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Abstract

The aim of this paper is to give an alternative proof of a theorem of R. Heath-
Brown [3] regarding the existence of non-zero integral solutions of the equation
ple’ + ngg’ + p3X§’ +p4Xff = 0, where the p; are prime integers = 2 (mod 3).

We start by presenting the main result of this paper. This result has been proved by
Roger Heath-Brown [3] under the conjecture that the difference s(A) — r(A) between the
Selmer rank and the arithmetic rank of the elliptic curve X3 + Y3 = AZ? is even. In this
note we will show that we do not need this assumption and give a detailed proof of this
result.

Theorem 1 Let py, pa, p3, pa be prime integers such that p; = 2 (mod 3) (1 < i < 4).
Then the equation
P X7 + X5+ psXS 4+ paXi =0

has non-zero integral solutions, assuming the conjecture that the Tate-Shafarevich group
of the elliptic curve X3 +Y3 = AZ3 over Q is finite.
A much stronger result has been recently proved by Sir Peter Swinnerton-Dyer [7].

Note that in order to prove the above theorem, it is sufficient to prove that the equations

mX? +p X3 =p
p3 X3 +paXi=—p
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have non-zero rational solutions for some prime integer p. So it suffices to prove that the
equation p; X3 + p,Y® = p has non-zero solutions in Q or, equivalently, in a quadratic
extension of Q.

Notation Let w be a primitive cube root of unity and let k = Q(w).
Let A€ Z\{—1,0,1} be a cube-free integer. We denote by E4 the elliptic curve

Ex: X24+Y3=AZ5

For any o € k*, let Cy o be the smooth projective curve given by the equation

Can: aX?+a7'Y? = AZ°,

For a € k*, the curves Cy , are principal homogeneous spaces over E4. Moreover, it
is clear that if @ and 8 belong to the same class modulo (k*)? then the curves C4, and
(4, are isomorphic.

Let us consider the multiplication-by-v/—3 endomorphism on E4 (see [1]), given by

\/—33 EA e EA
(X,Y,Z) — (VX3 +0Y3 — AZ3 wX3 4+ w?Y? — AZ3 -3XY7Z),

and the following diagram with exact row

0 — Ea(k)/V=3Ea(k) — HYk,Es[vV=3]) —  WC(Ea/k)[vV-3] —0
\ !
[T, WC(Ba/k,) [V=3]
where WC (Ea/k) is the Weil-Chatelet group of E4/k and v runs over all the places of
k. It is readily verified that the group E4(k) [v/=3] is isomorphic to the group ps(k)

of cube roots of unity, as a Gal(k/k)-module. It follows from Kummer theory that
HY(k, E4 [v/=3]) is isomorphic to k*/(k*)? and so we get the exact sequence

0 — Ba(k)/v/=3Ba(k) — k*/(k")* 5 WO(E./R)[V=3] —0
9\ |
[T, WC(Ea/k,) [V=3]

where the map f sends an element a(k*)? to the curve Cy ,. We denote by S(A) the Selmer
group S&=3)(FE,/k) (which is defined to be the kernel of the map g in the diagram above)
and by C(A) the kernel of the map f. Obviously C'(A) is a subgroup of S(A); we can
write them explicitly

S(A) = {a(k*)?: Cu.4 has k,—points for any prime 7 € k, o € k*},
C(A) = {a(k*)?: C4, has k—points, o € k*}.

Observe also that C'(A) is isomorphic to E4(k)/v/—3E (k) (this follows immediately from
the diagram above).

In the following two lemmas we will determine the structure of S(A) when A satisfies
certain conditions.



Lemma 2 Let p € k be a prime above 3, and let a,b,c € k such that a,b, c are congruent
to 1 modulo p?. If the projective curve

E: aX?®+bwY?+ca?Z3=0
has a point over k,, then abc =1 (mod p*).
Proof. Let (z,y,2) be a k,-point of the curve £ and suppose that
min{val,(z),val,(y),val,(z)} = 0.

Say

T = X+ xIp+ xR .,
Yo+ yip + 2>+ ..,
z = ZO+le+22p2+...

