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Abstract

Let A be one of the three elliptic curves over Q with conductor
11. We show that A has Mordell-Weil rank zero over its field of 5-
division points. In each case we also compute the 5-primary part of
the Tate-Shafarevich group. Our calculations make use of the Galois
equivariance of the Cassels-Tate pairing.

Introduction

Ever since the work of Mazur [Ma] the elliptic curves of conductor 11 have
provided a testing ground for the Iwasawa theory of elliptic curves. We recall
from [V1] that these curves form a single isogeny class, and have explicit
Weierstrass equations

A0 = X0(11) y2 + y = x3 − x2 − 10x− 20 11A1
A1 = X1(11) y2 + y = x3 − x2 11A3
A2 y2 + y = x3 − x2 − 7820x− 263580 11A2

Here the labels 11A1-3 are those used in [Cr], whereas the labels A0, A1, A2

are taken from [CS]. When there is no need to distinguish the three curves
we shall simply write A to denote any one of them.

Coates and Howson [CH] have used the elliptic curves of conductor 11 to
illustrate their work on non-abelian Iwasawa theory. A natural question to
ask is

How does the Mordell-Weil rank behave as we pass up the tower
of fields given by adjoining the 5-power division points?
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Although we are still unable to answer this question, we prove that the rank
is zero over the field of 5-division points for each of the three curves.

It seems that Mazur [Ma, Cor. 9.10] was the first to show rankA(Q) = 0
and X(A/Q)(5) = 0. An extension of this result to Q(µ5), due to Green-
berg, may be found in [CS]. In each case the authors put their classical
descent calculations to good use in studying the behaviour of Selmer groups
over the cyclotomic Z5-extension. For instance in [CS] it is shown that
rankA(Q(µ5∞)) = 0. It is hoped that our results will have equally strik-
ing applications.

The curves of conductor 11 are chosen since they appear first in the list of
modular curves, and they do not admit complex multiplication. The prime
5 is chosen to make the problem more tractable. Indeed there are isogenies
of degree 5 defined over Q

A1 � A0 � A2. (1)

The curves A0 and A1 each have a rational point of order 5, whereas A2 does
not. By properties of the Weil pairing we deduce A0[5]'µ5 ⊕ Z/5Z as a
Galois module. Furthermore there are exact sequences

0→ Z/5Z→ A1 → A0 → 0 0→ µ5 → A2 → A0 → 0. (2)

The fields of 5-division points are k = Q(µ5), K1 = Q(A1[5]) and K2 =
Q(A2[5]). Since K1 and K2 are non-abelian and of degree 20, it should come
as no surprise that our descent calculations are rather more involved than
those cited above. Our conclusions are

Theorem 1 Let K1 = Q(A1[5]). Then rankA(K1) = 0 and

A0(K1)' (Z/5Z)2 X(A0/K1)(5)' (Z/5Z)8

A1(K1)' (Z/5Z)2 X(A1/K1)(5)' (Z/5Z)2

A2(K1)'Z/5Z X(A2/K1)(5)' (Z/5Z)4 ⊕ (Z/25Z)8.

Theorem 2 Let K2 = Q(A2[5]). Then rankA(K2) = 0 and

A0(K2)' (Z/5Z)2 X(A0/K2)(5)' (Z/5Z)8

A1(K2)'Z/5Z X(A1/K2)(5) = 0
A2(K2)' (Z/5Z)2 X(A2/K2)(5)' (Z/5Z)6 ⊕ (Z/25Z)8.
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It is easy to check that these results are compatible with the isogeny in-
variance of the Birch Swinnerton-Dyer conjecture, as proved by Cassels [Ca3].
Let us note that for p|11, inspection of the j-invariants shows that the Tam-
agawa factors are cp(A0) = 5 ordp(11) and cp(A1) = cp(A2) = ordp(11). At
each infinite place, it follows by Vélu’s formulae [V2] that the periods Ωi are
related via Ω1/Ω0 = Ω0/Ω2 = 5.

In §1 we introduce some subfields of Q(A[5∞]). In §2 we recall from [F0],
[F1], a description of the Selmer groups attached to the 5-isogenies (1). The
analogue of Theorems 1 and 2 for k = Q(µ5) is an easy consequence. In
§3 we give explicit Kummer generators for the fields introduced in §1. In
§4 we recall the definition of the Cassels-Tate pairing. Following the work
of McCallum [Mc] and Beaver [B] we give a formula for the pairing in the
case we need. In §5 we discuss certain Galois modules, and the alternating
pairings they admit. Finally in §6 and §7 we give the descent calculations
proving Theorems 1 and 2.

We have made extensive use of the computer algebra package pari in
the course of this work. However we have striven where possible to give
arguments that may be checked by hand. For the proof of Theorem 1 this
goal has largely been achieved. In contrast the proof of Theorem 2 relies
on us exhibiting a “non-trivial” unit in K1K2. Our method here was to ask
pari to find all units in a certain degree 25 subfield. (This took 1 hour and
20 minutes on a 800MHz Pentium-III with 128Mb RAM.)

In a separate note [F2] we prove an analogue of Theorems 1 and 2 for the
field J1 = Q(µ5)Q(µ11)+. Again the rank is zero. Curiously our argument
in that case does not require any formula for the Cassels-Tate pairing.

Acknowledgements

I would like to thank John Coates, Ralph Greenberg, Karl Rubin and Ed Schae-
fer for a number of valuable suggestions.

Notation and Conventions

For F a perfect field we write GF := Gal(F/F ) and H i(F,−) = H i(GF ,−).
By Hilbert’s theorem 90 we identify H1(F, µ5) = F ∗/F ∗5. The number field
F has ring of integers OF , unit group O∗F , and class group ClF . The local
field Fp has ring of integers Op and normalised valuation ordp. Since our
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interest is in descent via isogenies of odd degree we ignore the infinite places
throughout.

Let C and D be elliptic curves defined over F , and let ψ : C → D be an
isogeny of degree m. The Kummer exact sequence restricts to

0−→D(F )/ψC(F )
δ−→ S(ψ)(C/F )−→X(C/F )[ψ]−→ 0.

We frequently avoid giving our isogeny a name by writing S(C → D/F ) for

S(ψ)(C/F ). The Weil pairing is denoted eψ : C[ψ]×D[ψ̂]→ µm.
The following notation relating to the field k = Q(µ5) is used throughout.

We fix ζ a primitive 5th root of unity and write Indζ : µ5 → Q/Z for the
map ζ 7→ 1/5. Then k has fundamental unit φ = 1 + ζ + ζ−1. (Taking
ζ = exp(2πi/5) this is the golden ratio.) We write φ = −1/φ = 1− φ for its
conjugate. In §3 we use φ to define involutions η and ε on P1

k. The primes
of k above 5 and 11 are l = (1− ζ) and pi = (πi) where πi = 2 + ζ i. We write
ω : GQ → (Z/5Z)∗ for the cyclotomic character.

1 A description of Gal(Q(A[5∞])/Q)

Serre [Se2, §5.5] proved

Proposition 1.1 Gal(Q(A[p∞])/Q)' GL2(Zp) for all primes p 6= 5.

In contrast for p = 5, Q(A[p∞])/Q(µp) is a pro-p extension. A description
of the Galois group in this case was given by Lang and Trotter [LT]. In this
section we present an alternative proof of their result and go on to compute
the torsion subgroups listed as part of Theorems 1 and 2.

Let C1 and C2 be the kernels of the degree 25 isogenies A1 → A2 and
A2 → A1. We shall be concerned with the fields J1 = k(C1), J2 = k(C2),
K1 = Q(A1[5]) and K2 = Q(A2[5]).

Lemma 1.2 The fields J1, J2, K1, K2 are degree 5 Kummer extensions of
k.

Proof. All is clear, except perhaps that these extensions are non-trivial. In
fact C1 is generated by the cusps on A1 = X1(11) and these are defined over
Q(µ11)+ = Q(µ11) ∩R. Thus J1 = Q(µ5)Q(µ11)+ and Q(µ25) ⊂ J1J2. For
K1 and K2 we must show that the exact sequences (2) do not split as Gk-
modules. As explained in [CS, Chapter 4] an examination of the Tate periods
shows that these exact sequences do not even split as GQ11-modules. �
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We pick a basis P,Q for the Tate module T5(A0), such that the projections
of P and Q in A0[5] generate ker(A0 → A2)'Z/5Z and ker(A0 → A1)'µ5

respectively. Then the Galois representation ρ : GQ → GL2(Z5) attached to
A0 satisfies

ρ(σ) ≡
(

1 0
0 ω(σ)

)
(mod 5).

