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Abstract
Let A be one of the three elliptic curves over Q with conductor
11. We show that A has Mordell-Weil rank zero over its field of 5-
division points. In each case we also compute the 5-primary part of
the Tate-Shafarevich group. Our calculations make use of the Galois
equivariance of the Cassels-Tate pairing.

Introduction

Ever since the work of Mazur [Ma] the elliptic curves of conductor 11 have
provided a testing ground for the Iwasawa theory of elliptic curves. We recall
from [V1] that these curves form a single isogeny class, and have explicit
Weierstrass equations

Ay = Xo(11) y?+y=a®— 2% —10x — 20 11A1
A = X4(11) v ity =2 —a? 11A3
A, v +y=a° — 2% — 7820z — 263580 11A2

Here the labels 11A1-3 are those used in [Cr|, whereas the labels Ay, A, A
are taken from [CS]. When there is no need to distinguish the three curves
we shall simply write A to denote any one of them.

Coates and Howson [CH] have used the elliptic curves of conductor 11 to
illustrate their work on non-abelian Iwasawa theory. A natural question to
ask is

How does the Mordell-Weil rank behave as we pass up the tower
of fields given by adjoining the 5-power division points?
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Although we are still unable to answer this question, we prove that the rank
is zero over the field of 5-division points for each of the three curves.

It seems that Mazur [Ma, Cor. 9.10] was the first to show rank A(Q) =0
and III(A/Q)(5) = 0. An extension of this result to Q(us), due to Green-
berg, may be found in [CS]. In each case the authors put their classical
descent calculations to good use in studying the behaviour of Selmer groups
over the cyclotomic Zjs-extension. For instance in [CS] it is shown that
rank A(Q(ps<)) = 0. It is hoped that our results will have equally strik-
ing applications.

The curves of conductor 11 are chosen since they appear first in the list of
modular curves, and they do not admit complex multiplication. The prime
5 is chosen to make the problem more tractable. Indeed there are isogenies
of degree 5 defined over Q

A2 Ay = A, (1)

The curves Ay and A; each have a rational point of order 5, whereas A, does
not. By properties of the Weil pairing we deduce Ag[5] ~pus ® Z/5Z as a
Galois module. Furthermore there are exact sequences

0—2Z/5Z — Ay — Ay —0 0— pus — Ay — Ay — 0. (2)

The fields of 5-division points are k = Q(us), K1 = Q(A1[5]) and Ky =
Q(A3[5]). Since K and K; are non-abelian and of degree 20, it should come
as no surprise that our descent calculations are rather more involved than
those cited above. Our conclusions are

Theorem 1 Let K7 = Q(A1[5]). Then rank A(K;) =0 and

Ao(K) ~ (Z/5Z)2 HI(Ao/K1)(5)
A1(K1)2(Z/5Z)2 HI(A;/K1)(5)

(2/5Z)°
(2/5Z)
(Z/5Z)* @ (Z/25Z)°.
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Theorem 2 Let Ky = Q(A3[5]). Then rank A(Ky) =0 and

Ag(Kz) = (Z/5Z)F LA/ ) (5) =~ (Z/5Z)°
Ay (K ~Z/5Z II(A, /K,5)(5) = 0
Ao(Ka) = (Z/5Z)?  T(As/K>)(5) ~ (Z/5Z)° & (Z/25Z)°.



It is easy to check that these results are compatible with the isogeny in-
variance of the Birch Swinnerton-Dyer conjecture, as proved by Cassels [Ca3].
Let us note that for p|11, inspection of the j-invariants shows that the Tam-
agawa factors are cp(Ag) = Sordy(11) and c¢p(A1) = cp(Az) = ordy(11). At
each infinite place, it follows by Vélu’s formulae [V2] that the periods Q; are
related via €y /Qy = Qy/Qy = 5.

In §1 we introduce some subfields of Q(A[5%°]). In §2 we recall from [F0],
[F'1], a description of the Selmer groups attached to the 5-isogenies (1). The
analogue of Theorems 1 and 2 for k = Q(us) is an easy consequence. In
§3 we give explicit Kummer generators for the fields introduced in §1. In
84 we recall the definition of the Cassels-Tate pairing. Following the work
of McCallum [Mc| and Beaver [B] we give a formula for the pairing in the
case we need. In §5 we discuss certain Galois modules, and the alternating
pairings they admit. Finally in §6 and §7 we give the descent calculations
proving Theorems 1 and 2.

We have made extensive use of the computer algebra package pari in
the course of this work. However we have striven where possible to give
arguments that may be checked by hand. For the proof of Theorem 1 this
goal has largely been achieved. In contrast the proof of Theorem 2 relies
on us exhibiting a “non-trivial” unit in K7 K5. Our method here was to ask
pari to find all units in a certain degree 25 subfield. (This took 1 hour and
20 minutes on a 800MHz Pentium-III with 128Mb RAM.)

In a separate note [F2] we prove an analogue of Theorems 1 and 2 for the
field J; = Q(us)Q(u11)". Again the rank is zero. Curiously our argument
in that case does not require any formula for the Cassels-Tate pairing.
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Notation and Conventions

For F' a perfect field we write G := Gal(F/F) and H'(F,—) = H(Gp, —).
By Hilbert’s theorem 90 we identify H'(F,us) = F*/F*>. The number field
F has ring of integers Op, unit group O%, and class group €lp. The local
field F, has ring of integers ©, and normalised valuation ord,. Since our



interest is in descent via isogenies of odd degree we ignore the infinite places
throughout.
Let C and D be elliptic curves defined over F', and let ¢ : C — D be an

isogeny of degree m. The Kummer exact sequence restricts to
0 — D(F)/¢C(F) == SW(C/F) —L(C/F)[)] — 0.

We frequently avoid giving our isogeny a name by writing S(C' — D/F') for
SW(C/F). The Weil pairing is denoted e, : C[1] x D[QZ] — L.

The following notation relating to the field &£ = Q(us) is used throughout.
We fix ¢ a primitive 5th root of unity and write Ind; : ps — Q/Z for the
map ¢ — 1/5. Then k has fundamental unit ¢ = 1+ ¢ + ¢~'. (Taking
¢ = exp(2mi/5) this is the golden ratio.) We write ¢ = —1/¢ = 1 — ¢ for its
conjugate. In §3 we use ¢ to define involutions 1 and € on P;. The primes
of k above 5 and 11 are [ = (1 —() and p; = (m;) where m; = 2+ (*. We write
w:Gq — (Z/5Z)* for the cyclotomic character.

1 A description of Gal(Q(A[5*])/Q)

Serre [Se2, §5.5] proved

Proposition 1.1 Gal(Q(A[p>])/Q) ~ GLa(Z,) for all primes p # 5.

In contrast for p = 5, Q(A[p™])/Q(xp) is a pro-p extension. A description
of the Galois group in this case was given by Lang and Trotter [LT]. In this
section we present an alternative proof of their result and go on to compute
the torsion subgroups listed as part of Theorems 1 and 2.

Let C; and C; be the kernels of the degree 25 isogenies A; — A, and
Ay — A;. We shall be concerned with the fields J; = k(Cy), Jo = k(Cs),
K1 = Q(A1[5]) and K2 = Q(AQ[E)])

Lemma 1.2 The fields J,, Jo, K1, Ky are degree 5 Kummer extensions of
k.

