
Some improvements to 4-descent

on an elliptic curve

Tom Fisher

University of Cambridge, DPMMS, Centre for Mathematical Sciences
Wilberforce Road, Cambridge CB3 0WB, UK

T.A.Fisher@dpmms.cam.ac.uk

http://www.dpmms.cam.ac.uk/�taf1000

Abstract. The theory of 4-descent on elliptic curves has been developed
in the PhD theses of Siksek [18], Womack [21] and Stamminger [20].
Prompted by our use of 4-descent in the search for generators of large
height on elliptic curves of rank at least 2, we explain how to cut down
the number of class group and unit group calculations required, by using
the group law on the 4-Selmer group.

1 Introduction

Let E be an elliptic curve over a number �eld K. A 2-descent (see e.g. [2], [4],
[19]) furnishes us with a list of quartics g(X) ∈ K[X] representing the everywhere
locally soluble 2-coverings of E, and hence the elements of the 2-Selmer group
S(2)(E/K). If we are unable to resolve the existence of K-rational points on the
curves Y 2 = g(X), then it may be necessary to perform a 4-descent. Cassels [3]
has constructed a pairing on S(2)(E/K) whose kernel is the image of [2]∗ in the
exact sequence

E[2](K) −→ S(2)(E/K) ι∗−→ S(4)(E/K)
[2]∗−→ S(2)(E/K) . (1)

We have checked [11] that this pairing agrees with the usual Cassels-Tate pairing
on X(E/K)[2]. An improved method for computing the pairing has recently
been found by Steve Donnelly [7].

Computing this pairing is su�cient to determine the structure of S(4)(E/K)
as an abelian group, but if our aim is to �nd generators of E(K) of large height,
then we also need to �nd equations for the 4-coverings parametrised by this
group. For this we use the theory of 4-descent, as developed in [14], [21] and [20].
Each quartic g(X) has an associated �ex algebra1 F = K[X]/(g(X)), which is
usually a degree 4 �eld extension of K. The existing methods of 4-descent (as
implemented in Magma [13] by Tom Womack, and improved by Mark Watkins)
require us to compute the class group and units for the �ex �eld of every quartic
in the image of [2]∗. In this article we explain how to cut down the number of class

1 We keep the terminology of [6, Paper 1]. Were we to use a term speci�c to 2-descent
then �rami�cation algebra� would seem more appropriate.
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group and unit group calculations, by using the group law on S(4)(E/K). This is
a non-trivial task since by properties of the obstruction map [6], [15], we expect
to have to solve an explicit form of the local-to-global principle for the Brauer
group Br(K). We also give a test for equivalence of 4-coverings (generalising the
tests for 2-coverings and 3-coverings given in [4], [5] and [8]).

Even when the calculation of class groups and unit groups does �nish, the
output may be unmanageably large. We get round this by using a method de-
scribed in �2, to �nd good representatives for elements of K×/(K×)n. This
technique is not speci�c to descent calculations on elliptic curves.

2 Selmer groups of number �elds

Let K be a number �eld of degree [K : Q] = d and let S be a �nite set of primes
of K. The n-Selmer group

K(S, n) = {x(K×)n ∈ K×/(K×)n : ordp(x) ≡ 0 (mod n) for all p /∈ S}

plays an important role in the construction of number �elds via Kummer theory,
and in the theory of descent on elliptic curves.

The height of an algebraic integer x in K is H(x) =
∏d

i=1 max(|σi(x)|, 1)
where σ1, . . . , σd are the distinct embeddings of K into C. We write r1 (resp.
r2) for the number of real (resp. complex) places, and ∆K for the absolute
discriminant. The Minkowski bound is

mK =
(

4
π

)r2 d!
dd

√
|∆K | .

Theorem 2.1. Let n ≥ 1 be an integer. Let α ∈ K× with (α) = bcn and b an
integral ideal. Then there exists β ∈ b with αβ−1 ∈ (K×)n and

H(β) ≤ max(mn
KNb, exp(nd)) .

The proof uses two lemmas.

Lemma 2.2. If a1, . . . , ad are positive real numbers with
∑d

i=1 ai ≤ dc1/d then

d∏
i=1

max(ai, 1) ≤ max(c, exp(d)) .