<
|

with (ill'o, Yo, Zo) 7é (0, 0, O)

From the condition az® + bwy® + cw?2® = 0 it follows that 2§ = y3 = 23 (mod p?).
Therefore we may assume (g, yo, 20) = (1,1, 1) and hence we get

(9%, %) = (1,1,1) (mod p?).

Let a = 1+ agp® (mod p?), b = 1 + byp? (mod p?) and ¢ = 1 + c9p* (mod p?). Then
from a + bw + cw? = 0 (mod p?) it follows ay + by + co = 0 (mod p) and therefore
abc =1+ (ag + by + co)p* =1 (mod p?). O

Lemma 3 Let A = pipoN(m) where p1,pa = 2 (mod 3) are integer primes, = = 1
(mod 3) is a prime in Z[w] such that A # 1 (mod 9) and (1) = (1 # 1. Then
3

p1 P2 /5
S(A) is isomorphic to Z./3 x Z/3 as an abelian group.

Proof. 'We will prove that S(A) is generated by the elements A(k*)® and p;p3(k*)3.

The curve Cx 4 has a k-point, namely (1,0, 1); hence A(k*)® € S(A). Suppose now
a # A. Note that, in order to determine for which elements « the coset a(k*)? belongs
to S(A), it is sufficient to test the elements o where « is a cube-free integer in Z[w] such
that

(i) a is composed of primes dividing A;

(ii) we can fix a prime in {py, po, 7, 7}, say 7, such that 7 does not divide a.

Indeed:



(i)

(i)

suppose « contains a prime factor p which does not divide A; it is then easy to verify
that C4 . contains no k,-points. To get a contradiction, we suppose C4 , contains
a k,-point (X,Y, Z); so we have

A2X3+ Y3 =aAZ3.

Considering the p-adic valuation of the right hand side and of the left hand side,
and noting val,(a®X?) # val,(Y?), we get

val, (@ AZ?) = val,(¢®X? +Y?) = min{val, (a*X?) ,val,(Y?)}.

But this is impossible since, on the one hand, val,(«AZ3) = i+ 3j, where ¢ € {1,2}
is defined to be the p-adic valuation of o and j is an integer, and on the other hand

min{val,(a’X?) ,val,(Y*)} = min{2i + 3h, 31}
with h, [ integers;

suppose 7/ divides o (with j = 1,2); then, since S(A) is a group and A(k*)® belongs
to S(A), instead of o we may consider the cube-free integer representative of the

coset (o /A7) (k*)3.

As a result, we may assume o = w™p]'py?n™ where m,ny,ng,n € {0,1,2}. In fact it is
not difficult to prove that if m # 0 then « does not belong to S(A). Indeed, to get a
contradiction suppose that m # 0 and that C4, contains a k,-point where p € k is a
prime above 3. Then from Lemma 2 it follows that A = 1 (mod p*) and hence A = 1
(mod 9) which contradicts our hypotheses. Therefore we may assume m = 0.

Let p € Z|w] be a prime. If p does not divide 34 then C4 , contains points over k, for
any «. Indeed, a smooth curve of genus 1 always contains points over any finite field (see
2]); moreover if p does not divide 3A then Cy , is non-singular over Z[w]/p and therefore
it contains a non-singular point over Z[w|/p which, by Hensel’s lemma, can be lifted to a
point over k,.

Suppose now that p divides 3A; hence we have to consider the two cases p| A and p| 3.

(1)

Let p divide A, so p belongs to {p1, p2, 7, 7}. We can consider three further subcases.
(1a) Let p divide « exactly; then the projective curve
aX?+aY? = AZ°
can also be written as
2
« 3 3 A 3
;(/}X) +pY" = FUJZ) '

Hence, considering the transformation pX — X, pZ — Z and reducing modulo

p, we get the curve
A
XP—-=Z=0
o



A
which contains a smooth point over F, if and only if — € (F})®, i.e. if and only
a

p
a point over k.