Proof. All is clear, except perhaps that these extensions are non-trivial. In
fact C; is generated by the cusps on A; = X;(11) and these are defined over
Q(M11)+ = Q(,U/H) N R. Thus Jl = Q<M5)Q(u11)+ and Q(M25) C J1J2. For
K; and K5, we must show that the exact sequences (2) do not split as G-
modules. As explained in [CS, Chapter 4] an examination of the Tate periods
shows that these exact sequences do not even split as Gq,,-modules. O
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We pick a basis P, @) for the Tate module T5(Ay), such that the projections
of P and @ in Ag[5] generate ker(Ay — Ay) ~Z/5Z and ker(Ay — Ay) ~ s
respectively. Then the Galois representation p : Gq — GLa(Z5) attached to

Ay satisfies
§0)= (5 o) (005)

In particular
p(Gy) C{M € GlLy(Zs) | M =1 (mod 5) }. (3)

a b

Lemma 1.3 Foro € Gy, let p(o) =1+5 (c d

). There are isomorphisms
Gal(Jy/k) ~Z/5Z; o+ a Gal(K,/k) ~Z/5Z; o
Gal(Ky/k) ~ Z/5Z; o c Gal(Jy/k) ~Z/5Z; o+ d.

Furthermore, the action of Gal(k/Q) on these Galois groups is described by
Y =1,w Y w and 1 respectively.

Proof. We check the first of these isomorphisms, the other cases being similar.
Let P, Q, be the projections of P, ) in Ay[5"]. The image of P, under the
5-isogeny Ag — A; is a generator for C;. Thus for o € G},

o fixes J; pointwise <= o(P) — P, € ker(A4y — Ay)
<~ aP1 -+ CQl € ker(Ag — Al)
< a=0 (mod?5).

It follows that the map o + a induces an isomorphism Gal(.J;/k) ~Z/5Z.
Finally Gal(k/Q) acts on G}, by conjugation, and we compute

LOENED (L")

Lemma 1.4 The fields Ji, Jo, K1, K5 are independent degree 5 Kummer
extensions of k.
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Proof. Given the distinct actions of Gal(k/Q) it suffices to check that .J; and
Jo are independent. But J;Jo = Q(p25)Q(11)™ so this is clear. O

The next proposition was originally proved by Lang and Trotter [LT, Part
I, Theorem 8.1]. I am grateful to John Coates for pointing out to me the
simpler proof presented here.

Proposition 1.5 The extension Q(A[5%°])/Q has Galois group

o(Ga) = { (Z Z) € Gla(Zs) (i Z) - (é S) (mod 5)}.

Proof. We prove by induction on 7 that the image of p(Gy) in GLy(Z/5"Z)
is the kernel of the map GLy(Z/5"Z) — GL3(Z/5Z). The case r = 2 follows
from Lemmas 1.3 and 1.4. The induction step is well known, and may be
found in [LT] or [Sel]. It makes use of the identity

(I+5 7'M’ =1+5M (mod 5.

We deduce that equality holds in (3), and the proposition follows. ([l

In §3 we find explicit Kummer generators for the extensions K;/k and
Ky /k. From these we learn that the prime above 5 is split in K;/k and is
ramified in Ky/k. We prove the easy part of Theorems 1 and 2.

Corollary 1.6 The torsion subgroups for A(K;) and A(K3) are

Ao(K)tons = (Z/5Z)? Ao(Ks) o = (Z/5Z)?
ALK )iore =~ (Z/5Z)? A1 (K2)ions =~ Z/5Z
Ao(K) o ~ Z/5Z Ao(Ka)ions =~ (Z/5Z)2.

Proof. Since A has good reduction at 5 and A(Fs)~Z/5Z, it suffices to
check that the 5-power torsion is as claimed. We make the observation that
Ap has no point of order 25 defined over K K,. Indeed if o € Gq satisfies
p(c) = 61 then o fixes pointwise the fields K; and Ks, but does not fix any
point of order 25 on Ay. Thus Ag(K;)iors = (Z/5Z)* for i = 1,2. Again for
i = 1,2 the inverse image of Ay[5] under the 5-isogeny A; — Ag has field of
definition J; K;. The remaining statements now follow from Lemma 1.4. [J

The Selmer groups used in our calculations are of the most concrete na-
ture, namely those attached to isogenies. They therefore contain contri-
butions from torsion in the Mordell-Weil group. For this reason we make

6



frequent implicit use of Corollary 1.6. For future reference we give another
result on torsion subgroups.

Lemma 1.7 Let [F : Qq1] < co. Then #A,(F)(5) < 5[F : Qui].

Proof. We know that A; had multiplicative reduction, with Tamagawa factor
e = ord(11). The number of smooth points over the residue field is 11/ — 1,
and the multiplication by 5 map on the formal group is an isomorphism.
Hence

#A1(F)(5) < bef = 5[F : Qul.

2 Explicit descent via 5-isogeny

The Selmer groups attached to the 5-isogenies (1) are defined as subgroups
of HY(F, us) = F*/F*5 and HY(F,Z/5Z) = Hom(Gp,Z/5Z).

Proposition 2.1 Let F' be a number field. Then

ordy(#) =0 (mod 5) for all p
and F(3/0)/F split at p|11

S(Ay — Ag/F) ~ { x € Hom(Gr,Z/5Z) | x unramified at all pt11 }
S(Ay — Ag/F) ~ {6 € F*/F*| ordy() =0 (mod 5) for all p{11}

S(A0—>A1/F) >~ {QGF*/F*E)

S(AO — AQ/F) ~ {X c HOm(GF, Z/5Z) ‘ X Unramlﬁ@d at all p }

and x split at p|11
(Here x split at p means p splits in the fized field of the kernel of x.)

Proof. More generally in [F1] we considered pairs of 5-isogenous elliptic
curves C, and D, with ker(C), — D,)=~us and ker(D, — C))~Z/5Z.
Explicitly D, has Weierstrass equation

v 4 (1= Nay — \y = 2° — \a? (4)

and Z/5Z — D,(F) is generated by (z,y) = (0,0). We see that A; = D,
and Ag = Dy;. For each prime p there is an exact sequence

6 k *
CA(FP)—>D>\(FP) — Fp/FpS'
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We recall [F1, Propositions 2.15 and 2.16] that ¢, has image

F;/F;‘5 if ord,(A) # 0
imd, = ¢ O;/0;° if ordy(A) = ordy(\> = 11X = 1) =0
1 if ordy(A\* — 11X —1) > 0 and p15.
The descriptions of S(Ag — A;/F) and S(Ay — Ay/F) now follow on taking
A = 1, respectively A = 11. Tate local duality tells us that the images of
the local connecting maps attached to an isogeny and its dual are exact

annihilators with respect to the Tate pairing. The descriptions of S(A4; —
Ay/F) and S(Ay — Ay/F) follow. O

Suppose F' is number field for which we have a working knowledge of
the unit group and the class group. It is now a straightforward exercise in
Kummer theory to compute the Selmer groups S(Ag — A;/F) and S(A; —
Ag/F). If us C F, then the Selmer groups attached to the dual isogenies
may be treated similarly. However there is a better way.

