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Abstract

The aim of this paper is to give an alternative proof of a theorem of R. Heath-
Brown [3] regarding the existence of non-zero integral solutions of the equation
p1X

3
1 + p2X

3
2 + p3X

3
3 + p4X

3
4 = 0 , where the pj are prime integers ≡ 2 (mod 3).

We start by presenting the main result of this paper. This result has been proved by
Roger Heath-Brown [3] under the conjecture that the difference s(A)− r(A) between the
Selmer rank and the arithmetic rank of the elliptic curve X3 + Y 3 = AZ3 is even. In this
note we will show that we do not need this assumption and give a detailed proof of this
result.

Theorem 1 Let p1, p2, p3, p4 be prime integers such that pi ≡ 2 (mod 3) (1 ≤ i ≤ 4).
Then the equation

p1X
3
1 + p2X

3
2 + p3X

3
3 + p4X

3
4 = 0

has non-zero integral solutions, assuming the conjecture that the Tate-Shafarevich group
of the elliptic curve X3 + Y 3 = AZ3 over Q is finite.

A much stronger result has been recently proved by Sir Peter Swinnerton-Dyer [7].

Note that in order to prove the above theorem, it is sufficient to prove that the equations

p1X
3
1 + p2X

3
2 = p

p3X
3
3 + p4X

3
4 = −p
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have non-zero rational solutions for some prime integer p. So it suffices to prove that the
equation p1X

3 + p2Y
3 = p has non-zero solutions in Q or, equivalently, in a quadratic

extension of Q.

Notation Let ω be a primitive cube root of unity and let k = Q(ω).
Let A ∈ Z \ {−1, 0, 1} be a cube-free integer. We denote by EA the elliptic curve

EA : X3 + Y 3 = AZ3.

For any α ∈ k∗, let CA,α be the smooth projective curve given by the equation

CA,α : αX3 + α−1Y 3 = AZ3.

For α ∈ k∗, the curves CA,α are principal homogeneous spaces over EA. Moreover, it
is clear that if α and β belong to the same class modulo (k∗)3 then the curves CA,α and
CA,β are isomorphic.

Let us consider the multiplication-by-
√
−3 endomorphism on EA (see [1]), given by

√
−3 : EA −→ EA

(X, Y, Z) 7−→ (ω2X3 + ωY 3 − AZ3, ωX3 + ω2Y 3 − AZ3, −3XY Z),

and the following diagram with exact row

0 −→ EA(k)/
√
−3EA(k) −→ H1(k,EA

[√
−3
]
) −→ WC(EA/k)

[√
−3
]

−→ 0
↘ ↓∏

vWC(EA/kv)
[√
−3
]

where WC(EA/k) is the Weil-Châtelet group of EA/k and v runs over all the places of
k. It is readily verified that the group EA(k̄)

[√
−3
]

is isomorphic to the group µ3(k̄)
of cube roots of unity, as a Gal(k̄/k)-module. It follows from Kummer theory that
H1(k,EA

[√
−3
]
) is isomorphic to k∗/(k∗)3 and so we get the exact sequence

0 −→ EA(k)/
√
−3EA(k) −→ k∗/(k∗)3 f−→ WC(EA/k)

[√
−3
]

−→ 0
g↘ ↓∏

vWC(EA/kv)
[√
−3
]

where the map f sends an element α(k∗)3 to the curve CA,α. We denote by S(A) the Selmer

group S(
√
−3)(EA/k) (which is defined to be the kernel of the map g in the diagram above)

and by C(A) the kernel of the map f . Obviously C(A) is a subgroup of S(A); we can
write them explicitly

S(A) = {α(k∗)3 : CA,α has kπ−points for any prime π ∈ k, α ∈ k∗},
C(A) = {α(k∗)3 : CA,α has k−points, α ∈ k∗}.

Observe also that C(A) is isomorphic to EA(k)/
√
−3EA(k) (this follows immediately from

the diagram above).

