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We perform descent calculations for the families of elliptic curves whose m-

torsion splits as µm × Z/mZ for m = 3, 4 or 5. These curves are parametrised

by the modular curve X(m)'P1, whose cusps are arranged as the vertices of

one of the Platonic solids. Following McCallum [McC] we write the Cassels-Tate

pairing as a sum of local pairings. In the case m = 5 our results extend the work

of Beaver [Be].

INTRODUCTION

Let E/Q be an elliptic curve and let m ≥ 2 be an integer. The process
of m-descent bounds the group E(Q)/mE(Q) and so gives an estimate for
the Mordell-Weil rank. It is both convenient and instructive to work with
special cases where the m-torsion of E takes a simple form. For example,
many authors introduce 2-descent by considering the elliptic curves

E : y2 = (x− a1)(x− a2)(x− a3) (1)

with rational 2-torsion. More generally we consider elliptic curves E with
E[m]'µm × Z/mZ. For m ≥ 3 these curves are parametrised by the
modular curve X(m), or strictly speaking by its open subset Y (m) ob-
tained by deleting the cusps. Our interest is in the cases m = 3, 4 and 5
when X(m)'P1. Relabelling torsion gives an action of PSL2(Z/mZ) on
X(m) defined over Q(µm). The quotient map j : X(m) → P1 is ramified
above j = 0, 1728 and ∞. Under stereographic projection these points are
arranged as the faces, edges and vertices of one of the Platonic solids.

j = 0 j = 1728 j =∞ PSL2(Z/mZ)
Platonic Solid #Faces #Edges #Vertices Symmetries

m = 3 tetrahedron 4 6 4 A4

m = 4 octahedron 8 12 6 S4

m = 5 icosahedron 20 30 12 A5
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In particular the cusps, i.e. the points above j = ∞, form a single orbit
under the action of PSL2(Z/mZ).

In §1 we prove

Theorem 1. Let K a number field and let m = 3, 4 or 5. Then the
Tate-Shafarevich group of an elliptic curve over K may contain arbitrarily
many elements of order m.

Special cases of this result are proved in [CaVI], [Bö], [Kr], [McG], [L]
and [F1]. Our method is that used in [F1]. Since X(m)'P1 there are
infinitely many elliptic curves E/K with E[m]'µm × Z/mZ. We write
α : E → E′ and β̂ : E → E′′ for the isogenies with kernel µm and Z/mZ
respectively. We may estimate the Mordell-Weil rank using either the pair
of isogenies α and α̂, or the pair of isogenies β and β̂. In general these
estimates do not agree, and an application of Dirichlet’s theorem on primes
in arithmetic progression suffices to prove the theorem. We do not make
use of the Cassels-Tate pairing. The method does not extend to m = 7,
since the only Q-rational points on the Klein quartic X(7) are the cusps.

In §2 we give a survey of duality results for elliptic curves, and in par-
ticular the Cassels-Tate pairing. We then develop the methods of McCal-
lum [McC] and Beaver [Be] for computing the pairing in the split torsion
case. The action of PSL2(Z/mZ) is used to make explicit the parameter
λv appearing in [Be, Theorems 1.1,1.2]. As in [F1] we find that our descent
calculations are governed not only by the primes of bad reduction, but by
the cusps we obtain when we reduce mod p. We also explain how our re-
sults may be applied to curves without split torsion, by giving an example
in this direction.

In §3 we restrict to K = Q and m = 3 or 5. We make explicit our
various estimates for the Mordell-Weil rank. In particular the Cassels-Tate
pairing is used to give a description of S(m)(E/Q) as the kernel of a skew-
symmetric matrix. The explicit nature of our results enables us to compute
a large amount of numerical data, and to give some interesting examples.
In particular we exhibit some elliptic curves over Q whose Tate-Shafarevich
group contains an element of order m2.

Preliminaries on descent calculations

Let K be a field of characteristic zero. Let φ : C → D be an isogeny
of elliptic curves over K with m = deg φ. The dual isogeny φ̂ : D → C
satisfies φ̂◦φ = [m] and φ◦φ̂ = [m]. The Weil pairing eφ : C[φ]×D[φ̂]→ µm
is defined in [Si1, Exercise 3.15]. We write GK = Gal(K/K) and Hi(K,−)
for Hi(GK ,−). Taking Galois cohomology of the exact sequence

0−→C[φ]−→C
φ−→ D−→ 0
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we obtain the Kummer exact sequence

C(K)
φ−→ D(K)

δφ−→ H1(K,C[φ])
ιφ−→ H1(K,C)

φ−→ H1(K,D). (2)

For K a number field the Selmer group attached to φ is

S(φ)(C/K) = {x ∈ H1(K,C[φ]) | xv ∈ im δφ,v for all places v }.

Here our convention is that for (∗) a global object we write (∗)v for the
corresponding local object. The exact sequence (2) becomes

0−→D(K)/φC(K)
δφ−→ S(φ)(C/K)

ιφ−→ X(C/K)[φ]−→ 0 (3)

where X(C/K) = ker
(
H1(K,C)→

∏
vH

1(Kv, C)
)

is the Tate-Shafarevich
group. The Selmer groups attached to φ and φ̂ may then be used to give
an upper bound for the Mordell-Weil rank.

Let E be an elliptic curve, and let T be a smooth curve of genus 1,
both defined over K. We say that T is a torsor under E if there is a simple
transitive action E × T → T defined over K. Equivalently there is an
isomorphism ψ : T → E defined over K such that the cocycle σ(ψ)ψ−1

takes values in the translation subgroup of Aut(E). In this way we identify
H1(K,E) with the set of torsors T under E, and X(E/K) with those
torsors that are everywhere locally soluble. From either point of view it
is easy to define a map, sum : Div0(T ) → E, which identifies E as the
Jacobian of T .

Other notation and conventions

Let K be a number field. We refer to K as a global field, and the
completion Kv at a place v, as a local field. We abbreviate Gv for GKv . If
v = p is a prime we write ordp : K∗p → Z for the normalised valuation and
Op for the ring of integers. An object is said to be unramified if the inertia
subgroup Ip ⊂ Gp acts trivially.

We write ζ = ζm for a primitive mth root of unity, so that ζν runs over
µm as ν runs over Z/mZ. In the case m = 4 we usually write i instead of
ζ4. In the case m = 5 we write φ = 1 + ζ + ζ4 for the golden ratio, and φ
for its conjugate. The minimal polynomials for ζφ and ζφ are

f(t) = t4 + 3t3 + 4t2 + 2t+ 1 = ((t+ 1)5 + 1)/(t+ 2)
g(t) = t4 − 2t3 + 4t2 − 3t+ 1 = ((t− 1)5 + t5)/(2t− 1). (4)

In §2 we define a number of pairings taking values in Q/Z. We write Indζ :
µm → Q/Z for the map ζ 7→ 1/m. When making explicit computations
we do not hesitate to identify Z/mZ with the subgroup 1

mZ/Z ⊂ Q/Z.
Finally, many of our results are stated for an arbitrary point on the

modular curve X1(m) or X(m). Even when not explicitly stated, we as-
sume that this point is not a cusp.
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1. SOME DESCENT CALCULATIONS

Let K a number field and let m = 3, 4 or 5. We discuss descent by
m-isogeny for some elliptic curves parametrised by X1(m) and X(m).

1.1. Elliptic curves parametrised by X1(m)

Let φ : C → D be an isogeny of elliptic curves over K with C[φ]'µm
and D[φ̂]'Z/mZ as Galois modules. We identify H1(K,C[φ]) = K∗/K∗m

and H1(K,D[φ̂]) = Hom(GK ,Z/mZ). In order to compute the Selmer
groups attached to φ and φ̂ we must describe the images of the local con-
necting maps

δv = δφ,v : D(Kv)−→K∗v/K
∗m
v . (5)

We consider the elliptic curves D = Dλ with Weierstrass equations

m = 3 y2 + xy + λy = x3

m = 4 y2 + xy + λy = x3 + λx2

m = 5 y2 + (1− λ)xy − λy = x3 − λx2.

In each case (x, y) = (0, 0) is a rational point of order m. By [Si1, Exer-
cise 8.13] these are the universal families of elliptic curves over K with a
specified rational point of order m. Thus our parameter λ is a co-ordinate
on X1(m)'P1. For m = 4 or 5 the universal property also holds over K.
However for m = 3 we have in effect excluded the infinitely many curves

y2 = x3 + d2 (6)

above λ =∞. These curves have complex multiplication by Z[ζ3]. We find
the cusps on X1(m) by computing the discriminant ∆(Dλ).

∆(Dλ) cusps η
m = 3 λ3(27λ− 1) 0, 1/27 λ 7→ 1/27− λ
m = 4 −λ4(16λ− 1) 0, 1/16,∞ λ 7→ 1/16− λ
m = 5 λ5(λ2 − 11λ− 1) 0,∞, φ5, φ5 λ 7→ (φ5λ+ 1)/(λ− φ5)

In each case η is an involution of X1(m), permuting the cusps, such that

(µm ↪→Cλ) ' (Z/mZ ↪→Dη(λ)) over Q(µm). (7)

There is also an action of (Z/mZ)∗/{±1} on X1(m) given by relabelling
torsion. For m = 3 or 4 this action is trivial. For m = 5 we obtain an
involution

λ 7→ −1/λ. (8)
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Following Vélu [V] the elliptic curves Cλ isogenous to Dλ have Weierstrass
equations

y2 + xy + λy = x3 − 5λx− λ(7λ+ 1)
y2 + xy + λy = x3 + λx2 − 5λ(λ+ 1)x+ λ(3λ2 − 12λ− 1)

y2 + (1− λ)xy − λy = x3 − λx2 − 5λ(λ2 + 2λ− 1)x
−λ(λ4 + 10λ3 − 5λ2 + 15λ− 1).

Lemma 1.1. Let m = 3, 4 or 5. The image of Dλ[φ̂]'Z/mZ under the
connecting map δ = δφ : Dλ(K)→ K∗/K∗m is generated by λ.

Proof. The connecting map δ is given by a rational function f ∈ K(Dλ)
with div(f) = m.(0, 0)−m.0. The formal group [Si1, Chapter IV] may be
used to resolve the issue of scaling. We find

f(x, y) =

 y m = 3
−y + x2 m = 4
xy + y − x2 m = 5.

Computing f on multiples of (0, 0) we obtain powers of λ as claimed.

We describe the image of the local connecting map (5). For v = p a
prime of bad reduction, the answer depends on which cusp we obtain as
the reduction of λ mod p. We do not cover certain cases where p |m.

Proposition 1.2. Let m = 3. If ordp(λ) ≥ 0 then

im δp =


K∗p/K

∗3
p if ordp(λ) > 0

O∗p/O∗3p if λ(27λ− 1) 6≡ 0 (mod p)
1 if 27λ− 1 ≡ 0 (mod p).

If ordp(λ) < 0 and p - 3 then

im δp =
{
O∗p/O∗3p if 3 |ordp(λ)
〈λ〉 otherwise.

We see that the point λ = ∞, corresponding to the infinitely many
curves (6), behaves to some extent as if it were a cusp.

Proposition 1.3. Let m = 4. If ordp(λ) ≥ 0 then

im δp =


K∗p/K

∗4
p if ordp(λ) > 0

O∗p/O∗4p if λ(16λ− 1) 6≡ 0 (mod p)
1 or 〈−4〉 if 16λ− 1 ≡ 0 (mod p).

If ordp(λ) < 0 and p - 2 then

im δp =


K∗2p /K∗4p if λ ∈ K∗2p

〈λ〉 if ordp(λ) is odd
〈λ,O∗2p 〉 otherwise.

Moreover at a real place v, im δv is trivial if and only if 16λ− 1 > 0.
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If µ4 ⊂ Kp then the inelegant 〈−4〉 appearing in Proposition 1.3 van-
ishes. Indeed −4 = (1 + i)4, so 〈−4〉 ⊂ K∗p/K∗4p is trivial.

Proposition 1.4. Let m = 5. Then

im δp =


K∗p/K

∗5
p if ordp(λ) 6= 0

O∗p/O∗5p if λ(λ2 − 11λ− 1) 6≡ 0 (mod p)
1 if λ2 − 11λ− 1 ≡ 0 (mod p) and p - 5.

The automorphism (8) of X1(5) reduces the number of cases to consider
both for the statement and for the proof of Proposition 1.4.

Remark. If µm ⊂ Kp then we may identify

H1(Kp, C[φ]) = H1(Kp, D[φ̂]) = K∗p/K
∗m
p .

Tate local duality (see §2.1) tells us that im δφ,p and im δφ̂,p are exact anni-
hilators with respect to the Hilbert norm residue symbol. It is instructive
to check that replacing λ by η(λ) in Propositions 1.2–1.4 has the effect of
replacing δp by its exact annihilator.

1.2. Torsors with a diagonal action of µm.

In this section we prove Propositions 1.2–1.4. Following [F1] we consider
certain smooth curves of genus 1 in Pm−1. Specifically for τ0, τ1, . . . , τm−1

non-zero elements of K we define T = T [τ0, τ1, . . . , τm−1] ⊂ Pm−1 via

m = 3 { τ0x3
0 + τ1x

3
1 + τ2x

3
2 − x0x1x2 = 0 } ⊂ P2

m = 4
{
τ0x

2
0 + x1x3 − τ2x2

2 = 0
τ1x

2
1 + x0x2 − τ3x2

3 = 0

}
⊂ P3

m = 5 { τνx2
ν + xν−1xν+1 − τν−2τν+2xν−2xν+2 = 0 } ⊂ P4

where ν runs over Z/5Z, so that the curve in P4 is defined by 5 quadrics.
In each case T ⊂ Pm−1 is a curve of degree m, invariant under the diagonal
action of µm given by xν 7→ ζνxν . The claims we make about these curves
for m = 3 and 4 are easy to check directly. For m = 5 we refer to [F1].

Rescaling our co-ordinates x0, x1, . . . , xm−1 on Pm−1 we see that the
geometry of T [τ0, . . . , τm−1] only depends on λ :=

∏
τν . It may be shown

that the elliptic curves Cλ introduced in §1.1 have equations

m = 3 T [λ, 1, 1] 0 = (0 : 1 : −1)
m = 4 T [λ, 1, 1, 1] 0 = (0 : 1 : 1 : 1)
m = 5 T [λ, 1, 1, 1, 1] 0 = (0 : 1 : 1 : −1 : −1).

Thus T [τ0, . . . , τm−1] is a smooth curve of genus 1, provided λ =
∏
τν is

not a cusp of X1(m). At the cusps we obtain collections of lines arranged
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in an m-gon. For example T [ 1
3 ,

1
3 ,

1
3 ] has equation

(x0 + x1 + x2)(x0 + ζx1 + ζ2x2)(x0 + ζ2x1 + ζx2) = 0.