Proposition 2.2 Let F be a number field with ry (resp. ry), real (resp. pairs
complex conjugate) embeddings and m primes above 11. Then
#S(A; — A/ F)
#S5(A2 — Ao/ F)
#5(Ag — A2/ F)

= #ps(F) x 52t x 57m

= #us(F) x 511271 5 5™,

Proof. This is an application of Cassels’ formula [Ca3, Theorem 1.1]. The
ratios of Tamagawa numbers are given in the introduction. 0

Remark 2.3 In simple cases, for example if F' has class number 1, it is a
tolerable exercise in class field theory to deduce Proposition 2.2 directly from
Proposition 2.1. The beauty of Cassels’ formula is that the class number of
F' does not appear.

Example 2.4 We use Propositions 2.1 and 2.2 to compute rank A(k). We
recall that £ has class number 1, and that o} is generated by £(, ¢, where
¢=1+C+ ¢t Writing m; = 2 + ¢* we find

S(Ag — Ay/k) =0 since ¢, ¢ & (0/m)*°

S(A; — Ay/k) =~ (Z/5Z)* i.e. Hom(Gal(J1K,/k),Z/5Z)
S(Ay — Ag/k) ~ (Z/5Z)° i.e. (C,¢,m, T2, T3, M) C k* /K
S(Ag — A2/k) =0 since hy = 1.
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We deduce rank A(k) = 0 and II(A;/k)(5) = 0 for i = 0,1. We further find
I(Ay/k)(5) =~ (Z/5Z)".

3 Torsion contributions and Kummer generators

Let C'y and D, be as in the proof of Proposition 2.1. Then ) is a co-ordinate
on X;(5)~ P! and this modular curve has cusps at A = 0, 00, ¢°, $5. There
is an involution 1 on X;(5), permuting the cusps, such that ps < C is iso-
morphic to Z/5Z — D) over F(us). We take

n: A= (PN +1)/(\—¢°).

For A\ € F not a cusp of X;(5) there is a Kummer exact sequence
0 — pi5(F) — C\(F) — Dy(F) == F*/F*. (5)

Lemma 3.1 The image of Z/5Z < Dy(F) under the connecting map 0 is
generated by .

Proof. In terms of the Weierstrass equation (4), the multiples of (0,0) are
(X, A%), (X, 0), and (0, \). We recall from [F1] that if P = (z,y) # (0,0) then
§(P) = zy +y — 2% The lemma follows. O

For A € F we deduce F(C[5]) = F(us, V/A). In particular n(1) and 11
are Kummer generators for K;/k and K,/k. We also learn that X (5) ~ P!
with forgetful map

X(5) = X,(5); 77,

The cusps of X (5) are at 7 = 0,00, (', (‘¢. Under stereographic projection
these points may be viewed as the vertices of an icosahedron. There is
an action of PSLy(Z/5Z) ~ A5 on X (5) permuting the cusps, generated by
7+ (7 and

e:Te (ot + 1)/(1 — ).

Lemma 3.2 Suppose pus C F. Let 7 € F and put A = n(7°). Then the
image of (Z/5Z)* — Dy(F) under § is generated by

4 4

A=T]e(¢r)  and  J]e(¢7)"

=0 =0



Proof. In terms of the Weierstrass equation (4), (Z/5Z)* — Dy (F) is gener-
ated by (0,0) and

KT =) T =), (T = )T — 9) (¢ — )
( Y= <¢T+1>2<r—¢><¢¢7+1>) ¥

We conclude as in the proof of Lemma 3.1. 0

Remark 3.3 One way to construct the point (6) is to observe that in the
notation of [F0], [F1] the curve

T =T[\e(r),e(CT),e(¢P7),6(¢Cr),e(¢Pr)] € P?
has rational point
(T—=¢:CT—¢:Cr—0¢:C1—0:('7—9). (7)

There is a diagonal action of us on T with quotient D). In [F0, Appendix
C] we give explicit equations for the map 7" — D, and this allows us to
construct (6) from (7).

Applying Lemma 3.2 with 7 = 1 gives Kummer generators for J;/k and
Ki/k. Applying Lemma 3.2 with 7 = £(1) = —¢> gives Kummer genera-
tors for Jo/k and Ky/k. We re-write these Kummer generators in terms of
¢, ¢, m,my, 3, ™4 and so obtain an alternative proof of Lemma 1.4.

L Kummer generator for L/k ¢~ 'w  f(L/k) dr

Jp [Te(¢) Cmmsmimy w pipapsps  5P11
Ky n(1) P*mmymsmy WP pipapsps  HO1LC
K, n(—¢') T MMy Ppipopsps 521116

1
Ja [Te(—=¢'¢*)" mmimamy w  Ppipapsps 5111

We recall that if L/k is the Kummer extension corresponding to A C k*/k*®,
then Gal(L/k)~ Hom(A, us) as a Gal(k/Q)-module. Thus in the notation
of Lemma 1.3, A is described by ¢)~w. This is born out in our table.

The final two columns of our table record the conductor f = f(L/k) and
the absolute discriminant d. They are related via d;, = (Normf)*d}. Tt is
clear that the primes above 11 ramify in each extension L/k. We determine
the factorisation of the prime above 5.
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(i) The extension J;/k is a translate of Q(u11)"/Q, so [ is inert.
(ii) The extension K;/k has Kummer generator

_1+¢° ¢5—$>
S 1-¢P 1+¢° )

Since (¢° — ¢°)? = 5% the binomial theorem shows that 7(1) is a 5th power
in k. Thus [ splits in K, /k.

(ili) The extension K»/k has Kummer generator 11. The minimal polynomial
for v/11 —1 is an Eisenstein polynomial. Thus 5 is totally ramified in K,/Q.
A useful intermediate step in computing d, is to show that Q(v/11)/Q has
discriminant 5°11%.

(iv) Since JyJy = Q(u25)Q(p11)™ it is clear that [ ramifies in Jy/k. We recall
[W, Proposition 2.1] that Q(u95) has discriminant 5%.

n(1)

= E(l + (8)

Remark 3.4 Another quick way to show that .J;/k and K /k are unramified
above 5 is provided by Proposition 2.1 and the observation that our Kummer
generators belong to S(A; — Ay /k).

Lemma 3.5 (i) The 5-ray class field of k with conductor pipapspy is J1 K.
(ii) The 5-ray class field of k with conductor pipapaps is J1 K Ko.

Proof. We recall from [Coh, §3.2] a well known formula of class field theory
hig(m)

[k(m) : k] = Tor s or 1 k]

In our case we know h;, = 1 and o}, is generated by £(, ¢.

(i) For m = pipopsps we have ¢(m) = 10* and o} N ky generated by ¢'°.
Thus the 5-ray class field has degree 52, and so must equal J; K.

(ii) For m = [®pypapaps we have ¢(m) = 20.10% and o} N ky1 generated by
¢*°. Thus the 5-ray class field has degree 5%, and so must equal J; K1 K,. O

To end this section, we exhibit some (modular) units in the fields K;
and K5. Our descent calculations in §6 and §7 shall require further units in
addition to these.

Lemma 3.6 (i) Let o = /n(1) and u; = e(C'a). Then u; is a unit in

K = k(a). The extension JoK1/K; has Kummer generator uyusuiuj.

(i) Let 3 = /11 and u; = €(¢*'B). Then u; is a unit in Ky = k(3). The

extension Jy Ko/ Ky has Kummer generator ujuiuiuy.
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Proof. The cusps (¢, (¢ have minimal polynomials
flx)=a*+32° + 42> + 20 +1, g(x)=2* — 22> + 42> — 30 + 1.

