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We perform descent calculations for the families of elliptic curves whose m-
torsion splits as pm X Z/mZ for m = 3,4 or 5. These curves are parametrised
by the modular curve X (m)~P!, whose cusps are arranged as the vertices of
one of the Platonic solids. Following McCallum [McC] we write the Cassels-Tate
pairing as a sum of local pairings. In the case m = 5 our results extend the work
of Beaver [Be].

INTRODUCTION

Let £/Q be an elliptic curve and let m > 2 be an integer. The process
of m-descent bounds the group E(Q)/mE(Q) and so gives an estimate for
the Mordell-Weil rank. It is both convenient and instructive to work with
special cases where the m-torsion of E takes a simple form. For example,
many authors introduce 2-descent by considering the elliptic curves

E: y’=(z—a)(e—a)(—as) (1)

with rational 2-torsion. More generally we consider elliptic curves E with
E[m] >~ piy, x Z/mZ. For m > 3 these curves are parametrised by the
modular curve X (m), or strictly speaking by its open subset Y (m) ob-
tained by deleting the cusps. Our interest is in the cases m = 3,4 and 5
when X (m)=~P?!. Relabelling torsion gives an action of PSLy(Z/mZ) on
X (m) defined over Q(u,,). The quotient map j : X (m) — P! is ramified
above 7 = 0, 1728 and co. Under stereographic projection these points are
arranged as the faces, edges and vertices of one of the Platonic solids.

j=0 j=1728 j=o0 PSLy(Z/mZ)

Platonic Solid | #Faces #Edges #Vertices | Symmetries
m =3 | tetrahedron 4 6 4 Ay
m =4 | octahedron 8 12 6 Sy
m =5 | icosahedron 20 30 12 Ay




In particular the cusps, i.e. the points above j = oo, form a single orbit
under the action of PSLy(Z/mZ).

In §1 we prove

THEOREM 1. Let K a number field and let m = 3,4 or 5. Then the
Tate-Shafarevich group of an elliptic curve over K may contain arbitrarily
many elements of order m.

Special cases of this result are proved in [CaVI], [Bd], [Kr], [McG], [L]
and [F1]. Our method is that used in [F1]. Since X (m)=~P! there are
infinitely many elliptic curves E/K with E[m]~ p,, x Z/mZ. We write
a:E — E and B: E — E” for the isogenies with kernel tm and Z/mZ
respectively. We may estimate the Mordell-Weil rank using either the pair
of isogenies @ and &, or the pair of isogenies § and (. In general these
estimates do not agree, and an application of Dirichlet’s theorem on primes
in arithmetic progression suffices to prove the theorem. We do not make
use of the Cassels-Tate pairing. The method does not extend to m = 7,
since the only Q-rational points on the Klein quartic X (7) are the cusps.

In §2 we give a survey of duality results for elliptic curves, and in par-
ticular the Cassels-Tate pairing. We then develop the methods of McCal-
lum [McC] and Beaver [Be] for computing the pairing in the split torsion
case. The action of PSLy(Z/mZ) is used to make explicit the parameter
Ay appearing in [Be, Theorems 1.1,1.2]. As in [F1] we find that our descent
calculations are governed not only by the primes of bad reduction, but by
the cusps we obtain when we reduce mod p. We also explain how our re-
sults may be applied to curves without split torsion, by giving an example
in this direction.

In §3 we restrict to K = Q and m = 3 or 5. We make explicit our
various estimates for the Mordell-Weil rank. In particular the Cassels-Tate
pairing is used to give a description of S (E/Q) as the kernel of a skew-
symmetric matrix. The explicit nature of our results enables us to compute
a large amount of numerical data, and to give some interesting examples.
In particular we exhibit some elliptic curves over Q whose Tate-Shafarevich

group contains an element of order m?.

Preliminaries on descent calculations

Let K be a field of characteristic zero. Let ¢ : C — D be an isogeny
of elliptic curves over K with m = deg¢. The dual isogeny ¢ : D — C
satisfies po¢ = [m] and ¢pog = [m]. The Weil pairing ey : Cl¢] x D[@] — tm
is defined in [Sil, Exercise 3.15]. We write G = Gal(K/K) and H (K, —)
for H (G, —). Taking Galois cohomology of the exact sequence

0—Cp] —C 2, D—0



we obtain the Kummer exact sequence

C(K) % D(K) 2% HY(K,C[4]) 25 HY(K,C) % HY(K,D). (2)

For K a number field the Selmer group attached to ¢ is
S@O(C/K)={xec H'(K,C[g]) | x, € imdy,., for all places v }.

Here our convention is that for () a global object we write (x), for the
corresponding local object. The exact sequence (2) becomes

0— D(K)/6C(K) ** §@(C/K) > M(C/K)¢]—0  (3)

where II(C/K) = ker (H'(K,C) — [], H'(K,, C)) is the Tate-Shafarevich
group. The Selmer groups attached to ¢ and (;AS may then be used to give
an upper bound for the Mordell-Weil rank.

Let E be an elliptic curve, and let T' be a smooth curve of genus 1,
both defined over K. We say that T is a torsor under E if there is a simple
transitive action E x T — T defined over K. Equivalently there is an
isomorphism ¢ : T — E defined over K such that the cocycle ()1
takes values in the translation subgroup of Aut(F). In this way we identify
H'(K, E) with the set of torsors T under F, and III(E/K) with those
torsors that are everywhere locally soluble. From either point of view it
is easy to define a map, sum : Div’(T) — E, which identifies E as the
Jacobian of T'.

Other notation and conventions

Let K be a number field. We refer to K as a global field, and the
completion K, at a place v, as a local field. We abbreviate G, for Gk, . If
v =p is a prime we write ordy : K — Z for the normalised valuation and
O, for the ring of integers. An object is said to be unramified if the inertia
subgroup I, C G} acts trivially.