With reference to the exact sequence (2) we define Cλ,θ to be the torsor
under Cλ described by θ ∈ K∗/K∗m.

Lemma 1.5. Let τ0, . . . , τm−1 be non-zero elements of K with∏
τν = λ and

∏
τνν ≡ θ mod K∗m. (9)

Then T [τ0, . . . , τm−1]'Cλ,θ and T [τ0, . . . , τm−1] meets the co-ordinate hy-
perplane {xν = 0} in m points, each with field of definition K( m

√
λ−νθ).

Proof. An isomorphism between T [τ0, . . . , τm−1] and Cλ = T [λ, 1, . . . , 1]
is given by rescaling co-ordinates over K. Comparing this isomorphism
with its Galois conjugates we obtain a cocycle taking values in µm. This
cocycle corresponds1 to θ−1 under H1(K,µm)'K∗/K∗m. The final state-
ment follows by direct calculation.

We outline the proof of Propositions 1.2–1.4. First by (2) we know
that θ ∈ im δv if and only if Cλ,θ(Kv) 6= ∅. We also know that im δv is
a group and by Lemma 1.1 it contains λ. These observations reduce us
to considering a handful of cases depending on λ and θ. In each case we
choose τ0, . . . , τm−1 satisfying (9). Then Lemma 1.5 provides equations for
Cλ,θ as a curve in Pm−1. If v = p is a prime we reduce these equations
mod p to help us decide whether Cλ,θ(Kp) 6= ∅.

We summarise the proof of Proposition 1.2 in a table. We write k
for the residue field mod p and n for a negative integer. We abbreviate
ordp(τν) := (ordp(τ0), . . . , ordp(τm−1)).

Condition on λ ordp(θ) ordp(τν) Reduction mod p

(a) ordp(λ) > 0 —– all ≥ 0 rational curves
defined over k

(b) ordp(λ) = 0 1 (−1, 0, 1) —–

(c) λ(27λ− 1) 6≡ 0 0 (0, 0, 0) smooth curve
of genus 1

(d) 27λ− 1 ≡ 0 0 (0, 0, 0) 3 lines defined
over k( 3

√
θ)

(e) ordp(λ) = 3n 1 (n−1, n, n+1) —–

(f) ordp(λ) = 3n 0 (n, n, n) smooth curve
of genus 1

(g)
ordp(λ) = 3n+ ε

ε = 1 or 2 0 (n+ ε, n, n) 3 lines defined
over k( 3

√
θ)

In cases (a), (c), (f) we may pick a smooth k-point on the reduction.
Hensel’s lemma then shows that Cλ,θ(Kp) 6= ∅. In cases (b) and (e) we

1Let us note that Cλ,θ and Cλ,θ−1 are isomorphic as curves, but not as torsors.
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assume there is a Kp-point (x0 : x1 : x2) with min ordp(xν) = 0 and
proceed to a contradiction by repeated use of the ultrametric law.

In cases (d) and (g) the reduction is a collection of 3 distinct lines each
defined over k( 3

√
θ). The lines are distinct since by assumption p - 3. We

claim Cλ,θ(Kp) 6= ∅ if and only if θ is a cube, equivalently θ is a cube
mod p. So suppose given a Kp-point on Cλ,θ. If it reduces to a smooth
point, then one of our lines is defined over k, and θ is a cube as required.
It remains to consider the singular points of the reduction, i.e. where the
three lines meet. In case (d) the lines are arranged in a triangle. If a vertex
is k-rational, then so is the opposite side and we are done. In case (g) all
3 lines pass through (1 : 0 : 0). But if the Kp-point (x0 : x1 : x2) has
reduction (1 : 0 : 0) then ordp(x0) = 0, ordp(x1) > 0 and ordp(x2) > 0. So

ordp(τ1x3
1), ordp(τ2x3

2), ordp(x0x1x2) ≥ n+ 3

yet ordp(τ0x3
0) = n+ ε, and this contradicts the ultrametric law. So there

are no Kp-points above the singular point, and our claim follows as before.
This completes the proof of Proposition 1.2.

Again we draw up a table for the proof of Proposition 1.3. We take
n, n0, n1 negative integers with n = n0 + n1.

Condition on λ ordp(θ) ordp(τν) Reduction mod p

(a) ordp(λ) > 0 —– all ≥ 0 rational curves
defined over k

(b) ordp(λ) = 0 2 (−2, 0, 0, 2) —–

(c) λ(16λ− 1) 6≡ 0 0 (0, 0, 0, 0) smooth curve
of genus 1

(d) 16λ− 1 ≡ 0 0 (0, 0, 0, 0) 4 lines defined
over k( 4

√
θ)

(e) ordp(λ) = 2n 1 (n− 1, 0, n, 1) —–

0 (0, n, 0, n) 2 conics defined
over k(

√
θ)

(f) ordp(λ) = 2n 2n0 (n0, n1, n0, n1) 4 lines defined
over k(

√
θ,
√
λθ)

2n (n, 0, n, 0) 2 conics defined
over k(

√
λθ)

(g) ordp(λ) = 2n+ 1 0 (1, n, 0, n) 4 lines defined
over k( 4

√
θ)

All except cases (d) and (f) go through as before. In these cases our
assumptions give p - 2. In case (d) the reduction is a collection of 4 lines
arranged in a quadrilateral. Each line has field of definition k( 4

√
θ). It

follows by elementary Galois theory that each vertex has field of definition
k( 4
√
−4θ). So if Cλ,θ(Kp) 6= ∅ then either θ ∈ K∗4p or −4θ ∈ K∗4p . Thus

im δp = 1 or 〈−4〉. In fact the theory of the Néron model provides a formula
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for | im δp|. By [Sc1, Lemma 3.8] and Tate’s algorithm [Si2, IV.9] we deduce

im δp =
{

1 if ordp(16λ− 1) is odd
〈−4〉 if ordp(16λ− 1) is even.

In case (f) we have ordp(λ) = 2n for some n < 0. We write n = n0 +n1

with n0, n1 ≤ 0. We assume that ordp(θ) is even. If θ satisfies one of the
following conditions, then our table shows that Cλ,θ(Kp) 6= ∅

(i) θ ∈ K∗2p and ordp(θ) ≡ 0 (mod 4)
(ii) θ ∈ K∗2p and λθ ∈ K∗2p

(iii) λθ ∈ K∗2p and ordp(λθ) ≡ 0 (mod 4).

Conversely, we must show that if Cλ,θ(Kp) 6= ∅ then at least one of the
conditions (i), (ii) or (iii) is satisfied. We write Cλ,θ in the form T [τ0, . . . , τ3]
with ordp(τν) = (n0, n1, n0, n1). Replacing θ by λθ if necessary, we may
suppose λθ 6∈ K∗2p and n0 < 0. We take (x0 : . . . : x3) a Kp-point with
min{ordp(xν)} = 0 and recall the equations

τ0x
2
0 + x1x3 − τ2x2

2 = 0 (10)
τ1x

2
1 + x0x2 − τ3x2

3 = 0. (11)

Since τ0/τ2 6∈ K∗2p the equation (10) tells us ordp(x0), ordp(x2) > 0. Next
by (11) we have τ1/τ3 ∈ K∗2p and ordp(x1) = ordp(x3) = 0. Again us-
ing (10) we see that n0 is even. So condition (i) holds and we our done.

To complete the proof of Proposition 1.3, it only remains to consider v
a real place. If θ < 0 we may write Cλ,θ in the form

(16λ− 1)x2
0 + (x0 + x2)2 + (x1 + x3)2 = 0

(16λ− 1)x2
0 + (x0 − x2)2 − (x1 − x3)2 = 0.

It is readily seen that Cλ,θ(R) = ∅ if and only if 16λ− 1 > 0. This is then
the condition for im δv to be trivial.

Finally Proposition 1.4 is a restatement of [F1, Proposition 2.15]. We
therefore omit details of the proof, which is in any case similar to the above.

1.3. Elliptic curves parametrised by X(m)

We recall that the K-points of the modular curve Y (m) correspond to
isomorphism classes of triples (E,P,Q) where E/K is an elliptic curve,
P,Q ∈ E[m], em(P,Q) = ζ and Q ∈ E(K). For m = 3, 4 or 5 it follows by
Lemma 1.1 that X(m)'P1. We make a choice of co-ordinate t on X(m)
by writing

m = 3 Et = Ct3/27 X(3) has cusps at t = 0, 1, ζ, ζ2

m = 4 Et = Ct4/16 X(4) has cusps at t = 0,∞,±1,±i
m = 5 Et = Ct5 X(5) has cusps at t = 0,∞, ζνφ, ζνφ.
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The configuration of these cusps was described in the introduction. The
work of §1.2 allows us to identify Et as the Jacobian of Xt, where Xt has
equations

m = 3 { t(x3
0 + x3

1 + x3
2)− 3x0x1x2 = 0 } ⊂ P2

m = 4
{
t(x2

0 + x2
2) + 2x1x3 = 0

t(x2
1 + x2

3) + 2x0x2 = 0

}
⊂ P3

m = 5 { tx2
ν + xν−1xν+1 − t2xν−2xν+2 = 0 } ⊂ P4

These curves are taken from [H, Chapter III]. They are invariant under
the action of the Heisenberg group, generated by σP : xν 7→ ζνxν and
σQ : xν 7→ xν−1. We write Pt, Qt for the basis of Et[m] determined by σP ,
σQ. Computing the commutator of σP and σQ shows that em(Pt, Qt) = ζ.
We may therefore take (Et, Pt, Qt) as our triple above t. In the cases
m = 3 and 5, it is possible to identify Et = Xt via 0 = (0 : 1 : −1) and
0 = (0 : t : 1 : −1 : −t) respectively.

Let S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
be the usual generators for SL2(Z).

We use the same letters to denote their images in PSL2(Z/mZ). Writing
M∗ for (MT )−1 we have S∗ = S and T ∗ = STS.

Proposition 1.6. There is an action of PSL2(Z/mZ) on X(m) via(
a b
c d

)
: (E,P,Q) 7→ (E, aP + bQ, cP + dQ).

In terms of our co-ordinate t on X(m) it is given by

m = 3 S : t 7→ (−t+ 1)/(2t+ 1) T ∗ : t 7→ ζt
m = 4 S : t 7→ (−t+ 1)/(t+ 1) T ∗ : t 7→ ζt
m = 5 S : t 7→ (φt+ 1)/(t− φ) T ∗ : t 7→ ζt.

Proof. (i) There is an isomorphism Xt'Xζt given by

(x0 : x1 : x2) 7→ (ζ3x0 : x1 : x2)
(x0 : x1 : x2 : x3) 7→ (x0 : ζ8x1 : −x2 : ζ8x3)
(x0 : x1 : x2 : x3 : x4) 7→ (ζ3

5x0 : ζ5x1 : x2 : x3 : ζ5x4).

where ζ2
8 = ζ4. Passing to the Jacobian we obtain an isomorphism (Et, Pt, Qt)

' (Eζt, Pζt, Pζt +Qζt). It follows that T ∗ : t 7→ ζt as claimed.
(ii) For suitable t′, an isomorphism Xt′ 'Xt is given by

(x0 : x1 : . . . : xm−1) 7→ (
∑
xν :

∑
ζνxν : . . . :

∑
ζ(m−1)νxν) (12)

where each sum runs over ν ∈ Z/mZ. Passing to the Jacobian we obtain
an isomorphism (Et′ , Pt′ , Qt′)' (Et,−Qt, Pt). It follows that S : t 7→ t′.

10



Finally we compute t′ by substituting (12) into the equations for Xt. For
m = 3 or 5 a number of short-cuts are available since Et = Xt.

Let E = Et for some t ∈ K. Then E[m]'µm × Z/mZ as a Galois
module. We write E′ (respectively E′′) for the elliptic curve isogenous to
E obtained as the quotient by µm (respectively Z/mZ). The isogenies

α : E → E′ and β : E′′ → E

are both of the form φ : Cλ → Dλ but for different values of λ ∈ K. In
order to apply Propositions 1.2–1.4 we record these values of λ. In the case
m = 5 the answer involves the polynomials f(t) and g(t) defined by (4).

m = 3 m = 4 m = 5
λ 27λ− 1 λ 16λ− 1 λ λ2 − 11λ− 1

α t3/27 t3 − 1 t4/16 t4 − 1 t5 (t2 − t− 1)f(t)g(t)
β t(t2+t+1)

3(2t+1)3

(
t−1
2t+1

)3 t(t2+1)
2(t+1)4

(
t−1
t+1

)4
tf(t)/g(t) (t2 − t− 1)5/g(t)2

The entries for the isogeny α are immediate from the definition of Et. The
entries for the isogeny β follow from Proposition 1.6 and the involution η on
X1(m) defined in §1.1. For example, taking m = 3 there is an isomorphism

(µ3 × Z/3Z ↪→Et)' (Z/3Z× µ3 ↪→Et′)

where t′ = (−t + 1)/(2t + 1). So the required value of λ is η((t′)3/27) =
t(t2 + t+ 1)/(3(2t+ 1)3).

Proposition 1.7. Let m = 3, 4 or 5. Let p be a prime of bad reduction
for E = Et. Suppose that µm ⊂ Kp and p -m. Then t reduces to a cusp
mod p and the local connecting maps have images

m = 3
t mod p 0 ζ, ζ2 1
im δα,p K∗p/K

∗3
p 1 1

im δβ,p K∗p/K
∗3
p K∗p/K

∗3
p 1

m = 4
t mod p 0 ∞ ±i −1 1
im δα,p K∗p/K

∗4
p K∗2p /K∗4p 1 1 1

im δβ,p K∗p/K
∗4
p K∗p/K

∗4
p K∗p/K

∗4
p K∗2p /K∗4p 1

m = 5
t mod p 0 ζνφ, ζνφ (ν 6= 0) φ, φ
im δα,p K∗p/K

∗5
p 1 1

im δβ,p K∗p/K
∗5
p K∗p/K

∗5
p 1

Proof. This follows from Propositions 1.2–1.4 and the table above. The
assumption µm ⊂ Kp is made purely to simplify the statement of the
proposition in the case m = 4.
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1.4. Large Tate-Shafarevich groups

Let E = Et as above. There are exact sequences

0−→S(α)(E/K)−→S(m)(E/K) α−→ S(α̂)(E′/K) (13)

0−→S(β̂)(E/K)−→S(m)(E/K)
β̂−→ S(β)(E′′/K). (14)

Propositions 1.2–1.4 allow us the estimate the Selmer groups attached to
α, α̂, β and β̂. We show that for a careful choice of t the group S(α̂)(E′/K)
may be large compared to both S(β̂)(E/K) and S(β)(E′′/K). It follows
that X(E′/K) may become arbitrarily large. More precisely we prove

Theorem 1. Let K a number field and let m = 3, 4 or 5. Then the
Tate-Shafarevich group of an elliptic curve over K may contain arbitrarily
many elements of order m.