We may check n(e(x)°) = zf(x)/g(z).

(i) Each u; is aroot of z f(x)—g(x) = 0 and so is a unit. We apply Lemma 3.2
with 7 = «a to give the stated Kummer generator.

(ii) Since n(11) = —¢', each u; is a root of zf(z) + ¢*Pg(x) = 0 and so is a
unit. We apply Lemma 3.2 with 7 = /3 to give the stated Kummer generator.
O

4 The Cassels-Tate pairing
Let C, D, 1 be as in the Introduction. There is an exact sequence

0— C[¢] — Clm] ~ DIJ]—0. (9)
Taking Galois cohomology and restricting to Selmer groups we obtain

DIG|(F) — S(C/F) — $™)(C/F) — S¥/(D/K).
Proposition 4.1 There is an alternating pairing
SO(D/K) x SP(D/K) — Q/Z (10)

whose kernel is the image of S™(C/F).

Proof. See Cassels [Ca2] or Milne [Mi]. O

We recall the definition of the pairing in the case m is odd. Our treatment
follows that of McCallum [Mc]. For (x) a global element or map, we write
(%), for the corresponding local object. The following commutative diagram
is considered both in its own right and with F' replaced by F}, for each prime

p.
Y

C(F) - DF) 2% H\F,C[Y)
I 19 X
C(F) X% c(F) 2 HY(F,C[m)

I I v

D(F) N C(F) i, H(F, D[¢))
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To define the pairing we take z, y € S¥)(D/F) c H'(K, D[{p\]) and suppose
given z1 € H'(F,C[m]) lifting x. At each prime p we choose 1 € im Oy,
such that ¢ (xp1) = xp. Then ¥(xp; — 21,) = 0 and so there exists &, €
HY(F,, C[¢]) with (&) = 2p1 — 21,,. We define

(z,y) :Zp(gp’yP)P (11)

~

where (-, ), is the Tate pairing H'(F,, C[¢]) x H'(F,, D[¢)]) — Q/Z. Using
Tate local duality and the product formula for the Tate pairing we may check
that the definition is independent of all choices. It is clear that (z,y) = 0
whenever 7 is in the image of "™ (C/F).

Remark 4.2 More generally, the Cassels-Tate pairing is defined on the Tate-

Shafarevich group II(D/F). The restriction to III(D/F)[y] is the pairing
induced by (10). We may implicit use of this fact in due course.

Remark 4.3 Suppose C, D, 1 are defined over Fy C F. If F is a normal
extension of Fy then (10) is Gal(F/Fp)-equivariant. It is to be understood
that the Galois action on Q/Z is trivial.

We give a formula for (10) in the case where 1 is the 5-isogeny A; — Ay
and F' contains K7 = Q(A;[5]). The exact sequence (9) becomes

~

0 —s Ay [)] — A, [5] % Ao[h] — 0. (12)

We choose a section for the map ¢ in (12) and use this to construct z; from
x. As McCallum [Mc| observes we may now express (11) as a sum of local

pairings
<$, y> = Zp<x¥37 yp>P'

Furthermore the local pairing is trivial outside the usual set of bad primes,
in our case those above 5 and 11. The description of S(Ay — A;/F) given
in Proposition 2.1 tells us that x, y are already trivial at p|11. So it only
remains to compute the local pairing at p|5.

In §3 we saw that K;/k has Kummer generator (1) = (1+¢°)/(1—¢°).
We put aw = /n(1). By (8) the primes above 5 split in K;/k. We label them
£o,L1,. .., L4 such that a = *¢ (mod £2).

Lemma 4.4 Let F be a number field with F O Ki. Let p|5 be a prime
and let e = e(p/5). Then there exists i = i(p) in Z/5Z such that o = (‘¢
(mod p*/?).
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Proof. We have i = i(p) if and only if p|£;. O

Proposition 4.5 Let F' be a number field with F' D K. Then the Cassels-
Tate pairing on S(Ag — A1/F) C F*/F* is given, up to scalars, by

<€7 0/> = Zp|5 Il’ldg(&, 9/);(’3)
where (-, )y is the Hilbert norm residue symbol.

Remark 4.6 To remove the qualifier “up to scalars” we must specify the

-~

isomorphism Ag[t)] ~ u5 used to embed S(Ag — A;/F) inside F*/F*5. For
the proof of Theorems 1 and 2, a formula “up to scalars” is good enough.

-~

Lemma 4.7 Let P € Ay[¢)] and Q € Ao[¢] with ey(P,Q) = (. Then we
may label the inverse image v 1(Q) = {Qo, Q1, - .. , Qu} such that Q; belongs

to the kernel of reduction mod £;.

Proof.  Let ™ denote reduction mod £;. By inspection of the Weierstrass
equation (4) the reduction A;(F5)~Z/5Z is generated by P. The kernel of

the reduction map A;[5] — A;(F5) is cyclic of order 5. We choose a generator
Q; with ¥(Q;) = Q. Then Gal(K;/k) permutes both the £; and the Q;. O

The Weil pairing and Hilbert’s theorem 90 allow us to identify

-~

HY(F, A[¢]) = Hom(Ay[Y], F*/F*)
H'(F,Ai[5]) = Hom(A[3], F*/F*) (13)

o~

HY(F, Ao[y]) = Hom(A[y)], F*/F*5).
We give a more precise version of Proposition 4.5.

Lemma 4.8 Let F' be a number field with ' O K;. Let P, Q; € Ai[5] be
chosen as in Lemma 4.7. Then the Cassels-Tate pairing on S(Ag — A1/ F) C
Hom(A:[¢)], F*/F*) is given by

(@,y) = Y5 Inde(2(Q1 — Qo) y(P)),".

Proposition 4.5 follows immediately from Lemma 4.8, since P and ()1 — @y
are both generators for A;[¢].
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Lemma 4.9 Let p|5 with i = i(p). Then the local connecting map
05, + A1(Fy) — Hom(A[5], F}/F}°) has image

{ x € Hom(A4,[5], O;/0;”) | Fo(3/2(Qy))/ Fy is unramified }.  (14)

Proof. Let x = 05,(T) for some T' € A;i(F}). The description of imdj
used in the proof of Proposition 2.1 shows that z(P) is a unit. Let 7" €
Ay(F,) with 57" = T. Then x is represented by the cocycle o(T") — T" in
H'(F,, A;[5]). But if o belongs to the inertia subgroup, then o(7") — T’
belongs to the kernel of reduction mod p and e5(Q;,0(1") —T1") = 1. Hence
x(Q;) is unramified.

We have shown that im 5, belongs to (14). But imds, C H*(F}, A1[5])
is a maximal isotropic subspace with respect to the Tate pairing. A counting
argument completes the proof of the lemma. O

The identifications (13) allow us to express the Tate pairing in terms of
the Hilbert norm residue symbol.

~

Lemma 4.10 The Tate pairing H'(F,, A1[¢]) x H'(Fy, Ao[¢)]) — Q/Z is
given by
(z,)p = Inde(2(Q), y(P)),

where (-, -), on the right is the Hilbert norm residue symbol.