We write ( = (,,, for a primitive mth root of unity, so that ¢ runs over
fm as v runs over Z/mZ. In the case m = 4 we usually write ¢ instead of
C4. In the case m = 5 we write ¢ = 1 + ¢ + ¢* for the golden ratio, and ¢
for its conjugate. The minimal polynomials for (¢ and (¢ are

fit) = t*+33 442 +2t+1 (t+1)°+1)/(t+2) ()
gt) = t*—283 442 -3t+1 = ((t—1)°+)/(2t—1).

In §2 we define a number of pairings taking values in Q/Z. We write Ind, :
tm — Q/Z for the map ¢ — 1/m. When making explicit computations
we do not hesitate to identify Z/mZ with the subgroup --Z/Z C Q/Z.

Finally, many of our results are stated for an arbitrary point on the
modular curve X;(m) or X(m). Even when not explicitly stated, we as-
sume that this point is not a cusp.



1. SOME DESCENT CALCULATIONS

Let K a number field and let m = 3,4 or 5. We discuss descent by
m-isogeny for some elliptic curves parametrised by X;(m) and X (m).

1.1. Elliptic curves parametrised by X;(m)

Let ¢ : C' — D be an isogeny of elliptic curves over K with C[¢] ~ i,
and D[¢] ~Z/mZ as Galois modules. We identify H!(K,C[¢]) = K*/K*™
and H(K,D[¢]) = Hom(Gk,Z/mZ). In order to compute the Selmer

groups attached to ¢ and ¢ we must describe the images of the local con-
necting maps

8y = 04 : D(K,) — K /K™, (5)

We consider the elliptic curves D = D) with Weierstrass equations

m=3 Vv+ry+dy = 28
m=4 V4ay+dy = 234+ \?
m=>5 v+ (1 =Ny -y = 23—\

In each case (x,y) = (0,0) is a rational point of order m. By [Sil, Exer-
cise 8.13] these are the universal families of elliptic curves over K with a
specified rational point of order m. Thus our parameter A is a co-ordinate
on X;(m)~P!. For m =4 or 5 the universal property also holds over K.
However for m = 3 we have in effect excluded the infinitely many curves

y? = 2% + d? (6)

above A = co. These curves have complex multiplication by Z[(3]. We find
the cusps on X7 (m) by computing the discriminant A(D),).

| A(Dy) |  cusps | 7
m=3] N@2A—1) 0,1/27 X 1/27 — A
m=4| —\(16x - 1) 0,1/16,00 | A+ 1/16 — A

m=>5| N\ —11A—1) | 0,00,¢%,¢° | A= (¢°A+1)/(A — ¢°)
In each case 7 is an involution of X;(m), permuting the cusps, such that
(o — Cy) =~ (Z/mz — Dn()\)) over Q(Mm) (7)

There is also an action of (Z/mZ)*/{£1} on X;(m) given by relabelling
torsion. For m = 3 or 4 this action is trivial. For m = 5 we obtain an
involution

A —1/A. (8)



Following Vélu [V] the elliptic curves C) isogenous to Dy have Weierstrass
equations

v4+ay+dy = 22 -5 - ATA+1)
v 4ay+dy = 22+ A2 =5+ Dz + ABA2 - 120 - 1)
v 4+ (1= Nzy — My 23 — A2 —5A\2 + 2\ — 1)z
At F10A3 — 5X2 + 150 — 1).

-~

LEMMA 1.1. Let m = 3,4 or 5. The image of D)[p]| ~Z/mZ under the
connecting map 0 = 4 : DA(K) — K*/K*™ is generated by A.

Proof. The connecting map 4 is given by a rational function f € K (D))
with div(f) = m.(0,0) — m.0. The formal group [Sil, Chapter IV] may be
used to resolve the issue of scaling. We find

Y m=3
flay) =4 —y+a? m =4
xy +y — 22 m=1>5

Computing f on multiples of (0,0) we obtain powers of A as claimed.

We describe the image of the local connecting map (5). For v = p a
prime of bad reduction, the answer depends on which cusp we obtain as
the reduction of A mod p. We do not cover certain cases where p|m.

PROPOSITION 1.2. Let m = 3. If ord,(A) > 0 then

Ki /K if ordy(A) >0
imé, =< O; /O if A(2TA—1) #0 (mod p)
1 if 2TA —1=0 (mod p).

If ordy(A) < 0 and pt3 then
* *3 -
m s, — { 0;/0; if 3|ord,(N)

(M) otherwise.

We see that the point A = oo, corresponding to the infinitely many
curves (6), behaves to some extent as if it were a cusp.

PROPOSITION 1.3. Let m = 4. If ord,(A) > 0 then

Ki/Kz* if ordy(A) > 0
imd, = 0; /0 if A(16A —1) 20 (mod p)
1 or (=4) if16A—1=0 (mod p).
If ordp(X) < 0 and pt2 then
K;Q/K;‘4 if)\EK;Q
imé, = (A if ordy(X) is odd
(A, 032y otherwise.

Moreover at a real place v, im d,, is trivial if and only if 16A —1 > 0.



If py C K, then the inelegant (—4) appearing in Proposition 1.3 van-
ishes. Indeed —4 = (1 +1)*, so (—4) C K;/K;* is trivial.

PROPOSITION 1.4. Let m = 5. Then

K; /K if ordy(N) #0
imé, =< OF/OF  if AA? —11A—=1) # 0 (mod p)
1 if A2 —=11A—1=0 (mod p) and p15.

The automorphism (8) of X7 (5) reduces the number of cases to consider
both for the statement and for the proof of Proposition 1.4.

Remark. If p,, C K, then we may identify
H'(K,,Cl¢]) = H'(Ky, D[g]) = Kp /K™

Tate local duality (see §2.1) tells us that im 64, and im 5  are exact anni-
hilators with respect to the Hilbert norm residue symbolf It is instructive
to check that replacing A by n(A) in Propositions 1.2-1.4 has the effect of
replacing d, by its exact annihilator.