In particular

ρ(Gk) ⊂ {M ∈ GL2(Z5) |M ≡ I (mod 5) }. (3)

Lemma 1.3 For σ ∈ Gk let ρ(σ) = I + 5

(
a b
c d

)
. There are isomorphisms

Gal(J1/k) ' Z/5Z ; σ 7→ a Gal(K1/k) ' Z/5Z ; σ 7→ b

Gal(K2/k) ' Z/5Z ; σ 7→ c Gal(J2/k) ' Z/5Z ; σ 7→ d.

Furthermore, the action of Gal(k/Q) on these Galois groups is described by
ψ = 1, ω−1, ω and 1 respectively.

Proof. We check the first of these isomorphisms, the other cases being similar.
Let Pr, Qr be the projections of P , Q in A0[5r]. The image of P2 under the
5-isogeny A0 → A1 is a generator for C1. Thus for σ ∈ Gk

σ fixes J1 pointwise ⇐⇒ σ(P2)− P2 ∈ ker(A0 → A1)
⇐⇒ aP1 + cQ1 ∈ ker(A0 → A1)
⇐⇒ a ≡ 0 (mod 5).

It follows that the map σ 7→ a induces an isomorphism Gal(J1/k)'Z/5Z.
Finally Gal(k/Q) acts on Gk by conjugation, and we compute(

1 0
0 ω

)(
a b
c d

)(
1 0
0 ω

)−1

=

(
a b ω−1

c ω d

)
.

�

Lemma 1.4 The fields J1, J2, K1, K2 are independent degree 5 Kummer
extensions of k.
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Proof. Given the distinct actions of Gal(k/Q) it suffices to check that J1 and
J2 are independent. But J1J2 = Q(µ25)Q(µ11)+ so this is clear. �

The next proposition was originally proved by Lang and Trotter [LT, Part
I, Theorem 8.1]. I am grateful to John Coates for pointing out to me the
simpler proof presented here.

Proposition 1.5 The extension Q(A[5∞])/Q has Galois group

ρ(GQ) =

{(
a b
c d

)
∈ GL2(Z5)

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 ∗

)
(mod 5)

}
.

Proof. We prove by induction on r that the image of ρ(Gk) in GL2(Z/5rZ)
is the kernel of the map GL2(Z/5rZ)→ GL2(Z/5Z). The case r = 2 follows
from Lemmas 1.3 and 1.4. The induction step is well known, and may be
found in [LT] or [Se1]. It makes use of the identity

(I + 5r−1M)5 ≡ I + 5rM (mod 5r+1).

We deduce that equality holds in (3), and the proposition follows. �

In §3 we find explicit Kummer generators for the extensions K1/k and
K2/k. From these we learn that the prime above 5 is split in K1/k and is
ramified in K2/k. We prove the easy part of Theorems 1 and 2.

Corollary 1.6 The torsion subgroups for A(K1) and A(K2) are

A0(K1)tors ' (Z/5Z)2 A0(K2)tors ' (Z/5Z)2

A1(K1)tors ' (Z/5Z)2 A1(K2)tors ' Z/5Z
A2(K1)tors ' Z/5Z A2(K2)tors ' (Z/5Z)2.

Proof. Since A has good reduction at 5 and Ã(F5)'Z/5Z, it suffices to
check that the 5-power torsion is as claimed. We make the observation that
A0 has no point of order 25 defined over K1K2. Indeed if σ ∈ GQ satisfies
ρ(σ) = 6I then σ fixes pointwise the fields K1 and K2, but does not fix any
point of order 25 on A0. Thus A0(Ki)tors' (Z/5Z)2 for i = 1, 2. Again for
i = 1, 2 the inverse image of A0[5] under the 5-isogeny Ai → A0 has field of
definition JiKi. The remaining statements now follow from Lemma 1.4. �

The Selmer groups used in our calculations are of the most concrete na-
ture, namely those attached to isogenies. They therefore contain contri-
butions from torsion in the Mordell-Weil group. For this reason we make
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frequent implicit use of Corollary 1.6. For future reference we give another
result on torsion subgroups.

Lemma 1.7 Let [F : Q11] <∞. Then #A1(F )(5) ≤ 5[F : Q11].

Proof. We know that A1 had multiplicative reduction, with Tamagawa factor
e = ord(11). The number of smooth points over the residue field is 11f − 1,
and the multiplication by 5 map on the formal group is an isomorphism.
Hence

#A1(F )(5) ≤ 5ef = 5[F : Q11].

�

2 Explicit descent via 5-isogeny

The Selmer groups attached to the 5-isogenies (1) are defined as subgroups
of H1(F, µ5) = F ∗/F ∗5 and H1(F,Z/5Z) = Hom(GF ,Z/5Z).

Proposition 2.1 Let F be a number field. Then

S(A0 → A1/F ) '
{
θ ∈ F ∗/F ∗5

∣∣∣∣ ordp(θ) ≡ 0 (mod 5) for all p

and F ( 5
√
θ)/F split at p|11

}
S(A1 → A0/F ) '

{
χ ∈ Hom(GF ,Z/5Z)

∣∣χ unramified at all p - 11
}

S(A2 → A0/F ) '
{
θ ∈ F ∗/F ∗5

∣∣ ordp(θ) ≡ 0 (mod 5) for all p - 11
}

S(A0 → A2/F ) '
{
χ ∈ Hom(GF ,Z/5Z)

∣∣∣∣ χ unramified at all p

and χ split at p|11

}
(Here χ split at p means p splits in the fixed field of the kernel of χ.)

Proof. More generally in [F1] we considered pairs of 5-isogenous elliptic
curves Cλ and Dλ with ker(Cλ → Dλ)'µ5 and ker(Dλ → Cλ)'Z/5Z.
Explicitly Dλ has Weierstrass equation

y2 + (1− λ)xy − λy = x3 − λx2 (4)

and Z/5Z ↪→Dλ(F ) is generated by (x, y) = (0, 0). We see that A1 = D1

and A0 = D11. For each prime p there is an exact sequence

Cλ(Fp)−→Dλ(Fp)
δp−→ F ∗p /F

∗5
p .
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We recall [F1, Propositions 2.15 and 2.16] that δp has image

im δp =


F ∗p /F

∗5
p if ordp(λ) 6= 0

O∗p/O
∗5
p if ordp(λ) = ordp(λ

2 − 11λ− 1) = 0
1 if ordp(λ

2 − 11λ− 1) > 0 and p - 5.

The descriptions of S(A0 → A1/F ) and S(A2 → A0/F ) now follow on taking
λ = 1, respectively λ = 11. Tate local duality tells us that the images of
the local connecting maps attached to an isogeny and its dual are exact
annihilators with respect to the Tate pairing. The descriptions of S(A1 →
A0/F ) and S(A0 → A2/F ) follow. �

Suppose F is number field for which we have a working knowledge of
the unit group and the class group. It is now a straightforward exercise in
Kummer theory to compute the Selmer groups S(A0 → A1/F ) and S(A2 →
A0/F ). If µ5 ⊂ F , then the Selmer groups attached to the dual isogenies
may be treated similarly. However there is a better way.

Proposition 2.2 Let F be a number field with r1 (resp. r2), real (resp. pairs
complex conjugate) embeddings and m primes above 11. Then

#S(A0 → A1/F )

#S(A1 → A0/F )
= #µ5(F )× 5r1+r2−1 × 5−m

#S(A2 → A0/F )

#S(A0 → A2/F )
= #µ5(F )× 5r1+r2−1 × 5m.

Proof. This is an application of Cassels’ formula [Ca3, Theorem 1.1]. The
ratios of Tamagawa numbers are given in the introduction. �

Remark 2.3 In simple cases, for example if F has class number 1, it is a
tolerable exercise in class field theory to deduce Proposition 2.2 directly from
Proposition 2.1. The beauty of Cassels’ formula is that the class number of
F does not appear.