Proof. We recall e, (P, Q) = ¢. The lemma follows by a standard cup product
calculation. U

Proof of Lemma 4.8. The map 1 in (12) has section @ — @Qo. Let x, y
belong to S(Ag — A;/F). By (13) we view x, y as maps A;[¢)] — F*/F*.
Then zy : A1[5] — F*/F*® extends x via Qo — 1. For each p|5 we extend
Ty to 0 A1[5] — FF/Fy° via Qi) — 1. Then z,; € imds, and £,(Q) =

(Qo — Qi) = z(Q1 — Qo) '™, The local pairing is

(Tp,yp)e = (&pr¥p)o
= Idi(§(Q).us(P))y"
= Tnd(zp(Q1 — Qo) yo(P)LY.

This completes the proof of Lemma 4.8 and so of Proposition 4.5. OJ
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5 Some Galois modules

The polynomials 2% + 22* + 623 — 222 + 42 — 1 and 2° — 11 have splitting
fields K7 = Q(A4[5]) and Ky = Q(Az[5]). In each case the Galois group is

G:=(o7|ot=1"=10r07" =1%).

In preparation for the proof of Theorems 1 and 2, we give some preliminaries
on Z/5Z[G]-modules. We define ¢ : G — (Z/5Z)* via 0 — 2 and 7 — 1.
Any Z/5Z[G]-module M may be decomposed into o-eigenspaces

M=MaoM oMM’ (15)

where MX = {x € M|ox = x(o)x}. If M = MX we say that M is described
by x. In particular ¢ describes the action of G on (r) via conjugation.

Lemma 5.1 Let M be a Z/5Z|G]-module with M /(T — 1)M ~Z/5Z as an
abelian group. Then

(i) M/(T — 1)M is described by some character x : G — (Z/5Z)*.

(it) M has dimension d := dimgsz M with d <'5.

(iii) The pair (x,d) uniquely determines M as a G-module.

(w) If d < 4 then Endg (M) ~7Z/5Z.

Proof. (i) This is clear.
(i) Let M; = (1 — 1)’M. The decreasing filtration of Z/5Z[G]-modules

M=M,D>M DM;D... (16)

satisfies dimz/5z Mz’/Mi—H Z dimz/5z Mi+1/Mi+2. But dimz/5z Mo/M1 = 1,
so d = min{i | M; = 0}. Since (7 —1)> =0 (mod 5) we must have d < 5.
(iii) We pick € MX a generator for M/(t — 1)M. Then M has basis
x,(r—1Dz,... (1t — 1) 12 as a Z/5Z-vector space. The actions of o and 7
on this basis are uniquely determined.

(iv) The quotient M;/M;,, is described by x#. Thus for d < 4 the decom-
position (15) is into 1-dimensional spaces, and the element x in the proof of
(iii) is uniquely determined up to scalars. O

We write M (y,d) for the Z/5Z|G]-module described in Lemma 5.1. We
abbreviate M (x) = M(x, 1). The filtration (16) becomes

M(x,d) D M(x,d—1)D ... D> M(xy**,1) D0.
For M a G-module we recall that M* := Hom(M,Z/5Z) is a G-module via
g0 =0.g".
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Lemma 5.2 M (y,d)* ~ M (x =4, d).

Proof. The case d = 1 is clear. The general case follows from Lemma 5.1
and the observation coker(r — 1|M*) ~ ker(7 — 1|M)*. O

With properties of the Cassels-Tate pairing in mind, we say that a bilinear
form (, ) : M x N — Q/Z is G-equivariant if (gx, gy) = (z,y) for all g € G.
Equivalently M — N* is a G-module homomorphism.

Lemma 5.3 Any non-zero G-equivariant pairing on M(x,d) has odd rank.
In particular there are no non-zero alternating G-equivariant pairings.

Proof. Suppose f: M(x,d) — M(x 1'% d) is a G-module map of rank r.
Then im f = M(x 197", r). We deduce y = x 2! and so r is odd. [

Lemma 5.4 Assume d < 4. Then any non-zero alternating G-equivariant
pairing on M = M(x,d) ® M (x '4'=% d) is non-degenerate.

Proof. We claim that, up to scalars, M admits a unique alternating G-
equivariant pairing. By Lemma 5.3 any such pairing is trivial when restricted
to either summand. We are reduced to showing that there is a unique G-
equivariant bilinear form

M(x,d) x M(x~''™*,d) — Z/5Z.

Lemma 5.2 gives the existence. Lemma 5.1(iv) gives the uniqueness up to
scalars. Finally we observe that the pairing constructed is non-degenerate.
OJ

We give an example typical of the G-modules we encounter. The group
G acts on the affine line Z/5Z via 0 : ¢ — 2x and 7 : © +— x + 1. The corre-
sponding permutation representation, with coefficients in Z/5Z, is M(1,5).
We construct further G-modules using M (x1x2,d) = M(x1) ® M(x2,d).

6 Descent calculations over K; = Q(A4;[5])

We recall that K;/k has Kummer generator n(1) = (1 + ¢°)/(1 — ¢°). We
put a = ¢/n(1). Then Gal(K;/Q)~G via

o(¢) =¢° ola) = -1/a
7(¢) =¢ 7(a) = Cav.
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The cyclotomic character w, and the character i of §5 are related via ¢ =
w™L. The primes 5 and 11 factor in K as

(5) = £08158381 (1) = PIPIP3P;

with a = ('¢ (mod £2) and Pilp;. In §3 we saw that H, := J, K, is the
5-ray class field of k for conductor (11) = pipopspy.

Lemma 6.1 The extension Hy /K is unramified at all primes. Furthermore
the primes above 5 and 11 are inert in this extension.

Proof. Only primes above 11 ramify in H;/k. By considering suitable ratios
of our Kummer generators for .J; /k and K /k we see that p; cannot be totally
ramified in Hy/k. Hence H;/K; is unramified as claimed. Now H;/Kj is a
translate of Q(u11)"/Q. Since 5 is inert in Q(u11)T/Q and £; has residue
field F'5, it follows that £; is inert. Finally the definitions of J; and K; give
#A,(H;)(5) > 5% so by Lemma 1.7 the ; are inert. O

Proposition 6.2 The 5-class group of K is €lg, (5) ~7Z/5Z. It is generated
by any prime above 5 or 11.

Proof. Let B = €lg, (5). By Lemma 3.5(1) we know that H; is the maximal
unramified 5-extension of K; which is abelian over k. Thus

B/(t —1)B~Gal(H,/K,)~7Z/5Z

as abelian groups. By Lemma 6.1, 3 is inert in H;/K; and so generates
B/(r — 1)B. Since (1 — 1)° C 5Zs[7] it follows that J3; generates B as a
Zs|7]-module. But 7(;) = P, and P = p, is principal. Thus B ~Z/5Z as
claimed. By Lemma 6.1, B is generated by any prime above 5 or 11. 0

Remark 6.3 Since o(£y) = £¢ and 7(PB;) = P, the action of G on €lg, (5)
is trivial. In particular Py ~ Py ~ Ps ~ Py

We turn our attention to the units in K;. We write

_gb(ia+1 _(icH—l

U; gza/—gb Ui_cia—]_‘
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The wu; are units by Lemma 3.6. For the v; we have (v; + 1)°/(v; — 1)° =
(1+ ¢°)/(1 — ¢°). Thus each v; is a root of

¢°(2° + 102° 4 5x) — (52" + 1022 +1) =0
and so is a unit. It is easy to check
o(u;) = ug; o(v;) = —1 /vy
T(wi) =t T(vi) = Vi

and we have relations [Ju; = 1, [Jv; = ¢~°. Thus the subgroups of K}/K;5
generated by wuq,us, uz, uy and vy, vo,v3,v4 are quotients of the G-modules
M(1,4) and M (w? 4).

