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Abstract. The theory of 4-descent on elliptic curves has been developed
in the PhD theses of Siksek [18], Womack [21] and Stamminger [20].
Prompted by our use of 4-descent in the search for generators of large
height on elliptic curves of rank at least 2, we explain how to cut down
the number of class group and unit group calculations required, by using
the group law on the 4-Selmer group.

1 Introduction

Let E be an elliptic curve over a number field K. A 2-descent (see e.g. [2], [4],
[19]) furnishes us with a list of quartics g(X) € K[X] representing the everywhere
locally soluble 2-coverings of F, and hence the elements of the 2-Selmer group
S®@)(E/K). If we are unable to resolve the existence of K-rational points on the
curves Y2 = g(X), then it may be necessary to perform a 4-descent. Cassels [3]
has constructed a pairing on S(?)(E/K) whose kernel is the image of [2], in the
exact sequence

E2/(K) — S®(B/K) = sO(E/K) P 5@ (B/K) . (1)
We have checked [11] that this pairing agrees with the usual Cassels-Tate pairing
on III(E/K)[2]. An improved method for computing the pairing has recently
been found by Steve Donnelly [7].

Computing this pairing is sufficient to determine the structure of S (E/K)
as an abelian group, but if our aim is to find generators of F(K) of large height,
then we also need to find equations for the 4-coverings parametrised by this
group. For this we use the theory of 4-descent, as developed in [14], [21] and [20].
Each quartic g(X) has an associated flex algebral F' = K[X]/(g(X)), which is
usually a degree 4 field extension of K. The existing methods of 4-descent (as
implemented in Magma [13] by Tom Womack, and improved by Mark Watkins)
require us to compute the class group and units for the flex field of every quartic
in the image of [2].. In this article we explain how to cut down the number of class

! We keep the terminology of [6, Paper 1]. Were we to use a term specific to 2-descent
then “ramification algebra” would seem more appropriate.



group and unit group calculations, by using the group law on S (E/K). This is
a non-trivial task since by properties of the obstruction map [6], [15], we expect
to have to solve an explicit form of the local-to-global principle for the Brauer
group Br(K'). We also give a test for equivalence of 4-coverings (generalising the
tests for 2-coverings and 3-coverings given in [4], [5] and [§]).

Even when the calculation of class groups and unit groups does finish, the
output may be unmanageably large. We get round this by using a method de-
scribed in §2, to find good representatives for elements of K*/(K*)". This
technique is not specific to descent calculations on elliptic curves.

2 Selmer groups of number fields

Let K be a number field of degree [K : Q] = d and let S be a finite set of primes
of K. The n-Selmer group

K(S,n)={z(K*)" € K*/(K*)" :ordy(z) =0 (mod n) for all p ¢ S}

plays an important role in the construction of number fields via Kummer theory,
and in the theory of descent on elliptic curves.

The height of an algebraic integer z in K is H(x) = H?zl max(|o;(x)], 1)
where o1,...,04 are the distinct embeddings of K into C. We write 1 (resp.
r9) for the number of real (resp. complex) places, and Ag for the absolute
discriminant. The Minkowski bound is

4\ d!
mg = (ﬂ') ﬁ\/ |AK| .

Theorem 2.1. Let n > 1 be an integer. Let o € K* with (a) = bc™ and b an
integral ideal. Then there exists 3 € b with a3~ € (K*)" and

H(B) < max(myxNb, exp(nd)) .
The proof uses two lemmas.

Lemma 2.2, If aq,...,aq are positive real numbers with Z?Zl a; < dc'/? then

d
Hmax(ai, 1) < max(c,exp(d)) .
i=1

Proof. We may assume that a; > 1for1 <i<randa; <lforr+1<:<d.
By the inequality of the arithmetic and geometric means we obtain

d r
H max(a;, 1) = H a; < f(r/d)
i=1 i=1

where f(z) = z~%c*. If log(c) > d then f’(z) > 0 for all 0 < x < 1. Thus
f(r/d) < f(1) = c. On the other hand if log(c) < d we obtain
log f(z) < dx(1—logz) <d .



We extend the embeddings o; : K — C to maps defined on K ®q R.

Lemma 2.3. Let A be a lattice in K ®g R of covolume V. Then there exists

non-zero £ € A with
d 4\'2 1/d
; < - ! .
Sl < ((7) av)

Proof. This is a standard application of Minkowski’s convex body theorem. 0O

The usual application of Lemma 2.3 is to show that every fractional ideal b
in K contains an element 3 with [N ,q(8)| < mxNb.