1.2. Torsors with a diagonal action of p,,.

In this section we prove Propositions 1.2-1.4. Following [F1] we consider

certain smooth curves of genus 1 in P™~!. Specifically for 7, 71,... , Tm_1
non-zero elements of K we define T' = T[r9,T1,... , Tm_1) C P! via
m=3 { Toxd + 123 + 123 — o122 =0 } C P2
2 _ 2 __ 0
ToXH + T1T3 — Ty = 3
m = 4 2 2 C P
127 + xox2 — T3T3 = 0

_ 2 _ 4
m=5 {7mri4+2T, 12,41 — To_2Tvi2Ty_2T,12 =0} CP

where v runs over Z/5Z, so that the curve in P* is defined by 5 quadrics.
In each case T C P™~ ! is a curve of degree m, invariant under the diagonal
action of p,, given by z, — (”x,. The claims we make about these curves
for m = 3 and 4 are easy to check directly. For m = 5 we refer to [F1].

Rescaling our co-ordinates g, x1,... ,Zm—1 on P~ we see that the
geometry of T'[ro,...,Tm—1] only depends on X := [[7,. It may be shown
that the elliptic curves C), introduced in §1.1 have equations

m=3 TN 1,1] 0=(0:1:-1)
m=4 T[N 1,1, 1] 0=(0:1:1:1)
m=5 TN 1,1,1,1] 0=(0:1:1:—-1:-1).
Thus T'[ro,... ,Tm—1] is a smooth curve of genus 1, provided A = [[ 7, is

not a cusp of X;(m). At the cusps we obtain collections of lines arranged



in an m-gon. For example T}, 1, ] has equation
(o + @1 + x2) (w0 + (w1 + Pw2) (w0 + (P21 + Ca2) = 0.

With reference to the exact sequence (2) we define C ¢ to be the torsor
under C) described by § € K*/K*™.

LEMMA 1.5. Let 79,... ,Tm—1 be non-zero elements of K with
[T =X and [/ =6 mod K*". 9)
Then T[1o, ... ,Tm—-1] ~Chxg and T[1o, ... , Tm—1] meets the co-ordinate hy-

perplane {x, = 0} in m points, each with field of definition K ( VA~v0).

Proof. An isomorphism between T'[rg, ... ,Tm—1] and C\ = T[\, 1,... 1]
is given by rescaling co-ordinates over K. Comparing this isomorphism
with its Galois conjugates we obtain a cocycle taking values in p,,. This
cocycle corresponds! to §~1 under H'(K, pu,,) ~ K*/K*™. The final state-
ment follows by direct calculation. 1

We outline the proof of Propositions 1.2-1.4. First by (2) we know
that 6 € imJ, if and only if C) ¢(K,) # 0. We also know that imd, is
a group and by Lemma 1.1 it contains A\. These observations reduce us
to considering a handful of cases depending on A and 6. In each case we
choose 19, ... , Tm—1 satisfying (9). Then Lemma 1.5 provides equations for
Cyp as a curve in P™~1. If v = p is a prime we reduce these equations
mod p to help us decide whether C) ¢(K,) # 0.

We summarise the proof of Proposition 1.2 in a table. We write k
for the residue field mod p and n for a negative integer. We abbreviate
ordy (7,) := (ordy (70), ... ,0ordy (Tim—1)).

Condition on A | ord,(6) ordy (7,) Reduction mod p
rational curves
(a) ord,(A) >0 o all 20 defined over k
(b) ord,(A) =0 1 (-1,0,1) —
smooth curve
© | reTa—1)#0 0 (0,0,0) of gens 1
B 3 lines defined
(d) 27A—1=0 0 (0,0,0) over K UB)
(e) ordy(A) = 3n 1 (n—1,n,n+1) —
th
D] o=t | 0 | am | Tl
ordy(A) =3n+¢ 3 lines defined
(9) e=1or?2 0 (n+e,m.n) over k(v/0)

In cases (a), (c), (f) we may pick a smooth k-point on the reduction.
Hensel’s lemma then shows that C ¢(K,) # 0. In cases (b) and (e) we

1Let us note that Cy,p and C, »—1 are isomorphic as curves, but not as torsors.




assume there is a K,-point (z¢ : x1 : z2) with minordy(z,) = 0 and
proceed to a contradiction by repeated use of the ultrametric law.

In cases (d) and (g) the reduction is a collection of 3 distinct lines each
defined over k(+/6). The lines are distinct since by assumption p{3. We
claim Cy(K,) # 0 if and only if 6 is a cube, equivalently 6 is a cube
mod p. So suppose given a Ky-point on C)¢. If it reduces to a smooth
point, then one of our lines is defined over k, and 6 is a cube as required.
It remains to consider the singular points of the reduction, i.e. where the
three lines meet. In case (d) the lines are arranged in a triangle. If a vertex
is k-rational, then so is the opposite side and we are done. In case (g) all
3 lines pass through (1 : 0 : 0). But if the K,-point (zo : 21 : z2) has
reduction (1 :0:0) then ord,(zg) = 0, ord,(z1) > 0 and ord,(z2) > 0. So

ord, (Tlxif), ord, (TQI%), ordy (zoz122) > n+3

yet ordy, (10x3) = n + ¢, and this contradicts the ultrametric law. So there
are no Ky-points above the singular point, and our claim follows as before.
This completes the proof of Proposition 1.2.

Again we draw up a table for the proof of Proposition 1.3. We take
n, Ny, N1 negative integers with n = ng + n1.