Example 2.4 We use Propositions 2.1 and 2.2 to compute rankA(k). We
recall that k has class number 1, and that o∗k is generated by ±ζ, φ, where
φ = 1 + ζ + ζ−1. Writing πi = 2 + ζ i we find

S(A0 → A1/k) = 0 since ζ, φ 6∈ (ok/π1)∗5

S(A1 → A0/k) ' (Z/5Z)2 i.e. Hom(Gal(J1K1/k),Z/5Z)
S(A2 → A0/k) ' (Z/5Z)6 i.e. 〈ζ, φ, π1, π2, π3, π4〉 ⊂ k∗/k∗5

S(A0 → A2/k) = 0 since hk = 1.
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We deduce rankA(k) = 0 and X(Ai/k)(5) = 0 for i = 0, 1. We further find
X(A2/k)(5)' (Z/5Z)4.

3 Torsion contributions and Kummer generators

Let Cλ and Dλ be as in the proof of Proposition 2.1. Then λ is a co-ordinate
on X1(5)'P1 and this modular curve has cusps at λ = 0,∞, φ5, φ5. There
is an involution η on X1(5), permuting the cusps, such that µ5 ↪→Cλ is iso-
morphic to Z/5Z ↪→Dη(λ) over F (µ5). We take

η : λ 7→ (φ5λ+ 1)/(λ− φ5).

For λ ∈ F not a cusp of X1(5) there is a Kummer exact sequence

0−→µ5(F )−→Cλ(F )−→Dλ(F )
δ−→ F ∗/F ∗5. (5)

Lemma 3.1 The image of Z/5Z ↪→Dλ(F ) under the connecting map δ is
generated by λ.

Proof. In terms of the Weierstrass equation (4), the multiples of (0, 0) are
(λ, λ2), (λ, 0), and (0, λ). We recall from [F1] that if P = (x, y) 6= (0, 0) then
δ(P ) = xy + y − x2. The lemma follows. �

For λ ∈ F we deduce F (Cλ[5]) = F (µ5,
5
√
λ). In particular η(1) and 11

are Kummer generators for K1/k and K2/k. We also learn that X(5)'P1

with forgetful map
X(5)→ X1(5) ; τ 7→ τ 5.

The cusps of X(5) are at τ = 0,∞, ζ iφ, ζ iφ. Under stereographic projection
these points may be viewed as the vertices of an icosahedron. There is
an action of PSL2(Z/5Z)'A5 on X(5) permuting the cusps, generated by
τ 7→ ζτ and

ε : τ 7→ (φτ + 1)/(τ − φ).

Lemma 3.2 Suppose µ5 ⊂ F . Let τ ∈ F and put λ = η(τ 5). Then the
image of (Z/5Z)2 ↪→Dλ(F ) under δ is generated by

λ =
4∏
i=0

ε(ζ iτ) and
4∏
i=0

ε(ζ iτ)i.
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Proof. In terms of the Weierstrass equation (4), (Z/5Z)2 ↪→Dλ(F ) is gener-
ated by (0, 0) and(

− λ (ζτ − φ)(ζ4τ − φ)

(φτ + 1)(τ − φ)
,−λ2 (ζτ − φ)(ζ2τ − φ)(ζ4τ − φ)2

(φτ + 1)2(τ − φ)(φζτ + 1)

)
(6)

We conclude as in the proof of Lemma 3.1. �

Remark 3.3 One way to construct the point (6) is to observe that in the
notation of [F0], [F1] the curve

T = T [λ; ε(τ), ε(ζτ), ε(ζ2τ), ε(ζ3τ), ε(ζ4τ)] ⊂ P4

has rational point

(τ − φ : ζτ − φ : ζ2τ − φ : ζ3τ − φ : ζ4τ − φ). (7)

There is a diagonal action of µ5 on T with quotient Dλ. In [F0, Appendix
C] we give explicit equations for the map T → Dλ and this allows us to
construct (6) from (7).

Applying Lemma 3.2 with τ = 1 gives Kummer generators for J1/k and
K1/k. Applying Lemma 3.2 with τ = ε(1) = −φ3 gives Kummer genera-
tors for J2/k and K2/k. We re-write these Kummer generators in terms of
ζ, φ, π1, π2, π3, π4 and so obtain an alternative proof of Lemma 1.4.

L Kummer generator for L/k ψ−1ω f(L/k) dL
J1

∏
ε(ζ i)i ζ2π1π

3
2π

2
3π

4
4 ω p1p2p3p4 5151116

K1 η(1) φ2π1π
4
2π

4
3π4 ω2 p1p2p3p4 5151116

K2 η(−φ15) π1π2π3π4 1 l2p1p2p3p4 5231116

J2

∏
ε(−ζ iφ3)i π1π

3
2π

2
3π

4
4 ω l5p1p2p3p4 5351116

We recall that if L/k is the Kummer extension corresponding to ∆ ⊂ k∗/k∗5,
then Gal(L/k)' Hom(∆, µ5) as a Gal(k/Q)-module. Thus in the notation
of Lemma 1.3, ∆ is described by ψ−1ω. This is born out in our table.

The final two columns of our table record the conductor f = f(L/k) and
the absolute discriminant dL. They are related via dL = (Norm f)4d5

k. It is
clear that the primes above 11 ramify in each extension L/k. We determine
the factorisation of the prime above 5.
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(i) The extension J1/k is a translate of Q(µ11)+/Q, so l is inert.
(ii) The extension K1/k has Kummer generator

η(1) =
1 + φ5

1− φ5
= φ5

(
1 +

φ5 − φ5

1 + φ5

)
. (8)

Since (φ5 − φ5)2 = 53 the binomial theorem shows that η(1) is a 5th power
in kl. Thus l splits in K1/k.
(iii) The extension K2/k has Kummer generator 11. The minimal polynomial
for 5
√

11− 1 is an Eisenstein polynomial. Thus 5 is totally ramified in K2/Q.
A useful intermediate step in computing dK2 is to show that Q( 5

√
11)/Q has

discriminant 55114.
(iv) Since J1J2 = Q(µ25)Q(µ11)+ it is clear that l ramifies in J2/k. We recall
[W, Proposition 2.1] that Q(µ25) has discriminant 535.

Remark 3.4 Another quick way to show that J1/k and K1/k are unramified
above 5 is provided by Proposition 2.1 and the observation that our Kummer
generators belong to S(A1 → A0/k).

Lemma 3.5 (i) The 5-ray class field of k with conductor p1p2p3p4 is J1K1.
(ii) The 5-ray class field of k with conductor l2p1p2p3p4 is J1K1K2.

Proof. We recall from [Coh, §3.2] a well known formula of class field theory

[k(m) : k] =
hkφ(m)

[o∗k : o∗k ∩ km,1]
.

In our case we know hk = 1 and o∗k is generated by ±ζ, φ.
(i) For m = p1p2p3p4 we have φ(m) = 104 and o∗k ∩ km,1 generated by φ10.
Thus the 5-ray class field has degree 52, and so must equal J1K1.
(ii) For m = l2p1p2p3p4 we have φ(m) = 20.104 and o∗k ∩ km,1 generated by
φ20. Thus the 5-ray class field has degree 53, and so must equal J1K1K2. �

To end this section, we exhibit some (modular) units in the fields K1

and K2. Our descent calculations in §6 and §7 shall require further units in
addition to these.

Lemma 3.6 (i) Let α = 5
√
η(1) and ui = ε(ζ iα). Then ui is a unit in

K1 = k(α). The extension J2K1/K1 has Kummer generator u1u
2
2u

3
3u

4
4.

(i) Let β = 5
√

11 and ui = ε(ζ iβ). Then ui is a unit in K2 = k(β). The
extension J1K2/K2 has Kummer generator u1u

2
2u

3
3u

4
4.
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Proof. The cusps ζφ, ζφ have minimal polynomials

f(x) = x4 + 3x3 + 4x2 + 2x+ 1, g(x) = x4 − 2x3 + 4x2 − 3x+ 1.