We stress that our theorem applies to any number field K, for example
K = Q. We give details of the proof.

Lemma 1.8. We may choose S1 and S2 finite disjoint set of primes,
and X ⊂ H1(K,Z/mZ) a finite subgroup such that
(i) Each prime p ∈ S1 ∪ S2 satisfies Norm p ≡ 1 (mod m).
(ii) The map X →

∏
p∈S1

H1(Kp,Z/mZ) is injective.
(iii) X is unramified outside S2.
(iv) X contains arbitrarily many elements of order m.

Proof. By class field theory there exists L/K an abelian extension whose
Galois group contains arbitrarily many elements of order m, and that is
unramified outside a finite set of primes S2 satisfying (i). We may suppose
L ∩ K(µm) = K and take X = Hom(Gal(L/K),Z/mZ). By the Tcheb-
otarev density theorem there exists a finite set of primes S1 satisfying the
remaining conditions.

With S1, S2 and X as above, we impose congruence conditions on t.

m = 3
t2 + t+ 1 ≡ 0 (mod p) for all p ∈ S1

t− 1 ≡ 0 (mod p) for all p ∈ S2

m = 4
t2 + 1 ≡ 0 (mod p) for all p ∈ S1

t− 1 ≡ 0 (mod p) for all p ∈ S2

m = 5
t4 + 3t3 + 4t2 + 2t+ 1 ≡ 0 (mod p) for all p ∈ S1

t2 − t− 1 ≡ 0 (mod p) for all p ∈ S2

By Lemma 1.8(i) and the Chinese Remainder Theorem these conditions
may be replaced by a single linear congruence. Now let t ∈ K be an
algebraic integer satisfying this congruence and write S for the set of primes
dividing m and t together with the infinite places. By Dirichlet’s theorem
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on primes in arithmetic progression (or perhaps a weaker result) we may
assume that |S| is bounded by a constant only depending on K.

Propositions 1.2–1.4 and Tate local duality (see §2.1) now give

(a) If p 6∈ S then im δα,p ⊂ O∗p/O∗mp and im δα̂,p ⊃ Hom(Gp/Ip,Z/mZ).
(b) If p ∈ S1 ∪ S2 then im δα,p = 1 and im δα̂,p = Hom(Gp,Z/mZ).
(c) If p ∈ S1 then im δβ,p = K∗p/K

∗m
p and im δβ̂,p = 0.

(d) If p ∈ S2 then im δβ,p = 1 and im δβ̂,p = Hom(Gp,Z/mZ).

We make two claims, namely that the groups X/(X ∩ S(α̂)(E′/K)) and
X ∩αS(m)(E/K) are bounded by constants only depending on K. By (a),
(b) and Lemma 1.8(iii) we have

X ∩ S(α̂)(E′/K) = { x ∈ X |xv ∈ im δα̂,v for all places v }
⊃ { x ∈ X |xv = 0 for all v ∈ S }.

Our first claim follows from our assumption on |S|.
Now let Y = α−1X ∩ S(m)(E/K). By (a) we know that S(α)(E/K) is

unramified outside S. Then (13) and Lemma 1.8(iii) show that Y is unram-
ified outside S ∪ S2. Next (c) and Lemma 1.8(ii) give S(β̂)(E/K)∩X = 0.
From the exact sequence (14) we learn that Y injects into S(β)(E′′/K).
But (d) tells us that this Selmer group is unramified at all primes in S2.
We deduce that Y is unramified outside S. So Y is bounded by a constant
only depending on K. Our second claim follows.

Finally the cokernel of the map S(m)(E/K)→ S(α̂)(E′/K) injects into
X(E′/K) and we have shown that this cokernel may contain arbitrarily
many elements of order m. This completes the proof of the theorem.

Remark. To establish the existence of arbitrarily large Selmer groups,
a lesser assumption on the torsion is required. In particular for m = 3, 5
or 7 we have X1(m)'P1, and S(m)(E/K) may become arbitrarily large.
We refer to [F1], [Kl] or [Sc2] for details. Kloosterman [Kl] also treats the
case m = 13 using the fact X0(13)'P1.

2. THE CASSELS-TATE PAIRING

We give a survey of duality results for elliptic curves, and in particular
the Cassels-Tate pairing. One reason for including this material is that we
could not find a clear reference for our Theorem 3 in the existing literature,
although a proof conditional on the finiteness of X appears in the work
of Cassels [CaVIII, Corollary to Theorem 1.2]. In a number of proofs it is
tacitly assumed that the divisors chosen have disjoint supports. We also
leave it to the reader to check that certain a priori infinite sums are in fact
finite.
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2.1. Local duality theorems

Let K be a local field. Let M be a finite GK-module. We define the
Cartier dual M∨ = Hom(M,K

∗
). The (local) Tate pairing

H1(K,M)×H1(K,M∨)→ Q/Z (15)

is defined as the cup product map induced by the canonical pairing M ×
M∨ → K

∗
followed by the invariant map Br(K)→ Q/Z. As a special case

we take φ : C → D an isogeny of elliptic curves and M = C[φ].

H1(K,C[φ])×H1(K,D[φ̂])→ Q/Z (16)

In terms of cocycles a = {aσ}σ and b = {bσ}σ this pairing is given by

(a, b) 7→ inv{eφ(aσ, σbτ )}σ,τ
Now let E be an elliptic curve over K. Taking Galois cohomology of the
exact sequence

0→ K(E)∗/K
∗ div−→ Div0(E) sum−→ E → 0

we obtain

H1(K,E) δ−→ H2(K,K(E)∗/K
∗
) div−→ H2(K,Div0(E)).

There is another local pairing due to Tate

E(K)×H1(K,E)→ Q/Z ; (x, y) 7→ −invf(x) (17)

where sum(x) = x and f = δ(y). Weil reciprocity [Si1, Exercise 2.11] shows
that this pairing is well defined. Indeed if x = div(g) for some g in K(E),
then

f(x) = f(div g) = g(div f) = 0.

Proposition 2.1. The Tate pairings (16) and (17) are compatible with
the Kummer exact sequence (2). In other words, if a ∈ H1(K,C[φ]) and
b ∈ H1(K,D[φ̂]) with δφ : x 7→ a and ιφ̂ : b 7→ y then (a, b) = (x, y).

Proof. Let b = {bσ}σ and let x, bσ ∈ Div0(D) with sum(x) = x and
sum(bσ) = bσ. We choose rational functions fσ,τ ∈ K(D) and gσ ∈ K(C)
with

div(fσ,τ ) = σbτ − bστ + bσ div(gσ) = φ∗bσ

and scale such that fσ,τ ◦φ = (σgτ ) g−1
στ gσ. We also choose x1 ∈ Div0(C)

with φ x1 = x. Then a = {aσ}σ with aσ = sum(σx1 − x1). The product of
the cocycles

eφ(aσ, σbτ ) =
σ(gτ x1)
(σgτ ) x1

and fσ,τ (x) = (fσ,τ ◦φ) x1 =
(σgτ ) x1 gσ x1

gστ x1

is a coboundary. Thus (a, b) = (x, y) as required.
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Proposition 2.2. The Tate pairings (15) and (17) are2 non-degenerate.

Proof. This is due to Tate [T1], [T2]. See [Si1, §17] for a detailed
statement. In fact the non-degeneracy of (15) follows from local class field
theory [Se1, XIV]. The non-degeneracy of (17) may then be deduced using
Proposition 2.1 and a counting argument [Mi, I.3.2].

Lemma 2.3. Let K be a finite extension of Qp. Let M be an unramified
finite GK-module of order prime to p. Then the unramified subgroups are
exact annihilators with respect to the Tate pairing (15).

Proof. See [Se2, II.5.5].

The next result is often referred to simply as Tate local duality.

Lemma 2.4. Let K be a local field. Let φ : C → D be an isogeny of
elliptic curves over K. Then im δφ and im δφ̂ are exact annihilators with
respect to the Tate pairing.

Proof. This follows easily from Propositions 2.1 and 2.2.

We end this section with one global result. For K a number field there
is a well known exact sequence

0−→Br(K)−→ ⊕v Br(Kv)
∑

invv−→ Q/Z−→ 0. (18)

It follows that all pairings discussed in this section satisfy a product for-
mula. For example if a ∈ H1(K,C[φ]) and b ∈ H1(K,D[φ̂]) then we have∑

v(av, bv)v = 0 (19)

where (·, ·)v is the Tate pairing (16) at Kv.

2.2. Global duality theorems

From now on let K be a number field. Let E/K be an elliptic curve. We
review the pairing on X(E/K) due to Cassels [CaIV]. We do not discuss
the extension to abelian varieties, due to Tate, details of which may be
found in [Mi].

Theorem 2. There is an alternating bilinear pairing

X(E/K)×X(E/K)→ Q/Z (20)

whose kernel is the subgroup of infinitely divisible elements.

We outline two different definitions of the pairing. In the language
of [PS] these are the homogeneous space definition and the Weil pairing
definition. Both appear in Cassels’ original paper [CaIV].

2In the caseK = R or C we must replace E(K) by its group of connected components.
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Homogeneous space definition. Let x, y ∈ X(E/K). Then x corre-
sponds to a torsor T under E. There is an exact sequence of GK-modules

0−→K
∗−→K(T )∗ div−→ Div0(T ) sum−→ E−→ 0.

Splitting into short exact sequences and passing to the long exact sequence
of Galois cohomology we obtain a diagram, which we consider both in its
own right and with K replaced by Kv

Br(K) = H2(K,K
∗
)yι

H2(K,K(T )∗)y
H1(K,Div0(T )) sum−→ H1(K,E) δ−→ H2(K,K(T )∗/K

∗
)y

H3(K,K
∗
) = 0.

We choose f ∈ H2(K,K(T )∗) such that f and y have the same image
in H2(K,K(T )∗/K

∗
). Since y is locally trivial fv = ι(εv) for some εv ∈

Br(Kv). We define

〈x, y〉 =
∑
v invv(εv). (21)

Remarks. (i) The global element f exists since H3(K,K
∗
) = 0. Cas-

sels [CaIV, §3] avoids appealing to this fact by relaxing the condition that
f is represented by a cocycle.
(ii) The definition is independent of the choice of f by (18).
(iii) Since T (Kv) 6= ∅ the map ι : Br(Kv)→ H2(Kv,Kv(T )∗) has a section.
It follows that our choice of element εv is forced.
(iv) Linearity in the second argument is clear. For linearity in the first
argument we refer to Cassels [CaIV, §3].
(v) The pairing is alternating, i.e. 〈x, x〉 = 0 for all x ∈X(E/K). To see
this let T as above and pick P ∈ T (K). Then the cocycle σP − P defines
an element x of H1(K,Div0(T )) with sum(x) = x. The exact row of our
diagram shows δ(x) = 0. It follows that 〈x, x〉 = 0 as claimed.

The non-degeneracy statement of Theorem 2 follows from

Theorem 3. Let φ : C → D be an isogeny of elliptic curves over K.
Then there is a map φ : X(C/K)→X(D/K), and x ∈X(D/K) belongs
to the image of φ if and only if 〈x, y〉 = 0 for all y ∈X(D/K)[φ̂].

At this point we need an alternative definition of the pairing.
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Weil pairing definition. Let x, y ∈X(D/K). Suppose that x lifts to
an element x1 ∈ H1(K,C) with φx1 = x, and that y ∈X(D/K)[φ̂]. Since
x is locally trivial we may choose ξv ∈ H1(Kv, C[φ]) such that −ξv and x1

have the same image in H1(Kv, C). Let b ∈ S(φ̂)(D/K) with ιφ̂ : b 7→ y.
We define

〈x, y〉 =
∑
v(ξv, bv)v (22)

where (·, ·)v is the local Tate pairing (16).

Remarks. (i) The definition is independent of the choices of x1 and b
by the product formulae for the pairings (16) and (17) respectively.
(ii) The definition is independent of the choice of ξv by Tate local duality.
(iii) Linearity in both arguments is clear.
(iv) If x = φx1 for some x1 ∈X(C/K) it is clear that 〈x, y〉 = 0.

Proposition 2.5. The global pairings (21) and (22) are compatible.

Proof. Let x, x1, y, and b be as in the Weil pairing definition. Then x1

and x correspond to torsors T1 and T under C and D respectively. There
is a commutative diagram

T1
φ−→ T

|o |o ↘

C
φ−→ D

φ̂−→ C

with non-vertical maps defined over K. Let b = {bσ}σ and let bσ ∈ Div0(T )
with sum(bσ) = bσ. We choose rational functions fσ,τ ∈ K(T ) and gσ ∈
K(T1) with

div(fσ,τ ) = σbτ − bστ + bσ div(gσ) = φ∗bσ

and scale such that fσ,τ ◦φ = (σgτ ) g−1
στ gσ. At each place v we choose P ∈

T (Kv) and P1 ∈ T1(Kv) with φ(P1) = P . Then the cocycle σP1−P1 defines
an element −ξv in H1(Kv, C[φ]). Following the proof of Proposition 2.1
the cocycles

eφ(σP1 − P1, σbτ )−1 and fσ,τ (P ) = (fσ,τ ◦φ)P1

are cobounding. Thus (ξv, bv)v = εv for all v and the pairings (21) and (22)
agree.

For the proof of Theorem 3 we need an approximation theorem in the
style of [CaIV, Lemma 6.2]. We temporarily suspend our convention that
(∗)v is the local object corresponding to (∗).
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Lemma 2.6. Let M be a finite GK-module. For each place v we fix
Wv(M) ⊂ H1(Kv,M) and write Wv(M∨) ⊂ H1(Kv,M

∨) for its exact
annihilator with respect to the Tate pairing. Suppose that Wv(M) and
Wv(M∨) are the unramified subgroups for all but finitely many v. Then
given ξv ∈ H1(Kv,M) there exists ξ ∈ H1(K,M) with ξ ≡ ξv mod Wv(M)
for all v, if and only if
(i) ξv is unramified for all but finitely many v,
(ii)

∑
v(ξv, bv)v = 0 for all b ∈ H1(K,M∨) with bv ∈Wv(M∨).