Condition on A\ | ord,(6) ord, (7,,) Reduction mod p
rational curves
(a) ordy(A) >0 — all >0 defined over k
® [ ord,() =0 2 (=2,0,0,2) —
smooth curve
(¢) | A16A—1)#£0 0 (0,0,0,0) of genus 1
B 4 lines defined
(d)| 16A-1=0 0 (0,0,0,0) over k(V/8)
(e) ord,(A) = 2n 1 (n—1,0,n,1) _
0 (0.1,0, ) 2 conics defined

over k(v/8)

4 lines defined
(f) | ordpy(N) =2n 2no | (no,m1,M0,71) over k(v/8, V\0)

2 conics defined

2n (n,0,n,0) over k(vAD)
(g) Ordp (A) =2n+1 0 (17 n, O, n) 4 lines defined

over k(v/0)

All except cases (d) and (f) go through as before. In these cases our
assumptions give pf2. In case (d) the reduction is a collection of 4 lines
arranged in a quadrilateral. Each line has field of definition k(v/6). It
follows by elementary Galois theory that each vertex has field of definition
k(V/—40). So if Cx(K,) # 0 then either § € K;* or —40 € K;*. Thus
imd, = 1 or (—4). In fact the theory of the Néron model provides a formula



for | imd,|. By [Scl, Lemma 3.8] and Tate’s algorithm [Si2, IV.9] we deduce

s — 1 if ord,(16A —1) is odd
TO% = (—4) if ordy(16A — 1) is even.

In case (f) we have ord,(A) = 2n for some n < 0. We write n = ng+nq
with ng,n1 < 0. We assume that ord,(6) is even. If § satisfies one of the
following conditions, then our table shows that C ¢(K,) # 0

(i) 0 € K;* and ord,(#) =0 (mod 4)
(ii) 6 € K;* and M € K}?
(iii) A0 € K;* and ord,(Af) = 0 (mod 4).

Conversely, we must show that if C g(K,) # 0 then at least one of the

conditions (i), (ii) or (iii) is satisfied. We write C g in the form T'[r, ... , T3]
with ord, (7)) = (ng,n1,n0,n1). Replacing 8 by A if necessary, we may
suppose A0 & K;‘2 and ng < 0. We take (zg : ... : x3) a K,-point with
min{ord,(z,)} = 0 and recall the equations
7'01‘(2) + 123 — TQ:,U% = 0 (10)
’7'11’? + o2 —Tgiﬂ% = 0. (11)

Since 79/72 ¢ K;? the equation (10) tells us ordy (zo), ordy (z2) > 0. Next
by (11) we have 71 /73 € K;? and ordy(z1) = ordy(z3) = 0. Again us-
ing (10) we see that ng is even. So condition (i) holds and we our done.

To complete the proof of Proposition 1.3, it only remains to consider v
a real place. If 6 < 0 we may write C) ¢ in the form

(16X — )3 + (zo + 22)% + (v1 +23)2 = 0
(16X — )23 + (zo — 22)% — (v1 —x3)> = 0.

It is readily seen that C g(R) = 0 if and only if 16A — 1 > 0. This is then
the condition for imd, to be trivial.

Finally Proposition 1.4 is a restatement of [F1, Proposition 2.15]. We
therefore omit details of the proof, which is in any case similar to the above.

1.3. Elliptic curves parametrised by X (m)

We recall that the K-points of the modular curve Y (m) correspond to
isomorphism classes of triples (E, P,Q) where E/K is an elliptic curve,
P,Q € E[m], e(P,Q) = and @ € E(K). For m = 3,4 or 5 it follows by
Lemma 1.1 that X (m)~P!. We make a choice of co-ordinate ¢ on X (m)
by writing

m=3 Ey = Cis o7 X (3) has cusps at t = 0,1, ¢, ¢?
m =14 Ey = Ciae X (4) has cusps at t = 0,00, £1, %4
m=>5 E,=Cys X (5) has cusps at t = 0,00, ("¢, (" ¢.



The configuration of these cusps was described in the introduction. The
work of §1.2 allows us to identify E; as the Jacobian of X;, where X; has
equations

m=3 {tx}+2}+123) - 3z0m1720 =0 } C P2

{ t(xd + 23) + 22125 =0 }CP3

m=4 t(x? + 22) + 2w072 = 0

m=2>5 { tIE + Ty 141 — tQCC,,_QIV+2 =0 } C Pt

These curves are taken from [H, Chapter III]. They are invariant under
the action of the Heisenberg group, generated by op : z, — (Yx, and
0Q 1 Ty — x,—1. We write P;, Q; for the basis of E;[m] determined by op,
0g. Computing the commutator of op and og shows that e,, (P, Q) = .
We may therefore take (E, P;,@Q:) as our triple above t. In the cases
m = 3 and 5, it is possible to identify Ey = X; via 0 = (0 : 1 : —1) and
0=(0:t:1:—1:—t) respectively.

Let S = (01 é) and T = ((1) 1) be the usual generators for SLy(Z).
We use the same letters to denote their images in PSLo(Z/mZ). Writing
M* for (MT)~1 we have S* = S and T* = STS.

PROPOSITION 1.6. There is an action of PSLa(Z/mZ) on X (m) via

(Z 2) :(E,P,Q) — (E,aP +bQ,cP + dQ).

In terms of our co-ordinate t on X (m) it is given by

3 St (—t+1)/(2t+1) T :t— (t
4 Sit— (=t+1)/(t+1) T :t—(t
5 S:ite (ot+1)/(t— o) T .t (t.

m
m
m

Proof. (i) There is an isomorphism X; ~ X given by

(zo : 21 : x2) —  ((3x0: @1t x2)
(JL‘O R A A i T l’g) — (’JJO N Cgl’l =9 Cg&?g)
(.’EO X1 X2 1 X3 1'4) = (gg’l'o : C5(E1 X 1 X3 C5.’E4).

where (2 = (4. Passing to the Jacobian we obtain an isomorphism (Ey, Py, Q;)
~ (E¢t, Pevy Py + Qc). It follows that T : ¢ +— (¢ as claimed.
(ii) For suitable ¢’, an isomorphism X ~ X, is given by

(o:ay:o i xm1) = Oom, 3 ¢y, ... 3¢ vy (12)

where each sum runs over v € Z/mZ. Passing to the Jacobian we obtain
an isomorphism (Fy, Py, Qu) ~ (Fy, —Qq, P;). Tt follows that S : t — ¢.

10



Finally we compute ¢’ by substituting (12) into the equations for X;. For
m = 3 or 5 a number of short-cuts are available since E; = X;.