Proof. We may assume that ai ≥ 1 for 1 ≤ i ≤ r and ai < 1 for r + 1 ≤ i ≤ d.
By the inequality of the arithmetic and geometric means we obtain

d∏
i=1

max(ai, 1) =
r∏

i=1

ai ≤ f(r/d)

where f(x) = x−dxcx. If log(c) ≥ d then f ′(x) ≥ 0 for all 0 < x ≤ 1. Thus
f(r/d) ≤ f(1) = c. On the other hand if log(c) ≤ d we obtain

log f(x) ≤ dx(1− log x) ≤ d .

ut
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We extend the embeddings σi : K → C to maps de�ned on K ⊗Q R.

Lemma 2.3. Let Λ be a lattice in K ⊗Q R of covolume V . Then there exists
non-zero ξ ∈ Λ with

d∑
i=1

|σi(ξ)| ≤
((

4
π

)r2

d!V
)1/d

.

Proof. This is a standard application of Minkowski's convex body theorem. ut

The usual application of Lemma 2.3 is to show that every fractional ideal b
in K contains an element β with |NK/Q(β)| ≤ mKNb.

Proof of Theorem 2.1. Let | · | be the map on K ⊗Q R ∼= Rr1 ⊕ Cr2 given com-
ponentwise by x 7→ |x|. We apply Lemma 2.3 to the lattice Λ = |α|1/nc−1 and
let β = α

|α|ξ
n. The covolume of Λ is

|NK/Q(α)|1/n(Nc)−1
√
|∆K | = (Nb)1/n

√
|∆K | .

Thus β satis�es
d∑

i=1

|σi(β)|1/n ≤ d
(
mK(Nb)1/n

)1/d

.

Since β ∈ b is an algebraic integer, we deduce by Lemma 2.2 that

H(β)1/n ≤ max(mK(Nb)1/n, exp(d))

as required. ut

Theorem 2.1 shows that every element ofK(S, n) is represented by an element
of K of height at most

max
(
mn

K

( ∏
p∈S

Np
)n−1

, exp(nd)
)
. (2)

Since there are only �nitely many elements of K of height less than a given
bound, this gives a new proof that K(S, n) is �nite. More importantly for us, re-
placing Minkowski's convex body theorem by the LLL algorithm, we obtain an al-
gorithm for computing small representatives of Selmer group elements from large
ones. This is particularly useful when using Magma's function pSelmerGroup (so
n = p a prime here) which returns a list of �small� elements of K×, and a list of
exponents to which they must be multiplied to give generators for K(S, p). In
many examples of interest to us, multiplying out directly in K× gives elements
of unfeasibly large height. Using our algorithm (after every few multiplications)
eliminates this problem. Moreover, the process can be arranged so that the only
factorisations required are of the original list of �small� elements.

In principle one could also computeK(S, n) by searching up to the bound (2),
but of course this would be absurdly slow in practice.
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3 Background on quadric intersections

Let QI(K) be the space of �quadric intersections� i.e. pairs of homogeneous
polynomials of degree 2 in K[x1, x2, x3, x4]. Given (A,B) ∈ QI(K) we identify
A and B with their matrices of second partial derivatives, and compute

g(X) = det(AX +B) = aX4 + bX3 + cX2 + dX + e .

The invariants of the quartic g(X) are I = 12ae − 3bd + c2 and J = 72ace −
27ad2− 27b2e+9bcd− 2c3, and the invariants of (A,B) are c4 = I and c6 = 1

2J .
It is well known (see [1]) that if ∆ = (c34 − c26)/1728 is non-zero then the curves
C2 = {Y 2 = g(X)} and C4 = {A = B = 0} ⊂ P3 are smooth curves of genus
one with Jacobian

E : y2 = x3 − 27c4x− 54c6 . (3)

Moreover C4 is a 2-covering of C2 (see [1], [14]) the composite C4 → C2
X→ P1

being given by −T1/T2 where T1 and T2 are the quadrics determined by

adj((adjA)X + (adjB)) = a2AX3 + aT1X
2 + eT2X + e2B.

Following [5], we say that quartics g1, g2 ∈ K[X] are K-equivalent if their
homogenisations satisfy g1 = µ2g2 ◦M for some µ ∈ K× and M ∈ GL2(K).
Quadric intersections (A,B), (A′, B′) ∈ QI(K) are K-equivalent if

(A′, B′) = (m11A ◦N +m12B ◦N,m21A ◦N +m22B ◦N)

for some (M,N) ∈ G4(K) := GL2(K)×GL4(K). It is routine to check that the
quartics associated to equivalent quadric intersections are themselves equivalent.