In the following two lemmas we will determine the structure of S(A) when A satisfies
certain conditions.
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Lemma 2 Let ρ ∈ k be a prime above 3, and let a, b, c ∈ k such that a, b, c are congruent
to 1 modulo ρ2. If the projective curve

E : aX3 + bωY 3 + cω2Z3 = 0

has a point over kρ, then abc ≡ 1 (mod ρ3).

Proof. Let (x, y, z) be a kρ-point of the curve E and suppose that

min{valρ(x) , valρ(y) , valρ(z)} = 0.

Say
x = x0 + x1ρ+ x2ρ

2 + . . . ,
y = y0 + y1ρ+ y2ρ

2 + . . . ,
z = z0 + z1ρ+ z2ρ

2 + . . .

with (x0, y0, z0) 6= (0, 0, 0).

From the condition ax3 + bωy3 + cω2z3 = 0 it follows that x3
0 ≡ y3

0 ≡ z3
0 (mod ρ2).

Therefore we may assume (x0, y0, z0) = (1, 1, 1) and hence we get

(x3, y3, z3) ≡ (1, 1, 1) (mod ρ3).

Let a ≡ 1 + a2ρ
2 (mod ρ3), b ≡ 1 + b2ρ

2 (mod ρ3) and c ≡ 1 + c2ρ
2 (mod ρ3). Then

from a + bω + cω2 ≡ 0 (mod ρ3) it follows a2 + b2 + c2 ≡ 0 (mod ρ) and therefore
abc ≡ 1 + (a2 + b2 + c2)ρ2 ≡ 1 (mod ρ3). 2

Lemma 3 Let A = p1p2N(π) where p1, p2 ≡ 2 (mod 3) are integer primes, π ≡ 1

(mod 3) is a prime in Z[ω] such that A 6≡ 1 (mod 9) and

(
π

p1

)
3

=

(
π

p2

)
3

6= 1. Then

S(A) is isomorphic to Z/3× Z/3 as an abelian group.

Proof. We will prove that S(A) is generated by the elements A(k∗)3 and p1p
2
2(k∗)3.

The curve CA,A has a k-point, namely (1, 0, 1); hence A(k∗)3 ∈ S(A). Suppose now
α 6= A. Note that, in order to determine for which elements α the coset α(k∗)3 belongs
to S(A), it is sufficient to test the elements α where α is a cube-free integer in Z[ω] such
that

(i) α is composed of primes dividing A;

(ii) we can fix a prime in {p1, p2, π, π̄}, say π̄, such that π̄ does not divide α.

Indeed:
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(i) suppose α contains a prime factor ρ which does not divide A; it is then easy to verify
that CA,α contains no kρ-points. To get a contradiction, we suppose CA,α contains
a kρ-point (X, Y, Z); so we have

α2X3 + Y 3 = αAZ3.

Considering the ρ-adic valuation of the right hand side and of the left hand side,
and noting valρ(α

2X3) 6= valρ(Y
3), we get

valρ
(
αAZ3

)
= valρ

(
α2X3 + Y 3

)
= min{valρ

(
α2X3

)
, valρ

(
Y 3
)
}.

But this is impossible since, on the one hand, valρ(αAZ
3) = i+ 3j, where i ∈ {1, 2}

is defined to be the ρ-adic valuation of α and j is an integer, and on the other hand

min{valρ
(
α2X3

)
, valρ

(
Y 3
)
} = min{2i+ 3h, 3l}

with h, l integers;

(ii) suppose π̄j divides α (with j = 1, 2); then, since S(A) is a group and A(k∗)3 belongs
to S(A), instead of α we may consider the cube-free integer representative of the
coset (α/Aj) (k∗)3.

As a result, we may assume α = ωmpn1
1 p

n2
2 π

n where m,n1, n2, n ∈ {0, 1, 2}. In fact it is
not difficult to prove that if m 6= 0 then α does not belong to S(A). Indeed, to get a
contradiction suppose that m 6= 0 and that CA,α contains a kρ-point where ρ ∈ k is a
prime above 3. Then from Lemma 2 it follows that A ≡ 1 (mod ρ3) and hence A ≡ 1
(mod 9) which contradicts our hypotheses. Therefore we may assume m = 0.