We may check η(ε(x)5) = xf(x)/g(x).
(i) Each ui is a root of xf(x)−g(x) = 0 and so is a unit. We apply Lemma 3.2
with τ = α to give the stated Kummer generator.
(ii) Since η(11) = −φ15, each ui is a root of xf(x) + φ15g(x) = 0 and so is a
unit. We apply Lemma 3.2 with τ = β to give the stated Kummer generator.
�

4 The Cassels-Tate pairing

Let C, D, ψ be as in the Introduction. There is an exact sequence

0−→C[ψ]−→C[m]
ψ−→ D[ψ̂]−→ 0. (9)

Taking Galois cohomology and restricting to Selmer groups we obtain

D[ψ̂](F )−→S(ψ)(C/F )−→S(m)(C/F )−→S(ψ̂)(D/K).

Proposition 4.1 There is an alternating pairing

S(ψ̂)(D/K)× S(ψ̂)(D/K)→ Q/Z (10)

whose kernel is the image of S(m)(C/F ).

Proof. See Cassels [Ca2] or Milne [Mi]. �

We recall the definition of the pairing in the case m is odd. Our treatment
follows that of McCallum [Mc]. For (∗) a global element or map, we write
(∗)p for the corresponding local object. The following commutative diagram
is considered both in its own right and with F replaced by Fp for each prime
p.

C(F )
ψ−→ D(F )

δψ−→ H1(F,C[ψ])

||
yψ̂ yι

C(F )
×m−→ C(F )

δm−→ H1(F,C[m])yψ ||
yψ

D(F )
ψ̂−→ C(F )

δ
ψ̂−→ H1(F,D[ψ̂])
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To define the pairing we take x, y ∈ S(ψ̂)(D/F ) ⊂ H1(K,D[ψ̂]) and suppose
given x1 ∈ H1(F,C[m]) lifting x. At each prime p we choose xp,1 ∈ im δm,p
such that ψ(xp,1) = xp. Then ψ(xp,1 − x1,p) = 0 and so there exists ξp ∈
H1(Fp, C[ψ]) with ι(ξp) = xp,1 − x1,p. We define

〈x, y〉=
∑

p(ξp, yp)p (11)

where (·, ·)p is the Tate pairing H1(Fp, C[ψ])×H1(Fp, D[ψ̂])→ Q/Z. Using
Tate local duality and the product formula for the Tate pairing we may check
that the definition is independent of all choices. It is clear that 〈x, y〉 = 0
whenever x is in the image of S(m)(C/F ).

Remark 4.2 More generally, the Cassels-Tate pairing is defined on the Tate-
Shafarevich group X(D/F ). The restriction to X(D/F )[ψ̂] is the pairing
induced by (10). We may implicit use of this fact in due course.

Remark 4.3 Suppose C, D, ψ are defined over F0 ⊂ F . If F is a normal
extension of F0 then (10) is Gal(F/F0)-equivariant. It is to be understood
that the Galois action on Q/Z is trivial.

We give a formula for (10) in the case where ψ is the 5-isogeny A1 → A0

and F contains K1 = Q(A1[5]). The exact sequence (9) becomes

0−→A1[ψ]−→A1[5]
ψ−→ A0[ψ̂]−→ 0. (12)

We choose a section for the map ψ in (12) and use this to construct x1 from
x. As McCallum [Mc] observes we may now express (11) as a sum of local
pairings

〈x, y〉=
∑

p〈xp, yp〉p.
Furthermore the local pairing is trivial outside the usual set of bad primes,
in our case those above 5 and 11. The description of S(A0 → A1/F ) given
in Proposition 2.1 tells us that x, y are already trivial at p|11. So it only
remains to compute the local pairing at p|5.

In §3 we saw that K1/k has Kummer generator η(1) = (1 + φ5)/(1− φ5).
We put α = 5

√
η(1). By (8) the primes above 5 split in K1/k. We label them

L0,L1, . . . ,L4 such that α ≡ ζ iφ (mod L2
i ).

Lemma 4.4 Let F be a number field with F ⊃ K1. Let p|5 be a prime
and let e = e(p/5). Then there exists i = i(p) in Z/5Z such that α ≡ ζ iφ
(mod pe/2).
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Proof. We have i = i(p) if and only if p|Li. �

Proposition 4.5 Let F be a number field with F ⊃ K1. Then the Cassels-
Tate pairing on S(A0 → A1/F ) ⊂ F ∗/F ∗5 is given, up to scalars, by

〈θ, θ′〉 =
∑

p|5 Indζ(θ, θ
′)
i(p)
p

where (·, ·)p is the Hilbert norm residue symbol.

Remark 4.6 To remove the qualifier “up to scalars” we must specify the
isomorphism A0[ψ̂]'µ5 used to embed S(A0 → A1/F ) inside F ∗/F ∗5. For
the proof of Theorems 1 and 2, a formula “up to scalars” is good enough.

Lemma 4.7 Let P ∈ A1[ψ] and Q ∈ A0[ψ̂] with eψ(P,Q) = ζ. Then we
may label the inverse image ψ−1(Q) = {Q0, Q1, . . . , Q4} such that Qi belongs
to the kernel of reduction mod Li.

Proof. Let ˜ denote reduction mod Li. By inspection of the Weierstrass
equation (4) the reduction Ã1(F5)'Z/5Z is generated by P̃ . The kernel of

the reduction map A1[5]→ Ã1(F5) is cyclic of order 5. We choose a generator
Qi with ψ(Qi) = Q. Then Gal(K1/k) permutes both the Li and the Qi. �

The Weil pairing and Hilbert’s theorem 90 allow us to identify

H1(F,A1[ψ]) = Hom(A0[ψ̂], F ∗/F ∗5)
H1(F,A1[5]) = Hom(A1[5], F ∗/F ∗5)

H1(F,A0[ψ̂]) = Hom(A1[ψ], F ∗/F ∗5).

(13)

We give a more precise version of Proposition 4.5.

Lemma 4.8 Let F be a number field with F ⊃ K1. Let P , Qi ∈ A1[5] be
chosen as in Lemma 4.7. Then the Cassels-Tate pairing on S(A0 → A1/F ) ⊂
Hom(A1[ψ], F ∗/F ∗5) is given by

〈x, y〉 =
∑

p|5 Indζ(x(Q1 −Q0), y(P ))
i(p)
p .

Proposition 4.5 follows immediately from Lemma 4.8, since P and Q1 − Q0

are both generators for A1[ψ].
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Lemma 4.9 Let p|5 with i = i(p). Then the local connecting map
δ5,p : A1(Fp)→ Hom(A1[5], F ∗p /F

∗5
p ) has image{

x ∈ Hom(A1[5],O∗p/O
∗5
p )
∣∣Fp(

5
√
x(Qi))/Fp is unramified

}
. (14)

Proof. Let x = δ5,p(T ) for some T ∈ A1(Fp). The description of im δψ̂,p
used in the proof of Proposition 2.1 shows that x(P ) is a unit. Let T ′ ∈
A1(F p) with 5T ′ = T . Then x is represented by the cocycle σ(T ′) − T ′ in
H1(Fp, A1[5]). But if σ belongs to the inertia subgroup, then σ(T ′) − T ′

belongs to the kernel of reduction mod p and e5(Qi, σ(T ′)− T ′) = 1. Hence
x(Qi) is unramified.

We have shown that im δ5,p belongs to (14). But im δ5,p ⊂ H1(Fp, A1[5])
is a maximal isotropic subspace with respect to the Tate pairing. A counting
argument completes the proof of the lemma. �

The identifications (13) allow us to express the Tate pairing in terms of
the Hilbert norm residue symbol.

Lemma 4.10 The Tate pairing H1(Fp, A1[ψ]) × H1(Fp, A0[ψ̂]) → Q/Z is
given by

(x, y)p = Indζ(x(Q), y(P ))−1
p

where (·, ·)p on the right is the Hilbert norm residue symbol.