Proof. Necessity of (i) and (ii) is clear, the latter from the product
formula. Sufficiency is a consequence of the Cassels-Poitou-Tate exact se-
quence. We refer to [CS, §1] or [Mi, I.4.10, I.6.15] for details.

We now give the proof of Theorem 3 under the assumption

x ∈X(D/K) lifts to x1 ∈ H1(K,C) with φx1 = x. (23)

Under this assumption, x is in the image of φ : X(C/K) → X(D/K) if
and only if we can find ξ ∈ H1(K,C[φ]) such that x1 + ιφ(ξ) is everywhere
locally trivial. We choose local elements ξv ∈ H1(Kv, C[φ]) such that −ξv
and x1 have the same image in H1(Kv, C). Lemma 2.6 with M = C[φ]
and Wv(M) = im δφ,v tells us that the ξv may be chosen coming from a
global element ξ ∈ H1(K,C[φ]) if and only if∑

v(ξv, bv)v = 0 for all b ∈ S(φ̂)(D/K). (24)

According to the Weil pairing definition, (24) is precisely the condition
〈x, y〉 = 0 for all y ∈X(D/K)[φ̂]. This completes the proof of Theorem 3
under the assumption (23).

The existence of a global lifting (23) is assured if for M = C[φ] the
natural map

H2(K,M)−→
∏
vH

2(Kv,M) is injective. (25)

Indeed there is an exact sequence

H1(K,C)−→H1(K,D)−→H2(K,C[φ])

and by assumption x is everywhere locally trivial.

Lemma 2.7. Let M = C[φ] with either deg φ = p or φ = [p] for p a
prime. Then the Hasse Principle (25) holds.

Proof. First suppose deg φ = p. A field extension of degree prime to
p reduces us to the case M = µp and we are done by (18). The case
φ = [p] is due to Tate [CaIV, Lemma 5.1]. See [Mi, I.9.2] for a more
general statement. A counter-example for arbitrary finite M may be found
in [Se2, III.4.7].
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We now have a proof of Theorem 3 in the case φ = [p]. As Cassels
[CaIV, §4] explains, this is sufficient to prove Theorem 2. To complete the
proof of Theorem 3 we argue by induction on the degree of the isogeny φ.
We factor φ = φ1φ2 with φ2 satisfying one of the conditions of Lemma 2.7.
Say

C
φ2−→ E

φ1−→ D.

We are given x ∈ X(D/K) with 〈x, y〉 = 0 for all y ∈ X(D/K)[φ̂].
Since deg φ1 < deg φ our induction hypothesis shows that there exists x1 ∈
X(E/K) with φ1x1 = x. Then by Lemma 2.7 there exists x2 ∈ H1(K,C)
with φ2x2 = x1. Thus φx2 = x. Our earlier proof of Theorem 3 under the
assumption (23) now applies.

Lemma 2.8. Let φ : C → D be an isogeny of elliptic curves over K.
Then the maps φ : X(C/K) →X(D/K) and φ̂ : X(D/K) →X(C/K)
are adjoints with respect to the Cassels-Tate pairing.

Proof. See [CaVIII, §2] where this result is readily deduced from the
homogeneous space definition. This lemma gives yet another proof of the
easier implication of Theorem 3.

Remark. The Weil pairing definition may be used more generally by
relaxing the condition that x1 is represented by a cocycle. See [Mi, I.6.9] or
[PS, §12.2] for details. If we then check that the definition does not depend
on our choice of isogeny φ, we may avoid the homogeneous space definition
altogether.

Remark. The homogeneous space definition has been used for explicit
computations by McGuinness [McG]. The Weil pairing definition has been
used by McCallum [McC] and Beaver [Be] in the split torsion case. Variants
of the Weil pairing definition have been used by Cassels [CaI], [Ca98] to
treat diagonal cubics and 2-descents respectively.

2.3. Split torsion and local pairings

We write the Cassels-Tate pairing in a form expounded by Cassels [CaI],
[Ca98], and then recall from [McC] a condition for this pairing to be written
as a sum of local pairings.

Proposition 2.9. (i) Let φ : C → D be an isogeny of elliptic curves
over K with m = deg φ. There is an alternating bilinear pairing

S(φ̂)(D/K)× S(φ̂)(D/K)→ Q/Z (26)

whose kernel is precisely the image of S(m)(C/K).
(ii) If the exact sequence of Galois modules 0→ C[φ]→ C[m]→ D[φ̂]→ 0
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splits then the global pairing (26) is a sum of local pairings

〈·, ·〉φ̂,v : im δφ̂,v × im δφ̂,v → Q/Z. (27)

Proof. (i) The Cassels-Tate pairing on X(D/K)[φ̂] lifts to a pairing on
S(φ̂)(D/K). The description of the kernel is immediate from Theorem 3.
(ii) Let s be a Galois equivariant section of the map φ : C[m] → D[φ̂].
Then s may be used to make the lifting (23) automatic. Working over the
local field Kv we drop the subscripts v from our local connecting maps.
There is a commutative diagram

C(Kv)
φ−→ D(Kv)

δφ−→ H1(Kv, C[φ])
||

yφ̂ yι
C(Kv)

[m]−→ C(Kv)
δm−→ H1(Kv, C[m])yφ ||

yφ
D(Kv)

φ̂−→ C(Kv)
δ
φ̂−→ H1(Kv, D[φ̂]).

(28)

Given a, b ∈ im δφ̂ we choose P ∈ C(Kv) with δφ̂(P ) = a. Then there exists
ξ ∈ H1(Kv, C[φ]) with δm(P ) = ι(ξ) + s(a). We define

〈a, b〉φ̂,v = (ξ, b)v (29)

where (·, ·)v is the Tate pairing. By Tate local duality this definition does
not depend on the choices of P and ξ. The Weil pairing definition shows
that the Cassels-Tate pairing on S(φ̂)(D/K) is the sum of these local pair-
ings.

Since im δm ⊂ H1(Kv, C[m]) is an isotropic subspace with respect to
the Tate pairing, we find

Lemma 2.10. The local pairings 〈·, ·〉φ̂,v are skew-symmetric.

Proof. See [McC, Lemma 1.10].

In the setting of Proposition 2.9(ii) we have C[m] = C[φ] × sD[φ̂]. It
is helpful to make some changes to our notation. We write α : E → E′

instead of φ : C → D, and β̂ : E → E′′ for the isogeny with kernel sD[φ̂].
Then it is natural to identify E[α] = E′′[β] = M (say), E[β̂] = E′[α̂] = M∨

and E[m] = M ×M∨.
Again we work over the local field Kv and drop the subscripts v from

our local connecting maps. From the commutative diagram

E(Kv)
α−→ E′(Kv)

δα−→ H1(Kv,M)yβ̂ yα̂ ||
E′′(Kv)

β−→ E(Kv)
δβ−→ H1(Kv,M)yδ

β̂

yδα̂
H1(Kv,M

∨) = H1(Kv,M
∨)

(30)
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it is clear that im δα ⊂ im δβ and im δβ̂ ⊂ im δα̂. The next proposition
shows that im δα = im δβ if and only if im δβ̂ = im δα̂. We call v a switching
place if these equalities do not hold. For all but finitely many primes p we
know that im δα = im δβ is the unramified subgroup of H1(Kp,M). So the
set of switching places is finite.

Lemma 2.11. (i) The subgroup im δm ⊂ H1(Kv, E[m]) may be viewed
as a relation on H1(Kv,M)×H1(Kv,M

∨). It induces an isomorphism

im δβ/ im δα ' im δα̂/ im δβ̂ . (31)

(ii) The Tate pairing (15) induces a non-degenerate pairing

(·, ·)v : im δβ/ im δα × im δα̂/ im δβ̂ → Q/Z.

Combining (i) and (ii) we obtain the local pairings of Proposition 2.9. More
precisely, if we write both the isomorphism (31) and its inverse as a 7→ a,
then 〈a, b〉α̂,v = (a, b)v and 〈a, b〉β,v = −(a, b)v. In particular the switching
places are precisely the places for which the local pairings are non-zero.

Proof. (i) The diagram (30) shows

im δβ/ im δα ' E(Kv)
α̂E′(Kv)βE′′(Kv)

' im δα̂/ im δβ̂ .

(ii) The non-degeneracy is a consequence of Tate local duality.
The description of 〈·, ·〉α̂,v follows from the proof of Proposition 2.9 on
noting that our identifications suppress the maps ι and s. The description
of 〈·, ·〉β,v follows by the symmetry properties of the pairings. The final
statement is clear.

Remark. By Lemma 2.10 we know that im δβ/ im δα has order either
a square or twice a square. Taking M = µ4 and following the proof of
Proposition 1.7 (with µ4 6⊂ Kv) we may give examples of the latter. We
deduce that the local pairings need not be alternating.

Following Beaver [Be] we give a formula for the local pairings in terms
of the Hilbert norm residue symbol. We suppose

M 'M∨'Z/mZ as Gv-modules. (32)

In particular µm ⊂ Kv. We fix P ∈ M and Q ∈ M∨ with em(P,Q) = ζ.
The maps x 7→ em(P, x) and x 7→ em(Q, x) induce isomorphisms

jP : H1(Kv,M
∨) ' K∗v/K

∗m
v

jQ : H1(Kv,M) ' K∗v/K
∗m
v .

Let a ∈ H1(Kv,M) and b ∈ H1(Kv,M
∨). By [McC, Lemma 2.7]

(a, b)v = − Indζ(jQa, jP b)v (33)
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where (·, ·)v on the left is the Tate pairing and (·, ·)v on the right is
the Hilbert norm residue symbol. Under the assumption (32) we have
H1(Kv, E[m]) = Hom(Gv, 〈P,Q〉).

Proposition 2.12. Let v be a place of K satisfying (32) and

im δm = Hom(Gv, 〈rP + sQ〉) (34)

for some (r : s) ∈ P1(Z/mZ). Then
(i) im δα̂ = Hom(Gv, 〈sQ〉) and 〈sa, sb〉α̂,v = rs Indζ(jPa, jP b)v
(ii) im δβ = Hom(Gv, 〈rP 〉) and 〈ra, rb〉β,v = −rs Indζ(jQa, jQb)v.

Proof. (i) We compute

〈sa, sb〉α̂,v = (sa, sb)v by Lemma 2.11
= − Indζ(jQ(sa), jP (sb))v by (33)
= Indζ(jP (ra), jP (sb))v by (34)
= rs Indζ(jPa, jP b)v.

(ii) This follows on interchanging P and Q. Although both pairings are
skew symmetric a minus sign is introduced since we have taken em(P,Q) =
ζ.

2.4. A description of the ratio (r : s).

Let m = 3, 4 or 5. Let E/K be an elliptic curve with E[m]'µm ×
Z/mZ. In the notation of §1.3 we have E = Et for some t ∈ K. In the
notation of §2.3 we have taken M = µm. We aim to compute the local
pairings 〈·, ·〉α̂,v and 〈·, ·〉β,v.

We treat an important special case, namely when v = p is a prime with
Norm p ≡ 1 (mod m), equivalently p -m and µm ⊂ Kp. For these primes
our hypothesis (32) is satisfied. In fact E has split multiplicative reduction
at p. As Beaver [Be] explains the Tate parametrisation may then be used
to establish (34). Instead we make use of the action of PSL2(Z/mZ) on
X(m). Our method gives a simple way of computing the ratio (r : s).

Proposition 2.13. Let (E,P,Q) = (Et, Pt, Qt) with t ∈ K. Let p be
a prime of bad reduction for E with Norm p ≡ 1 (mod m). Then hypothe-
ses (32) and (34) are satisfied for the following values of (r : s)

m = 3
{
t ≡ 0 (mod p)
t ≡ ζν (mod p)

(1 : 0)
(ν : 1)

m = 4

 t ≡ 0 (mod p)
t ≡ iν (mod p)
t ≡ ∞ (mod p)

(1 : 0)
(ν : 1)
(1 : 2)

m = 5
{
t ≡ 0,∞ (mod p)
t ≡ ζνφ, ζνφ (mod p)

(1 : 0)
(ν : 1).
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Proof. Since p -m the cusps of X(m) are distinct when we reduce mod
p. We first consider the case t ≡ 0 (mod p). Proposition 1.7 and Tate local
duality give im δα,p = K∗p/K

∗m
p and im δα̂,p = 0. The diagram (28) shows

that there is an exact sequence

0−→ im δα,p−→ im δm,p−→ im δα̂,p−→ 0.

We deduce im δm,p = Hom(Gp, 〈P 〉). So the hypothesis (34) is satisfied
with (r : s) = (1 : 0). We use the action of PSL2(Z/mZ) on X(m) to

extend to the general case. Indeed if
(
a b
c d

)
: t1 7→ t2, then in an obvious

notation (
d −c
−b a

)(
r1

s1

)
=
(
r2

s2

)
.

It only remains to describe the action of PSL2(Z/mZ) on the cusps, and
this may be read off from Proposition 1.6.

Remark. The last two propositions give an alternative and perhaps
more natural proof of Proposition 1.7.

Corollary 2.14. Let (E,P,Q) = (Et, Pt, Qt) with t ∈ K. Let p be a
prime with Norm p ≡ 1 (mod m). Suppose t ≡ ζν (mod p) (for m = 3,
4), respectively t ≡ ζνφ, ζνφ (mod p) (for m = 5), for some ν prime to m.
Then

〈a, b〉α̂,p = ν Indζ(jPa, jP b)p (35)
〈a, b〉β,p = −1/ν Indζ(jQa, jQb)p. (36)

Proof. This is the case (r : s) = (ν : 1) of the last two propositions.

Remark. Beaver [Be] obtained the formula (36) in the case m = 5. In
her notation λv = 1/ν is computed in terms of the Tate parametrisation.

We give an alternative approach to Corollary 2.14 that avoids both
the Tate parametrisation and the action of PSL2(Z/mZ). Putting our
equations for E = Et into Weierstrass form and using Lemma 1.1 we blast
out the identities

jP δα̂(Q) =


ζ(t− ζ)(t− ζ2)2 m = 3
−(t− i)(t+ 1)2(t+ i)3 m = 4∏
ν

(
(t− ζνφ)/(t− ζνφ)

)ν
m = 5

jQδβ(Q)−1 =

 t(t2 + t+ 1)/3 m = 3
t(t2 + 1)/2 m = 4
tf(t)/g(t) m = 5
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where f(t) and g(t) are given by (4). For ν as in Corollary 2.14 it follows

ordp(jQδβ(Q)) ≡ −ν ordp(jP δα̂(Q)) (mod m). (37)

We check (35) in the case a = δα̂(Q) and ordp(jP b) ≡ 0. Indeed

〈δα̂(Q), b〉α̂,p = (δβ(Q), b)p by Lemma 2.11
= − Indζ(jQδβ(Q), jP b)p by (33)
= ν Indζ(jP δα̂(Q), jP b)p by (37).