Let ρ ∈ Z[ω] be a prime. If ρ does not divide 3A then CA,α contains points over kρ for
any α. Indeed, a smooth curve of genus 1 always contains points over any finite field (see
[2]); moreover if ρ does not divide 3A then CA,α is non-singular over Z[ω]/ρ and therefore
it contains a non-singular point over Z[ω]/ρ which, by Hensel’s lemma, can be lifted to a
point over kρ.

Suppose now that ρ divides 3A; hence we have to consider the two cases ρ |A and ρ | 3.

(1) Let ρ divide A, so ρ belongs to {p1, p2, π, π̄}. We can consider three further subcases.

(1a) Let ρ divide α exactly; then the projective curve

αX3 + α−1Y 3 = AZ3

can also be written as

α2

ρ2
(ρX)3 + ρY 3 =

αA

ρ2
(ρZ)3.

Hence, considering the transformation ρX → X, ρZ → Z and reducing modulo
ρ, we get the curve

X3 − A

α
Z3 = 0
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which contains a smooth point over Fρ if and only if
A

α
∈ (F∗ρ)

3, i.e. if and only

if

(
Aα−1

ρ

)
3

= 1. By Hensel’s lemma, we can lift this smooth point over Fρ to

a point over kρ.

(1b) Suppose now ρ2 divides exactly α. Similarly, considering a suitable transfor-
mation and reducing modulo ρ, we get the curve

Y 3 − Aα

ρ3
Z3 = 0

which contains a smooth point over Fρ if and only if
Aα

ρ3
∈ (F∗ρ)

3, i.e. if and

only if

(
Aαρ−3

ρ

)
3

= 1.

(1c) Similarly, if ρ does not divide α, we get the curve

α2X3 + Y 3 = 0

which contains a smooth point over Fρ if and only if α2 ∈ (F∗ρ)
3, i.e.

(
α

ρ

)
3

= 1.

Suppose ρ = pj with j = 1, 2.

If pj divides exactly α, then by case (1a) we must have

(
Aα−1

pj

)
3

= 1 and hence(
αp−1

j

pj

)
3

= 1; indeed †

(
Aα−1

pj

)
3

=

(
ph
pj

)
3

(
p

pj

)
3

(
α−1pj
pj

)
3

=

(
αp−1

j

pj

)−1

3

where h ∈ {1, 2}, h 6= j and p = N(π).

If p2
j divides exactly α, then by case (1b) we must have

(
Aαp−3

j

pj

)
3

= 1 and therefore(
αp−2

j

pj

)
3

= 1, since

(
Aαp−3

j

pj

)
3

=

(
ph
pj

)
3

(
p

pj

)
3

(
αp−2

j

pj

)
3

=

(
αp−2

j

pj

)
3

,

where again h ∈ {1, 2} and h 6= j.

If pj does not divide α, then by case (1c) we must have

(
α

pj

)
3

= 1.

†If q 6= 3 is a prime integer with #F∗q 6≡ 0 (mod 3) then
(
n

q

)
3

= 1 for any n ∈ Z such that (n, q) = 1.
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Finally, we obtain the two following conditions which must be satisfied in order to
have α(k∗)3 ∈ S(A): (

pn2
2 π

n

p1

)
3

= 1 and

(
pn1

1 π
n

p2

)
3

= 1.

Since (
pn2

2 π
n

p1

)
3

=

(
p2

p1

)n2

3

(
π

p1

)n
3

=

(
π

p1

)n
3

and

(
π

p1

)
3

6= 1 by hypothesis, the first condition is satisfied if and only if n = 0.

It is easy to verify that for n = 0 the second condition is satisfied as well. Hence

α = pn1
1 p

n2
2 . So, by case (1c), it follows that we must have

(α
π

)
3

= 1; therefore, since

by the Cubic Reciprocity Law
(p1

π

)
3

=
(p2

π

)
3
6= 1, we get the condition n1 + n2 ≡ 0

(mod 3). We may suppose n1 = 1; then α = p1p
2
2 or, equivalently, α = p1p

−1
2 .