Proof. We recall eψ(P,Q) = ζ. The lemma follows by a standard cup product
calculation. �

Proof of Lemma 4.8. The map ψ in (12) has section Q 7→ Q0. Let x, y
belong to S(A0 → A1/F ). By (13) we view x, y as maps A1[ψ] → F ∗/F ∗5.
Then x1 : A1[5] → F ∗/F ∗5 extends x via Q0 7→ 1. For each p|5 we extend
xp to xp,1 : A1[5] → F ∗p /F

∗5
p via Qi(p) 7→ 1. Then xp,1 ∈ im δ5,p and ξp(Q) =

x(Q0 −Qi(p)) = x(Q1 −Q0)−i(p). The local pairing is

〈xp, yp〉p = (ξp, yp)p

= Indζ(ξp(Q), yp(P ))−1
p

= Indζ(xp(Q1 −Q0), yp(P ))
i(p)
p .

This completes the proof of Lemma 4.8 and so of Proposition 4.5. �
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5 Some Galois modules

The polynomials x5 + 2x4 + 6x3 − 2x2 + 4x − 1 and x5 − 11 have splitting
fields K1 = Q(A1[5]) and K2 = Q(A2[5]). In each case the Galois group is

G := 〈σ, τ | σ4 = τ 5 = 1, στσ−1 = τ 2 〉.

In preparation for the proof of Theorems 1 and 2, we give some preliminaries
on Z/5Z[G]-modules. We define ψ : G → (Z/5Z)∗ via σ 7→ 2 and τ 7→ 1.
Any Z/5Z[G]-module M may be decomposed into σ-eigenspaces

M = M1 ⊕Mψ ⊕Mψ2 ⊕Mψ3

(15)

where Mχ = {x ∈ M |σx = χ(σ)x}. If M = Mχ we say that M is described
by χ. In particular ψ describes the action of G on 〈τ〉 via conjugation.

Lemma 5.1 Let M be a Z/5Z[G]-module with M/(τ − 1)M 'Z/5Z as an
abelian group. Then
(i) M/(τ − 1)M is described by some character χ : G→ (Z/5Z)∗.
(ii) M has dimension d := dimZ/5ZM with d ≤ 5.
(iii) The pair (χ, d) uniquely determines M as a G-module.
(iv) If d ≤ 4 then EndG(M)'Z/5Z.

Proof. (i) This is clear.
(ii) Let Mi = (τ − 1)iM . The decreasing filtration of Z/5Z[G]-modules

M = M0 ⊃M1 ⊃M2 ⊃ . . . (16)

satisfies dimZ/5ZMi/Mi+1 ≥ dimZ/5ZMi+1/Mi+2. But dimZ/5ZM0/M1 = 1,
so d = min{i |Mi = 0}. Since (τ − 1)5 ≡ 0 (mod 5) we must have d ≤ 5.
(iii) We pick x ∈ Mχ a generator for M/(τ − 1)M . Then M has basis
x, (τ − 1)x, . . . , (τ − 1)d−1x as a Z/5Z-vector space. The actions of σ and τ
on this basis are uniquely determined.
(iv) The quotient Mi/Mi+1 is described by χψi. Thus for d ≤ 4 the decom-
position (15) is into 1-dimensional spaces, and the element x in the proof of
(iii) is uniquely determined up to scalars. �

We write M(χ, d) for the Z/5Z[G]-module described in Lemma 5.1. We
abbreviate M(χ) = M(χ, 1). The filtration (16) becomes

M(χ, d) ⊃M(χψ, d− 1) ⊃ . . . ⊃M(χψd−1, 1) ⊃ 0.

For M a G-module we recall that M∗ := Hom(M,Z/5Z) is a G-module via
gθ = θ.g−1.
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Lemma 5.2 M(χ, d)∗'M(χ−1ψ1−d, d).

Proof. The case d = 1 is clear. The general case follows from Lemma 5.1
and the observation coker(τ − 1|M∗)' ker(τ − 1|M)∗. �

With properties of the Cassels-Tate pairing in mind, we say that a bilinear
form 〈 , 〉 : M ×N → Q/Z is G-equivariant if 〈gx, gy〉 = 〈x, y〉 for all g ∈ G.
Equivalently M → N∗ is a G-module homomorphism.

Lemma 5.3 Any non-zero G-equivariant pairing on M(χ, d) has odd rank.
In particular there are no non-zero alternating G-equivariant pairings.

Proof. Suppose f : M(χ, d)→M(χ−1ψ1−d, d) is a G-module map of rank r.
Then im f = M(χ−1ψ1−r, r). We deduce χ = χ−1ψ1−r and so r is odd. �

Lemma 5.4 Assume d ≤ 4. Then any non-zero alternating G-equivariant
pairing on M := M(χ, d)⊕M(χ−1ψ1−d, d) is non-degenerate.

Proof. We claim that, up to scalars, M admits a unique alternating G-
equivariant pairing. By Lemma 5.3 any such pairing is trivial when restricted
to either summand. We are reduced to showing that there is a unique G-
equivariant bilinear form

M(χ, d)×M(χ−1ψ1−d, d)→ Z/5Z.

Lemma 5.2 gives the existence. Lemma 5.1(iv) gives the uniqueness up to
scalars. Finally we observe that the pairing constructed is non-degenerate.
�

We give an example typical of the G-modules we encounter. The group
G acts on the affine line Z/5Z via σ : x 7→ 2x and τ : x 7→ x+ 1. The corre-
sponding permutation representation, with coefficients in Z/5Z, is M(1, 5).
We construct further G-modules using M(χ1χ2, d) = M(χ1)⊗M(χ2, d).

6 Descent calculations over K1 = Q(A1[5])

We recall that K1/k has Kummer generator η(1) = (1 + φ5)/(1 − φ5). We
put α = 5

√
η(1). Then Gal(K1/Q)'G via

σ(ζ) = ζ3 σ(α) = −1/α
τ(ζ) = ζ τ(α) = ζα.
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The cyclotomic character ω, and the character ψ of §5 are related via ψ =
ω−1. The primes 5 and 11 factor in K1 as

(5) = L4
0L

4
1L

4
2L

4
3L

4
4 (11) = P5

1P
5
2P

5
3P

5
4

with α ≡ ζ iφ (mod L2
i ) and Pi|pi. In §3 we saw that H1 := J1K1 is the

5-ray class field of k for conductor (11) = p1p2p3p4.

Lemma 6.1 The extension H1/K1 is unramified at all primes. Furthermore
the primes above 5 and 11 are inert in this extension.

Proof. Only primes above 11 ramify in H1/k. By considering suitable ratios
of our Kummer generators for J1/k and K1/k we see that pi cannot be totally
ramified in H1/k. Hence H1/K1 is unramified as claimed. Now H1/K1 is a
translate of Q(µ11)+/Q. Since 5 is inert in Q(µ11)+/Q and Li has residue
field F5, it follows that Li is inert. Finally the definitions of J1 and K1 give
#A1(H1)(5) ≥ 53, so by Lemma 1.7 the Pi are inert. �

Proposition 6.2 The 5-class group of K1 is ClK1(5)'Z/5Z. It is generated
by any prime above 5 or 11.

Proof. Let B = ClK1(5). By Lemma 3.5(i) we know that H1 is the maximal
unramified 5-extension of K1 which is abelian over k. Thus

B/(τ − 1)B'Gal(H1/K1)'Z/5Z

as abelian groups. By Lemma 6.1, P1 is inert in H1/K1 and so generates
B/(τ − 1)B. Since (τ − 1)5 ⊂ 5Z5[τ ] it follows that P1 generates B as a
Z5[τ ]-module. But τ(P1) = P1 and P5

1 = p1 is principal. Thus B'Z/5Z as
claimed. By Lemma 6.1, B is generated by any prime above 5 or 11. �

Remark 6.3 Since σ(L0) = L0 and τ(P1) = P1 the action of G on ClK1(5)
is trivial. In particular P1 ∼ P2 ∼ P3 ∼ P4.

We turn our attention to the units in K1. We write

ui =
φζ iα + 1

ζ iα− φ
vi =

ζ iα + 1

ζ iα− 1
.
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The ui are units by Lemma 3.6. For the vi we have (vi + 1)5/(vi − 1)5 =
(1 + φ5)/(1− φ5). Thus each vi is a root of

φ5(x5 + 10x3 + 5x)− (5x4 + 10x2 + 1) = 0

and so is a unit. It is easy to check

σ(ui) = u2i σ(vi) = −1/v2i

τ(ui) = ui+1 τ(vi) = vi+1

and we have relations
∏
ui = 1,

∏
vi = φ−5. Thus the subgroups of K∗1/K

∗5
1

generated by u1, u2, u3, u4 and v1, v2, v3, v4 are quotients of the G-modules
M(1, 4) and M(ω2, 4).