Proof of Theorem 2.1. Let | - | be the map on K ®p R = R™ ¢ C™ given com-
ponentwise by = — |z|. We apply Lemma, 2.3 to the lattice 4 = |a|'/"¢~! and
let g = ‘%lgn. The covolume of A is

[N jo(@)[/™(Ne) ' V] Ak| = (N0)/" /] Ak ] .
Thus [ satisfies

d 1/d
> lo (A" < d (mac(No))
i=1
Since 3 € b is an algebraic integer, we deduce by Lemma 2.2 that
H(B)'" < max(mg (N0)'/", exp(d))
as required. a

Theorem 2.1 shows that every element of K (S, n) is represented by an element
of K of height at most

max (mf H Np)nfl, exp(nd)) . (2)
pes

Since there are only finitely many elements of K of height less than a given
bound, this gives a new proof that K (.S, n) is finite. More importantly for us, re-
placing Minkowski’s convex body theorem by the LLL algorithm, we obtain an al-
gorithm for computing small representatives of Selmer group elements from large
ones. This is particularly useful when using Magma’s function pSelmerGroup (so
n = p a prime here) which returns a list of “small” elements of K*, and a list of
exponents to which they must be multiplied to give generators for K(S,p). In
many examples of interest to us, multiplying out directly in K* gives elements
of unfeasibly large height. Using our algorithm (after every few multiplications)
eliminates this problem. Moreover, the process can be arranged so that the only
factorisations required are of the original list of “small” elements.

In principle one could also compute K (S, n) by searching up to the bound (2),
but of course this would be absurdly slow in practice.



3 Background on quadric intersections

Let QZ(K) be the space of “quadric intersections” i.e. pairs of homogeneous
polynomials of degree 2 in K|[z1,x2,x3, z4]. Given (A4, B) € QI(K) we identify
A and B with their matrices of second partial derivatives, and compute

g(X) =det(AX + B) = aX* +bX® + cX? +dX +e .

The invariants of the quartic g(X) are I = 12ae — 3bd + ¢® and J = T2ace —
27ad? — 27b%e + 9bed — 2¢%, and the invariants of (A, B) are ¢, = I and cg = 4 J.
It is well known (see [1]) that if A = (¢} — ¢2)/1728 is non-zero then the curves
Cy ={Y? = g(X)} and Cy = {A = B = 0} C P?3 are smooth curves of genus
one with Jacobian

E: y*=2a%—2Tcsa — 5dcs . (3)

Moreover Cy is a 2-covering of Cy (see [1], [14]) the composite Cy — Cy Xpt
being given by —T} /T» where T7 and T» are the quadrics determined by

adj((adjA)X + (adjB)) = a®?AX?® + aTy X% + eTu X + ¢2B.

Following [5], we say that quartics g1,g2 € K[X] are K-equivalent if their
homogenisations satisfy g1 = p?gs o M for some p € K* and M € GLy(K).
Quadric intersections (A, B), (A’, B") € QZ(K) are K-equivalent if

(A", B") = (m11Ao N +miaBo N,maAo N +maaBoN)

for some (M, N) € G4(K) := GLy(K) x GL4(K). It is routine to check that the
quartics associated to equivalent quadric intersections are themselves equivalent.

In the course of a 4-descent, a 2-covering Cy of Cy is computed as follows.
Let Cy have equation Y? = g(X) and flex algebra F' = K[0] = K[X]/(g(X)).
Suppose we are given & € F* with Np/k(§) = a mod (K*)? where a is the
leading coefficient of g. (The existence of such a ¢ is clearly necessary for the
existence of K-rational points on Cs.) We consider the equation

X—-0= 5(331 + 1329 + 1‘392 + 1‘493)2 .

A quadric intersection, defining a 2-covering Cy of Cs, is obtained by expanding
in powers of § and taking the coefficients of #2 and 63. The answer only depends
(up to K-equivalence) on the class of & in F*/K*(F*)2. Using the method
of §2 to find a good representative for this class, can significantly decrease the
time subsequently taken to find a good choice of co-ordinates on P3, that is, to
minimise and reduce the quadric intersection (using the algorithms in [21]).