Proposition 6.4 The units (, ¢, uy, us, us, ug, V1, V2, V3,04 generate a Sub-
group of D% of index prime to 5.

Proof. By Dirichlet it suffices to check that the elements listed are indepen-
dent in K}/K;°. There is a G-module homomorphism

M = M(w) ® M(w?) @ M(1,4) ® M(w? 4) — Ki /K

where the summands correspond to (, ¢, (u,ug, uz, us) and (vq,ve, v3, v4).
We suppose for a contradiction that this map has non-trivial kernel. Then
this kernel meets

ker(t —1|M) = M(w)® M(w?) & M(w

= (¢ 9, U1U2U§U47U102U3 3

@ M(w?)

)-

Dividing into o-eigenspaces we learn that one of the elements
C(wuzugug)’, ¢, vivyugv;

is a 5th power. For ( and ¢ this is clearly false, since no unit can be a
Kummer generator for K7 /k. The smallest prime to split completely in K;/Q
is p = 101. Reducing modulo primes above p we obtain a contradiction. [J

Remark 6.5 Further to the proof Proposition 6.4, a brutal computer cal-
culation shows

mmaman; = (wuduiul)®  (mod K79)
mmaman; = (vivavivg)? (mod K73°).
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Remark 6.6 According to pari the field K has class number 5, and
¢7 U1, U2, U3, Uyg, V1, V2, V3, Vg

is a set of fundamental units. However pari assumes the Generalised Rie-
mann Hypothesis, whereas our results are unconditional.

We apply Propositions 2.1 and 2.2 in the case F = K;.

Proposition 6.7 The Selmer groups attached to the 5-isogenies (1) are

S(Ag — A1 /K,) ~ (Z/5Z)3 S(Ay — Ag/K,) =~ (Z/5Z)"
S<A1—>A0/K1) >~ (Z/5Z>2 S(AOHAQ/Kl) = 0.

Proof. By Propositions 6.2 and 6.4 the space
{0 € K;/K;®| ordy(f) =0 (mod 5) for all p }

has basis (, ¢, uy, us, us, ug, V1, V2, V3,4, 11. Here 11 is a contribution from
the class group or “virtual unit”. We choose characters (Ok, /PB;)* — Z/5Z
and compute these characters on our basis. Notice that by inspection of our
Kummer generator for K;/k we have 11 = (1+¢°)? = (1 —¢°)? (mod K}°).
Thus our table is easily computed by hand.

B B Pz Pu
(1 3 2 1
ol 2 3 3 2
w2 2 2 2
v 0 0 0 0
1|2 2 2 2

By Proposition 2.1 we deduce
S(Ag — A1/ K1) ~ (u), uly, ul, uly, v1, 09, v3,04) C KK

where w, = u;/11. Propositions 2.1 and 6.2 show that S(A4y — Ay/K;) is
trivial. The remaining statements follow by Proposition 2.2. ([

Proposition 6.7 furnishes the estimate rank A(K;) < 8. We improve on
this by computing the Cassels-Tate pairing

S(A0—>A1/K1) XS(A0—>A1/K1)—>Q/Z (17)
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As a G-module we have
S(Ag — A/Ky) =~ M(1,4) ® M(w* 4)

where the summands correspond to (u},uy, uj, uy) and (vy,vs,v3,v4). By
Lemma 5.3 the pairing (17) is trivial when restricted to either summand. Tt
therefore suffices for us to compute the entries (u..,vs). By Proposition 4.5
and the action of Gal(K/k) we have

(u,v,) = S oInde(ul, ve)h,
4 i
= Zz‘:o IndC (u;fiv US_i)Eo

We recall that £y is the prime of K; above 5 such that o = ¢ (mod £3). But
a is a dth root of

1+ ¢ 10(¢° — ¢°
o) = 15 = = (14 5022, (13
The binomial theorem gives « = —¢* (mod £§) and for r # 0 it follows
ur = ("¢ = 1)/(C"¢° + ¢)  (mod £5)

(¢*¢° = 1)/(¢°¢* +1)  (mod £F).

Using these approximations we are reduced to computing the Hilbert norm
residue symbol at the prime [ = (1—() of K = Q(us5). This is straightforward,
if tedious, to do by hand. See [CF, Exercises 1 and 2]. We find

Vs

(y)g |0 v1 w2 V3 vy 5(, ) |ve v vy v3 w4
up |1 ¢ ¢ ¢ ¢ upy| 0 4 1 1 4
uh |1 ¢t 1 ¢ w4 0 4 1 1
uy | ¢ 1 ¢ 2B upy| 1 4 0 4 1
up | ¢ ¢ ¢ 1 us |11 4 0 4
uy | ¢2 ¢t 1 ¢ ¢ wy|4 1 1 4 0
The matrix on the right has rank 3, and so the pairing (17) has rank 6.

The kernel is generated by wjuiuduj and vjvavivi. By Corollary 1.6 and

Lemma 3.6 the first of these elements is accounted for by torsion, whereas
the second is not.
By Propositions 4.1 and 6.7 we deduce

S(A 22 A /Ky~ (Z/5Z)"
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This furnishes the estimate rank A(K;) < 2. Since rank A(k) = 0 the ac-
tion of Gal(K;/k) on A(K;) ® Q forces rank A(K;) = 0 (mod 4). Thus
rank A(K;) = 0 and I(A,/K;)[5] ~(Z/5Z)*. However, to identify the 5-
primary part of the Tate-Shafarevich group we must work harder.

We aim to compute S(Ag X2 Ay /K1) as a G-module. To identify it as an
abelian group we make use of the exact sequences

0—>S(A0—>A1/K1)—>S(AO§>A0/K1) & (A1—>A0/K1)

. (19)
0— S(Ap — As /K1) — S(Ag 22 A/ K1) 25 S(Ay — Ao/ K1)

The images of the maps ¢y and 15 are the kernels of the Cassels-Tate pairings

\Ill : S(Al — AO/Kl) X S(Al — AO/KI) — Z/5Z

v, : S(AQ — AO/Kl) X S(A2 — AO/Kl) _ Z/5Z (20)

Lemma 6.8 The pairings W, and Vo have ranks 0 and 4 respectively.

Proof. The alternating pairing ¥, is defined on S(A; — Ag/K,) ~ (Z/5Z)>.
By Corollary 1.6 this Selmer group contains a contribution from torsion.
Hence ¥, is trivial. The exact sequences (19), together with Propositions 4.1

and 6.7, now tell us that S(4y =3 Ag/K;)~(Z/5Z)" and that the pairing
Y, has rank 4. O

The exact sequences (19) provide inclusions
S(Ag — Ai/K1) C S(Ag 22 Ag/ K1) € S(As — Ao/ K1) € Ki/K® (21)
By Remark 6.5 there exist wy, wy in Ky with

5 _ ~2_92 —1 2,3, 42
wy = mmy wym, (uiugusug)

5 o 2 =2 _—1c 2 3 4\2
wy = mmyms o, (V1050305)°.