(2) Suppose now that ρ divides 3; in other words, since 3 = −ω2(1 − ω)2, suppose
ρ = 1−ω . Recall that now we have A = p1p2p and α = p1p

−1
2 ; therefore the curve

αX3 + α−1Y 3 = AZ3

is isomorphic to the curve

E : p1X
3 + p2Y

3 = pZ3.

We have to prove that E contains a point over kρ. Since Q3 is contained in kρ, it
suffices to find a point over Q3.

By hypothesis p ≡ 1 (mod 3) and p1, p2 ≡ 2 (mod 3), so let

p ≡ 1 + 3b (mod 9) and pj ≡ −1 + 3aj (mod 9)

for j = 1, 2; since A 6≡ 1 (mod 9) by hypothesis, we have a1 + a2 − b 6≡ 0 (mod 3).
Thus the integers a1, a2,−b cannot be all different modulo 3; wlog we may suppose
a1 = a2. Therefore we have p1p

−1
2 ≡ 1 (mod 9); in other words p1p

−1
2 belongs to

1 + 9Z3 which is contained in (Z∗3)3. It follows that E contains the point (1,−y, 0)
where y ∈ Z3 is a cube root of p1p

−1
2 . More precisely, if p1p

−1
2 ≡ 1 + 9l (mod 27),

then we use Hensel’s lemma to construct y ∈ Z3 such that y ≡ 1 + 3l (mod 9) and
y3 = p1p

−1
2 .

Hence E contains a kρ-point.

In conclusion, we have proved that S(A) is generated by the two elements of order 3
A(k∗)3 and p1p

2
2(k∗)3 and thus it is isomorphic to Z/3× Z/3. 2

The following two lemmas allow us to conclude that, under the hypotheses of Lemma 3,
the two groups C(A) and S(A) coincide. This provides a local-to-global principle for the
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curves CA,α when A is as in Lemma 3. As in the statement of Theorem 1, our work here
is conditional on the finiteness of the Tate-Shafarevich group X(EA/Q).

To get a contradiction, let us suppose that C(A) is strictly included in S(A). Note
that C(A) cannot be the trivial group as A(k∗)3 belongs to C(A); then C(A) has order
3. From the exactness of the sequence

0 −→ EA(k)/
√
−3EA(k) −→ k∗/(k∗)3 f−→ WC(EA/k)

[√
−3
]
−→ 0,

it follows that EA(k)/
√
−3EA(k) and Z/3 are isomorphic as abelian groups (recall that

C(A) is the kernel of the map f). Hence from Lemma 3 and the exact sequence

0 −→ EA(k)/
√
−3EA(k) −→ S(

√
−3)(EA/k) −→X(EA/k)

[√
−3
]
−→ 0

we deduce that X(EA/k)
[√
−3
]

is isomorphic to Z/3 and this is impossible, as we will
show in Lemma 5. But first we need one more result.

Lemma 4 Let E/L be an elliptic curve over a number field L. Let K be a Galois exten-
sion of L of degree n. Let m be a positive integer such that (m,n) = 1. Then:

X(E/L)[m] = X(E/K)[m]Gal(K/L).

In particular, assuming the finiteness of X(E/L), the order of X(E/K)[m]Gal(K/L) must
be a square.

Proof. Let us consider the following commutative diagram with exact rows and columns
where the rows are obtained by the multiplication-by-m endomorphism and the columns
are restriction-inflation sequences:

0 - E(K)/mE(K) - H1(K,E[m]) - H1(K,E)[m] - 0.
? ? ?

0 - E(L)/mE(L) - H1(L,E[m]) - H1(L,E)[m] - 0
? ?

H1(Gal(K/L), E(K)[m]) H1(Gal(K/L), E(K))[m]
? ?

0 0

Since Gal(K/L) has order n, every element of H1(Gal(K/L), E(K)) has order dividing
n (this follows from properties of the restriction and corestriction maps; see [5]). Hence,
as m and n are coprime, H1(Gal(K/L), E(K))[m] = 0. Thus from the diagram above it
follows that H1(L,E)[m] injects into H1(K,E)[m].