Similarly we may check (36) in the case ordp(jQa) ≡ 0 and b = δβ(Q).

〈a, δβ(Q)〉β,p = −(a, δα̂(Q))p by Lemma 2.11
= Indζ(jQa, jP δα̂(Q))p by (33)
= −1/ν Indζ(jQa, jQδβ(Q))p by (37).

Under the hypotheses of Corollary 2.14 the pairings 〈·, ·〉α̂,v and 〈·, ·〉β,v
are, at the level of abelian groups, just skew symmetric pairings

(Z/mZ)2 × (Z/mZ)2 → Q/Z.

Thus for m odd the formulae (35) and (36) may be established by check-
ing at a single pair of non-trivial values. The above calculations do this
whenever ordp(jQδβ(Q)) 6≡ 0 (mod m).

2.5. An example without split torsion

We compute the Cassels-Tate pairing for one of the curves found in [F1].
This section and §3 may be read in either order.

Let m = 5 and λ = 100/9. The curve Cλ defined in §1.1 is labelled
570L4 in Cremona’s tables [Cr1]. In [F1] we saw

S(φ)(Cλ/Q)' (Z/5Z)3 and S(φ̂)(Dλ/Q) = 0.

Descent by 2-isogeny [Cr1], or equally an L-value computation, shows that
Cλ(Q) has rank 0. We were able to deduce X(Cλ/Q)[5]' (Z/5Z)2. In
this section we prove

Proposition 2.15. Let m = 5 and λ = 100/9. Then S(φ)(Cλ/Q) ⊂
Q∗/Q∗5 is generated by the primes 2, 3 and 5. The Cassels-Tate pairing
on this Selmer group is given by

2 3 5
2 0 3 3
3 2 0 3
5 2 2 0
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Not only does this give another proof that Cλ(Q) has rank 0, but we
also learn that X(Cλ/Q) contains no element of order 25.

The idea is that we use our work in the split torsion case to give a for-
mula for the Cassels-Tate pairing over a certain subfield F ⊂ Q(Dλ[5]). We
must therefore explain the relationship between the Cassels-Tate pairing
over Q and the Cassels-Tate pairing over F .

Proposition 2.16. Let L/K be a finite extension of number fields. Let
E/K be an elliptic curve. Then the restriction map X(E/K)→X(E/L)
and the corestriction map X(E/L) →X(E/K) are adjoints with respect
to the Cassels-Tate pairing.

Proof. We recall [Se1, VII.7] that corestriction is the map on cohomol-
ogy corresponding to the norm in dimension 0. Let v be a place of K. For
any discrete GK-module A and any q ≥ 0 there is commutative diagram

Hq(L,A) −→ ⊕w|vHq(Lw, A)yCor
y∑Cor

Hq(K,A) −→ Hq(Kv, A)

Indeed for q = 0 this expresses a well-known property of the norm, and the
general case follows by dimension shifting. In particular the corestriction
map H1(L,E)→ H1(K,E) preserves local triviality. We obtain a map on
Tate-Shafarevich groups as claimed.

We give one further preliminary to our calculation. Let w|v be places
of L and K and let n = [Lw : Kv]. There are commutative diagrams

Br(Kv)
inv−→ Q/Z Br(Kv)

inv−→ Q/ZyRes
y×n xCor ||

Br(Lw) inv−→ Q/Z Br(Lw) inv−→ Q/Z.

The diagram on the left is well-known [CF, VI.1]. Since the restriction
map Br(Kv) → Br(Lw) is surjective and Cor ◦Res = n, the diagram on
the right is a formal consequence.

Now let x ∈X(E/K) and y ∈X(E/L). Following the homogeneous
space definition, x corresponds to a torsor T defined over K. Then Resx
corresponds to T viewed as a curve over L. We choose f ∈ H2(L,K(T )∗)
such that f and y have the same image in H2(L,K(T )∗/K

∗
). Writing

fw = ι(εw) we have (Cor f)v = ι
∑
w|v Cor εw. Finally we compute

〈x,Cor y〉 =
∑
v inv(

∑
w|v Cor εw) =

∑
w inv(εw) = 〈Resx, y〉.

We return to our numerical example. By Lemma 1.1 and (7) we have
Q(Dλ[5]) = Q(µ5,

5
√
η(λ)). We put τ = 5

√
η(λ) and t = (φτ + 1)/(τ − φ).

Then t is a root of tf(t)−λg(t) = 0 where f(t) and g(t) are the quartics (4).
We work over F = Q(t), a non-Galois degree 5 subfield of Q(Dλ[5]).
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Lemma 2.17. Let λ = 100/9. Then

S(φ)(Cλ/Q) = { θ ∈ Q∗/Q∗5 | ordp(θ) ≡ 0 (mod 5) for all p 6= 2, 3, 5}
S(φ)(Cλ/F ) = { θ ∈ F ∗/F ∗5 | ordp(θ) ≡ 0 (mod 5) for all p - 2, 3, 5}.

The Cassels-Tate pairings on these Selmer groups are related via

〈NormF/Q x, y〉Q = 〈x, y〉F for x ∈ S(φ)(Cλ/F ), y ∈ S(φ)(Cλ/Q).

Proof. The description of the Selmer groups is immediate from Propo-
sition 1.4. Let us note that λ2 − 11λ − 1 = 19/81 and that O∗p/O∗5p is
trivial for p | 19. The relationship between the Cassels-Tate pairings is a
restatement of Proposition 2.16.

We are fortunate in our example to find that t, t−1 and t−2 belong to
S(φ)(Cλ/F ) and that their norms generate S(φ)(Cλ/Q). So it only remains
to compute the Cassels-Tate pairing on S(φ)(Cλ/F ). The primes of Q(µ5)
above 2, 3 and 5 are (2), (3) and l = (1− ζ5). In each case η(λ) = (φ5λ+
1)/(λ−φ5) is locally a 5th power. So these primes split in Q(Dλ[5])/Q(µ5).
We label the primes upstairs

(2) = P0P1 . . .P4 with τ ≡ ζνφ (mod Pν)
(3) = Q0Q1 . . .Q4 with τ ≡ ζνφ (mod Qν)
l = L0 L1 . . . L4 with τ ≡ ζνφ (mod L2

ν).

Our treatment of the primes above 5 makes use of [CF, Exercise 2].

Lemma 2.18. Let (E,P,Q) = (Et, Pt, Qt) with t as above. The primes
Pν ,Qν ,Lν of Q(Dλ[5]) above 2, 3 and 5 satisfy the hypotheses (32) and (34)
with (r : s) = (−1 : ν).

Proof. We closely follow the proof of Proposition 2.13. Since (t) =
P2

0Q
−2
0 L2

0 the case ν = 0 may be deduced from Proposition 1.4. We then
use the action of Gal(Q(Dλ[5])/Q(µ5)) to extend to the general case. In
the notation of Proposition 1.6, S : τ 7→ t. So we obtain (r : s) = (−1 : ν)
rather than (ν : 1).

Lemma 2.19. The Cassels-Tate pairing on S(φ)(Cλ/F ) is given by

〈a, b〉 = Indζ(a, b)P1(a, b)Q1(a, b)L1 . (38)

Proof. As in §1.3 we identify φ : Cλ → Dλ with β : E′′ → E. We have
already seen

im δβ,p =
{
F ∗p /F

∗5
p if p |2, 3, 5

O∗p/O∗5p otherwise.

The Cassels-Tate pairing is a sum of local pairings 〈·, ·〉β,p. By Lemmas 2.10
and 2.11 we need only consider the local pairings at the primes above 2, 3
and 5. We have (2) = pp′ with p = P0 and p′ = P1P2P3P4. Since
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ordp(t) 6= 0 we know that im δα,p = Fp/F
∗5
p and so p is not a switching

prime. On the other hand p′ splits in Q(Dλ[5])/F . By Proposition 2.12(ii)
we have

〈a, b〉β,p′ = 〈a, b〉β,P1 = Indζ(a, b)P1

where in accordance with Lemma 2.17 we have suppressed the map jQ.
Repeating for the primes above 3 and 5 we arrive at the formula (38).

Finally we use the congruences

τ ≡ ζφ (mod P1) =⇒ t ≡ ζ4φ (mod P1)
τ ≡ ζφ (mod Q1) =⇒ t ≡ ζ4φ (mod Q1)
τ ≡ ζφ (mod L2

1) =⇒ t ≡ ζ4φ (mod L6
1)

to reduce the proof of Proposition 2.15 to a calculation of Hilbert norm
residue symbols at the primes of Q(µ5) above 2, 3 and 5. We assume
that the reader is familiar with the rules for manipulating these symbols,
in particular the product formula, the relationship with the power residue
symbol, and Euler’s criterion. A good reference is [CF, Exercises 1 and 2].
We further make the observation that if a ≡ 1 (mod l2) then (a, b)l = 1 for
all b ∈ Z∗5. This observation is useful since φ ≡ φ (mod l2).

(i) NormF/Q(t) = 100/9. We have

〈100/9, b〉 = Indζ(ζ4φ, b)2(ζ4φ, b)3(ζ4φ, b)l.

Since ζ4φ and ζ4φ are units it follows

〈100/9, 2〉 = 〈100/9, 3〉 = 〈100/9, 5〉 = 0. (39)

(ii) NormF/Q(t− 1) = 1/9. We have

〈1/9, b〉 = Indζ(ζ4φ− 1, b)2(ζ4φ− 1, b)3(ζ4φ− 1, b)l.

Now ζ4φ− 1 = −(2 + ζ3) is a prime above 11, whereas ζ4φ− 1 = −ζφ is a
unit. We compute

〈1/9, 2〉 = Indζ(2/2 + ζ3) = 1
〈1/9, 3〉 = 0
〈1/9, 5〉 = Indζ(5/2 + ζ3) = 4.

(40)

(iii) NormF/Q(t− 2) = 2/9. We have

〈2/9, b〉 = Indζ(ζ4φ− 2, b)2(ζ4φ− 2, b)3(ζ4φ− 2, b)l.

Now ζ4φ−2 = −(3+ζ3) is a prime above 61, whereas ζ4φ−2 = −ζφ(2+ζ3)
is a prime above 11. We compute

〈2/9, 2〉 = Indζ(2/3 + ζ3) = 1
〈2/9, 3〉 = Indζ(3/2 + ζ3) = 3
〈2/9, 5〉 = Indζ(5/3 + ζ3) = 2.

(41)
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Proposition 2.15 now follows from (39), (40) and (41) together with
linearity of 〈·, ·〉 in the first argument. In fact our calculations are overkill,
since we know ahead of time that 〈·, ·〉 is skew-symmetric and that λ =
100/9 lies in the kernel. So it would have sufficed to compute a single
non-zero value of the pairing.

Remark. The Hasse norm theorem guarantees that the elements of
S(φ)(Cλ/Q) are norms from F ∗/F ∗5. However we cannot always expect
the elements upstairs to belong to S(φ)(Cλ/F ). So although the above
method applies to several more of the examples in [F1], including some
with m = 7, we do not claim that it is a general method. Imposing local
conditions on the elements upstairs is also undesirable for computations.
By comparison with [CaI, Appendix B] we believe that there must be a
more general formula for the Cassels-Tate pairing on S(φ)(Cλ/Q) that does
not rely on Proposition 2.16.

3. EXAMPLES OVER Q

Let E/Q be an elliptic curve with E[m]'µm × Z/mZ as a Galois
module. We write

E′′
β−→ E

α−→ E′

for the isogenies with E[α] = E′′[β] = µm and E′[α̂] = E[β̂] = Z/mZ. We
may estimate the Mordell-Weil rank using either (i) the pair of isogenies α
and α̂, or (ii) the pair of isogenies β and β̂, or (iii) the multiplication-by-m
map on E. Theorem 4 below makes these estimates explicit in the cases
m = 3 and 5.

The reader will notice that we have dropped from discussion the case
m = 4. We believe that the analogue of Theorem 4 in that case would
be considerably more complicated. Not least, a proper treatment would
need to explain the relationship between the Selmer groups attached to
many different isogenies. Let us also note that the elliptic curves E/Q
with E[4]'µ4 × Z/4Z are just rather special cases of (1).

3.1. Statement of the main theorem

Let m = 3 or 5. Let E/Q be an elliptic curve with E[m]'µm×Z/mZ.
Then E = Et for some t ∈ Q. We recall from §1.3 that Et has equations

m = 3 { t(x3
0 + x3

1 + x3
2)− 3x0x1x2 = 0 } ⊂ P2

m = 5 { tx2
ν + xν−1xν+1 − t2xν−2xν+2 = 0 } ⊂ P4

(42)

with 0 = (0 : 1 : −1) and 0 = (0 : t : 1 : −1 : −t) respectively. Alternatively,
an equation for Et in Weierstrass form is given by substituting λ = t3/27,
respectively λ = t5, into the equations for Cλ appearing in §1.1.
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In the case m = 3 the modular curve X(3) has cusps at t = 0, 1, ζ, ζ2.
For t 6= 0, 1 a rational number we define finite disjoint sets of rational
primes

P = { p prime | ordp(t/3) > 0 }

Q =
{
p prime

∣∣∣∣ t2 + t+ 1 ≡ 0 (mod p) and p ≡ 1 (mod 3)
or p = 3 and ord3(t+ 1) 6= 0

}
R =

{
p prime

∣∣∣∣ t− 1 ≡ 0 (mod p) and p ≡ 1 (mod 3)
or p = 3 and t ≡ 1 or 4 (mod 9)

}
.

In the case m = 5 the modular curve X(5) has cusps at t = 0,∞, ζνφ, ζνφ,
where ν runs over Z/5Z. For t 6= 0 a rational number we define finite
disjoint sets of rational primes

P = { p prime | ordp(t) 6= 0 }

Q = { p prime | f(t)g(t) ≡ 0 (mod p) and p ≡ 1 (mod 5) }

R =
{
p prime

∣∣∣∣ t2 − t− 1 ≡ 0 (mod p) and p ≡ 1 (mod 5)
or p = 5 and t ≡ 3 (mod 5)

}
where f(t) and g(t) are the polynomials (4).

Each prime p ∈ Q ∪R satisfies either p ≡ 1 (mod m) or p = m. So we
may choose non-trivial characters

χp : (Z/pZ)∗ → Z/mZ, respectively χm : (Z/m2Z)∗ → Z/mZ.