In the course of a 4-descent, a 2-covering C4 of C2 is computed as follows.
Let C2 have equation Y 2 = g(X) and �ex algebra F = K[θ] = K[X]/(g(X)).
Suppose we are given ξ ∈ F× with NF/K(ξ) ≡ a mod (K×)2 where a is the
leading coe�cient of g. (The existence of such a ξ is clearly necessary for the
existence of K-rational points on C2.) We consider the equation

X − θ = ξ(x1 + x2θ + x3θ
2 + x4θ

3)2 .

A quadric intersection, de�ning a 2-covering C4 of C2, is obtained by expanding
in powers of θ and taking the coe�cients of θ2 and θ3. The answer only depends
(up to K-equivalence) on the class of ξ in F×/K×(F×)2. Using the method
of �2 to �nd a good representative for this class, can signi�cantly decrease the
time subsequently taken to �nd a good choice of co-ordinates on P3, that is, to
minimise and reduce the quadric intersection (using the algorithms in [21]).

4 Galois cohomology

We keep the notation and conventions of [6, Paper I]. Let π : C → E be the
2-covering corresponding to ξ ∈ H1(K,E[2]). The �ex algebra of ξ is F =
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MapK(Φ,K) where Φ is the �bre of π above 0E . We note that C is a torsor
under E, and Φ is a torsor under E[2]. Let 〈ξ〉 be the subgroup of H1(K,E[2])
generated by ξ, and let ∪ be the map H1(K,E[2]) × H1(K,E[2]) → Br(K)[2]
induced by cup product and the Weil pairing e2 : E[2]×E[2] → µ2. The following
theorem is a variant of a standard result (see for example [17], [20]).

Theorem 4.1. There is a canonical isomorphism

ker
(
H1(K,E[2])

〈ξ〉
∪ξ−→ Br(K)

)
∼= ker

(
F×/K×(F×)2

NF/K−→ K×/(K×)2
)

.

Proof. Let F = F ⊗K K. We may identify F = Map(Φ,K) and µ2(F ) =
Map(Φ, µ2). These are identi�cations as Galois modules, the action of Galois
being given by σ(f) = (P 7→ σ(f(σ−1P ))). An easy generalisation of Hilbert's

theorem 90 shows that H1(K,F
×

) = 0 and hence H1(K,µ2(F )) = F×/(F×)2.
We de�ne N : Map(Φ, µ2) → µ2 by N(f) =

∏
P∈Φ f(P ). The constant maps

give an inclusion µ2 → Map(Φ, µ2) with quotient X (say). We thus have short
exact sequences of Galois modules

0 −→ µ2 −→ Map(Φ, µ2)
q−→ X −→ 0

and
0 −→ E[2] w−→ X

N−→ µ2 −→ 0

where w(T ) is the class of P 7→ e2(P − P0, T ), for any �xed choice of P0 ∈ Φ.
Taking the long exact sequences of Galois cohomology we obtain a diagram

K×/(K×)2

��
F×/(F×)2

q∗

��

NF/K

''OOOOOOOOOOO

µ2
ξ // H1(K,E[2])

∪ξ ''OOOOOOOOOOO
w∗ // H1(K,X)

∆

��

N∗ // K×/(K×)2

Br(K)[2] .

Once we have shown that the diagram commutes, the theorem follows by a
routine diagram chase.

We check that the lower left triangle commutes. Let η ∈ Z1(K,E[2]) be a
cocycle. Then w∗(η)σ is the map P 7→ e2(P − P0, ησ). Applying the connecting
map ∆ gives a ∈ Z2(K,µ2) with

aστ = e2(P − σ(P0), σ(ητ )) e2(P − P0, ησ) e2(P − P0, ηστ )−1

= e2(P0 − σ(P0), σ(ητ )) e2(P − P0, σ(ητ ) + ησ − ηστ )
= e2(ξσ, σ(ητ )) .
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This is the cup product of ξ and η. The commutativity of the upper right triangle
is clear. ut

The case ξ = 0 of Theorem 4.1 is well-known. In this case F is the étale
algebra K × L of E[2] where E : Y 2 = f(X) and L = K[X]/(f(X)).

Corollary 4.2. There is a canonical isomorphism

H1(K,E[2]) ∼= ker
(
L×/(L×)2

NL/K−→ K×/(K×)2
)

.