4 Galois cohomology

We keep the notation and conventions of [6, Paper I]. Let 7 : C — E be the
2-covering corresponding to ¢ € H'(K, E[2]). The flex algebra of £ is F =
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Map (®, K) where @ is the fibre of m above 0. We note that C is a torsor
under E, and @ is a torsor under E[2]. Let (&) be the subgroup of H!(K, E[2])
generated by ¢, and let U be the map H'(K, E[2]) x H(K, E[2]) — Br(K)|2]
induced by cup product and the Weil pairing es : E[2] x E[2] — ua. The following
theorem is a variant of a standard result (see for example [17], [20]).

Theorem 4.1. There is a canonical isomorphism

HY(K,E[2 N
ker ((@H) N Br(K)) =~ ker (FX/KX(FX)2 ey KX/(KX)2> :
Proof. Let F = F ®x K. We may identify F = Map(®,K) and us(F) =
Map(®, p2). These are identifications as Galois modules, the action of Galois
being given by o(f) = (P + o(f(c~'P))). An easy generalisation of Hilbert’s

theorem 90 shows that Hl(K,FX) = 0 and hence H'(K, us(F)) = F*/(F*)2.
We define N : Map(®, p2) — p2 by N(f) = [[pee f(P). The constant maps
give an inclusion po — Map(®, pu2) with quotient X (say). We thus have short
exact sequences of Galois modules

0 — pip — Map(®, o) —> X — 0

and / N

0—E[2] % X "5 g — 0
where w(T) is the class of P +— ea(P — Py, T), for any fixed choice of Py € .
Taking the long exact sequences of Galois cohomology we obtain a diagram

KX/(KX)Q

FX /(Fx )2
Nr/k

qx
p2 —> > HY(K, E[2]) —2> H'(K, X) —2 > K% /(K *)?

\ A
ug

Br(K)[2] .

Once we have shown that the diagram commutes, the theorem follows by a
routine diagram chase.

We check that the lower left triangle commutes. Let n € Z1(K, E[2]) be a
cocycle. Then w,(n), is the map P — ea(P — Py, 7,). Applying the connecting
map A gives a € Z2(K, puy) with

or = ez(P — 0(Py),0(n;)) ea(P — Po, 1) e2(P — Po,nor)
=ea(Po — o(Po),0(nr)) e2(P — Po,0(n:) + 1Mo — Nor)
=ex(éo,0(nr)) -



This is the cup product of £ and 7. The commutativity of the upper right triangle
is clear. a

The case £ = 0 of Theorem 4.1 is well-known. In this case F is the étale
algebra K x L of E[2] where E : Y2 = f(X) and L = K[X]/(f(X)).

Corollary 4.2. There is a canonical isomorphism
N
0 12 = e (2202 Y R0

The following theorem, due to Steve Donnelly, gives an explicit description of
the isomorphism of Theorem 4.1 (in one direction). We make the identification
of Corollary 4.2 so that now & is represented by some a € L*. Let LF be the
tensor product L @ F and let L[\/a] be the algebra L[X]/(X? — a). By the
formulae in [4, §3] there is a natural inclusion L[/a] C LF. (If Gal(F/K) = S,
then L is the resolvent cubic field, LF' is the usual composite of fields, and we
are quoting that « is a square in LF.) Let 7 be the non-trivial automorphism of
L[/a] that fixes L.

Theorem 4.3. Let 6 € ' with Np/x(6) = k? for some k € K. Suppose we
are given v € L[\/a|* with Ny, /z1(0)/k = 7(v)/v. Then

B:= Npppiya) OV = kNy(a)/n(v) € L 4)

N
represents an element of ker (L* /(L*)? zky K*/(K*)?) mapping to 6 under
the isomorphisms of Theorem 4.1 and Corollary 4.2.

Proof. We identify
LF =L®Kg F =Mapg((E[2]\{0}) x ?,K) .

Then Npp/piya)(6) is the map (7', P) — 6(P)5(T + P). So fixing a base point
Py € ¢ we can rewrite the first equality in (4) as

B(P — Py) = 6(P)3(Po)v(P — Py, P)? (5)

for all P € ¢ with P # P.
The image of 3 in H!(K, X) is represented by a cocycle (1,) where

VB

bo(P) = B(P—Py)) if P+£Py
A | ifP="r .