We write [A,B] for the matrix with entries (χq(p))p∈A,q∈B and define

Ξα =
(
[P,Q] [P,R]

)
Ξβ =

(
[P,R]
[Q,R]

)

Ξm =

 0 [P,Q] [P,R]
−[P,Q]T [Q,Q]− [Q,Q]T [Q,R]
−[P,R]T −[Q,R]T 0

 .

It is to be understood that Ξm is a skew-symmetric matrix, and that the
diagonal entries are therefore zero.

Theorem 4. Let m = 3 or 5. Let E/Q be an elliptic curve with
E[m]'µm × Z/mZ. Then E'Et for some t ∈ Q and t determines ma-
trices Ξα, Ξβ and Ξm as above.
(i) The Selmer groups attached to α and α̂ are S(α)(E/Q)' kerL(Ξα) and
S(α̂)(E′/Q)' kerR(Ξα). The corresponding estimate for rankE(Q) is

rα = |P|+ |Q|+ |R| − 1− 2 rank(Ξα).
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(ii) The Selmer groups attached to β and β̂ are S(β)(E′′/Q)' kerL(Ξβ)
and S(β̂)(E/Q)' kerR(Ξβ). The corresponding estimate for rankE(Q) is

rβ = |P|+ |Q|+ |R| − 1− 2 rank(Ξβ).

(iii) Suppose that the characters χp for p ∈ Q are compatible in a sense
to be defined below. Then S(m)(E/Q)' ker(Ξm) and the corresponding
estimate for rankE(Q) is

rm = |P|+ |Q|+ |R| − 1− rank(Ξm).

Remarks. (i) The estimates rα, rβ and rm are upper bounds which,
granted the finiteness of X(E/Q), differ from rankE(Q) by an even inte-
ger. Some authors call these Selmer ranks.
(ii) The choice of characters χp does not affect the rank of Ξα or Ξβ , but
may affect the rank of Ξm. So in computing rm a further condition on the
characters is essential.
(iii) It is clear both from theory and our explicit recipes that rm ≤ min{rα, rβ}.
In §3.4 and §3.5 we give some examples where this inequality is strict.
(iv) The estimates rα, rβ and rm all have the same parity. By Tate’s algo-
rithm [Si2, IV.9] together with [R], [Co] it may be checked that the set of
places for which E has root number −1 is P ∪ Q ∪ R ∪ {∞}. The parity
result so obtained is a special case of a theorem of Monsky [Mo].
(v) In the case m = 5 we have Et'E−1/t. It is instructive to check that
replacing t by −1/t does not alter our estimates rα, rβ and rm.

We specify a preferred choice of characters χp for primes p ∈ Q. By
definition of Q we have either p ≡ 1 (mod m) or p = m = 3. If p ≡ 1
(mod m) we may choose3 ζ ∈ (Z/pZ)∗ an element of order m. According
as m = 3 or 5 we have either t ≡ ζν (mod p) or t ≡ ζνφ, ζνφ (mod p) for
some ν ∈ (Z/mZ)∗. The character

χp : (Z/pZ)∗ → Z/mZ ; x 7→ x(p−1)/m followed by ζν 7→ 1 (43)

is independent of our choice of ζ. If p = m = 3 we define

χ3 : (Z/9Z)∗ → Z/3Z ; 2 7→
{

1 if ord3(t+ 1) < 0
2 if ord3(t+ 1) > 0. (44)

The case p = m = 5 does not occur. We say that the characters χp for
p ∈ Q are compatible if they are all chosen to be the same scalar multiple
of the characters (43) and (44).

Remark. It would be interesting to understand the relationship be-
tween our Theorem 4 and [CSS, Proposition 1.2.3] which express the 2-
Selmer group for the curves (1) as the kernel of a (skew-)symmetric pairing.

3It is equivalent to choose a prime p of Q(µm) above p.
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3.2. Proof of the main theorem

We begin the proof of Theorem 4 by computing the images of the local
connecting maps attached to α : E → E′ and β : E′′ → E. Since m is odd
we need only concern ourselves with the finite places.

Proposition 3.1. Let E = Et for some t ∈ Q. Then

im δα,p =


Q∗p/Q

∗m
p if p ∈ P

Z∗p/Z
∗m
p if p 6∈ P ∪ Q ∪R

1 if p ∈ Q ∪R

im δβ,p =


Q∗p/Q

∗m
p if p ∈ P ∪Q

Z∗p/Z
∗m
p if p 6∈ P ∪ Q ∪R

1 if p ∈ R.
Proof. Assume first that p 6= m. We apply Propositions 1.2 and 1.4

for the two values of λ given in the table of §1.3, noting that Zp/Z∗mp is
trivial if p 6≡ 1 (mod m). The case p = m = 3 is postponed to §3.3. The
remaining details in the case m = 5 are recalled from [F1].

As in §1.3 we take (E,P,Q) = (Et, Pt, Qt), so that em(P,Q) = ζ and
Q ∈ E(Q). In the notation of §2.3 we have taken M = µm generated by
P and M∨ = Z/mZ generated by Q. The maps x 7→ em(Q, x) and Q 7→ 1
allow us to identify

H1(Q,M) = H1(Q, µm) = Q∗/Q∗m

H1(Q,M∨) = H1(Q,Z/mZ) = Hom(GQ,Z/mZ).
(45)

Let A and B be finite sets of rational primes and suppose that B consists
of primes p with p ≡ 1 (mod m) or p = m. We define

[A] = { θ ∈ Q∗/Q∗m | ordp(θ) ≡ 0 (mod m) for all p 6∈ A }
〈B〉 = {χ ∈ Hom(GQ,Z/mZ) |χp is unramified at all p 6∈ B }.

Then [A] has basisA. For each prime p ∈ B we choose p∨ ∈ Hom(GQ,Z/mZ)
a non-trivial element ramified only at p. By class field theory, specifically
the Kronecker-Weber theorem, such an element exists and is unique up to
scalars. Now 〈B〉 has basis {p∨|p ∈ B}.

By Proposition 3.1 and Tate local duality we have

S(α)(E/Q) = { x ∈ H1(Q,M) | xp ∈ im δα,p for all primes p }
= { x ∈ [P] | xp = 0 for all p ∈ Q ∪R }

S(α̂)(E′/Q) = { x ∈ H1(Q,M∨) | xp ∈ im δα̂,p for all primes p }
= { x ∈ 〈Q ∪R〉 | xp = 0 for all p ∈ P }.

As in [F1, §2.4] we identify S(α)(E/Q) and S(α̂)(E′/Q) as the left and right
kernels of a pairing

[P]× 〈Q ∪R〉 → Z/mZ
(x, y) 7→

∑
p∈Q∪R(x, y)p
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where (·, ·)p is the Tate pairing. In terms of the bases {p} and {p∨} this
pairing is represented by the matrix Ξα. We note that the arbitrary choice
of characters χp corresponds to the arbitrary choice of elements p∨. Specif-
ically we have taken

χp : Z∗p → Z/mZ ; x 7→ (x, p∨)p. (46)

Since E(Q)[α] = 0 and E′(Q)[α̂] = Z/mZ it follows from the exact se-
quence (3) with φ = α and φ = α̂ that

rankE(Q) + 1 + dimmX(E/Q)[α] + dimmX(E′/Q)[α̂]
= |P|+ |Q ∪ R| − 2 rank(Ξα).

This furnishes the estimate rα of Theorem 4(i) and granted Proposition 3.1
the proof of Theorem 4(ii) is entirely analogous. Theorem 4(iii) will follow
from

Proposition 3.2. Let m = 3 or 5. Let E = Et for some t ∈ Q and
suppose that the characters χp for p ∈ Q are compatible.
(i) The Cassels-Tate pairing on S(α̂)(E′/Q) is represented by

Ξ′ = −
(

[Q,Q]− [Q,Q]T [Q,R]
−[Q,R]T 0

)
.

(ii) The Cassels-Tate pairing on S(β)(E′′/Q) is represented by

Ξ′′ = −
(

0 [P,Q]
−[P,Q]T [Q,Q]− [Q,Q]T

)
.

Proof. (i) We read off from Proposition 3.1 thatQ is the set of switching
primes. We define some global pairings by summing the local pairings of
Proposition 2.9.

〈·, ·〉α̂ : 〈Q ∪R〉 × 〈Q ∪R〉 → Z/mZ ; (x, y) 7→
∑
p∈Q〈xp, yp〉α̂,p

〈·, ·〉β : [P ∪Q]× [P ∪Q]→ Z/mZ ; (x, y) 7→
∑
p∈Q〈xp, yp〉β,p

The Cassels-Tate pairings on S(α̂)(E′/Q) and S(β)(E′′/Q) are restrictions
of these pairings. For p ∈ Q we now make our choice of global element
p∨ ∈ H1(Q,M∨) such that locally at p the isomorphism (31) satisfies

H1(Qp,M)→ H1(Qp,M
∨) ; p 7→ p∨ (47)

Later we will check that this choice means the characters χp defined by (46)
are compatible in the sense of §3.1. Subject to this, we complete the proof
of Proposition 3.2 by showing that Ξ′ and Ξ′′ represent the pairings 〈·, ·〉α̂
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and 〈·, ·〉β with respect to the bases {p} and {p∨}.
(i) For p, q ∈ Q distinct primes we compute

〈p∨, q∨〉α̂ = 〈p∨, q∨〉α̂,p − 〈q∨, p∨〉α̂,q by Lemma 2.10
= (p, q∨)p − (q, p∨)q by Lemma 2.11 and (47)
= −(p, q∨)q + (q, p∨)p by the product formula
= −χq(p) + χp(q) by (46).

The other cases (say with p ∈ Q and q ∈ R) are similar.
(ii) For p, q ∈ Q distinct primes we compute

〈p, q〉β = −〈q, p〉β,p + 〈p, q〉β,q by Lemma 2.10
= (q, p∨)p − (p, q∨)q by Lemma 2.11 and (47)
= χp(q)− χq(p) by (46).

The other cases are similar.

To explain how Theorem 4(iii) follows from Proposition 3.2 we need a
lemma from linear algebra.

Lemma 3.3. Let V be a finite dimensional vector space over a field F .
Let V = U⊕W and write pr : V →W for the projection map. Let 〈·, ·〉 be a
skew-symmetric pairing on V and suppose that U is an isotropic subspace,
i.e. 〈u, u′〉 = 0 for all u, u′ ∈ U . Let W1 = W ∩ U⊥. Then

pr(V ⊥) = W1 ∩W⊥1 .

Proof. Let v = u+w ∈ V ⊥ with u ∈ U and w ∈W . Then w ∈W1 since
U is isotropic, and w ∈W⊥1 since u, v ∈W⊥1 . Thus pr(V ⊥) ⊂W1 ∩W⊥1 .

Conversely, given w ∈W1 ∩W⊥1 we seek u ∈ U such that u+ w ∈ V ⊥.
But for any choice of u, we have u + w ∈ U⊥, since U is isotropic and
w ∈ W1. Thus it suffices to find u ∈ U such that u + w ∈ W⊥. We
write ψ : V → W ∗ for the linear map induced by 〈·, ·〉. We must show
ψ(w) ∈ ψ(U). By counting dimensions we have ψ(U) = (W/W1)∗. Finally
the assumption w ∈W⊥1 implies ψ(w) is trivial on W1 and we are done.

We apply Lemma 3.3 with U = [P], W = 〈Q∪R〉 and 〈·, ·〉 the pairing
represented by Ξm with respect to the bases {p} and {p∨}. By Theo-
rem 4(i) we have S(α)(E/Q) = U ∩ V ⊥ and S(α̂)(E′/Q) = W1. Then
Propositions 2.9(i) and 3.2(i) give αS(m)(E/Q) = W1∩W⊥1 . So Lemma 3.3
allows us to identify the exact sequences

0−→S(α)(E/Q)−→S(m)(E/Q) α−→ S(α̂)(E′/Q)

and
0−→ U ∩ V ⊥−→ V ⊥

pr−→ W1.

In particular S(m)(E/Q) = V ⊥ = ker(Ξm). Since E(Q)[m]'Z/mZ it
follows from the exact sequence (3) with φ = [m] that

rankE(Q) + 1 + dimmX(E/Q)[m] = |P ∪ Q ∪R| − rank(Ξm).

This furnishes the estimate rm for rankE(Q).
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Remark. Theorem 4(iii) equally follows from Proposition 3.2(ii) and
the exact sequence

0−→S(β̂)(E/Q)−→S(m)(E/Q)
β̂−→ S(β)(E′′/Q).

In this case we apply Lemma 3.3 with U = 〈R〉 and W = [P ∪Q].

It remains to examine our choice of characters χp for p ∈ Q. We recall
that either p ≡ 1 (mod m) or p = m = 3. If p ≡ 1 (mod m) then µm ⊂ Qp

and we may apply Corollary 2.14. The identifications (45) suppress the map
jQ. For x ∈ Z∗p we compute

χp(x) = (x, p∨)p by (46)
= −〈x, p〉β,p by Lemma 2.11 and (47)
= 1/ν Indζ(x, p)p by Corollary 2.14
= Indζν (x/p).

But Euler’s criterion tells us (x/p) ≡ x(p−1)/m (mod p). So χp is the
character specified in §3.1. The case p = m = 3 is the subject of the next
section.

3.3. Further calculations with p = m = 3

To complete the proof of Proposition 3.1 we must show

Proposition 3.4. Let m = 3 and E = Et as in §1.3. Then

im δα,3 =

 Q∗3/Q
∗3
3 if t ≡ 0 (mod 9)

Z∗3/Z
∗3
3 if t ≡ 3, 6, 7 (mod 9)

1 if t ≡ 1, 4 (mod 9) or ord3(t+ 1) 6= 0

im δβ,3 =

 Q∗3/Q
∗3
3 if t ≡ 0 (mod 9) or ord3(t+ 1) 6= 0

Z∗3/Z
∗3
3 if t ≡ 3, 6, 7 (mod 9)

1 if t ≡ 1, 4 (mod 9).

Proof. (i) Let λ = t3/27. Then for ord3(t) > 0 our description of im δα,3
follows from Proposition 1.2. We must modify the proof to treat the case
ord3(t) ≤ 0. We find im δα,3 ⊂ Z∗3/Z

∗3
3 with equality if and only if the

congruence

x3
0 + 4x3

1 + 7x3
2 − 3t−1x0x1x2 ≡ 0 (mod 27)

is soluble for x0, x1, x2 ∈ Z3 not all divisible by 3. Writing xν = 1 + 3aν
this is equivalent to t ≡ 7 (mod 9).
(ii) We first make the claim that if ord3(λ) = −1 then im δφ,3 = Q∗3/Q

∗3
3 .