The following theorem, due to Steve Donnelly, gives an explicit description of
the isomorphism of Theorem 4.1 (in one direction). We make the identi�cation
of Corollary 4.2 so that now ξ is represented by some α ∈ L×. Let LF be the
tensor product L ⊗K F and let L[

√
α ] be the algebra L[X]/(X2 − α). By the

formulae in [4, �3] there is a natural inclusion L[
√
α ] ⊂ LF . (If Gal(F/K) ∼= S4

then L is the resolvent cubic �eld, LF is the usual composite of �elds, and we
are quoting that α is a square in LF .) Let τ be the non-trivial automorphism of
L[
√
α ] that �xes L.

Theorem 4.3. Let δ ∈ F× with NF/K(δ) = k2 for some k ∈ K. Suppose we
are given ν ∈ L[

√
α ]× with NLF/L[

√
α ](δ)/k = τ(ν)/ν. Then

β := NLF/L[
√

α ](δ)ν
2 = kNL[

√
α ]/L(ν) ∈ L× (4)

represents an element of ker
(
L×/(L×)2

NL/K−→ K×/(K×)2
)
mapping to δ under

the isomorphisms of Theorem 4.1 and Corollary 4.2.

Proof. We identify

LF = L⊗K F = MapK((E[2] \ {0})× Φ,K) .

Then NLF/L[
√

α ](δ) is the map (T, P ) 7→ δ(P )δ(T + P ). So �xing a base point
P0 ∈ Φ we can rewrite the �rst equality in (4) as

β(P − P0) = δ(P )δ(P0)ν(P − P0, P )2 (5)

for all P ∈ Φ with P 6= P0.
The image of β in H1(K,X) is represented by a cocycle (ψσ) where

ψσ(P ) =

{
σ
√

β√
β

(P − P0) if P 6= P0

1 if P = P0 .

It follows by (5) that

ψσ(P ) = σ
√

δ√
δ

(P )σ
√

δ√
δ

(P0)

for all P ∈ Φ. (The case P = P0 is just 1 = (±1)2.) By the de�nition of X we
may ignore the term involving P0, and so (ψσ) also represents the image of δ in
H1(K,X). ut
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Remark 4.4. If ε = NLF/L[
√

α ](δ)/k then NL[
√

α ]/L(ε) = 1. So by Hilbert's

theorem 90 there exists ν ∈ L[
√
α ]× with ε = τ(ν)/ν. The construction of

Theorem 4.3 therefore gives a well-de�ned map

ker
(
F×/K×(F×)2

NF/K−→ K×/(K×)2
)
→ L×/{1, α}(L×)2 .

The ambiguity up to multiplication by α is predicted by Theorem 4.1, and in
this construction comes from the arbitrary choice of sign for k.

5 Testing equivalence of 4-coverings

Let g(X) ∈ K[X] be a (non-singular) quartic with �ex algebra F = K[θ] =
K[X]/(g(X)). We put QI(K)det=g = {(A,B) ∈ QI(K) : det(AX+B) = g(X)}.
If (A,B) ∈ QI(K)det=g then keeping the notation of �3 we de�ne

Q = θ−1eA+ T1 + θT2 + θ2aB (6)

with suitable modi�cations if ae = 0. (For example if e = 0 then the �θ = 0
component� of Q is −dA+T1.) Then Q is a rank 1 quadratic form, i.e. Q = ξ`2

for some ξ ∈ F× and ` ∈ F [x1, x2, x3, x4] a linear form. This de�nes a map

λ : QI(K)det=g −→ F×/(F×)2 ; (A,B) 7→ ξ

inverse to the construction of �3.

Lemma 5.1. Quadric intersections in QI(K)det=g de�ne isomorphic coverings
of C2 = {Y 2 = g(X)} if and only if they are related by a transformation
(µI2, N) ∈ G4(K) with µ2 det(N) = 1.

Proof. If π : C4 → C2 is the 2-covering de�ned by (A,B) ∈ QI(K)det=g and
P0 ∈ C2 is a rami�cation point of C2 → P1 then the divisor π∗(P0) is a hy-
perplane section of C4 (in fact cut out by the linear form `). So if a pair of
quadric intersections determine isomorphic 2-coverings of C2, then they must
be K-equivalent. Moreover, the equivalence (M,N) ∈ G4(K) is of the form de-
scribed since, by de�nition of a 2-covering, the induced self-equivalence of g must
be trivial as an automorphism of C2. ut

If (A0, B0) ∈ QI(K)det=g de�nes C4 ⊂ P3 then the 2-coverings of C2 are
parametrised as twists of C4 → C2 by H1(K,E[2]). This de�nes a map

φ0 :
QI(K)det=g

{(µI2, N) ∈ G4(K) : µ2 detN = 1}
−→ H1(K,E[2]) .