From the exactness of the second row of the diagram we get the exact sequence

0 −→ E(K)/mE(K)Gal(K/L) −→ H1(K,E[m])Gal(K/L) −→
−→ H1(K,E)[m]Gal(K/L) −→ H1(Gal(K/L), E(K)/mE(K)) = 0
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where H1(Gal(K/L), E(K)/mE(K)) is the zero group because it is killed by m and by n
which are coprime.

On the other hand, from the exact sequence of low degree terms of the Hochschild-Serre
spectral sequence, we get the exact sequence

H1(Gal(K/L), E(K)[m]) −→ H1(L,E[m])
ϕ−→ H1(K,E[m])Gal(K/L) −→

−→ H2(Gal(K/L), E(K)[m])

where the first and the last term are trivial because, again, they are killed by coprime
integers. Hence the map ϕ is an isomorphism. The following diagram of exact rows and
columns summarizes the information we have obtained so far

0 0
↓ ↓

H1(L,E[m]) −→ H1(L,E)[m] −→ 0
↓ ϕ ↓ ϕ′

H1(K,E[m])Gal(K/L) ϕ′′−→ H1(K,E)[m]Gal(K/L) −→ 0
↓
0.

It is immediate to verify that the injective map ϕ′ is also surjective because of the surjec-
tivity of the maps ϕ′′ and ϕ. Therefore we obtain

H1(L,E)[m] = H1(K,E)[m]Gal(K/L).

Let us consider now a place v of L; since K is a Galois extension of L, for any place
w of K over v the degrees of the local extensions Kw/Lv divide n and therefore they are
coprime to m. Hence the reasoning above can be applied also to the extensions Kw/Lv
and thus we obtain

H1(Lv, E)[m] = H1(Kw, E)[m]Gal(Kw/Lv).

Considering the corresponding Tate-Shafarevich groups, we get

X(E/L)[m] = X(E/K)[m]Gal(K/L).

Furthermore, assuming the finiteness of X(E/L), it follows from the existence of the
Cassels alternating bilinear pairing on X(E/L) that the order of X(E/L)[m] is a perfect
square and hence the order of X(E/K)[m]Gal(K/L) is a square too. 2

Lemma 5 If X(EA/Q) is finite, then X(EA/k)
[√
−3
]

cannot have order 3.

Proof. To get a contradiction, assume that X(EA/k)
[√
−3
]

and Z/3 are isomorphic as
abelian groups.

Let ẼA be the quadratic twist of EA corresponding to the class of −3 in H1(Q,Z/2) =
Q
∗/Q∗

2
; ẼA has equation

ẼA : −3Y 2Z = X3 − 432A2Z3



9

and is isomorphic to EA over k through the map

ψ : EA −→ ẼA

(X,Y, Z) 7−→ (12AZ,
36A√
−3

(X − Y ), X + Y ).

Let us consider the dual isogenies φ1 : EA −→ ẼA and φ2 : ẼA −→ EA given by the
compositions φ1 = ψ ◦

√
−3 and φ2 = −

√
−3 ◦ ψ−1; they are defined over Q and their

composition φ2 ◦ φ1 gives the multiplication-by-3 map on EA.

To obtain a contradiction we have assumed that X(EA/k)
[√
−3
]

is isomorphic to Z/3
as an abelian group; this is equivalent to the assumption that X(EA/k)[φ1] is isomorphic
to Z/3.

Let Gal(k/Q) = 〈σ〉. We have two possibilities: either σ acts trivially on X(EA/k)[φ1]
and therefore X(EA/k)[φ] and Z/3 are isomorphic as Gal(k/Q)-modules; or σ exchanges
the two non-trivial elements of X(EA/k)[φ1] and so X(EA/k)[φ1] is isomorphic to µ3.