Let E = E; for some t € K. Then E[m|~pu,, x Z/mZ as a Galois
module. We write E’ (respectively E”) for the elliptic curve isogenous to
E obtained as the quotient by ., (respectively Z/mZ). The isogenies

oa:FE—FE and p(B:E'—FE

are both of the form ¢ : C\ — D, but for different values of A € K. In
order to apply Propositions 1.2-1.4 we record these values of A. In the case
m =5 the answer involves the polynomials f(t) and g(¢) defined by (4).

m=3 m=4 m=>5
X 2TA—1 N 16X —1 A N —1Ia—1
al 827 -1 | t7/16 t1-1 (=t -1)f)g(t)
2 _ 3 2 _1\4
8| S (31) | st (1) | tF(0)/9(t) (2 —t —1)/g(t)?

The entries for the isogeny « are immediate from the definition of F;. The
entries for the isogeny [ follow from Proposition 1.6 and the involution 1 on
X1(m) defined in §1.1. For example, taking m = 3 there is an isomorphism

(H3 X Z/3Z— Ey) ~(Z/3Z x p3 — Ey)

where t' = (=t +1)/(2t + 1). So the required value of X is n((¥')3/27) =
tt2+t+1)/(3(2t +1)3).

PROPOSITION 1.7. Letm = 3,4 or 5. Letp be a prime of bad reduction
for E = E;. Suppose that ji,, C K, and ptm. Then t reduces to a cusp
mod p and the local connecting maps have images

t mod p 0 ¢, ¢? 1
m=3 imdg, | Ky/Kp° 1 1
imdg,p K;‘/K;‘3 K;/K;‘3 1
t mod p 0 00 +1i -1 1
m=4 imdq,p K;/K;4 K;Z/K;“l 1 1 1
imdg K;/K{j‘1 K;/K;4 K;/K;‘4 K;fz/K;“1 1
t mod p 0 "¢.¢"p (v £0) 6.6
m=25 imd,, | Ky/K;° 1 1
imdg,p K;;/K;5 K;;/K;5 1

Proof. This follows from Propositions 1.2-1.4 and the table above. The
assumption p,, C K, is made purely to simplify the statement of the

proposition in the case m = 4. 1

11



1.4. Large Tate-Shafarevich groups

Let F = E; as above. There are exact sequences
0— SYNE/K)— S"™(E/K) - S@(E'/K) (13)
0— SO(B/K) — S™(B/K) 2 $©)(B"/K). (14)

Propositions 1.2-1.4 allow us the estimate the Selmer groups attached to
@,a, 3 and (. We show that for a careful choice of ¢ the group S(® (E’/K)
may be large compared to both S (E/K) and S (E"/K). Tt follows
that III(E’'/K) may become arbitrarily large. More precisely we prove

THEOREM 1. Let K a number field and let m = 3,4 or 5. Then the
Tate-Shafarevich group of an elliptic curve over K may contain arbitrarily
many elements of order m.

We stress that our theorem applies to any number field K, for example
K = Q. We give details of the proof.

LEMMA 1.8. We may choose S1 and Ss finite disjoint set of primes,
and X C HY(K,Z/mZ) a finite subgroup such that
(i) Each prime p € 81 U Sy satisfies Normp =1 (mod m).
(ii) The map X — [[,cs, H'(Kp, Z/mZ) is injective.
(11i) X is unramified outside Ss.
(iv) X contains arbitrarily many elements of order m.

Proof. By class field theory there exists L/ K an abelian extension whose
Galois group contains arbitrarily many elements of order m, and that is
unramified outside a finite set of primes S satisfying (i). We may suppose
LN K(pm) = K and take X = Hom(Gal(L/K),Z/mZ). By the Tcheb-
otarev density theorem there exists a finite set of primes S; satisfying the
remaining conditions.

With §1, S and X as above, we impose congruence conditions on ¢.

_3 t2+t+1=0 (modp) forallpeS;
m= t—1=0 (modp) forallpesS,
— t2+1=0 (modp) foralpes

- t—1=0 (modp) forallpess

_s P+ 33+ 412 +2t+1=0 (modp) forallpeS;
m= t?—t—1=0 (modp) foralpecS

By Lemma 1.8(i) and the Chinese Remainder Theorem these conditions
may be replaced by a single linear congruence. Now let ¢ € K be an
algebraic integer satisfying this congruence and write S for the set of primes
dividing m and t together with the infinite places. By Dirichlet’s theorem

12



on primes in arithmetic progression (or perhaps a weaker result) we may
assume that |S]| is bounded by a constant only depending on K.
Propositions 1.2-1.4 and Tate local duality (see §2.1) now give

(a) If p ¢ S then imd, p C Oy /O™ and im 6, O Hom(Gy /1y, Z/mZ).
(b) If p € S1 US;, then iméd,p =1 and imdg,p, = Hom(Gy, Z/mZ).
(c) If p € Sy then im g, = K7 /K;™ and imdg , = 0.
(d) If p € S then imdgp =1 and im d5 = Hom(Gy, Z/mZ).
We make two claims, namely that the groups X/(X N S (E’/K)) and
X NaS™(E/K) are bounded by constants only depending on K. By (a),
(b) and Lemma 1.8(iii) we have

XNS@(E'/K) = {z¢eX|x, €imds, for all places v }
O {zeX|z,=0forallves}.

Our first claim follows from our assumption on |S|.

Now let Y = o' X N S(™)(E/K). By (a) we know that S(®)(E/K) is
unramified outside S. Then (13) and Lemma 1.8(iii) show that ¥ is unram-
ified outside S U S,. Next (c) and Lemma 1.8(ii) give S (E/K)NX = 0.
From the exact sequence (14) we learn that Y injects into S (E"/K).
But (d) tells us that this Selmer group is unramified at all primes in Ss.
We deduce that Y is unramified outside S. So Y is bounded by a constant
only depending on K. Our second claim follows.