A -1
if ( a ) = 1. By Hensel’s lemma, we can lift this smooth point over F, to
3

(1b) Suppose now p? divides exactly a. Similarly, considering a suitable transfor-
mation and reducing modulo p, we get the curve

3 3 _
Y —FZ =0

Aa
which contains a smooth point over F, if and only if —- € (IE‘Z)?’, ie. if and

A -3
only if ( ap ) =1.
P /3

(1c) Similarly, if p does not divide a, we get the curve

’XP+YP=0

oY
which contains a smooth point over F,, if and only if o* € (F%)?, i.e. <—) =1.
PJ3

Suppose p = p; with j =1, 2.
~1

If p; divides exactly «, then by case (la) we must have (

-1
P =1; indeed |
by 5
1 -1 1\ !
RCOICINE
b A bj /3 \Pj /3 b A P ),

where h € {1,2}, h # j and p = N(m).

> = 1 and hence
pi J

Aoqvj_3
pj

If p? divides exactly a, then by case (1b) we must have

-2

an-

b =1, since

pj A

Aozp;3 :(]ﬁ) (ﬁ) 0420;2 _ ozP;Q
pj ) Pi s \PiJs \ Pi ), b )

where again h € {1,2} and h # j.

If p; does not divide «, then by case (1c) we must have (ﬁ) = 1.
Dj /3

) = 1 and therefore
3

'If ¢ # 3 is a prime integer with #F; #£0 (mod 3) then (g) =1 for any n € Z such that (n,q) = 1.
3



Finally, we obtain the two following conditions which must be satisfied in order to

have a(k*)? € S(A):
n2_n nin
(pQ?T)zl and (plﬂ)zl.
P A P2 J3

( Uy n) ( )TLQ( >7L < )n

and <—) # 1 by hypothesis, the first condition is satisfied if and only if n = 0.
b1 3
It is easy to verify that for n = 0 the second condition is satisfied as well. Hence

Since

o
a = p'ps?. So, by case (1c), it follows that we must have (;)3 = 1; therefore, since

by the Cubic Reciprocity Law <]£)3 = (122 # 1, we get the condition ny +ny =0
T T

(mod 3). We may suppose n; = 1; then a = pip2 or, equivalently, o = pip; *.
(2) Suppose now that p divides 3; in other words, since 3 = —w?(1 — w)?, suppose
p=1—w . Recall that now we have A = p;pyp and a = p;p; *; therefore the curve

aX? +a7 'Y = AZP
is isomorphic to the curve

E: ;X34 pY? =pZ3.

We have to prove that £ contains a point over k,. Since Q3 is contained in k,, it
suffices to find a point over Qs.

By hypothesis p =1 (mod 3) and p;,p2 =2 (mod 3), so let
p=1+4+3b (mod9) and p;=-1+3a; (mod9)

for j = 1,2; since A # 1 (mod 9) by hypothesis, we have a; +ay —b # 0 (mod 3).
Thus the integers a1, as, —b cannot be all different modulo 3; wlog we may suppose
a; = ay. Therefore we have pip;' = 1 (mod 9); in other words p;p; ' belongs to
1 + 9Zs which is contained in (Z§)3. It follows that E contains the point (1, —y,0)
where y € Zs is a cube root of p;p,'. More precisely, if pip;' = 1+ 91 (mod 27),
then we use Hensel’s lemma to construct y € Zs such that y = 1+ 3l (mod 9) and
vt =pipy

Hence E contains a k,-point.

In conclusion, we have proved that S(A) is generated by the two elements of order 3
A(Kk*)? and pip3(k*)? and thus it is isomorphic to Z/3 x Z/3. O

The following two lemmas allow us to conclude that, under the hypotheses of Lemma 3,
the two groups C'(A) and S(A) coincide. This provides a local-to-global principle for the



curves Cy o when A is as in Lemma 3. As in the statement of Theorem 1, our work here
is conditional on the finiteness of the Tate-Shafarevich group II(E4/Q).

To get a contradiction, let us suppose that C'(A) is strictly included in S(A). Note
that C(A) cannot be the trivial group as A(k*)® belongs to C'(A); then C(A) has order
3. From the exactness of the sequence

0 — Ba(k)/V=3Ealk) — k/(k*) -5 WC(Ea/k)[V=3] — 0,

)
it follows that E4(k)/v/—3E4(k) and Z/3 are isomorphic as abelian groups (recall that
C(A) is the kernel of the map f). Hence from Lemma 3 and the exact sequence

0 — Ea(k)/V=3Ea(k) — SV (Ea/k) — WI(E4/k) [V=3] — 0

we deduce that III(E4/k) [v/=3] is isomorphic to Z/3 and this is impossible, as we will
show in Lemma 5. But first we need one more result.