- ~ : _ 200 2131 3120130,4)3
A rather tedious calculation suggests we write x1 = wyususu;(viv3v3vy)? and

Ty = wouvs (uyududug)?®, whereupon, multiplying x5 by a 5th root of unity if

necessary
o(xr)) = 23 (mod K7%) o) = 23 (mod K7°) (22)
7(z1) = viuduzud (mod K7°)  7(wg) = xa¢*v3vzvi (mod K;°)
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Proposition 6.9 Multiplying 1 by a 5th root of unity if necessary, the
Selmer groups (21) are

S(AO - AI/KI) ~ <u/17u/27ug7u217'017Uqu3aU4>
5
S(AO X_> AO/KI) ~ <u17 U2, U3, Uyg, V1, V2, V3, Uyg, 117 SC1>
S(AQ — AO/KI) ~ <<,¢, Uy, U2, U3, Uq, V1, Vg, V3, V4, ].1,0[,.171,(132>.

Proof. The descriptions of S(Ay — A;/K;) and S(As — Ap/K;) follow from
Proposition 2.1. Now S(A 2 Ap/K,) is the kernel of the pairing Wy and
this pairing induces a pairing on the quotient
S(AQ — AO/KI)
S(AO — Al/Kl)

2<C7 ¢,11,0f,$1,l’2>. (23)

. . . x5 .
Decomposing into o-eigenspaces, we learn that S(Ag — Ay/K;) has basis
U1, U2, Uz, Ug, V1, V2, U3, U4, 117 z

for some z = C’le Since we consider ourselves free to multiply x; by a 5th

root of unity, it only remains to show ( & S(Ay = Ap/K7). To do this we
identify (23) as a G-module. By (22)

7(z1) = 21112 mod (u}, u, ujy, uj, K75)
7(13) = w9¢? mod (vy, vy, v3, vy, K7°)

whereas 7(a) = (o and (, ¢, 11 € k are fixed by 7. Thus

S(A2 — Ao/Kl) -~

S(Ay — AJKL) M(w,2) ® M(w?,2) ® M(w?,2).

By Lemma 5.4 the pairing W, restricted to
M(w?,2) ® M(w*,2) = (C, ¢, a, x2)

is either zero or non-degenerate. But it cannot be zero by our earlier con-

sideration of o-cigenspaces. Thus ¢ ¢ S(Ag =3 Ag/K;) and we are done.
O

Remark 6.10 An alternative proof of Proposition 6.9 is given by computing
U, via the formula of [F0, §7.3].
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As a G-module we have
S(Ag 22 Ag/ K1)~ M(1) & M(w,5) & M(w?,4)

where the summands correspond to 11, (uy, ug, us, ug, x1) and (vq, vo, vs, v4).
The contributions from torsion are 11 and wyudujuj. Thus

S(Ag 22 Ag/K:)

G Au5]) ~ M(w,4) & M(w*,4). (24)

Our earlier calculation of the pairing (17) shows that the Cassels-Tate pairing
on (24) is non-zero. By Lemma 5.4 the Cassels-Tate pairing on (24) is non-
degenerate. It follows that II1(Ay/K1)(5) ~ (Z/5Z)®.

Earlier we saw II1(A;/K;)[5] ~ (Z/5Z)?. We claim that III(A;/K;) con-
tains no element of order 25. Indeed, from the exact sequences

ALK 25 Ag(Ky) — S(A; — Ag/Ky) — TI(A, /K [1h] — 0
0 — LAy /K1) [¢] — II(Ay /] (5) — TI(Ao/K1)(5)

we learn that IIT(A;/K;)(5) is finite and contains no copy of (Z/25Z)*. Our
claim is now a well known consequence of the Cassels-Tate pairing.
Finally the exact sequence

S(Ag — A()/Kl) —>S(A2 LS Ag/Kl) —>S(A0 — AQ/Kl) =0

shows that S(Aj X Ay /K1)~ (Z/5Z)". By Lemma 6.8 the Cassels-Tate
pairing on this Selmer group has rank 4. Since the multiplication by 5 map
on A, factors through Ay and II(Aq/K7)(5) is 5-torsion, we deduce

I(Ay/K,)(5) ~(Z/5Z)* @ (Z/25Z)®.

This completes the proof of Theorem 1.

7 Descent calculations over Ky = Q(A3[5])

We recall that K3/k has Kummer generator 11. We put § = v/11. Then
Gal(K,/Q) ~G via
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The cyclotomic character w and the character ¢ of §5 are equal. The primes
above 5 and 11 ramify in Ky/k. We write

(5)=£%  (11) = PIPPiP;

with PB;[p;. In §3 we saw that Hy := J; K1 K, is the 5-ray class field of k for
conductor pipapspy.

Lemma 7.1 The extension Hy/ K5 is unramified at all primes.
(i) The primes above 5 are inert in J; Ko/ Ko and split in KK,/ Ks.
(ii) The primes above 11 are split in J1 Ko/ Ky and inert in K1 Ks/K,.

Proof. Only primes above 11 ramify in J; /k and K;/k. By considering ratios
of Kummer generators we see that the extensions J;Ky/K, and K1 K3/ Ko
are unramified. Hence the composite Hy /K5 is unramified.

(i) The extensions J; K,/ K> and K; K,/ K, are translates of Q(u11)%/Q and
K, /k. Since 5 is totally ramified in K,/Q our claims follow.

(ii) The Kummer generator for J;K,/K> belongs to S(Ay — Ay/Ks). By
Proposition 2.1 the primes above 11 split in J;K5/K,. By Lemma 6.1 the
primes above 11 cannot split completely in Hy/Ks. They are therefore inert
in Kl KQ/KQ . O

Proposition 7.2 The 5-class group of K is €lg,(5) ~(Z/5Z)?. It is gen-
erated by the primes above 5 and 11.

Proof. Let B = €lg,(5). By Lemma 3.5(ii) we know that Hs is the maximal
unramified 5-extension of K which is abelian over k. Thus

B/(1 —1)B~Gal(Hy/Ky) ~ (Z/5Z)*

as abelian groups. By Lemma 7.1, the primes 3, and £ generate B/(7—1)B.
Since (7 — 1)> C 5Zs[7] it follows that B; and £ generate B as a Zs|[7]-
module. But 7(P;1) = Py, 7(£) = £ and P, = py, £° = [ are principal. Thus
B~ (Z/5Z)* as claimed. O

Remark 7.3 The action of 7 on €lg,(5) is trivial. By Lemma 1.3 we have
Cly,(5) ~ Gal(Hy/ Ky) ~ M (1) & M(w?). In particular By ~ P3 ~ B3 ~ Pi.
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We now give a description of the units in K. Substituting 3% for X in
the identity (A — ¢°)(A — ¢°) = A* — 11\ — 1 we learn Normy, (3 — ¢) = 1.
Thus § — ¢ is a unit. We choose to work with the units

w= G = - G-
It is easy to check
o(u;) = —1/uz  o(v;) = va
7(ui) = Uisy 7(vi) = vin1
and we have relations [Ju; = —¢'®, [[v; = —1. Thus the subgroups of

K3 /K3° generated by uy,us, us, uy and vy, vs,v3,v4 are quotients of the G-
modules M (w? 4) and M(1,4).