It follows by (5) that

Vo (P) = 22 (P) 202 (Py)

for all P € &. (The case P = Py is just 1 = (£1)2.) By the definition of X we
may ignore the term involving Py, and so (¢,) also represents the image of ¢ in
HY(K,X). O



theorem 90 there exists v e L[\f]X with ¢ = 7(v)/v. The construction of
Theorem 4.3 therefore gives a well-defined map

ker (FX/KX(FX)Z ey KX/(KX)2> DX /{1,a}(LX)?

The ambiguity up to multiplication by « is predicted by Theorem 4.1, and in
this construction comes from the arbitrary choice of sign for k.

5 Testing equivalence of 4-coverings

Let g(X) € K[X] be a (non-singular) quartic with flex algebra F = K[0] =
K[X]/(9(X)). We put QZ(K)*=9 = {(A, B) € QI(K) : det(AX +B) = g(X)}.
If (A, B) € QT(K)4°t=9 then keeping the notation of §3 we define

Q=0"'eA+T, + 0T, +6%*B (6)

with suitable modifications if ae = 0. (For example if e = 0 then the “6 = 0
component” of Q is —dA +T}.) Then Q is a rank 1 quadratic form, i.e. Q = &/?
for some ¢ € F* and ¢ € F[zy, 22,3, 24] a linear form. This defines a map

A QI(E)™ T — FX/(FX)*; (A,B)—¢
inverse to the construction of §3.

Lemma 5.1. Quadric intersections in QZ(K)°'=9 define isomorphic coverings
of Co = {Y? = g(X)} if and only if they are related by a transformation
(pla, N) € G4(K) with p? det(N) = 1.

Proof. If m : Cy — Oy is the 2-covering defined by (4, B) € QZ(K)%*=9 and
Py € Cy is a ramification point of C3 — P! then the divisor 7*(P) is a hy-
perplane section of C4 (in fact cut out by the linear form ¢). So if a pair of
quadric intersections determine isomorphic 2-coverings of Cs, then they must
be K-equivalent. Moreover, the equivalence (M, N) € G4(K) is of the form de-
scribed since, by definition of a 2-covering, the induced self-equivalence of g must
be trivial as an automorphism of Cs. a

If (Ao, Bo) € QI(K)4et=9 defines C; C P? then the 2-coverings of Cy are
parametrised as twists of Cy — Cy by H*(K, E[2]). This defines a map

QI(K)det:g

!
{(ul2,N) € G4(K) : p?det N =1} H (K, E[2]) .

bo :

We find that quotienting out by the transformations with u? det N = —1 corre-
sponds to quotienting out by (£2) where & € H(K, E[2]) is the class of g.



Theorem 5.2. The following diagram is commutative.

{(u[g,N)E%fgggtiZ:Zet N=x1] : FX K> (F*)?
\LA(AO,BO)
%o FX/KX(FX)Q
l‘“
H'(K,E[2]) Wi Hl(K7X)

(€2)

Proof. This is a variant of [20, Theorem 6.1.4]. Let Qp = &¢2 and Q; = &,/2
be the rank 1 quadratic forms determined by (Ao, Bo) and (4, B). If (ul2, N) €
G4(K) relates (A, B) and (Ap, Bp) then by properties of the Weil pairing

wy(do(A, B)) = <0- — lyoo(N)N~! B a(ly ON))

80 o 40 [¢] N
Since Q1 = p Qg o N, this works out as ¢.(£p&1)- O

The maps ¢ and w, of Theorem 5.2 are injective. It follows that X is injective.
So to test whether a pair of quadric intersections (A1, By), (As, Bs) € QT(K)
are equivalent we proceed as follows. We have implemented this test in the case
K = Q and contributed it to Magma [13].

Step 1. Let g;(X) = det(A; X + B;) for i = 1,2. We test whether g; and g
are equivalent, using one of the tests in [4], [5]. We are now reduced to the case
g1 = g2- (If there is more than one equivalence between g; and go then we must
repeat the remaining steps for each of these.)

Step 2. Compute &; = A\(A;, B;) for i = 1,2 by evaluating the quadratic form (6)
at points in P3(K). It helps with Step 3 if we use several points in P3(K) to give
several representatives for the class of & in F*/(F*)2. (Spurious prime factors
can then be removed from consideration by computing ged’s.)

Step 3. Let S be a finite set of primes of K, including all primes that ramify
in F. We enlarge S so that &1,& € F(S’,2) where S’ is the set of primes of F'
above S.

