c4 and c6 of the pair (C, ω) were defined in §2. We
are interested in computing geometric invariants for the following two
reasons.

Computing the Jacobian. Given equations defining a genus one
normal curve C ⊂ Pn−1 of degree n, we aim to compute a Weierstrass
equation for its Jacobian. The first step is to compute an invariant
differential ω on C. We can do this using either the method of §2
or the method of §5.4. Proposition 2.3 then reduces the problem of
computing the Jacobian to that of computing the geometric invariants.
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Minimisation. Let K be a local field with discrete valuation ord :
K∗ → Z. If n ≤ 5 then by minimisation we mean the task of finding
an integer coefficient genus one model equivalent to a given one, with
ord(∆) minimal. We refer to [8] for a treatment of this problem in the
case n = 2. In general the same question can be asked provided we
have a notion of genus one model with the following properties:

• a (non-singular) genus one model defines a pair (C, ω),
• it is possible to decide whether a genus one model has integer

coefficients.

We will not discuss the possible definitions of genus one model for
n > 5, but merely note that if we are to keep track of our progress in
minimising, we must be able to compute geometric invariants.

We have compiled the following list of methods for computing geo-
metric invariants. By Lemma 2.2 we are free to rescale ω at any stage
(provided we keep track of the scalars).

9.1. The invariants method. We assume that C has degree n ≤ 5.
The first step is to compute a genus one model φ ∈ Xn with C = Cφ.
For n ≤ 4 this is trivial. For n = 5 we use the algorithm described in
[12]. Then the formulae and algorithms of §§7,8 are used to compute
c4(φ) and c6(φ). By Proposition 5.23 these are the geometric invariants
of (Cφ, ωφ).

The main disadvantage of the invariants method is that we are cur-
rently restricted to n ≤ 5.

9.2. The projection method. Extending our field (if necessary) we
first find a rational point P ∈ C(K). For instance we might find P
by intersecting our curve with a random hyperplane, or by taking the
generic point defined over the function field. Then we project away
from P to obtain a genus one normal curve CP ⊂ Pn−2 of degree n− 1.
Explicitly, we change co-ordinates on Pn−1 so that P = (0 : 0 : . . . :
0 : 1) and the tangent line at P is x1 = . . . = xn−2 = 0. Then the
projection map

Pn−1− →Pn−2 ; (x1 : . . . : xn−1 : xn) 7→ (x1 : . . . : xn−1)

restricts to an isomorphism π : C ∼= CP with π(P ) = (0 : 0 : . . . : 0 : 1).
We eliminate xn from the quadrics generating I(C) by linear algebra.
If n ≥ 5 then by Proposition 5.3 the remaining quadrics are sufficient
to generate I(CP ). The invariant differential ω on C is specified by
an n × n matrix of quadrics, as described in §2. The corresponding
invariant differential on CP is obtained by deleting the last row and
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column of this matrix. We eliminate xn from the remaining entries by
subtracting suitable elements of I(C).

At this stage we may either project away from π(P ) or switch to
another method. If we keep projecting away from a rational point,
then eventually we obtain a curve in Weierstrass form. (The final stages
of this process are described in [7, §8].) Alternatively if a method for
computing Riemann-Roch spaces is available, then we may pass directly
to a Weierstrass equation by computing L(mP ) for m = 1, 2, 3.

The main disadvantage of the projection method is that it requires
a field extension.

9.3. The covering method. Suppose we are given pairs (C1, ω1) and
(C2, ω2), and a morphism π : C1 → C2. Further suppose that π is
a twist of the multiplication-by-m map on an elliptic curve. Then
(C1, π

∗ω2) and (C2, mω2) have the same geometric invariants. This
enables us to compute the geometric invariants of (C1, ω1) from those
of (C2, ω2).

The main disadvantage of the covering method is that we need to
know a suitable map π : C1 → C2. However if the curve C1 is found by
a descent calculation then it is likely that such a map will be known.
In this setting we already know the Jacobian, and the application we
have in mind is minimisation.

9.4. The Wronskian method. The invariant differential ω deter-
mines a derivation f 7→ df/ω on the function field K(C). Anderson [2]
gives a formula in terms of Wronskian determinants for the covering
map of degree n2 from C to its Jacobian. From this data it is easy to
read off the geometric invariants.

The main disadvantage of the Wronskian method is that it requires
extensive calculations in the function field.

An example. Wuthrich [27] has constructed an element of order 5
in the Tate-Shafarevich group of an elliptic curve E over Q, where the
elliptic curve E does not admit any rational 5-isogenies. Written as a
genus one normal quintic his example has equations

p1 = 3x2
1 + x1x5 − x2x4 − x2

3

p2 = 17x2
1 − 10x1x3 + 7x1x5 − 7x2x4 − 4x2x5 + 4x3x4

p3 = 215x2
1 − 16x1x2 − 80x1x3 + 16x1x4 + 81x1x5 − 49x2x4

−28x2x5 − 16x3x5 − 16x2
4

p4 = 60x2
1 + 48x1x2 − 34x1x3 − 24x1x4 + 20x1x5 − 8x2

2 − 5x2x3

−12x2x4 + 16x2x5 − 14x3x5 − 8x4x5

p5 = 18x2
1 + 9x1x3 − 4x1x4 − 4x1x5 − 4x2x3 − 8x2x4 − 6x2x5

+8x3x5 − 4x2
5.
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We use the algorithm in [12] to write these quadrics as the 4×4 Pfaffians
of a matrix of linear forms:

0 310x1 + 3x2 + 162x5 −34x1 − 5x2 − 14x5 10x1 + 28x4 + 16x5 80x1 − 32x4

0 6x1 + 3x2 + 2x5 −6x1 + 7x3 − 4x4 −14x2 − 8x3

0 −x3 2x2

− 0 −4x1

0


Algorithm 8.5 then computes the invariants

c4 = 244 × 151009, c6 = −266 × 34871057.