We �nd that quotienting out by the transformations with µ2 detN = −1 corre-
sponds to quotienting out by 〈ξ2〉 where ξ2 ∈ H1(K,E[2]) is the class of g.
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Theorem 5.2. The following diagram is commutative.

QI(K)det=g

{(µI2,N)∈G4(K) : µ2 det N=±1}

φ0

��

λ // F×/K×(F×)2

·λ(A0,B0)

��
F×/K×(F×)2

q∗

��
H1(K,E[2])

〈ξ2〉
w∗ // H1(K,X)

Proof. This is a variant of [20, Theorem 6.1.4]. Let Q0 = ξ0`
2
0 and Q1 = ξ1`

2
1

be the rank 1 quadratic forms determined by (A0, B0) and (A,B). If (µI2, N) ∈
G4(K) relates (A,B) and (A0, B0) then by properties of the Weil pairing

w∗(φ0(A,B)) =
(
σ 7→ `0 ◦ σ(N)N−1

`0
=
σ(`0 ◦N)
`0 ◦N

)
.

Since Q1 = µQ0 ◦N , this works out as q∗(ξ0ξ1). ut

The maps φ0 and w∗ of Theorem 5.2 are injective. It follows that λ is injective.
So to test whether a pair of quadric intersections (A1, B1), (A2, B2) ∈ QI(K)
are equivalent we proceed as follows. We have implemented this test in the case
K = Q and contributed it to Magma [13].

Step 1. Let gi(X) = det(AiX + Bi) for i = 1, 2. We test whether g1 and g2
are equivalent, using one of the tests in [4], [5]. We are now reduced to the case
g1 = g2. (If there is more than one equivalence between g1 and g2 then we must
repeat the remaining steps for each of these.)

Step 2. Compute ξi = λ(Ai, Bi) for i = 1, 2 by evaluating the quadratic form (6)
at points in P3(K). It helps with Step 3 if we use several points in P3(K) to give
several representatives for the class of ξi in F

×/(F×)2. (Spurious prime factors
can then be removed from consideration by computing gcd's.)

Step 3. Let S be a �nite set of primes of K, including all primes that ramify
in F . We enlarge S so that ξ1, ξ2 ∈ F (S′, 2) where S′ is the set of primes of F
above S.

Step 4. The quadric intersections are equivalent if and only if ξ1ξ
−1
2 is in the

image of the natural map K(S, 2) → F (S′, 2). We cut down the subgroup of
K(S, 2) to be considered by reducing modulo some random primes, and then
loop over all possibilities.

In the case that (A1, B1) and (A2, B2) are equivalent, we can reduce to the
case Q1 = ξ1`

2
1 and Q2 = ξ2`

2
2 with ξ1ξ

−1
2 ∈ K. Then solving `1 ◦ N = `2

for N ∈ Mat4(K), gives the change of co-ordinates relating the two quadric
intersections. This transformation is also returned by our Magma function.
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6 Adding 2-Selmer and 4-Selmer elements

In �8 we describe a general method for adding 4-Selmer group elements. This
involves solving an explicit form of the local-to-global principle for Br(K). But in
the special case where we add 2-Selmer and 4-Selmer elements, no such problem
need be solved. This is essentially because (by a theorem of Zarhin [22] relating
the cup product in Theorem 4.1 to the obstruction map in [6, Paper I], [15]) we
have already solved all the conics we need when doing the original 2-descent.
To make this explicit we have found the following partial description of the
isomorphism of Theorem 4.1.

Let g(X) ∈ K[X] be a quartic with invariants I and J . Let L = K[ϕ]
where ϕ is a root of f(X) = X3 − 3IX + J . We assume that the discriminant
∆0 = 27(4I3 − J2) is non-zero. Formulae in [4], [5] allow us to represent g
by α = a0 + a1ϕ ∈ L× with a0, a1 ∈ K and NL/K(α) ∈ (K×)2. We assume
α 6∈ (L×)2. As in �4 we put F = K[X]/(g(X)) and LF = L⊗K F .