Step 4. The quadric intersections are equivalent if and only if £;&; ! is in the
image of the natural map K(S,2) — F(5’,2). We cut down the subgroup of
K (S,2) to be considered by reducing modulo some random primes, and then
loop over all possibilities.

In the case that (A;, B1) and (As, Bs) are equivalent, we can reduce to the
case Q1 = &102 and Qy = &/3 with 51551 € K. Then solving ¢ o N = /5
for N € Maty(K), gives the change of co-ordinates relating the two quadric
intersections. This transformation is also returned by our Magma function.



6 Adding 2-Selmer and 4-Selmer elements

In §8 we describe a general method for adding 4-Selmer group elements. This
involves solving an explicit form of the local-to-global principle for Br(K). But in
the special case where we add 2-Selmer and 4-Selmer elements, no such problem
need be solved. This is essentially because (by a theorem of Zarhin [22] relating
the cup product in Theorem 4.1 to the obstruction map in [6, Paper I], [15]) we
have already solved all the conics we need when doing the original 2-descent.
To make this explicit we have found the following partial description of the
isomorphism of Theorem 4.1.

Let g(X) € K[X] be a quartic with invariants I and J. Let L = KJy]
where ¢ is a root of f(X) = X3 — 3IX + J. We assume that the discriminant
Ay = 27(4I* — J?) is non-zero. Formulae in [4], [5] allow us to represent g
by @ = ap + a1 € L* with ag,a1 € K and Ny k() € (K*)% We assume
a @ (LX) Asin §4 we put F' = K[X]/(9(X)) and LF = L ® F.

Theorem 6.1. If 3,y € L* are linear in ¢ with Ny x(8), Ny (7) € (K*)?
and a3y € (L*)?, then the isomorphisms of Theorem 4.1 and Corollary 4.2 map
each of B and v to the class of

Proof. Let 1 = @, s, p3 be the K-conjugates of ¢, and likewise for o, 3, v, m
where a3y = m2. Using that «, 3, v are linear in ¢ we compute

(Vaz — /a3)*(vVBays — VB372)?
Ao (p2 — p3)? '
The hypotheses of Theorem 4.3 are therefore satisfied with

Nirp/opya)(0) =

(a2 — a3)(Boy3 — B372)  a1(bico — bocr)
k= = c K*
Ao (2 — ¢3)? Ay

and (swapping 8 and ~ if necessary to avoid dividing by zero)

1 (Voe = az)(V B2z — VB372) 1 mafs +msf2  [V273
Baf3

12 = =
Voo Bz + Vs Baya mays + mM372

We are done since

2
(VazBoys + VazfBzr2)? = W}:’M =~ mod (L*)? .
273

We give an example in the case K = Q. The quartics

g1(X) = —675X% —7970X3 — 18923 X2 + 27176 X — 7848
92(X) —5483X* +10470X3 + 8869X 2 — 13240X — 8768
g3(X) —3728 X% — 8536 X2 + 9037X?2 + 15940X — 13000
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have invariants I = 1071426889 and J = 70141299507574. Moreover they sum
to zero in S (E/Q) where E : —3Y? = f(X) = X3 —3IX +J. Let L = Q(p) =
Q[X]/(f(X)) and Fy = Q(0) = Q[X]/(91(X)). We use the existing FourDescent
routine in Magma to compute 2-coverings D; of C; = {Y? = ¢;(X)} for i = 2,3
and then add these using the method of §8 to give a 2-covering D; of Cy =
{Y? = g1(X)}. By a formula in [4] the quartics g1, g2, g3 are represented by

a = —900¢ + 29459500
B = (—21932¢ + 717892516)/3
v = (—14912¢ + 488109376)/3

in L*/(L*)?. Theorem 6.1 and the map A in §5 convert Cy and D; to
§ = 2656597502 + 32764441502 + 91778693660 — 582546987

and & = 4725024591656 +1684960— 106600 in F}* /Q* (F*)?. We then multiply
§ and & in F{* and recover a new 2-covering D/ of C; by the method of §3. By
Theorem 5.2 this new 4-covering of F represents the sum of ¢,(C3) and D; in
S (E/Q) where ¢, is the map in (1). Notice that at no stage of the computation
of Dy and D] did we need to find the class group and units of Fy, although it is
only for much larger examples that this saving becomes worthwhile.