For any θ ∈ Q∗3/Q
∗3
3 we may arrange Cλ,θ 'T [τ0, τ1, τ2] with ordp(τν) =

(1,−1,−1). So our assertion is that for any b, c ∈ Z∗3 the equation

9x3
0 + bx3

1 + cx3
2 − 3x0x1x2 = 0
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is soluble over Z3. Taking x1, x2 = ±1 gives a solution mod 3. We then
use Hensel’s lemma to solve for x0 ∈ Z3. This proves our claim.

Now let λ = t(t2+t+1)/(3(2t+1)3). If ord3(t) > 0 then ord3(λ) ≥ 0 and
our description of im δβ,3 follows from Proposition 1.2. If ord3(t+ 1) 6= 0,
then ord3(λ) = −1 and we are done by the above claim. It remains to
consider the case t ≡ 1 (mod 3). We recall from §1.3 the identity

27λ− 1 =
(
t− 1
2t+ 1

)3

.

If t ≡ 1 or 4 (mod 9) then ord3(27λ − 1) 6= 0. It follows that λ = τ3/27
for some τ ∈ Q3 with either ord3(τ) < 0 or τ ≡ 1 (mod 9). We are done
by (i). Finally if t ≡ 7 (mod 9) then 27λ ≡ 2 (mod 3). By case (e) of
the proof of Proposition 1.2 we have im δβ,3 ⊂ Z∗3/Z

∗3
3 . Then Lemma 1.1

shows that we have equality.

Now suppose that 3 is a switching prime, i.e. ord3(t + 1) 6= 0. In §3.2
we defined a character

χ3 : (Z/9Z)∗ → Z/3Z ; x 7→ (x, 3∨)3 (48)

where 3∨ ∈ H1(Q,Z/3Z) is unramified outside 3 and satisfies (47). To
complete the proof of Theorem 4 it remains to give an explicit description
of this character. We make use of the explicit calculations at the end of
§2.4. We recall

jP δα̂(Q) = ζ(t− ζ)/(t− ζ2)
jQδβ(Q)−1 = t(t2 + t+ 1)/3.

The identifications (45) suppress the map jQ. Since 〈·, ·〉β,3 is alternating
it is clear that for x ∈ Z∗3 we have

〈x, 3〉β,3 = 〈x, δβ(Q)〉β,3. (49)

Let p = (1− ζ3) be the prime of Q(µ3) above 3. For x ∈ Z∗3 we compute

χ3(x) = (x, 3∨)3 by (48)
= (x, δα̂(Q))3 by Lemma 2.11 and (49)
= −(x, δα̂(Q))p since [Q(µ3)p : Q3] = 2
= Indζ(x, jP δα̂(Q))p by (33)

=
{

Indζ(x, ζ)p if ord3(t+ 1) < 0
Indζ(x, ζ2)p if ord3(t+ 1) > 0.

But (2, ζ)p = (ζ/2) = ζ. So χ3 is the character specified in §3.1. The proof
of Theorem 4 is now complete.

35



3.4. Examples with E[3]'µ3 × Z/3Z

We apply Theorem 4 to all elliptic curves E/Q with E[3]'µ3 × Z/3Z
and conductor N ≤ 104. With the help of Cremona’s tables [Cr2] we know
that there are 264 such curves. All but 4 satisfy one of

(i) X(E/Q)(3) = X(E′/Q)(3) = X(E′′/Q)(3) = 0
(ii) X(E/Q)(3) = X(E′/Q)(3) = 0 and X(E′′/Q)(3)' (Z/3Z)2

(iii) X(E/Q)(3) = X(E′′/Q)(3) = 0 and X(E′/Q)(3)' (Z/3Z)2.

We record, against the rank, the frequency with which these possibilities
occur.

(i) (ii) (iii) other
rankE(Q) = 0 84 58 5 4
rankE(Q) = 1 103 5 0 0
rankE(Q) = 2 5 0 0 0

The exceptional curves are E = Et for t = 1/9,−1/31, 18/17 and 105/104.
Their behaviour is illustrated in Examples 1 and 2 below. Table 1 in §3.6
gives data for the first 40 of the 264 curves.

Example 1. Let E = Et and t = 1/9. Then E,E′, E′′ are labelled
4914N2,1,3 in Cremona’s tables. We have P = ∅, Q = {3, 7, 13} and
R = ∅. A compatible choice of characters is

χ3 : (Z/9Z)∗ → Z/3Z ; x 7→ x2 followed by 4 7→ 1
χ7 : (Z/7Z)∗ → Z/3Z ; x 7→ x2 followed by 4 7→ 1
χ13 : (Z/13Z)∗ → Z/3Z ; x 7→ x4 followed by 3 7→ 1.

The matrix Ξ3 has entries in Z/3Z

3 7 13
3 0 1 2
7 2 0 2
13 1 1 0

Theorem 4 gives rα = rβ = 2 and r3 = 0. So E(Q) has rank 0 and

X(E/Q)(3) = 0
X(E′/Q)(3) ' (Z/3Z)2

X(E′′/Q)(3) ' (Z/3Z)2.

Example 2. Let E = Et and t = 18/17. Then E,E′, E′′ are labelled
5514A2,1,3 in Cremona’s tables. We have P = {2, 3}, Q = {919} and
R = ∅. But 2306 ≡ 3306 ≡ 1 (mod 919). So Ξ3 is the zero matrix and
Theorem 4 gives rα = rβ = r3 = 2. Cremona’s tables tell us that E(Q)
has rank 0. We deduce

X(E′′/Q)[β] = X(E′′/Q)[3]' (Z/3Z)2.
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By Proposition 3.2(ii) the Cassels-Tate pairing on this space is trivial. The-
orem 3 applied to the multiplication-by-3 map on E′′ then shows that
X(E′′/Q) contains an element of order 9.

We give an example beyond the range of Cremona’s tables.

Example 3. Let E = Et and t = 124/167. We have P = {2, 31}, Q =
{3, 7, 13, 19, 37} and R = {43}. Making a compatible choice of characters
the matrix Ξ3 is

2 31 3 7 13 19 37 43
2 0 0 2 2 1 1 1 0
31 0 0 1 1 0 0 0 1
3 1 2 0 2 0 1 2 1
7 1 2 1 0 2 1 0 2
13 2 0 0 1 0 0 1 2
19 2 0 2 2 0 0 2 1
37 2 0 1 0 2 1 0 1
43 0 2 2 1 1 2 2 0

We find rα = 3, rβ = 5 and r3 = 1. Let λ = t(t2 + t + 1)/(3(2t + 1)3) =
22.31.32.7.13.19.37/12453 and θ = 3534 = 2.31.3.19. By Lemma 1.5 the
torsor Cλ,θ has equation

x3
0 + 3534x3

1 + 20202x3
2 − 1245x0x1x2 = 0.

A solution is (x0 : x1 : x2) = (12 : 1 : −1). Thus E(Q) has rank 1 and

X(E/Q)(3) = 0
X(E′/Q)(3) ' (Z/3Z)2

X(E′′/Q)(3) ' (Z/3Z)4.

3.5. Examples with E[5]'µ5 × Z/5Z

Cremona’s tables [Cr2] tell us that there are only 3 elliptic curves E/Q
with E[5]'µ5 × Z/5Z and conductor N ≤ 104. Instead we search over
all E = Et with t = a/b, a, b coprime integers and |a|, |b| ≤ 103. Table
2 gives data for the first 40 of these curves, ordered by conductor. We
give further details for some of the curves on our list, beginning with the
example considered by Beaver [Be]. Let us note that E = E−5 has non-split
multiplicative reduction at p = 29.

Example 4. Let E = Et and t = −5. We have P = {5}, Q =
{11, 31, 991} and R = ∅. Beaver made a compatible choice of characters

χ11 : (Z/11Z)∗ → Z/5Z ; x 7→ x2 followed by 5 7→ 1
χ31 : (Z/31Z)∗ → Z/5Z ; x 7→ x6 followed by 16 7→ 1
χ991 : (Z/991Z)∗ → Z/5Z ; x 7→ x198 followed by 799 7→ 1.
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The matrix Ξ5 has entries in Z/5Z

5 11 31 991
5 0 2 0 2
11 3 0 0 3
31 0 0 0 0
991 3 2 0 0

Theorem 4 gives rα = r5 = 1 and rβ = 3. An L-value computation, details
of which appear in [Be], shows that E(Q) has rank 1. We deduce

X(E/Q)(5) = X(E′/Q)(5) = 0 and X(E′′/Q)(5)' (Z/5Z)2.

As Beaver conjectured the hypothesis “λ11 6= 0” of [Be, Corollary 1.3]
is unnecessary.

Corollary 3.5. Let E = Et with t ∈ Z, ord5(t) > 0, ord11(t) = 0 and
t2−t−1 not divisible by any prime congruent to 1 mod 5. Then X(E′′/Q)
contains a subgroup isomorphic to (Z/5Z)2.

Proof. Since (t2 − t − 1)f(t)g(t) = t10 − 11t5 − 1 it is clear4 that 11
always belongs to one of the sets P, Q or R. Our hypotheses now give
5 ∈ P, 11 ∈ Q and R = ∅. Then Theorem 4(ii) and Proposition 3.2(ii) tell
us that the Cassels-Tate pairing on S(β)(E′′/Q) is non-zero. The result
follows.

In fact Beaver only considered the case ord5(t) > 0. So the next two
examples are new.

Example 5. Let E = Et and t = 7. We have P = {7},Q = {11, 31, 61, 331}
and R = {41}. Making a compatible choice of characters the matrix Ξ5 is

7 11 31 61 331 41
7 0 4 3 2 1 1
11 1 0 1 2 2 2
31 2 4 0 2 1 2
61 3 3 3 0 2 1
331 4 3 4 3 0 0
41 4 3 3 4 0 0

Theorem 4 gives rα = rβ = 3 and r5 = 1. Table 4 in §3.6 exhibits a rational
point of infinite order. Thus E(Q) has rank 1 and

X(E/Q)(5) = 0
X(E′/Q)(5) ' (Z/5Z)2

X(E′′/Q)(5) ' (Z/5Z)2.

4Alternatively, applying Hasse’s bounds to the reduction of E at a prime of Q(µ5)
above 11, we see that E must have bad reduction at 11.
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Example 6. Let E = Et and t = 5/4. We have P = {2, 5}, Q =
{521, 4621} and R = {11}. Making a compatible choice of characters the
matrix Ξ5 is

2 5 521 4621 11
2 0 0 2 2 1
5 0 0 3 3 4

521 3 2 0 4 2
4621 3 2 1 0 0
11 4 1 3 0 0

Theorem 4 gives rα = rβ = r5 = 2. According to pari L(E, 1) 6= 0. By
the work of Kolyvagin, E(Q) has rank 0. We deduce

X(E′′/Q)[β] = X(E′′/Q)[5]' (Z/5Z)2.

By Proposition 3.2(ii) the Cassels-Tate pairing on this space is trivial. It
follows that X(E′′/Q) contains an element of order 25.

3.6. Tables

Tables 1 and 2. We apply Theorem 4 to the first 40 elliptic curves E/Q
with E[m]'µm×Z/mZ, ordered by conductor. In the case m = 3 our list
is extracted from Cremona’s tables [Cr2] and so guaranteed to be complete.
In the case m = 5 we have checked that there are no gaps within the range
of Table 6. Table 1 (m = 3) lists our parameter t, the conductor N , the
Cremona labels # for E,E′, E′′, the sets of primes P,Q,R, the estimates
rα, rβ , r3 and finally r = rankE(Q) taken directly from Cremona’s tables.
Table 2 (m = 5) has the same column headings, except that we omit the
Cremona labels, and the entry r = rankE(Q) remains to be justified below.
It is unconditional in all cases except t = −8.

Tables 3 and 4. The curves listed in Table 2 are nearly all beyond
the range of Cremona’s tables. We perform some further computations
whenever r5 > 0. Theorem 4 suggests that Cλ,θ(Q) 6= ∅ for λ = tf(t)/g(t)
and certain θ ∈ Q∗/Q∗5. Lemma 1.5 provides equations for Cλ,θ in the
form T [τ0, . . . , τ4], and we may arrange for the τν to be coprime. We write
τν = aν/bν with aν , bν coprime integers and bν > 0. Putting xν = bνXν

we arrive at the equations

{ aνbνX2
ν + bν−1bν+1Xν−1Xν+1 − aν−2aν+2Xν−2Xν+2 = 0 } ⊂ P4

where as usual ν runs over Z/5Z. Table 3 records when a search for Q-
points was successful. Next we use the degree 5 map Cλ,θ → Dλ, given
in [F0, Appendix C], to determine rational points of infinite order on E.
We record these solutions to (42) in Table 4, together with their canonical
height. In accordance with [Cr1, §3.4] our heights are twice those computed
by pari. We note that cyclically permuting the xν corresponds to addition
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of 5-torsion. So no essentially new solutions are obtained in this way.
Similarly, reversing the order of the xν corresponds to the map [−1].

We justify the entries r = rankE(Q) in Table 2. In the cases where
Table 4 fails to exhibit sufficient points of infinite order, we make use of
the following implications due to Wiles, Kolyvagin, Gross and Zagier.

ords=1 L(E, s) = 0 =⇒ rankE(Q) = 0
ords=1 L(E, s) = 1 =⇒ rankE(Q) = 1. (50)

We also make use of the program bg.gp written by T. Womack [W] that
computes L(r)(E, 1) using the Buhler-Gross algorithm.

If r5 = 1 then Remark (iv) of §3.1 tells us that ords=1 L(E, s) is odd.
Running bg.gp we find L′(E, 1) 6= 0. By (50) we have r = 1. Our 5-
descent then gives X(E/Q)(5) = 0, and assuming X(E/Q) = 0, the Birch
Swinnerton-Dyer conjecture predicts the minimal height of a rational point
of infinite order. To the accuracy of T. Womack’s program this agrees with
the heights of the points listed in Table 4.

If r5 = 2 then Remark (iv) of §3.1 tells us that ords=1 L(E, s) is even.
The case t = 5/4 was treated in Example 6 of §3.5. In the remaining
cases, Table 4 lists at least one point of infinite order. By (50) we have
L(E, 1) = 0. Running bg.gp we find L′′(E, 1) 6= 0. Assuming the weak
Birch Swinnerton-Dyer conjecture it follows that r = 2. Our 5-descent then
gives X(E/Q)(5) = 0, and assuming X(E/Q) = 0, the Birch Swinnerton-
Dyer conjecture predicts a value for the regulator

t −6 −8 −9/2 −12
Regulator 12.686 196.322 41.688 76.056

In the cases t = −6,−9/2,−12, Table 4 lists two independent points of
infinite order. They generate a subgroup with the predicted regulator. In
the case t = −8 we have found only one of the generators. The claim r = 2
remains conditional on either the weak Birch Swinnerton-Dyer conjecture,
or equally on the finiteness of X(E/Q)(5). The predicted value of the
regulator suggests that we are looking for a second generator whose height
is approximately 66.