If X(EA/k)[φ1] is isomorphic to Z/3 as a Gal(k/Q)-module then X(ẼA/k)[φ2] is iso-
morphic to µ3 as a Gal(k/Q)-module and vice versa. Indeed, if X(EA/k)[φ1] is composed
of the cohomology classes ξ0, ξ1, ξ2, then X(ẼA/k)[φ2] is composed of ψξ0, ψξ1, ψξ2; more-
over σψ = −ψ. So, if σ acts trivially on X(EA/k)[φ1] then it does not on X(ẼA/k)[φ2]
and vice versa.

Suppose that X(EA/k)[φ1] ∼= Z/3 as a Gal(k/Q)-module and consider the exact se-
quence of Gal(k/Q)-modules

0 −→X(EA/k)[φ1] −→X(EA/k)[3] −→X(ẼA/k)[φ2]

where the first map is the natural inclusion and the second one is induced by φ1. From
this sequence we get the exact sequence

0 −→X(EA/k)[φ1]Gal(k/Q) −→X(EA/k)[3]Gal(k/Q) −→X(ẼA/k)[φ2]Gal(k/Q)

where X(EA/k)[φ1]Gal(k/Q) ∼= Z/3 and X(ẼA/k)[φ2]Gal(k/Q) ∼= 0.
If X(EA/k)[φ1] ∼= µ3, it is sufficient to consider the sequence

0 −→X(ẼA/k)[φ2] −→X(EA/k)[3] −→X(EA/k)[φ1]

instead of that above.

In both cases, we can conclude that X(EA/k)[3]Gal(k/Q) is isomorphic to Z/3. This
contradicts Lemma 4 which claims that the order of X(EA/k)[3]Gal(k/Q) must be a square.
As a result, X(EA/k)

[√
−3
]

cannot have order 3. 2

In conclusion, we have proved that C(A) = S(A) for A = p1p2p. Moreover, in the
proof of Lemma 3 we have shown p1p

2
2(k∗)3 belongs to S(A); it follows that the curve

p1X
3 + p2Y

3 = p has a kρ−point for any prime ρ of k and hence, by the local-to-global
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principle, it has a point over the quadratic extension k of Q. Therefore it has a point over
Q.

In order to prove Theorem 1, it only remains to be shown that given the prime integers
p1, p2, p3, p4 ≡ 2 (mod 3) there exists a prime π such that the hypotheses of Lemma 3 are
satisfied for each of the triples p1, p2, π and p3, p4, π.

Lemma 6 Let p1, p2, p3, p4 be prime integers congruent to 2 modulo 3. Then there exists
a prime π ∈ Z[ω] such that

(i) π ≡ 1 (mod 3);

(ii) p1p2N(π) and p3p4N(π) are not congruent to 1 modulo 9;

(iii)

(
π

p1

)
3

=

(
π

p2

)
3

=

(
π

p3

)
3

=

(
π

p4

)
3

6= 1.

Proof. Let B ∈ {1, 4, 7} such that{
p1p2B 6≡ 1 (mod 9)
p3p4B 6≡ 1 (mod 9).

Take a prime π ∈ Z[ω] such that N(π) ≡ B (mod 9). This condition can be satisfied by
taking π ≡ β (mod 9), where β is an element of Z[ω] congruent to 1,−2 or 1+3ω modulo
9 if B = 1, 4 or 7, respectively. Hence we have that pipjB 6≡ 1 (mod 9) if and only if
pipjN(π) 6≡ 1 (mod 9). Therefore conditions (i) and (ii) are satisfied.

As far as condition (iii) is concerned, in order for π to satisfy(
π

p1

)
3

=

(
π

p2

)
3

=

(
π

p3

)
3

=

(
π

p4

)
3

6= 1

it is sufficient to take π belonging to a suitable congruence class modulo p1p2p3p4. The
Chinese Remainder Theorem allows us to determine a suitable residue class γ modulo
9p1p2p3p3 such that, if π ≡ γ (mod 9p1p2p3p3), then π satisfies the required conditions.
The existence of such a prime π is assured by Dirichlet’s Theorem. 2

Hence Theorem 1 is proved.

We thank Alexei Skorobogatov for his help in the preparation of this note.
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