7 Computing the action of the Jacobian

In this section we generalise the formulae of [8, §7] from 3-coverings to 4-
coverings. The main new ingredient is a certain generalisation of the Hessian,
introduced in [9]. This is an SLo(K) x SL4(K)-equivariant polynomial map
H: QI(K) — QI(K). In the notation of §3 it is given by

H : (A, B) s (6T, — cA— 3bB, 6T} — cB — 3dA) . (7)

The analogue of the Hesse pencil of plane cubics, is the “Hesse family” of
quadric intersections

Ula,b) = (a(2? + 23) — 2bxoxg, a(zi + 22) — 2bx 1 23)
with invariants

ca(a,b) = 28(a® + 14a*b* + b%)
ce(a,b) = —212(a'? — 33a8b* — 33a*b® + b12)
A(a,b) = 22%*b*(a* — b*)*

and Hessian U(a’,b") where o’ = —2%a(a* — 5b*) and V' = 24b(5a* — b*).

If U € QZI(K) is a non-singular quadric intersection with Jacobian E, then
the pencil of quadric intersections spanned by U and its Hessian is a twist of
the Hesse family. So there are exactly six singular fibres, and each singular fibre
is a “square” (really a quadrilateral spanning P3). Each square is uniquely the
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intersection of a pair of rank 2 quadrics and the union of these quadrics is the
set of fixed planes for the action of Mz on P? for some T € E[4]\ E[2]. So there
is a Galois equivariant bijection between the syzygetic squares and the cyclic
subgroups of E[4] of order 4. (Our terminology generalises that in [12, §I1.7].)

Lemma 7.1. Let U be a non-singular quadric intersection with invariants cy,
c¢ and Hessian H. Let T = (z7,yr) be a point of order 4 on the Jacobian (3).
Then the syzygetic square corresponding to =T is defined by S = %ICTU + H,
and this quadric intersection satisfies H(S) = v2S where

vr = (x4 — bdegas — 216¢c6xr — 243¢3) /(18y7) .

Proof. We may assume that U belongs to the Hesse family and that T =
(243(a* — 5b*),273%i(a* — b*)b?). The lemma follows by direct calculation. O

Let C C P2 be a genus one normal curve of degree 4, defined over K, and with
Jacobian E. Let L/K be any field extension. Given T € E(L) a point of order 4,
we aim to construct My € GL4(L) describing the action of T on C. We start
with a quadric intersection U defining C'. Then we compute the syzygetic square
S = %zTU + H as described in Lemma 7.1. Making a change of co-ordinates
(defined over K) we may assume

— The point (1:0: 0 : 0) does not lie on either of the rank 2 quadrics whose
intersection is the syzygetic square.
— The line {z3 = x4 = 0} does not meet either diagonal of the square.

Let A and B be the rank 2 quadrics in the pencil spanned by S, scaled so that
the coefficient of 27 is 1 in each case. These quadrics are defined over a field L’
with [L’ : L] <2, and are easily found by factoring the determinant of a generic
quadric in the pencil. We factor A and B over K as

A= (21 +oqxe + fr1xs + 1124) (21 + asxa + B33 + Y324)
B = (21 + asxs + Boxs + yoxa) (@1 + qazo + Saxsz + Yaza) .

Then we put

ar b1 m
az P2 72
asz B3 3
ay Bi Y4

and £ = oy — iag — a3 + iay where i = \/—1.

—_ =

Theorem 7.2. If £ # 0 then the matriz

1
My =¢P7! . p
—i

belongs to GL4(L) and describes the action of T (or —T) on C.
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Proof. The image of this matrix in PGL4 has order 4, and acts on P? with fixed
planes defined by the linear factors of A and B. So the second statement is clear.
Theorem 7.3 shows that Mp has entries in L. (It may also be checked directly
that each entry is fixed by Gal(L'(i)/L).) O

Any polynomial in the «;, §;, v; invariant under the action of Cy x Cy that
swaps the subscripts 1 «» 3 and 2 <> 4 may be rewritten as a polynomial in the
coefficients of A and B. We write A = Zigj a;jxix; and B = Zigj bijxix;. Then
by computer algebra we find an expression for k = (a1 — asz)(as — ay) det(P) as
a polynomial in the a;; and b;;, and likewise for the entries of

M, = (a2 — ag)adj(P)Diag(1,0,—1,0)P
and
M; = (o1 — a3)adj(P)Diag(0, 1,0, —1)P .

Let S = (MA+ 1B, Ao A + puoB) with \;, u; € L'. Then k € L, whereas if A
and B are not defined over L then Gal(L'/L) interchanges A1 < g, 1 < o
and M1 and MQ.