Tables 5 and 6. Finally we apply Theorem 4 for all rational numbers
t of the form a/b with a, b coprime integers and |a|, |b| ≤ 103. For m = 3
we obtain data for 1 216 765 ≈ 2.106(6/π2) curves. For m = 5 we ignore
repeats of the form t and −1/t, and so obtain data for 608 383 ≈ 106(6/π2)
curves. Tables 5 and 6 give a frequency count for each of the estimates rα,
rβ , min{rα, rβ} and rm. The second number in each column is a percentage.
For example, in the case m = 3, we find 4 101 curves with min{rα, rβ} = 4.
These amount to 4 101/1 216 765×100% ≈ 0.34% of the curves considered.
We see that the estimate rm is often an improvement on both rα and rβ .
We also see that rβ is usually much larger than rα. It is therefore somewhat
perverse that our proof of Theorem 1 works by showing that rα − rβ may
become arbitrarily large.
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Table 1 Elliptic curves E/Q with E[3]'µ3 × Z/3Z

t N # P Q R rα rβ r3 r
−3 14 A1, 4, 3 ∅ {7} ∅ 0 0 0 0
3/5 14 A2, 6, 5 ∅ {7} ∅ 0 0 0 0
3/2 19 A1, 3, 2 ∅ {19} ∅ 0 0 0 0

3 26 A1, 3, 2 ∅ {13} ∅ 0 0 0 0
∞ 27 A1, 3, 2 ∅ {3} ∅ 0 0 0 0

−1/2 27 A3, 4, 1 ∅ ∅ {3} 0 0 0 0
−3/2 35 A1, 3, 2 ∅ {7} ∅ 0 0 0 0

3/4 37 B1, 3, 2 ∅ {37} ∅ 0 0 0 0
−3/5 38 A1, 3, 2 ∅ {19} ∅ 0 0 0 0
−1 54 A1, 3, 2 ∅ {3} ∅ 0 0 0 0
−2 54 B1, 3, 2 {2} ∅ ∅ 0 0 0 0
−3/8 77 B1, 3, 2 ∅ {7} ∅ 0 0 0 0
−3/4 91 B2, 1, 3 ∅ {13} {7} 1 1 1 1
−4/5 126 A3, 5, 1 {2} {7} {3} 0 0 0 0
2/11 126 A4, 6, 2 {2} {7} {3} 0 0 0 0
3/7 158 D1, 3, 2 ∅ {79} ∅ 0 0 0 0
−1/8 171 B2, 3, 1 ∅ {19} {3} 1 1 1 1

6/5 182 B2, 1, 3 {2} {7, 13} ∅ 0 2 0 0
1/2 189 B2, 1, 3 ∅ {3, 7} ∅ 1 1 1 1
1/4 189 C1, 3, 2 ∅ {7} ∅ 0 0 0 0
−2/7 234 E2, 3, 1 {2} {13} {3} 0 0 0 0

6/7 254 A2, 1, 3 {2} {127} ∅ 1 1 1 1
−3/13 278 B1, 3, 2 ∅ {139} ∅ 0 0 0 0
−5/4 315 A2, 3, 1 {5} {7} {3} 0 0 0 0
3/11 326 C1, 3, 2 ∅ {163} ∅ 0 0 0 0
1/10 333 A2, 3, 1 ∅ {37} {3} 1 1 1 1
−8 342 A2, 3, 1 {2} {19} {3} 0 0 0 0
−3/7 370 C1, 3, 2 ∅ {37} ∅ 0 0 0 0

2 378 A2, 1, 3 {2} {3, 7} ∅ 0 2 0 0
−1/5 378 B1, 3, 2 ∅ {7} ∅ 0 0 0 0

4 378 E1, 3, 2 {2} {7} {3} 0 0 0 0
−1/3 378 F2, 1, 3 ∅ {3, 7} ∅ 1 1 1 1
−9/7 402 D2, 1, 3 {3} {67} ∅ 1 1 1 1

6 430 C2, 1, 3 {2} {43} ∅ 1 1 1 1
−6 434 B2, 1, 3 {2} {31} {7} 0 0 0 0
3/8 485 A1, 3, 2 ∅ {97} ∅ 0 0 0 0

9 546 D2, 1, 3 {3} {7, 13} ∅ 0 2 0 0
9/8 651 E2, 1, 3 {3} {7, 31} ∅ 0 2 0 0
−6/5 682 A2, 1, 3 {2} {31} ∅ 1 1 1 1
11/2 693 C2, 3, 1 {11} {7} {3} 0 0 0 0
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Table 2 Elliptic curves E/Q with E[5]'µ5 × Z/5Z

t N P Q R rα rβ r5 r
1 11 ∅ {11} ∅ 0 0 0 0
−2 550 {2} {11} {5} 0 0 0 0

2 1 342 {2} {11, 61} ∅ 0 2 0 0
3 33 825 {3} {11, 41} {5} 1 1 1 1

3/2 165 066 {2, 3} {11, 41, 61} ∅ 0 4 0 0
−3 185 163 {3} {31, 181} {11} 1 1 1 1
−4 192 698 {2} {11, 461} ∅ 0 2 0 0

−3/2 861 366 {2, 3} {31, 421} {11} 0 2 0 0
−4/3 2 032 734 {2, 3} {11, 1621} ∅ 1 3 1 1

4 2 074 622 {2} {181, 521} {11} 1 1 1 1
4/3 2 097 150 {2, 3} {11, 31, 41} {5} 1 3 1 1
5/3 20 301 765 {3, 5} {11, 41, 3001} ∅ 0 4 0 0

5 48 656 245 {5} {11, 101, 461} ∅ 1 3 1 1
−5 48 999 995 {5} {11, 31, 991} ∅ 1 3 1 1

−8/3 68 986 434 {2, 3} {11, 101, 131} ∅ 0 4 0 0
5/2 86 646 010 {2, 5} {421, 1871} {11} 0 2 0 0
−5/2 108 646 010 {2, 5} {11, 151, 211} {31} 1 3 1 1

7/4 257 915 350 {2, 7} {11, 31, 2161} {5} 1 3 1 1
5/4 264 829 510 {2, 5} {521, 4621} {11} 2 2 2 0
−5/3 270 895 515 {3, 5} {11, 211, 251} {31} 1 3 1 1

6 362 283 834 {2, 3} {11, 191, 991} ∅ 0 4 0 0
−6 363 310 266 {2, 3} {11, 31, 61, 71} {41} 2 4 2 2
−7 395 724 175 {7} {311, 661} {5, 11} 2 0 0 0

8 429 352 550 {2} {661, 1181} {5, 11} 2 0 0 0
−5/4 439 170 490 {2, 5} {11, 31, 4441} ∅ 0 4 0 0

8/5 624 238 010 {2, 5} {11, 31, 61, 3001} ∅ 1 5 1 1
9/4 1 538 513 394 {2, 3} {11, 181, 4441} ∅ 0 4 0 0

7 1 976 032 597 {7} {11, 31, 61, 331} {41} 3 3 1 1
−8 2 148 204 542 {2} {11, 491, 2801} {71} 2 2 2 2
7/2 3 871 814 254 {2, 7} {11, 41, 131, 151} {31} 2 4 0 0
−7/2 4 037 464 046 {2, 7} {11, 431, 1031} ∅ 0 4 0 0
−9/2 4 209 082 350 {2, 3} {11, 31, 61, 71} {5} 2 4 2 2

7/3 4 987 312 869 {3, 7} {11, 701, 1621} ∅ 0 4 0 0
8/3 5 916 563 466 {2, 3} {11, 41, 251, 281} {31} 2 4 0 0
6/5 6 497 983 470 {2, 3, 5} {11, 31, 101, 331} ∅ 0 6 0 0
−7/4 6 590 370 094 {2, 7} {11, 41, 71, 241} {61} 2 4 0 0
−12 6 754 920 150 {2, 3} {11, 41, 3221} {5, 31} 2 2 2 2
−7/3 6 874 167 531 {3, 7} {11, 71, 6871} {61} 1 3 1 1
11/3 8 333 929 857 {3, 11} {31, 101, 1021} ∅ 0 4 0 0
−10 9 091 909 090 {2, 5} {11, 31, 61, 401} ∅ 1 5 1 1
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Table 3 Rational points on T [τ0, τ1, τ2, τ3, τ4]

t (τ0, τ1, τ2, τ3, τ4) (X0 : X1 : X2 : X3 : X4)
3 (1, 41, 1/11, 1, 3) (2 : 1 : 1 : 7 : 3)
−3 (3, 1/181, 1, 1,−31) (7 : 1 : −17 : 2 : −1)
4/3 (1, 4/3, 1/41, 31, 11) (2 : 21 : 2 : −4 : −4)
−5/2 (1/151, 1/2, 1/11, 1,−1055) (1 : 86 : −7 : 3 : −1)

7/4 (1/4, 2161, 7, 1, 1/341) (27 : 4 : 14 : −694 : −52)
−5/3 (1, 211/11, 1, 5/251,−1/3) (5666 : 149 : −9811 : −167 : −4863)
−6 (1, 1/31, 22, 1/61,−213) (17 : 5 : −8 : 1 : −3)

(22/61, 3, 71/31, 1,−1) (2 : 67 : −1 : 65 : −149)
7 (1, 7, 331, 11, 1/1891) (5 : 13 : 1 : −27 : −4)
−8 (1/491, 8, 2801, 1/11,−1) (−4 : 41 : −2 : −12 : 1448)
−9/2 (11/31, 1, 1, 549/71,−1/2) (−9 : 207 : −177 : −1 : 168)

(1/2, 1, 9/2201, 61,−11) (90 : 519 : −1 : −21 : −9)
−12 (1/121, 1, 9663, 1,−4/41) (211 : 175 : −3 : −169 : −68)

(3221, 1, 3, 1/121,−4/41) (26 : 356 : 740 : 514 : −71)

Table 4 Mordell-Weil generators for E = Et

t (x0 : x1 : x2 : x3 : x4) height
3 (6 : 81 : 21 : 31 : 71) 1.134
−3 (189 : −1893 : 1037 : 482 : −2433) 2.641

−4/3 generator not known 33.633
4 generator not known 22.371

4/3 (7502 : −56208 : −46608 : 37942 : 57267) 3.595
5 generator not known 34.142
−5 generator not known 29.241
−5/2 (10505 : −48848 : 39977 : 12630 : −70250) 3.776

7/4 (4118592447 : 31088470672 : 13020915922 : −20707618498 : −27516097648) 8.637
−5/3 (11545293032268586 : −6439289981637105 : −5956542269698375 :

11787905264099415 : −4210746652191867) 14.152
−6 (51 : −891 : 786 : 64 : −2050) 2.244

(331728 : −29317538 : 7117825 : 4046253 : −35387658) 6.202
8/5 generator not known 80.610

7 (175 : −304604 : −47007 : 41867 : 316589) 4.280
−8 (352 : −23168 : 372 : −8101 : 8282) 2.992

generator not known ≈ 66
−9/2 (275581521 : 525816846 : −1540675614 : 43145111 : −1910013504) 7.362

(1798854480 : −55092369 : 1126546802 : −637931742 : −155814921) 7.471
−12 (29830412804 : −274049792 : −7483139508 : 9909498771 : −157064775) 8.531

(25841586446 : −1537085461 : 121031257722 : −455623920 : −47238156912) 9.028
−7/3 generator not known 70.563
−10 generator not known 108.806
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Table 5 Elliptic curves E/Q with E[3]'µ3 × Z/3Z

rα rβ min{rα, rβ} r3

0 247 594 20.35 57 032 4.69 267 633 22.00 378 527 31.11
1 512 138 42.09 213 730 17.57 536 514 44.09 582 220 47.85
2 350 525 28.81 351 275 28.87 336 657 27.67 229 402 18.85
3 95 849 7.88 333 628 27.42 71 844 5.90 26 154 2.15
4 10 266 0.84 191 164 15.71 4 101 0.34 462 0.04
5 387 0.03 60 585 4.98 16 0.00 0 0.00
6 6 0.00 8 918 0.73 0 0.00 0 0.00
7 0 0.00 431 0.04 0 0.00 0 0.00
8 0 0.00 2 0.00 0 0.00 0 0.00

Table 6 Elliptic curves E/Q with E[5]'µ5 × Z/5Z

rα rβ min{rα, rβ} r5

0 84 598 13.91 102 0.02 84 698 13.92 219 047 36.00
1 191 544 31.48 1 128 0.19 192 107 31.58 292 742 48.12
2 174 895 28.75 5 804 0.95 175 815 28.90 84 272 13.85
3 98 506 16.19 19 049 3.13 98 832 16.25 10 943 1.80
4 42 040 6.91 46 730 7.68 41 436 6.81 1 285 0.21
5 13 284 2.18 87 395 14.37 12 524 2.06 93 0.02
6 3 029 0.50 124 089 20.40 2 634 0.43 1 0.00
7 442 0.07 130 931 21.52 314 0.05 0 0.00
8 43 0.01 102 667 16.88 22 0.00 0 0.00
9 2 0.00 58 348 9.59 1 0.00 0 0.00

10 0 0.00 23 838 3.92 0 0.00 0 0.00
11 0 0.00 6 764 1.11 0 0.00 0 0.00
12 0 0.00 1 362 0.22 0 0.00 0 0.00
13 0 0.00 162 0.03 0 0.00 0 0.00
14 0 0.00 13 0.00 0 0.00 0 0.00
15 0 0.00 1 0.00 0 0.00 0 0.00

REFERENCES

[BBBCO] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier,
pari/gp, a computer algebra package, http://www.parigp-home.de

[Be] C.D. Beaver, 5-torsion in the Shafarevich-Tate group of a family of
elliptic curves, J. Number Theory 82 (2000), 25–46.
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Šafarevič group can be arbitrarily large, J. Reine Angew. Math.
214/215 (1964), 65–70.

[CaVIII] J.W S. Cassels, Arithmetic on curves of genus 1, VIII. On con-
jectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217
(1965), 180–199.

[Ca91] J.W.S. Cassels, Lectures on elliptic curves, LMSST 24, Cambridge
University Press, Cambridge, 1991.

[Ca98] J.W.S. Cassels, Second descents for elliptic curves, J. Reine Angew.
Math. 494 (1998), 101–127.
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