Thus the Jacobian is the elliptic curve of conductor 1 289 106 508 910
with minimal Weierstrass equation

y2 + xy + y = x3 + x2 − 3146x + 39049.

According to MAGMA [19] this elliptic curve has rank 0 and the analytic
order of its Tate-Shafarevich group is 25. It is also the only elliptic
curve in its isogeny class.

We were also able to compute this example using the projection
and Wronskian methods. In our current implementation (written in
MAGMA [19], and available from the author’s website) the invariants
method is slightly faster than the projection method, each taking around
a second. The Wronskian method is much slower, taking around 30
seconds in this case, but has the advantage of giving equations for the
covering map. These timings are of course heavily dependent on details
of the implementation we have not described here.

10. Invariants in characteristics 2 and 3

In §4 we showed that there is an injective homomorphism of graded
rings

π∗n : K[Xn]Gn → K[X1]
G1 .

We also recalled the usual formulae for b2, b4, b6, b8 and c4, c6, ∆ as poly-
nomials in

K[X1] = K[a1, a2, a3, a4, a6].

In Lemma 4.9 we saw that if char (K) 6= 2, 3 then K[X1]
G1 = K[c4, c6].

The analogue of this result in characteristics 2 and 3 is the following.

Lemma 10.1. The ring of invariants is

K[X1]
G1 =

{
K[a1, ∆] if char (K) = 2
K[b2, ∆] if char (K) = 3.
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Proof: It is easy to show that a1 and ∆, respectively b2 and ∆, are
invariants. We must show that they generate the ring of invariants.
As in the proof of Lemma 4.9, this is deduced from the existence of a
suitable normal form.
Case char (K) = 2. We start with the general Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

One easily computes j = a12
1 /∆. We assume j 6= 0 and following [24,

Appendix A] make substitutions x = x′ + r and y = y′ + t so that
a3 = a4 = 0. We are free to suppose that K is algebraically closed.
Then a further substitution y = y′ + sx′ gives a2 = 0. We arrive at the
normal form

y2 + a1xy = x3 + a6

with ∆ = a6
1a6. It follows that every invariant is a polynomial in a1

and ∆/a6
1. We are done since a1 does not divide ∆.

Case char (K) = 3. We start with a general Weierstrass equation and
complete the square to obtain

y2 = x3 + a2x
2 + a4x + a6.

One easily computes j = a6
2/∆. We assume j 6= 0 and following [24,

Appendix A] make a substitution x = x′ + r so that a4 = 0. We arrive
at the normal form

y2 = x3 + a2x
2 + a6

with b2 = a2 and ∆ = −a3
2a6. It follows that every invariant is a

polynomial in b2 and ∆/b3
2. We are done since b2 does not divide ∆. �

Theorem 10.2. Let n = 2, 3, 4, 5. Then the map π∗n : K[Xn]Gn →
K[X1]

G1 is an isomorphism in all characteristics.

Proof: In §4 we saw that c4, c6, ∆ ∈ K[X1]
G1 extend to invariants

c4, c6, ∆ ∈ K[Xn]Gn . So it only remains to show that in characteristics 2
and 3 there are invariants in K[Xn]Gn of weights 1 and 2.

If char (K) = 2 or 3 then c3
4 − c2

6 = 1728∆ = 0. So an invariant of
weight 2 exists by unique factorization in K[Xn].

We now take char (K) = 2 and split into the cases n = 2, 3, 4, 5. In
the cases n = 2, 3 the coefficient of xyz is an invariant of weight 1. In
the case n = 4 we write

q1(x1, . . . , x4) =
∑

i≤j aijxixj

q2(x1, . . . , x4) =
∑

i≤j bijxixj

and find

a1 = a12b34 + a13b24 + a14b23 + a23b14 + a24b13 + a34b12.
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If n = 5 then our genus one model is a matrix of linear forms, say
φ = (φij(x1, . . . , x5)). Let T be a set of left coset representatives for
D5 = 〈(12345), (25)(34)〉 as a subgroup of S5. Then a1 is the coefficient
of

∏5
i=1 xi in

∑
σ∈T

∏5
i=1 φσ(i) σ(i+1). �

Remark 10.3. If char (K) = 2 or 3 then the invariants do not suffice to
compute the Jacobian. For example the elliptic curves y2 +xy = x3 +1
and y2 + xy = x3 + x2 + 1 over F2 have invariants a1 = ∆ = 1, but
are not isomorphic. Similarly the elliptic curves y2 = x3 − x ± 1 over
F3 have invariants b2 = 0 and ∆ = 1, but are not isomorphic. These
examples should be seen as a consequence of the failure of Lemma 2.4
in characteristics 2 and 3.

As we noted in the introduction, it should instead be possible to
find a formula for the Jacobian that works in all characteristics by
modifying the formulae in characteristic 0. This has been carried out
by Artin, Rodriguez-Villegas and Tate [3] in the case n = 3.

Acknowledgements. I would like to thank Nick Shepherd-Barron for
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of this work were performed using MAGMA [19] and PARI [21].
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