Finally the cokernel of the map S (E/K) — S (E’/K) injects into
III(E’'/K) and we have shown that this cokernel may contain arbitrarily
many elements of order m. This completes the proof of the theorem.

Remark. To establish the existence of arbitrarily large Selmer groups,
a lesser assumption on the torsion is required. In particular for m = 3,5
or 7 we have X;(m)~P!, and S(™(F/K) may become arbitrarily large.
We refer to [F1], [KI] or [Sc2] for details. Kloosterman [KI] also treats the
case m = 13 using the fact X((13) ~P1L.

2. THE CASSELS-TATE PAIRING

We give a survey of duality results for elliptic curves, and in particular
the Cassels-Tate pairing. One reason for including this material is that we
could not find a clear reference for our Theorem 3 in the existing literature,
although a proof conditional on the finiteness of III appears in the work
of Cassels [CaVIIIL, Corollary to Theorem 1.2]. In a number of proofs it is
tacitly assumed that the divisors chosen have disjoint supports. We also
leave it to the reader to check that certain a priori infinite sums are in fact
finite.

13



2.1. Local duality theorems

Let K be a local field. Le_t*M be a finite Gg-module. We define the
Cartier dual MY = Hom(M, K ). The (local) Tate pairing

HY(K,M)x HY(K,M") — Q/Z (15)

is defined as the cup product map induced by the canonical pairing M x
MY — K followed by the invariant map Br(K) — Q/Z. As a special case
we take ¢ : C'— D an isogeny of elliptic curves and M = C[¢].

H'(K,C¢]) x H'(K,D[¢]) — Q/Z (16)

In terms of cocycles a = {a,}, and b = {b,}, this pairing is given by
(a,b) — inv{eg(as, obr)}o r
Now let E be an elliptic curve over K. Taking Galois cohomology of the
exact sequence
0— K(E) /K" L% Divi(E) 22 E -0
we obtain
HY(K,E) > HX(K,K(E)"/K") &% H2(K,Div(E)).

There is another local pairing due to Tate

BE(K) x H'(K,E) — Q/Z; (x,y) — —invf(r) (17)

where sum(x) = z and f = d(y). Weil reciprocity [Sil, Exercise 2.11] shows
that this pairing is well defined. Indeed if ¢ = div(g) for some g in K(F),
then
f@®) = f(divg) = g(div f) = 0.
PROPOSITION 2.1. The Tate pairings (16) and (17) are compatible with
the Kummer ezact sequence (2). In other words, if a € H'(K,C[¢]) and
be HY(K,D[¢]) with §s: x — a and L b=y then (a,b) = (z,y).

Proof. Let b = {b,}, and let , b, € Div®(D) with sum(x) = = and
sum(b,) = b,. We choose rational functions f,, € K(D) and g, € K(C)
with

div(fo,r) = 0b; — byr + b, div(gs) = ¢ b,
and scale such that f,,0¢ = (0g,) g, go. We also choose r; € Div’(C)
with ¢r1 = . Then a = {a,}, with a, = sum(op; — r1). The product of
the cocycles

o(gr 1) _ . _(0g-)11 go 11
(0g9-) 11 md for(t) = forod)n = Jor L1

eg(ay,0b:) =

is a coboundary. Thus (a,b) = (z,y) as required. 1
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PROPOSITION 2.2. The Tate pairings (15) and (17) are® non-degenerate.

Proof. This is due to Tate [T1], [T2]. See [Sil, §17] for a detailed
statement. In fact the non-degeneracy of (15) follows from local class field
theory [Sel, XIV]. The non-degeneracy of (17) may then be deduced using
Proposition 2.1 and a counting argument [Mi, 1.3.2]. 1

LEMMA 2.3. Let K be a finite extension of Qp. Let M be an unramified
finite G -module of order prime to p. Then the unramified subgroups are
exact annihilators with respect to the Tate pairing (15).

Proof. See [Se2, IL.5.5]. 1
The next result is often referred to simply as Tate local duality.

LEMMA 2.4. Let K be a local field. Let ¢ : C — D be an isogeny of
elliptic curves over IC. Then imdy and imdy are exact annihilators with
respect to the Tate pairing.

Proof. This follows easily from Propositions 2.1 and 2.2.

We end this section with one global result. For K a number field there
is a well known exact sequence

0— Br(K) — @, Br(K,) " Q/Z — 0. (18)

It follows that all pairings discussed in this section satisfy a product for-
mula. For example if a € H*(K,C[¢]) and b € H'(K, D[¢]) then we have

> o(@uby)y = 0 (19)

where (-,-), is the Tate pairing (16) at IK,.

2.2. Global duality theorems

From now on let K be a number field. Let F/K be an elliptic curve. We
review the pairing on III(E/K) due to Cassels [CaIV]. We do not discuss
the extension to abelian varieties, due to Tate, details of which may be
found in [Mi].

THEOREM 2. There is an alternating bilinear pairing
II(F/K) x II(E/K) — Q/Z (20)
whose kernel is the subgroup of infinitely divisible elements.

We outline two different definitions of the pairing. In the language
of [PS] these are the homogeneous space definition and the Weil pairing
definition. Both appear in Cassels’ original paper [CalV].

2In the case K = R or C we must replace E(K) by its group of connected components.
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Homogeneous space definition. Let z,y € II(E/K). Then z corre-
sponds to a torsor T under E. There is an exact sequence of G g-modules

0—K — KT L Div®(T) 23 E—s0.

Splitting into short exact sequences and passing to the long exact sequence
of Galois cohomology we obtain a diagram, which we consider both in its
own right and with K replaced by K,

HYK,DWV)(T)) *8 HYK,E) - HK,K(T)"/K)

We choose f € H?*(K,K(T)*) such that f and y have the same image
in H2(K,K(T)*/K"). Since y is locally trivial f, = i(e,) for some &, €
Br(K,). We define

(x,y) = >, invy(ey). (21)

Remarks. (i) The global element f exists since H3(K, K ) = 0. Cas-
sels [CalV, §3] avoids appealing to this fact by relaxing the condition that
f is represented by a cocycle.