Theorem 6.1. If β, γ ∈ L× are linear in ϕ with NL/K(β), NL/K(γ) ∈ (K×)2

and αβγ ∈ (L×)2, then the isomorphisms of Theorem 4.1 and Corollary 4.2 map
each of β and γ to the class of

δ := TrLF/F

( √
α

f ′(ϕ)

)
TrLF/F

( √
βγ

f ′(ϕ)

)
∈ F× .

Proof. Let ϕ1 = ϕ, ϕ2, ϕ3 be the K-conjugates of ϕ, and likewise for α, β, γ, m
where αβγ = m2. Using that α, β, γ are linear in ϕ we compute

NLF/L[
√

α ](δ) =
(
√
α2 −

√
α3)2(

√
β2γ3 −

√
β3γ2)2

∆0 (ϕ2 − ϕ3)2
.

The hypotheses of Theorem 4.3 are therefore satis�ed with

k =
(α2 − α3)(β2γ3 − β3γ2)

∆0 (ϕ2 − ϕ3)2
=
a1(b1c0 − b0c1)

∆0
∈ K×

and (swapping β and γ if necessary to avoid dividing by zero)

ν−1 =
(
√
α2 −

√
α3)(

√
β2γ3 −

√
β3γ2)√

α2β2γ3 +
√
α3β3γ2

= 1− m2β3 +m3β2

m2γ3 +m3γ2

√
γ2γ3

β2β3
.

We are done since

(
√
α2β2γ3 +

√
α3β3γ2)2 =

(m2γ3 +m3γ2)2

γ2γ3
≡ γ mod (L×)2 .

ut

We give an example in the case K = Q. The quartics

g1(X) = −675X4 − 7970X3 − 18923X2 + 27176X − 7848
g2(X) = −5483X4 + 10470X3 + 8869X2 − 13240X − 8768
g3(X) = −3728X4 − 8536X3 + 9037X2 + 15940X − 13000
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have invariants I = 1071426889 and J = 70141299507574. Moreover they sum
to zero in S(2)(E/Q) where E : −3Y 2 = f(X) = X3−3IX+J . Let L = Q(ϕ) =
Q[X]/(f(X)) and F1 = Q(θ) = Q[X]/(g1(X)). We use the existing FourDescent
routine in Magma to compute 2-coverings Di of Ci = {Y 2 = gi(X)} for i = 2, 3
and then add these using the method of �8 to give a 2-covering D1 of C1 =
{Y 2 = g1(X)}. By a formula in [4] the quartics g1, g2, g3 are represented by

α = −900ϕ+ 29459500
β = (−21932ϕ+ 717892516)/3
γ = (−14912ϕ+ 488109376)/3

in L×/(L×)2. Theorem 6.1 and the map λ in �5 convert C2 and D1 to

δ = 26565975θ3 + 327644415θ2 + 917786936θ − 582546987

and ξ1 = 4725θ3+59165θ2+168496θ−106600 in F×
1 /Q×(F×

1 )2. We then multiply
δ and ξ1 in F×

1 and recover a new 2-covering D′
1 of C1 by the method of �3. By

Theorem 5.2 this new 4-covering of E represents the sum of ι∗(C2) and D1 in
S(4)(E/Q) where ι∗ is the map in (1). Notice that at no stage of the computation
of D1 and D′

1 did we need to �nd the class group and units of F1, although it is
only for much larger examples that this saving becomes worthwhile.

7 Computing the action of the Jacobian

In this section we generalise the formulae of [8, �7] from 3-coverings to 4-
coverings. The main new ingredient is a certain generalisation of the Hessian,
introduced in [9]. This is an SL2(K) × SL4(K)-equivariant polynomial map
H : QI(K) → QI(K). In the notation of �3 it is given by

H : (A,B) 7→ (6T2 − cA− 3bB, 6T1 − cB − 3dA) . (7)

The analogue of the Hesse pencil of plane cubics, is the �Hesse family� of
quadric intersections

U(a, b) = (a(x2
1 + x2

3)− 2bx2x4, a(x2
2 + x2

4)− 2bx1x3)

with invariants

c4(a, b) = 28(a8 + 14a4b4 + b8)
c6(a, b) = −212(a12 − 33a8b4 − 33a4b8 + b12)
∆(a, b) = 220a4b4(a4 − b4)4

and Hessian U(a′, b′) where a′ = −24a(a4 − 5b4) and b′ = 24b(5a4 − b4).
If U ∈ QI(K) is a non-singular quadric intersection with Jacobian E, then

the pencil of quadric intersections spanned by U and its Hessian is a twist of
the Hesse family. So there are exactly six singular �bres, and each singular �bre
is a �square� (really a quadrilateral spanning P3). Each square is uniquely the
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intersection of a pair of rank 2 quadrics and the union of these quadrics is the
set of �xed planes for the action of MT on P3 for some T ∈ E[4] \E[2]. So there
is a Galois equivariant bijection between the syzygetic squares and the cyclic
subgroups of E[4] of order 4. (Our terminology generalises that in [12, �II.7].)