Proposition 6.4 The units ζ, φ, u1, u2, u3, u4, v1, v2, v3, v4 generate a sub-
group of O∗K1

of index prime to 5.

Proof. By Dirichlet it suffices to check that the elements listed are indepen-
dent in K∗1/K

∗5
1 . There is a G-module homomorphism

M := M(ω)⊕M(ω2)⊕M(1, 4)⊕M(ω2, 4)→ K∗1/K
∗5
1

where the summands correspond to ζ, φ, 〈u1, u2, u3, u4〉 and 〈v1, v2, v3, v4〉.
We suppose for a contradiction that this map has non-trivial kernel. Then
this kernel meets

ker(τ − 1|M) = M(ω)⊕M(ω2)⊕M(ω)⊕M(ω3)
= 〈 ζ, φ, u1u

2
2u

3
3u

4
4, v1v

2
2v

3
3v

4
4 〉.

Dividing into σ-eigenspaces we learn that one of the elements

ζ i(u1u
2
2u

3
3u

4
4)j, φ, v1v

2
2v

3
3v

4
4

is a 5th power. For ζ and φ this is clearly false, since no unit can be a
Kummer generator for K1/k. The smallest prime to split completely in K1/Q
is p = 101. Reducing modulo primes above p we obtain a contradiction. �

Remark 6.5 Further to the proof Proposition 6.4, a brutal computer cal-
culation shows

π1π
3
2π

2
3π

4
4 ≡ (u1u

2
2u

3
3u

4
4)3 (mod K∗51 )

π1π
2
2π

3
3π

4
4 ≡ (v1v

2
2v

3
3v

4
4)3 (mod K∗51 ).
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Remark 6.6 According to pari the field K1 has class number 5, and

φ, u1, u2, u3, u4, v1, v2, v3, v4

is a set of fundamental units. However pari assumes the Generalised Rie-
mann Hypothesis, whereas our results are unconditional.

We apply Propositions 2.1 and 2.2 in the case F = K1.

Proposition 6.7 The Selmer groups attached to the 5-isogenies (1) are

S(A0 → A1/K1) ' (Z/5Z)8 S(A2 → A0/K1) ' (Z/5Z)14

S(A1 → A0/K1) ' (Z/5Z)2 S(A0 → A2/K1) = 0.

Proof. By Propositions 6.2 and 6.4 the space

{ θ ∈ K∗1/K∗51 | ordp(θ) ≡ 0 (mod 5) for all p }

has basis ζ, φ, u1, u2, u3, u4, v1, v2, v3, v4, 11. Here 11 is a contribution from
the class group or “virtual unit”. We choose characters (OK1/Pi)

∗ → Z/5Z
and compute these characters on our basis. Notice that by inspection of our
Kummer generator for K1/k we have 11 ≡ (1 +φ5)2 ≡ (1−φ5)2 (mod K∗51 ).
Thus our table is easily computed by hand.

P1 P2 P3 P4

ζ 1 3 2 4
φ 2 3 3 2
ui 2 2 2 2
vi 0 0 0 0
11 2 2 2 2

By Proposition 2.1 we deduce

S(A0 → A1/K1)'〈u′1, u′2, u′3, u′4, v1, v2, v3, v4〉 ⊂ K∗1/K
∗5
1

where u′i = ui/11. Propositions 2.1 and 6.2 show that S(A0 → A2/K1) is
trivial. The remaining statements follow by Proposition 2.2. �

Proposition 6.7 furnishes the estimate rankA(K1) ≤ 8. We improve on
this by computing the Cassels-Tate pairing

S(A0 → A1/K1)× S(A0 → A1/K1)→ Q/Z. (17)
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As a G-module we have

S(A0 → A1/K1)'M(1, 4)⊕M(ω2, 4)

where the summands correspond to 〈u′1, u′2, u′3, u′4〉 and 〈v1, v2, v3, v4〉. By
Lemma 5.3 the pairing (17) is trivial when restricted to either summand. It
therefore suffices for us to compute the entries 〈u′r, vs〉. By Proposition 4.5
and the action of Gal(K1/k) we have

〈u′r, vs〉 =
∑4

i=0 Indζ(u
′
r, vs)

i
Li

=
∑4

i=0 Indζ(u
′
r−i, vs−i)

i
L0

We recall that L0 is the prime of K1 above 5 such that α ≡ φ (mod L2
0). But

α is a 5th root of

η(1) =
1 + φ5

1− φ5
= −φ15

(
1 +

10(φ5 − φ5)

1 + 10φ5

)
. (18)

The binomial theorem gives α ≡ −φ3 (mod L6
0) and for r 6= 0 it follows

ur ≡ (ζrφ4 − 1)/(ζrφ3 + φ) (mod L6
0)

vs ≡ (ζsφ3 − 1)/(ζsφ3 + 1) (mod L6
0).

Using these approximations we are reduced to computing the Hilbert norm
residue symbol at the prime l = (1−ζ) of k = Q(µ5). This is straightforward,
if tedious, to do by hand. See [CF, Exercises 1 and 2]. We find

( , )L0 v0 v1 v2 v3 v4 5〈 , 〉 v0 v1 v2 v3 v4

u′0 1 ζ2 ζ4 ζ ζ3 u′0 0 4 1 1 4
u′1 ζ3 ζ2 ζ4 1 ζ u′1 4 0 4 1 1
u′2 ζ 1 ζ4 ζ2 ζ3 u′2 1 4 0 4 1
u′3 ζ4 ζ2 ζ3 ζ 1 u′3 1 1 4 0 4
u′4 ζ2 ζ4 1 ζ ζ3 u′4 4 1 1 4 0

The matrix on the right has rank 3, and so the pairing (17) has rank 6.
The kernel is generated by u1u

2
2u

3
3u

4
4 and v1v

2
2v

3
3v

4
4. By Corollary 1.6 and

Lemma 3.6 the first of these elements is accounted for by torsion, whereas
the second is not.

By Propositions 4.1 and 6.7 we deduce

S(A1
×5→ A1/K1)' (Z/5Z)4.
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This furnishes the estimate rankA(K1) ≤ 2. Since rankA(k) = 0 the ac-
tion of Gal(K1/k) on A(K1) ⊗ Q forces rankA(K1) ≡ 0 (mod 4). Thus
rankA(K1) = 0 and X(A1/K1)[5]' (Z/5Z)2. However, to identify the 5-
primary part of the Tate-Shafarevich group we must work harder.

We aim to compute S(A0
×5→ A0/K1) as a G-module. To identify it as an

abelian group we make use of the exact sequences

0−→S(A0 → A1/K1)−→S(A0
×5→ A0/K1)

ψ1−→ S(A1 → A0/K1)

0−→S(A0 → A2/K1)−→S(A0
×5→ A0/K1)

ψ2−→ S(A2 → A0/K1)
(19)

The images of the maps ψ1 and ψ2 are the kernels of the Cassels-Tate pairings

Ψ1 : S(A1 → A0/K1)× S(A1 → A0/K1)→ Z/5Z

Ψ2 : S(A2 → A0/K1)× S(A2 → A0/K1)→ Z/5Z
(20)

Lemma 6.8 The pairings Ψ1 and Ψ2 have ranks 0 and 4 respectively.

Proof. The alternating pairing Ψ1 is defined on S(A1 → A0/K1)' (Z/5Z)2.
By Corollary 1.6 this Selmer group contains a contribution from torsion.
Hence Ψ1 is trivial. The exact sequences (19), together with Propositions 4.1

and 6.7, now tell us that S(A0
×5→ A0/K1)' (Z/5Z)10 and that the pairing

Ψ2 has rank 4. �

The exact sequences (19) provide inclusions

S(A0 → A1/K1) ⊂ S(A0
×5→ A0/K1) ⊂ S(A2 → A0/K1) ⊂ K∗1/K

∗5
1 (21)

By Remark 6.5 there exist w1, w2 in K1 with

w5
1 = π1π

−2
2 π2

3π
−1
4 (u1u

2
2u

3
3u

4
4)2

w5
2 = π1π

2
2π
−2
3 π−1

4 (v1v
2
2v

3
3v

4
4)2.