(ii) The definition is independent of the choice of f by (18).

(iii) Since T(K,) # 0 the map ¢ : Br(K,) — H?(K,, K,(T)*) has a section.
It follows that our choice of element &, is forced.

(iv) Linearity in the second argument is clear. For linearity in the first
argument we refer to Cassels [CalV, §3].

(v) The pairing is alternating, i.e. (z,x) =0 for all x € III(E/K). To see
this let T as above and pick P € T(K). Then the cocycle o P — P defines
an element ¢ of H'(K,Div’(T)) with sum(x) = z. The exact row of our
diagram shows d(x) = 0. It follows that (x,2) = 0 as claimed.

The non-degeneracy statement of Theorem 2 follows from
THEOREM 3. Let ¢ : C' — D be an isogeny of elliptic curves over K.
Then there is a map ¢ : II(C/K) — II(D/K), and x € II(D/K) belongs

-~

to the image of ¢ if and only if (x,y) =0 for all y € NI(D/K)[¢].

At this point we need an alternative definition of the pairing.
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Weil pairing definition. Let x,y € III(D/K). Suppose that x lifts to
an element 2, € H' (K, C) with ¢z; = z, and that y € III(D/K)[¢]. Since
x is locally trivial we may choose &, € H'(K,,C[#]) such that —&, and x;
have the same image in H'(K,,C). Let b € S(‘g)(D/K) with ¢ : b y.
We define

(r,y) = Zv(fvabv)v (22)

where (-,-), is the local Tate pairing (16).

Remarks. (i) The definition is independent of the choices of x; and b
by the product formulae for the pairings (16) and (17) respectively.
(ii) The definition is independent of the choice of £, by Tate local duality.
(iii) Linearity in both arguments is clear.
(iv) If © = ¢z for some x; € HI(C/K) it is clear that (x,y) = 0.

PROPOSITION 2.5. The global pairings (21) and (22) are compatible.

Proof. Let x,x1,y, and b be as in the Weil pairing definition. Then z
and z correspond to torsors 77 and T under C' and D respectively. There
is a commutative diagram

n 5T

2 N

c % p % ¢
with non-vertical maps defined over K. Let b = {b,}, and let b, € Div(T)
with sum(b,) = b,. We choose rational functions f, . € K(T') and g, €
K(Ty) with

div(fo,r) = 0br — by + b, div(g,) = ¢"b,

and scale such that f, ,0¢ = (0g,) g5 go. At each place v we choose P €
T(K,) and P, € T)(K,) with ¢(P;) = P. Then the cocycle o P, — P; defines
an element —¢, in H'(K,,C[#]). Following the proof of Proposition 2.1
the cocycles

es(oPy — Prob)™  and  fy . (P) = (fyr00) P,

are cobounding. Thus (§,,by), = €, for all v and the pairings (21) and (22)
agree. 1

For the proof of Theorem 3 we need an approximation theorem in the
style of [CalV, Lemma 6.2]. We temporarily suspend our convention that
(%), is the local object corresponding to ().
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LEMMA 2.6. Let M be a finite Gg-module. For each place v we fix
W,(M) c HYK,,M) and write W,(MV) c HY(K,,M") for its exact
annihilator with respect to the Tate pairing. Suppose that W,(M) and
Wo(MVY) are the unramified subgroups for all but finitely many v. Then
given &, € HY(K,, M) there exists ¢ € HY (K, M) with & = &, mod W, (M)
for all v, if and only if
(i) & is unramified for all but finitely many v,

(i) >, (Evsbw)w =0 for allb e HY (K, M) with b, € W,(M").

Proof. Necessity of (i) and (ii) is clear, the latter from the product
formula. Sufficiency is a consequence of the Cassels-Poitou-Tate exact se-
quence. We refer to [CS, §1] or [Mi, 1.4.10, 1.6.15] for details.

We now give the proof of Theorem 3 under the assumption
r € II(D/K) lifts to 2 € H'(K,C) with ¢z, = . (23)

Under this assumption, z is in the image of ¢ : III(C/K) — II(D/K) if
and only if we can find £ € H' (K, C[@]) such that z1 4 14(£) is everywhere
locally trivial. We choose local elements &, € H!(K,,C[¢]) such that —¢&,
and 77 have the same image in H'(K,,C). Lemma 2.6 with M = CJ[¢]
and W, (M) = imdy, tells us that the &, may be chosen coming from a
global element & € H(K, C[¢]) if and only if

S, (6osby)y =0 forall b e S (D/K). (24)

According to the Weil pairing definition, (24) is precisely the condition
(x,y) =0 for all y € III(D/K)[¢]. This completes the proof of Theorem 3
under the assumption (23).

The existence of a global lifting (23) is assured if for M = C[¢] the
natural map

H*(K,M)— [],H*(K,,M) is injective. (25)
Indeed there is an exact sequence
HY(K,C) — H(K, D) — H2(K, C[3)
and by assumption z is everywhere locally trivial.

LEMMA 2.7. Let M = C|[¢] with either degd = p or ¢ = [p] for p a
prime. Then the Hasse Principle (25) holds.

Proof. First suppose deg¢ = p. A field extension of degree prime to
p reduces us to the case M = p, and we are done by (18). The case
¢ = [p] is due to Tate [CalV, Lemma 5.1]. See [Mi, 1.9.2] for a more
general statement. A counter-example for arbitrary finite M may be found
in [Se2, II1.4.7].
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We now have a proof of Theorem 3 in the case ¢ = [p]. As Cassels
[CalV, §4] explains, this is sufficient to prove Theorem 2. To complete the
proof of Theorem 3 we argue by induction on the degree of the isogeny ¢.
We factor ¢ = ¢1¢2 with ¢ satisfying one of the conditions of Lemma 2.7.
Say

c 2 g p.