Lemma 4 Let E/L be an elliptic curve over a number field L. Let K be a Galois exten-
sion of L of degree n. Let m be a positive integer such that (m,n) = 1. Then:

I(E/L)[m] = TL(E/K)[m] /2,

In particular, assuming the finiteness of III(E/L), the order of I(E /K )[m]S5/L) muyst
be a square.

Proof. Let us consider the following commutative diagram with exact rows and columns
where the rows are obtained by the multiplication-by-m endomorphism and the columns
are restriction-inflation sequences:

0 0
HY(Gal(K/L), E(K)[m])  HYGal(K/L), E(K))[m]

| |

0 E(L)/mE(L) HY(L, f[m]) HY(L, f) m] ———0
0 E(K)/mE(K) H(K, E[m)) HY(K, E)m] 0.

Since Gal(K /L) has order n, every element of H(Gal(K/L), E(K)) has order dividing
n (this follows from properties of the restriction and corestriction maps; see [5]). Hence,
as m and n are coprime, H(Gal(K/L), E(K))[m] = 0. Thus from the diagram above it
follows that HYL, E)[m] injects into H{( K, E)[m).

From the exactness of the second row of the diagram we get the exact sequence

0 — E(K)/mE(K)SE/L) — HYK, Blm])Sa&/L) —,
— ]{1([(7 E)[m]Gal(K/L) _ Hl(Gal(K/L),E(K)/mE(K)) —0



where HY(Gal(K/L), E(K)/mE(K)) is the zero group because it is killed by m and by n
which are coprime.

On the other hand, from the exact sequence of low degree terms of the Hochschild-Serre
spectral sequence, we get the exact sequence

HYGal(K/L), E(K)[m]) — HYL, E[m]) - HYK, E[m])S&/L)
— H*(Gal(K/L), E(K)[m])
where the first and the last term are trivial because, again, they are killed by coprime

integers. Hence the map ¢ is an isomorphism. The following diagram of exact rows and
columns summarizes the information we have obtained so far

0 0
l l
HYL, Elm]) — HYL, E)[m)] — 0
le Ly
Hl(K, E[m])Gal(K/L) LN> Hl(K, E)[m]Gal(K/L) — 0
!
0.

It is immediate to verify that the injective map ¢’ is also surjective because of the surjec-
tivity of the maps ¢” and ¢. Therefore we obtain

HYL,E)[m] = H(K, E)[m]&/5),

Let us consider now a place v of L; since K is a Galois extension of L, for any place
w of K over v the degrees of the local extensions K,,/L, divide n and therefore they are
coprime to m. Hence the reasoning above can be applied also to the extensions K, /L,
and thus we obtain
HYL,, E)m] = H(K,, E)[m]%w/Lv)

Considering the corresponding Tate-Shafarevich groups, we get
[I(E/L)[m] = W(E/K)[m]*®/").

Furthermore, assuming the finiteness of III(E/L), it follows from the existence of the
Cassels alternating bilinear pairing on III(£/L) that the order of III(E/L)[m| is a perfect
square and hence the order of II(E/K)[m]G5/L) is a square too. O

Lemma 5 If II(E4/Q) is finite, then I(E4/k) [v/=3] cannot have order 3.
Proof. To get a contradiction, assume that III(E,/k) [v/—3] and Z/3 are isomorphic as
abelian groups.

Let E 4 be the quadratic twist of F4 corresponding to the class of —3 in H Q,z)2) =
Q*/Q**; E4 has equation

Ea: —3Y?%Z = X% — 4324%7°



and is isomorphic to E4 over k through the map

(o Ex — Eq

(X.V.7) — (1247 24

v-=3
Let us consider the dual isogenies ¢y : Ej4 — EA and ¢ : E 4 — FE4 given by the

compositions ¢ = 1 o /=3 and ¢y = —/—3 0 9~ !; they are defined over Q and their

composition ¢ o ¢1 gives the multiplication-by-3 map on F 4.

DLX—Y), X +Y).