A rather tedious calculation suggests we write x1 = w1u
2
2u3u

3
4(v1v

2
2v

3
3v

4
4)3 and

x2 = w2v
3
1v

3
2(u1u

2
2u

3
3u

4
4)3, whereupon, multiplying x2 by a 5th root of unity if

necessary

σ(x1) ≡ x3
1 (mod K∗51 ) σ(x2) ≡ x2

2 (mod K∗51 )
τ(x1) ≡ x1u

3
2u3u

3
4 (mod K∗51 ) τ(x2) ≡ x2φ

2v3
2v3v

3
4 (mod K∗51 )

(22)
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Proposition 6.9 Multiplying x1 by a 5th root of unity if necessary, the
Selmer groups (21) are

S(A0 → A1/K1) ' 〈u′1, u′2, u′3, u′4, v1, v2, v3, v4〉
S(A0

×5→ A0/K1) ' 〈u1, u2, u3, u4, v1, v2, v3, v4, 11, x1〉
S(A2 → A0/K1) ' 〈ζ, φ, u1, u2, u3, u4, v1, v2, v3, v4, 11, α, x1, x2〉.

Proof. The descriptions of S(A0 → A1/K1) and S(A2 → A0/K1) follow from

Proposition 2.1. Now S(A0
×5→ A0/K1) is the kernel of the pairing Ψ2 and

this pairing induces a pairing on the quotient

S(A2 → A0/K1)

S(A0 → A1/K1)
'〈ζ, φ, 11, α, x1, x2〉. (23)

Decomposing into σ-eigenspaces, we learn that S(A0
×5→ A0/K1) has basis

u1, u2, u3, u4, v1, v2, v3, v4, 11, z

for some z = ζ ixj1. Since we consider ourselves free to multiply x1 by a 5th

root of unity, it only remains to show ζ 6∈ S(A0
×5→ A0/K1). To do this we

identify (23) as a G-module. By (22)

τ(x1) ≡ x1112 mod 〈u′1, u′2, u′3, u′4, K∗51 〉
τ(x2) ≡ x2φ

2 mod 〈v1, v2, v3, v4, K
∗5
1 〉

whereas τ(α) = ζα and ζ, φ, 11 ∈ k are fixed by τ . Thus

S(A2 → A0/K1)

S(A0 → A1/K1)
'M(ω, 2)⊕M(ω2, 2)⊕M(ω3, 2).

By Lemma 5.4 the pairing Ψ2 restricted to

M(ω2, 2)⊕M(ω3, 2)'〈ζ, φ, α, x2〉

is either zero or non-degenerate. But it cannot be zero by our earlier con-

sideration of σ-eigenspaces. Thus ζ 6∈ S(A0
×5→ A0/K1) and we are done.

�

Remark 6.10 An alternative proof of Proposition 6.9 is given by computing
Ψ2 via the formula of [F0, §7.3].
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As a G-module we have

S(A0
×5→ A0/K1)'M(1)⊕M(ω, 5)⊕M(ω2, 4)

where the summands correspond to 11, 〈u1, u2, u3, u4, x1〉 and 〈v1, v2, v3, v4〉.
The contributions from torsion are 11 and u1u

2
2u

3
3u

4
4. Thus

S(A0
×5→ A0/K1)

im(δ|A0[5])
'M(ω, 4)⊕M(ω2, 4). (24)

Our earlier calculation of the pairing (17) shows that the Cassels-Tate pairing
on (24) is non-zero. By Lemma 5.4 the Cassels-Tate pairing on (24) is non-
degenerate. It follows that X(A0/K1)(5)' (Z/5Z)8.

Earlier we saw X(A1/K1)[5]' (Z/5Z)2. We claim that X(A1/K1) con-
tains no element of order 25. Indeed, from the exact sequences

A1(K1)
ψ−→ A0(K1)−→S(A1 → A0/K1)−→X(A1/K1)[ψ]−→ 0

0−→X(A1/K1)[ψ]−→X(A1/K1)(5)
ψ−→ X(A0/K1)(5)

we learn that X(A1/K1)(5) is finite and contains no copy of (Z/25Z)2. Our
claim is now a well known consequence of the Cassels-Tate pairing.

Finally the exact sequence

S(A2 → A0/K1)−→S(A2
×5→ A2/K1)−→S(A0 → A2/K1) = 0

shows that S(A2
×5→ A2/K1)' (Z/5Z)13. By Lemma 6.8 the Cassels-Tate

pairing on this Selmer group has rank 4. Since the multiplication by 5 map
on A2 factors through A0 and X(A0/K1)(5) is 5-torsion, we deduce

X(A2/K1)(5)' (Z/5Z)4 ⊕ (Z/25Z)8.

This completes the proof of Theorem 1.

7 Descent calculations over K2 = Q(A2[5])

We recall that K2/k has Kummer generator 11. We put β = 5
√

11. Then
Gal(K2/Q)'G via

σ(ζ) = ζ2 σ(β) = β
τ(ζ) = ζ τ(β) = ζβ.
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The cyclotomic character ω and the character ψ of §5 are equal. The primes
above 5 and 11 ramify in K2/k. We write

(5) = L20 (11) = P5
1P

5
2P

5
3P

5
4

with Pi|pi. In §3 we saw that H2 := J1K1K2 is the 5-ray class field of k for
conductor l2p1p2p3p4.

Lemma 7.1 The extension H2/K2 is unramified at all primes.
(i) The primes above 5 are inert in J1K2/K2 and split in K1K2/K2.
(ii) The primes above 11 are split in J1K2/K2 and inert in K1K2/K2.

Proof. Only primes above 11 ramify in J1/k and K1/k. By considering ratios
of Kummer generators we see that the extensions J1K2/K2 and K1K2/K2

are unramified. Hence the composite H2/K2 is unramified.
(i) The extensions J1K2/K2 and K1K2/K2 are translates of Q(µ11)+/Q and
K1/k. Since 5 is totally ramified in K2/Q our claims follow.
(ii) The Kummer generator for J1K2/K2 belongs to S(A0 → A2/K2). By
Proposition 2.1 the primes above 11 split in J1K2/K2. By Lemma 6.1 the
primes above 11 cannot split completely in H2/K2. They are therefore inert
in K1K2/K2. �

Proposition 7.2 The 5-class group of K2 is ClK2(5)' (Z/5Z)2. It is gen-
erated by the primes above 5 and 11.

Proof. Let B = ClK2(5). By Lemma 3.5(ii) we know that H2 is the maximal
unramified 5-extension of K2 which is abelian over k. Thus

B/(τ − 1)B'Gal(H2/K2)' (Z/5Z)2

as abelian groups. By Lemma 7.1, the primes P1 and L generate B/(τ−1)B.
Since (τ − 1)5 ⊂ 5Z5[τ ] it follows that P1 and L generate B as a Z5[τ ]-
module. But τ(P1) = P1, τ(L) = L and P5

1 = p1, L5 = l are principal. Thus
B' (Z/5Z)2 as claimed. �

Remark 7.3 The action of τ on ClK2(5) is trivial. By Lemma 1.3 we have
ClK2(5)'Gal(H2/K2)'M(1)⊕M(ω3). In particular P1 ∼ P2

2 ∼ P3
3 ∼ P4

4.
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We now give a description of the units in K2. Substituting β5 for λ in
the identity (λ− φ5)(λ− φ5) = λ2 − 11λ− 1 we learn NormK2|Q(β − φ) = 1.
Thus β − φ is a unit. We choose to work with the units

ui =
φζ iβ + 1

ζ iβ − φ
vi = (ζ iβ)2 − ζ iβ − 1.

It is easy to check

σ(ui) = −1/u2i σ(vi) = v2i

τ(ui) = ui+1 τ(vi) = vi+1

and we have relations
∏
ui = −φ15,

∏
vi = −1. Thus the subgroups of

K∗2/K
∗5
2 generated by u1, u2, u3, u4 and v1, v2, v3, v4 are quotients of the G-

modules M(ω2, 4) and M(1, 4).

Lemma 7.4 The extension K1K2/K2 has Kummer generator φv1v
4
2v

4
3v4.