Theorem 7.3. The matriz My of Theorem 7.2 is given by

2
ajo — 4@22

A -
MT:T]\/[1+ M(

vr

My +

b2, — 4b
12722 My — M)

where vr = (z3 — bdcyzs — 216cwr — 243c3)/(18y7T).

Proof. By our choice of co-ordinates we have a1 # a3 and as # ay. So k € L is
non-zero. We compute

kMp = £(a1 — a3)(as — ag)adj(P)Diag(1,4, —1, —i) P
= {(a1 — ag) My + (g — ag) Mo
= (O[l — a3)2M1 + (042 — a4)2M2 — Z./ﬁ(det P)il(Ml — MQ) .

Since H(xyx3, xox4) = (—x123, —Tox4) We have
H(S) = —(A1pi2 — Aap1)* det(P)*S .

By Lemma 7.1 we deduce vp = £i(Ajpua — A2pq) det(P), and substituting this
into the above expression for kM7 completes the proof of the theorem. a

By our choice of co-ordinates it is impossible that both £ = a; —ias —asz+iay
and ¢ = ay + ias — ag — iay vanish. So if our formula for Mt gives the zero
matrix, we can instead use the formula for M_r and take the inverse.

8 Adding 4-Selmer group elements

Finally we outline how the theory in [6] can be used to add elements of S (E/K).
(Of course, the method in §6 should be used in preference whenever it applies.)
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Let C C P3 be a 4-covering of E. We embed E in P2 via (z,y) — (1: 2 :y: 2?).
In [10, §6.2] we gave a practical algorithm for computing B € GL4(K) describing
a change of co-ordinates on P? taking C to E.

Now let R be the étale algebra of E[4]. Applying the formulae of §7 over each
constituent field of R, we compute M, M’ € GL4(R) describing the actions of
E[4] on E C P? and C C P respectively. We scale these matrices by using the

method of §2 to find good representatives for their determinants in R* /(R*)%.
These matrices now determine v € B = Map(E[4], K ) by the rule

BM}.B™! = ~(T)Mrp

for all T € E[4]. It is shown in [6, Paper 1] that we may identify H'(K, E[4]) with
a certain subquotient of (R ® R)*. Our 4-covering corresponds to p € (R® R)*
given by the rule

V(S(T)

(S +T)

for all S, T € E[4]. So if 4-coverings C; and C3 determine 7,7, € EX, then their
sum (by the group law of H*(K, E[4])) corresponds to the product v;7s.

It remains to explain how, if C' is everywhere locally soluble, we can recover
equations for C C P3 from v € R . Let ¢ € (R® R)* be the element determined
by e(S,T)Iy = MgMyM S_iT for all S,T € E[4], and let p be given by (8). We
view R ® R as an R-algebra via the comultiplication R — R ® R and write
Tr: R® R — R for the corresponding trace map. In [6, Paper I] we defined the
obstruction algebra A, = (R, +, *<,) to be the K-vector space R equipped with
a new multiplication z; *., 2o = Tr(ep.(21 ® 22)).

In our situation, we already have a trivialisation of A, over K, namely the
isomorphism of K-algebras A, @ K = Mat,(K) given by

p(S,T) = (8)

2z 2(T)y(T)Mr .
TEE4)]

So picking a basis 71, ...,r16 for R gives matrices M, ..., Mg € Maty(K). We
then compute structure constants c;;; € K for the obstruction algebra A, by
the rule MiMj = 216:1 Cijk]\/[k:~

Our only implementation so far is in the case K = Q. In practice we fix an
embedding Q C C, and so v is represented by a 16-tuple of complex numbers
(to some precision). In [6, Paper ITI] we will explain how to choose a basis for R
so that the structure constants c;; are (reasonably small) integers. This makes
it easy to recognise them from their floating point approximations.

Since C' is everywhere locally soluble, it is guaranteed by class field theory
that there is an isomorphism of K-algebras A, = Mat4(K). We must find such
an isomorphism explicitly, and for this we use the method of Pilnikova [16], who
reduces the problem to that of solving conics over (at most quadratic) extensions
of K. Finally any one of the three methods in [6, Paper I, §5] may be used to
recover equations for C'. In practice we use the Hesse pencil method, which by
virtue of the Hessian (7) has a natural generalisation from 3-descent to 4-descent.
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