To obtain a contradiction we have assumed that III(E4/k) [v/—3] is isomorphic to Z/3
as an abelian group; this is equivalent to the assumption that III(E4/k)[¢1] is isomorphic
to Z/3.

Let Gal(k/Q) = (o). We have two possibilities: either o acts trivially on II(E4/k)[¢1]
and therefore III(F4/k)[¢] and Z/3 are isomorphic as Gal(k/Q)-modules; or o exchanges
the two non-trivial elements of III(E/k)[¢1] and so III(E4/k)[¢1] is isomorphic to pus.

If III(E4/k)[¢1] is isomorphic to Z/3 as a Gal(k/Q)-module then III(E4/k)[¢s] is iso-
morphic to p3 as a Gal(k/Q)-module and vice versa. Indeed, if HI(E4/k)[¢1] is composed
of the cohomology classes &, &1, &, then ITI(E 4 /k)[ps] is composed of 1€y, &1, 1)€s; more-
over %9 = —1). So, if ¢ acts trivially on III(E4/k)[¢y] then it does not on ITI(E4/k)[¢s]
and vice versa.

Suppose that II(FE4/k)[¢1] = Z/3 as a Gal(k/Q)-module and consider the exact se-
quence of Gal(k/Q)-modules

0 — HI(EAs/k) 1] — (EA/k)[3] — HI(EA/k)[¢2]

where the first map is the natural inclusion and the second one is induced by ¢;. From
this sequence we get the exact sequence

0 — HI(EA/K)[0 ]Gal(k/(@) — II(E4/k)[3 ]Gal k/Q) HI(EA/k)[ ]Gal(k/Q)

where II(E4/k)[¢,]%*/Q = 7,/3 and TL(E 4 /k)[py] 2 H/ D = 0,
If II(Ea/k)[¢1] = ps, it is sufficient to consider the sequence

0 — ILI(Ea/k)[¢o] — WL(Ea/k)[3] — LL(Ea4/k)[1]

instead of that above.

In both cases, we can conclude that II1(E,/k)[3]9*/Q is isomorphic to Z/3. This
contradicts Lemma 4 which claims that the order of II1(E4/k)[3]%*/Q must be a square.
As a result, HI(E4/k) [v/—3] cannot have order 3. O

In conclusion, we have proved that C'(A) = S(A) for A = p1pap. Moreover, in the
proof of Lemma 3 we have shown p;p3(k*)® belongs to S(A); it follows that the curve
p1 X3 + pY? = p has a k,—point for any prime p of k£ and hence, by the local-to-global
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principle, it has a point over the quadratic extension k of Q. Therefore it has a point over

Q.

In order to prove Theorem 1, it only remains to be shown that given the prime integers
D1, D2, 3, P4 = 2 (mod 3) there exists a prime 7 such that the hypotheses of Lemma 3 are
satisfied for each of the triples p1, ps, m and p3, py, 7.

Lemma 6 Let py,pa, p3, pa be prime integers congruent to 2 modulo 3. Then there exists
a prime w € Zlw] such that
(i) =1 (mod 3);

(11) pip2N(m) and pspsN() are not congruent to 1 modulo 9;

W GGGl

Proof. Let B € {1,4,7} such that
ppoB 7_é 1 (mod 9)
pspaB #1  (mod 9).

Take a prime 7 € Z|w| such that N(w) = B (mod 9). This condition can be satisfied by
taking 7 =  (mod 9), where 3 is an element of Z[w] congruent to 1, —2 or 1+ 3w modulo
91if B = 1,4 or 7, respectively. Hence we have that p;p,B # 1 (mod 9) if and only if
pip;N(m) # 1 (mod 9). Therefore conditions (i) and (ii) are satisfied.

As far as condition (iii) is concerned, in order for 7 to satisfy

) =G =G =G) 7

it is sufficient to take m belonging to a suitable congruence class modulo pipspsps. The
Chinese Remainder Theorem allows us to determine a suitable residue class v modulo
9p1papsps such that, if 7 = 7 (mod 9pypapsps), then 7 satisfies the required conditions.
The existence of such a prime 7 is assured by Dirichlet’s Theorem. a

Hence Theorem 1 is proved.

We thank Alexei Skorobogatov for his help in the preparation of this note.
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