Proof. By Lemma 7.1 and Proposition 7.2 it is sufficient to show that the
stated element is (i) a 5th power locally at the prime L above 5, and (ii) not
a 5th power locally at the primes Pi above 11. A suitable version of Hensel’s
lemma shows that a ∈ OK2 is a 5th power locally at L if and only if x5 ≡ a
(mod L26) is soluble. We prove (i) by using pari to perform calculations
in the group (OK2/L

26)∗. Since φv1v
4
2v

4
3v4 ≡ φ (mod Pi), claim (ii) is clear

without computer calculation. This completes the proof of the lemma. Of
course more brutal computer calculations are possible, showing

φ2π1π
4
2π

4
3π4 ≡ (φv1v

4
2v

4
3v4)−1 (mod K∗52 ).

�

A consequence of Lemma 7.4 is that K2( 5
√
v1v2

2v
3
3v

4
4)/K2 is unramified at

all primes. Furthermore this extension is split at the primes above 5 and 11.
By Proposition 7.2 we deduce

v1v
2
2v

3
3v

4
4 = w5

for some w ∈ K2. Multiplying w by a 5th root of unity if necessary

σ(w) ≡ w3 mod 〈v1, v2, v3, v4〉
τ(w) ≡ wv0 (mod K∗52 ).
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Proposition 7.5 The units ζ, φ, u1, u2, u3, u4, v1, v2, v3, w generate a sub-
group of O∗K2

of index prime to 5.

Proof. By Dirichlet it suffices to check that the elements listed are indepen-
dent in K∗2/K

∗5
2 . There is a G-module homomorphism

M := M(ω)⊕M(ω2)⊕M(ω2, 4)⊕M(ω3, 4)→ K∗2/K
∗5
2

where the summands correspond to ζ, φ, 〈u1, u2, u3, u4〉 and 〈v1, v2, v3, w〉.
We suppose for a contradiction that this map has non-trivial kernel. Then
this kernel meets

ker(τ − 1|M) = M(ω)⊕M(ω2)⊕M(ω)⊕M(ω2)
= 〈 ζ, φ, u1u

2
2u

3
3u

4
4, v1v

4
2v

4
3v4 〉.

Dividing into σ-eigenspaces we learn that one of the elements

ζ i(u1u
2
2u

3
3u

4
4)j, φi(v1v

4
2v

4
3v4)j

is a 5th power. By Lemmas 3.6 and 7.4 these elements are Kummer genera-
tors for J1J2K2/K2 and for K1K2( 5

√
φ)/K2. This gives the required contra-

diction. �

Remark 7.6 According to pari the field K2 has class number 25, whereas
φ, β−φ and its conjugates, generate a subgroup of index 5 in O∗K2

/(torsion).
Again this is conditional on the Generalised Riemann Hypothesis.

We apply Propositions 2.1 and 2.2 in the case F = K2.

Proposition 7.7 The Selmer groups attached to the 5-isogenies (1) are

S(A0 → A1/K2) ' (Z/5Z)8 S(A2 → A0/K2) ' (Z/5Z)15

S(A1 → A0/K2) ' (Z/5Z)2 S(A0 → A2/K2) ' Z/5Z.

Proof. By Propositions 7.2 and 7.5 the space

{ θ ∈ K∗2/K∗52 | ordp(θ) ≡ 0 (mod 5) for all p } (25)

has basis ζ, φ, u1, u2, u3, u4, v1, v2, v3, w, π1, 1− ζ. Here π1 and 1− ζ are con-
tributions from the class group or “virtual units”. We choose characters
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(OK2/Pi)
∗ → Z/5Z and compute these characters on a basis for (25)

P1 P2 P3 P4

ζ 1 3 2 4
φ 2 3 3 2
ui 3 2 2 3
vi 0 0 0 0
w 2 4 1 3

π1π
2
2π

3
3π

4
4 3 1 4 2

2φ− 1 2 2 2 2

By Proposition 2.1 we deduce

S(A0 → A1/K2)'〈u′1, u′2, u′3, u′4, v1, v2, v3, w
′〉 ⊂ K∗2/K

∗5
2

where u′i = uiφ and w′ = wπ1π
2
2π

3
3π

4
4. Propositions 2.1 and 7.2 give S(A0 →

A2/K2)'Z/5Z. The remaining statements follow by Proposition 2.2. �

Proposition 7.7 furnishes the estimate rankA(K2) ≤ 8. We improve on
this by computing the Cassels-Tate pairing on S(A0 → A1/K2). As a G-
module we have

S(A0 → A1/K2)'M(ω2, 4)⊕M(ω3, 4). (26)

By [Ca1, §7 (5)] there is a commutative diagram

〈·, ·〉K2 : S(A0 → A1/K2) × S(A0 → A1/K2) → Q/Z

↑ cores ↓ res ||
〈·, ·〉K1K2 : S(A0 → A1/K1K2) × S(A0 → A1/K1K2) → Q/Z

where res and cores are the maps K∗2/K
∗5
2 � (K1K2)∗/(K1K2)∗5 induced

by the natural inclusion and norm map respectively. We compute 〈c, d〉K2

where
c = β4 + 3β3 + 4β2 + 2β + 1, d = β2 − β − 1.

A computer search yields a unit γ ∈ K1K2 with NormK1K2|K2(γ) = c2. An
explicit expression for 55γ in terms of u = ε(α) and β is

(271858β4 − 724855β3 + 1158870β2 − 663207β − 928521)u4

+(942679β4 − 1424893β3 + 1970490β2 − 2288047β − 1777424)u3

+(2185832β4 − 3700207β3 + 8323117β2 − 6646061β − 10380876)u2

+(−25520β4 + 52792β3 − 893918β2 + 423925β + 1617231)u
+(1351406β4 − 2180822β3 + 4850841β2 − 4066025β − 6097410)

28



By Lemma 7.1, the primes above 11 are inert in K1K2/K2. Any non-trivial
character F∗115 → Z/5Z factors via the norm map F∗115 → F∗11. So by Propo-
sition 2.1, γ belongs to S(A0 → A1/K1K2). The prime 5 factors as

(5) = L4
0L

4
1L

4
2L

4
3L

4
4 in K1

(5) = L20 in K2

(5) = L20
0 L20

1 L20
2 L20

3 L20
4 in K1K2

with Li|Li. Proposition 4.5 and the above diagram give

〈c2, d〉K2 = 〈γ, d〉K1K2

=
∑4

i=0 Indζ(γ, d)iLi
=

∑4
i=0 Indζ(γi, d)iL

where γi ∈ K2 is chosen Li-adically close to γ. To do this we use (18) and the
binomial theorem to choose αi ∈ k Li-adically close to α. Then we substitute
ε(αi) for u = ε(α) in our expression for γ.

We compute the Hilbert norm residue symbol (·, ·)L using the product
formula and Euler’s criterion. Finally a computer calculation shows

〈c, d〉K2 6= 0.

This calculation, together with Lemma 5.4, shows that the Cassels-Tate

pairing on (26) is non-degenerate. By Proposition 4.1 it follows that S(A1
×5→

A1/K2)'Z/5Z. Thus rankA(K2) = 0 and X(A1/K2)(5) = 0.
From the exact sequences

A0(K2)
ψ̂−→ A1(K2)−→S(A0 → A1/K2)−→X(A0/K2)[ψ̂]−→ 0

0−→X(A0/K2)[ψ̂]−→X(A0/K2)(5)
ψ̂−→ X(A1/K2)(5)

we learn X(A0/K2)(5)' (Z/5Z)8. Proposition 4.1 and the exact sequences

0−→S(A0 → A2/K2)−→S(A0
×5→ A0/K2)−→S(A2 → A0/K2)

0−→S(A2 → A0/K2)−→S(A2
×5→ A2/K2)−→S(A0 → A2/K2)

show that S(A2
×5→ A2/K2)' (Z/5Z)16 and that the Cassels-Tate pairing on

this Selmer group has rank 6. Since the multiplication by 25 map on A2

factors through A1 and X(A1/K2)(5) = 0, we deduce

X(A2/K2)(5)' (Z/5Z)6 ⊕ (Z/25Z)8.

This completes the proof of Theorem 2.
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