Lemma 7.1. Let U be a non-singular quadric intersection with invariants c4,
c6 and Hessian H. Let T = (xT , yT ) be a point of order 4 on the Jacobian (3).
Then the syzygetic square corresponding to ±T is de�ned by S = 1

3xTU + H,
and this quadric intersection satis�es H(S) = ν2

TS where

νT = (x4
T − 54c4x2

T − 216c6xT − 243c24)/(18yT ) .

Proof. We may assume that U belongs to the Hesse family and that T =
(243(a4 − 5b4), 2733i(a4 − b4)b2). The lemma follows by direct calculation. ut

Let C ⊂ P3 be a genus one normal curve of degree 4, de�ned overK, and with
Jacobian E. Let L/K be any �eld extension. Given T ∈ E(L) a point of order 4,
we aim to construct MT ∈ GL4(L) describing the action of T on C. We start
with a quadric intersection U de�ning C. Then we compute the syzygetic square
S = 1

3xTU + H as described in Lemma 7.1. Making a change of co-ordinates
(de�ned over K) we may assume

� The point (1 : 0 : 0 : 0) does not lie on either of the rank 2 quadrics whose
intersection is the syzygetic square.

� The line {x3 = x4 = 0} does not meet either diagonal of the square.

Let A and B be the rank 2 quadrics in the pencil spanned by S, scaled so that
the coe�cient of x2

1 is 1 in each case. These quadrics are de�ned over a �eld L′

with [L′ : L] ≤ 2, and are easily found by factoring the determinant of a generic
quadric in the pencil. We factor A and B over K as

A = (x1 + α1x2 + β1x3 + γ1x4)(x1 + α3x2 + β3x3 + γ3x4)
B = (x1 + α2x2 + β2x3 + γ2x4)(x1 + α4x2 + β4x3 + γ4x4) .

Then we put

P =


1 α1 β1 γ1

1 α2 β2 γ2

1 α3 β3 γ3

1 α4 β4 γ4


and ξ = α1 − iα2 − α3 + iα4 where i =

√
−1.

Theorem 7.2. If ξ 6= 0 then the matrix

MT = ξP−1


1
i
−1

−i

P

belongs to GL4(L) and describes the action of T (or −T ) on C.
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Proof. The image of this matrix in PGL4 has order 4, and acts on P3 with �xed
planes de�ned by the linear factors of A and B. So the second statement is clear.
Theorem 7.3 shows that MT has entries in L. (It may also be checked directly
that each entry is �xed by Gal(L′(i)/L).) ut

Any polynomial in the αi, βi, γi invariant under the action of C2 × C2 that
swaps the subscripts 1 ↔ 3 and 2 ↔ 4 may be rewritten as a polynomial in the
coe�cients of A and B. We write A =

∑
i≤j aijxixj and B =

∑
i≤j bijxixj . Then

by computer algebra we �nd an expression for κ = (α1−α3)(α2−α4) det(P ) as
a polynomial in the aij and bij , and likewise for the entries of

M1 = (α2 − α4)adj(P )Diag(1, 0,−1, 0)P

and
M2 = (α1 − α3)adj(P )Diag(0, 1, 0,−1)P .

Let S = (λ1A + µ1B, λ2A + µ2B) with λi, µi ∈ L′. Then κ ∈ L, whereas if A
and B are not de�ned over L then Gal(L′/L) interchanges λ1 ↔ λ2, µ1 ↔ µ2

and M1 ↔M2.

Theorem 7.3. The matrix MT of Theorem 7.2 is given by

MT =
a2
12 − 4a22

κ
M1 +

b212 − 4b22
κ

M2 ±
λ1µ2 − λ2µ1

νT
(M1 −M2)

where νT = (x4
T − 54c4x2

T − 216c6xT − 243c24)/(18yT ).