Lemma 7.4 The extension K1Ks/Ks has Kummer generator ¢01U§v§v4.
Proof. By Lemma 7.1 and Proposition 7.2 it is sufficient to show that the
stated element is (i) a 5th power locally at the prime £ above 5, and (ii) not
a bth power locally at the primes 3; above 11. A suitable version of Hensel’s
lemma shows that a € Ok, is a 5th power locally at £ if and only if 2° = a
(mod £%) is soluble. We prove (i) by using pari to perform calculations
in the group (O, /L%)*. Since ¢vvjvivy = ¢ (mod P;), claim (ii) is clear
without computer calculation. This completes the proof of the lemma. Of
course more brutal computer calculations are possible, showing

P*mmamamy = (dvivgvivg) ™t (mod K35).

O

A consequence of Lemma 7.4 is that Ky({/viv3viv})/ Ky is unramified at
all primes. Furthermore this extension is split at the primes above 5 and 11.
By Proposition 7.2 we deduce

vivsvsY; = w®

for some w € K,. Multiplying w by a 5th root of unity if necessary
o(w) = w? mod (vy, va, Vs, Vy)
7(w) = wyy  (mod K3).
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Proposition 7.5 The units (, ¢, uq, s, us, Uy, V1, Vo, V3, w generate a Sub-
group of O of index prime to .

Proof. By Dirichlet it suffices to check that the elements listed are indepen-
dent in K3/K35. There is a G-module homomorphism

M = M(w) ® M(w?) & M(w?*4) ® M(w? 4) — K;/K;°

where the summands correspond to ¢, ¢, (uy,us, us, us) and (v, vq, v3, w).
We suppose for a contradiction that this map has non-trivial kernel. Then
this kernel meets

ker(t —1|M) = M(w)® M(w?) ® M(w) ® M(w?)
= (¢, 0, uluguguj, vw%vg‘m ).

Dividing into o-eigenspaces we learn that one of the elements
Clwuguiui), ¢ (vivgvsv)’

is a 5th power. By Lemmas 3.6 and 7.4 these elements are Kummer genera-
tors for J1 oKy /Ky and for K| Ky(5/¢)/ K. This gives the required contra-
diction. ([l

Remark 7.6 According to pari the field K5 has class number 25, whereas
¢, 3 — ¢ and its conjugates, generate a subgroup of index 5 in O7 /(torsion).
Again this is conditional on the Generalised Riemann Hypothesis.

We apply Propositions 2.1 and 2.2 in the case F' = K.
Proposition 7.7 The Selmer groups attached to the 5-isogenies (1) are

S(Ag — AJEKy) ~ (Z/5Z)*  S(Ay — Ao/ Ka) ~ (Z/5Z)Y
S(A; — Ay/ ) ~ (Z/5Z)? S(Ag — Ay) ) ~ Z/5L.

Proof. By Propositions 7.2 and 7.5 the space
{0 € K;/K3?| ordy(6) =0 (mod 5) for all p} (25)

has basis Uy, U, U3, Ug, V1, Vo, U3, W, 71,1 — (. Here m; and 1 — ( are con-
s ¥y ) s W3, ) ) s U3y W,y )
tributions from the class group or “virtual units”. We choose characters
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(DK, /Pi)* — Z/5Z and compute these characters on a basis for (25)

Bi B> Ps Pu

¢l1 3 2 4

ol 2 3 3 2

v, | 0 0 0 O

w| 2 4 1 3
mmimeTs | 3 1 4 2
20—112 2 2 2

By Proposition 2.1 we deduce

S(Ag — A1/ Ky) ~ (], uby, uly, uly, v1,va, v, W'y C K3/ K3P
where u; = u;¢ and W' = wmramin;. Propositions 2.1 and 7.2 give S(A4y —
Ay/Ky) ~7Z/5Z. The remaining statements follow by Proposition 2.2. [

Proposition 7.7 furnishes the estimate rank A(K3) < 8. We improve on
this by computing the Cassels-Tate pairing on S(Ay — A;/K3). As a G-
module we have

S(Ag — A1/ Ky) ~ M(w? 4) @ M(w? 4). (26)
By [Cal, §7 (5)] there is a commutative diagram
<'7'>K2 : S(A0—>A1/K2) X S(A0—>A1/K2) — Q/Z
T cores | res I

<'a'>K1K2 . S(A0—>A1/K1K2) X S(A0—>A1/K1K2) — Q/Z

where res and cores are the maps Kj/K3° = (K1 K,)*/(K1K>)* induced
by the natural inclusion and norm map respectively. We compute (c, d)x,
where

c=p"+38 +48* +26+1, d=p*—p—1.

A computer search yields a unit v € KK, with Normg, s, (x,(7) = ¢*. An
explicit expression for 557 in terms of u = e(«) and [ is

(2718583* — 72485533 + 115887032 — 6632073 — 928521 )u*
+(9426793* — 14248933% + 19704903% — 22880473 — 1777424)u®
+(21858323* — 37002073 + 83231173% — 66460613 — 10380876)u>
+(—255208* + 527923% — 8939183? + 42392503 + 1617231)u
+(13514063* — 218082233 + 48508413% — 40660253 — 6097410)

28



By Lemma 7.1, the primes above 11 are inert in K;K5/Ks. Any non-trivial
character F} 5 — Z/5Z factors via the norm map Fj; — F};. So by Propo-
sition 2.1, v belongs to S(Ayg — A;/K;Ks). The prime 5 factors as

(5) = gigigigigt i K,

(5) = £20 in KQ

(5) = LELPLALPLY in KK,
with L;|£;. Proposition 4.5 and the above diagram give

<027 d>K2 = <77 d>K1K2 .

= YL Indc(y. d),

= Yo Inde(vi, D)
where v; € Kj is chosen L;-adically close to . To do this we use (18) and the
binomial theorem to choose «; € k £;-adically close to . Then we substitute
e(a;) for u = () in our expression for .

We compute the Hilbert norm residue symbol (-,-)e using the product

formula and Euler’s criterion. Finally a computer calculation shows

<C7 d>K2 7£ 0.
This calculation, together with Lemma 5.4, shows that the Cassels-Tate

pairing on (26) is non-degenerate. By Proposition 4.1 it follows that S(A; g
Ay /Ky) ~17Z/5Z. Thus rank A(K3) = 0 and III(A,/K5)(5) = 0.
From the exact sequences

Ao(Ka) 5 AL () — S(Ag — A/ K) — T Ag/ o)) — 0
0 — TI( Ao/ K»)[] — II(Ao/K2) (5) — TI(Ay/F)(5)
we learn II1(Ay/K>)(5) =~ (Z/5Z)®. Proposition 4.1 and the exact sequences
0 —>S(A0 — AQ/KQ) —>S<A0 ><—5> Ao/KQ) —>S(A2 — Ao/KQ)

0—>S(A2 — A()/KQ)—>S(A2 X—5> AQ/K2>—>S(AQ — AQ/KQ)

show that S(As 22 Ay/K,) ~(Z/5Z)' and that the Cassels-Tate pairing on
this Selmer group has rank 6. Since the multiplication by 25 map on A,
factors through A; and II(A;/K5)(5) = 0, we deduce

II(Ay/ K,)(5) ~ (Z/5Z)° @ (Z/25Z).
This completes the proof of Theorem 2.
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