Proof. By our choice of co-ordinates we have α1 6= α3 and α2 6= α4. So κ ∈ L is
non-zero. We compute

κMT = ξ(α1 − α3)(α2 − α4)adj(P )Diag(1, i,−1,−i)P
= ξ(α1 − α3)M1 + iξ(α2 − α4)M2

= (α1 − α3)2M1 + (α2 − α4)2M2 − iκ(detP )−1(M1 −M2) .

Since H(x1x3, x2x4) = (−x1x3,−x2x4) we have

H(S) = −(λ1µ2 − λ2µ1)2 det(P )2S .

By Lemma 7.1 we deduce νT = ±i(λ1µ2 − λ2µ1) det(P ), and substituting this
into the above expression for κMT completes the proof of the theorem. ut

By our choice of co-ordinates it is impossible that both ξ = α1−iα2−α3+iα4

and ξ′ = α1 + iα2 − α3 − iα4 vanish. So if our formula for MT gives the zero
matrix, we can instead use the formula for M−T and take the inverse.

8 Adding 4-Selmer group elements

Finally we outline how the theory in [6] can be used to add elements of S(4)(E/K).
(Of course, the method in �6 should be used in preference whenever it applies.)
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Let C ⊂ P3 be a 4-covering of E. We embed E in P3 via (x, y) 7→ (1 : x : y : x2).
In [10, �6.2] we gave a practical algorithm for computing B ∈ GL4(K) describing
a change of co-ordinates on P3 taking C to E.

Now let R be the étale algebra of E[4]. Applying the formulae of �7 over each
constituent �eld of R, we compute M,M ′ ∈ GL4(R) describing the actions of
E[4] on E ⊂ P3 and C ⊂ P3 respectively. We scale these matrices by using the
method of �2 to �nd good representatives for their determinants in R×/(R×)4.
These matrices now determine γ ∈ R×

= Map(E[4],K
×

) by the rule

BM ′
TB

−1 = γ(T )MT

for all T ∈ E[4]. It is shown in [6, Paper I] that we may identify H1(K,E[4]) with
a certain subquotient of (R⊗R)×. Our 4-covering corresponds to ρ ∈ (R⊗R)×

given by the rule

ρ(S, T ) =
γ(S)γ(T )
γ(S + T )

(8)

for all S, T ∈ E[4]. So if 4-coverings C1 and C2 determine γ1, γ2 ∈ R
×
, then their

sum (by the group law of H1(K,E[4])) corresponds to the product γ1γ2.
It remains to explain how, if C is everywhere locally soluble, we can recover

equations for C ⊂ P3 from γ ∈ R×
. Let ε ∈ (R⊗R)× be the element determined

by ε(S, T )I4 = MSMTM
−1
S+T for all S, T ∈ E[4], and let ρ be given by (8). We

view R ⊗ R as an R-algebra via the comultiplication R → R ⊗ R and write
Tr : R⊗R→ R for the corresponding trace map. In [6, Paper I] we de�ned the
obstruction algebra Aρ = (R,+, ∗ερ) to be the K-vector space R equipped with
a new multiplication z1 ∗ερ z2 = Tr(ερ.(z1 ⊗ z2)).

In our situation, we already have a trivialisation of Aρ over K, namely the
isomorphism of K-algebras Aρ ⊗K K ∼= Mat4(K) given by

z 7→
∑

T∈E[4]

z(T )γ(T )MT .

So picking a basis r1, . . . , r16 for R gives matrices M1, . . . ,M16 ∈ Mat4(K). We
then compute structure constants cijk ∈ K for the obstruction algebra Aρ by

the rule MiMj =
∑16

k=1 cijkMk.
Our only implementation so far is in the case K = Q. In practice we �x an

embedding Q ⊂ C, and so γ is represented by a 16-tuple of complex numbers
(to some precision). In [6, Paper III] we will explain how to choose a basis for R
so that the structure constants cijk are (reasonably small) integers. This makes
it easy to recognise them from their �oating point approximations.

Since C is everywhere locally soluble, it is guaranteed by class �eld theory
that there is an isomorphism of K-algebras Aρ

∼= Mat4(K). We must �nd such
an isomorphism explicitly, and for this we use the method of Pílniková [16], who
reduces the problem to that of solving conics over (at most quadratic) extensions
of K. Finally any one of the three methods in [6, Paper I, �5] may be used to
recover equations for C. In practice we use the Hesse pencil method, which by
virtue of the Hessian (7) has a natural generalisation from 3-descent to 4-descent.
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