-~

We are given z € HI(D/K) with (z,y) = 0 for all y € HII(D/K)[¢].
Since deg ¢1 < deg ¢ our induction hypothesis shows that there exists 1 €
HI(E/K) with ¢;21 = . Then by Lemma 2.7 there exists xo € H*(K, O)
with ¢oxs = x1. Thus ¢zs = x. Our earlier proof of Theorem 3 under the
assumption (23) now applies.

LEMMA 2.8. Let ¢ : C' — D be an isogeny of elliptic curves over K.
Then the maps ¢ : II(C/K) — II(D/K) and ¢ : II(D/K) — HI(C/K)
are adjoints with respect to the Cassels-Tate pairing.

Proof. See [CaVIII, §2] where this result is readily deduced from the
homogeneous space definition. This lemma gives yet another proof of the
easier implication of Theorem 3.

Remark. The Weil pairing definition may be used more generally by
relaxing the condition that x; is represented by a cocycle. See [Mi, 1.6.9] or
[PS, §12.2] for details. If we then check that the definition does not depend
on our choice of isogeny ¢, we may avoid the homogeneous space definition
altogether.

Remark. The homogeneous space definition has been used for explicit
computations by McGuinness [McG]. The Weil pairing definition has been
used by McCallum [McC] and Beaver [Be] in the split torsion case. Variants
of the Weil pairing definition have been used by Cassels [Cal], [Ca98] to
treat diagonal cubics and 2-descents respectively.

2.3. Split torsion and local pairings

We write the Cassels-Tate pairing in a form expounded by Cassels [Cal],
[Ca98], and then recall from [McC] a condition for this pairing to be written
as a sum of local pairings.

PROPOSITION 2.9. (i) Let ¢ : C — D be an isogeny of elliptic curves
over K with m = deg¢. There is an alternating bilinear pairing

S@(D/K) x S (D/K) — Q/Z (26)

whose kernel is precisely the image of ST (C/K).
(i) If the exact sequence of Galois modules 0 — C[¢p] — C[m] — D[¢p] — 0
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splits then the global pairing (26) is a sum of local pairings
()5, imdg ximds  — Q/Z. (27)

Proof. (i) The Cassels-Tate pairing on (D /K )[(5] lifts to a pairing on
S(@(D/K). The description of the kernel is immediate from Theorem 3.
(ii) Let s be a Galois equivariant section of the map ¢ : C[m] — D[cg]
Then s may be used to make the lifting (23) automatic. Working over the
local field K, we drop the subscripts v from our local connecting maps.

There is a commutative diagram
C(K,) & DK, =5 H(K,,Clg)

| le L

cik,) ook, L HV(K,,Clm) (28)

It I e

3 55 -
D(K,) % CO(K,) — H'(K, D).
Given a,b € imd; we choose P € C(K,) with 65(P) = a. Then there exists
¢ € HY(K,, C[¢]) with 6,,(P) = t(€) + s(a). We define

<a’7 b>$77j = (67 b)v (29)

where (-, ), is the Tate pairing. By Tate local duality this definition does
not depend on the choices of P and {. The Weil pairing definition shows
that the Cassels-Tate pairing on S(®)(D/K) is the sum of these local pair-
ings. 1

Since im d,, ¢ H'(K,,C[m]) is an isotropic subspace with respect to
the Tate pairing, we find

LeEMMA 2.10. The local pairings (-,-); ,, are skew-symmetric.

Proof. See [McC, Lemma 1.10].

~

In the setting of Proposition 2.9(ii) we have C[m] = C[¢] x sD][¢]. It
is helpful to make some changes to our notation. We write o : £ — E'
instead of ¢ : C' — D, and 3 : E — E” for the isogeny with kernel sD[¢].
Then it is natural to identify Ea] = E”[5] = M (say), E[B] =FE'la]=M"
and E[m] =M x MV.

Again we work over the local field K, and drop the subscripts v from
our local connecting maps. From the commutative diagram

B(K,) -, E'(K,) ey HY(K,, M)
] & |
E(K,) S BKK) S H(E, M) G0)



it is clear that imd, C imdg and im (53 C imdg. The next proposition
shows that im d, = im dg if and only if im 3 = im 5. We call v a switching
place if these equalities do not hold. For all but finitely many primes p we
know that im d, = imd is the unramified subgroup of H' (K, M). So the
set of switching places is finite.

LEMMA 2.11. (i) The subgroup imé6,, C H*(K,, E[m]) may be viewed
as a relation on H'(K,, M) x H*(K,, M"). It induces an isomorphism

imdg/imdq ~ imds/imdg. (31)
(i) The Tate pairing (15) induces a non-degenerate pairing
(-,), 1 imdg/imés x imdg/imdéy — Q/Z.
Combining (i) and (i) we obtain the local pairings of Proposition 2.9. More
precisely, if we write both the isomorphism (31) and its inverse as a — @,

then {(a,b)a., = (@,b), and (a,b)s,, = —(a,b),. In particular the switching
places are precisely the places for which the local pairings are non-zero.

Proof. (i) The diagram (30) shows

E(Ky)
aE'(K,)BE"(K,)

imdg/imd, ~  imdg/imdj.

(ii) The non-degeneracy is a consequence of Tate local duality.

The description of (-,-); , follows from the proof of Proposition 2.9 on
noting that our identifications suppress the maps ¢ and s. The description
of (-,+)4, follows by the symmetry properties of the pairings. The final
statement is clear.

Remark. By Lemma 2.10 we know that imdg/im d, has order either
a square or twice a square. Taking M = p4 and following the proof of
Proposition 1.7 (with uy ¢ K,) we may give examples of the latter. We
deduce that the local pairings need not be alternating.

Following Beaver [Be] we give a formula for the local pairings in terms
of the Hilbert norm residue symbol. We suppose

M~M"~Z/mZ as G,-modules. (32)
In particular y,, C K,. We fix P € M and Q € MY with e,,(P,Q) = (.

The maps z — e, (P, z) and x — e,,,(Q, z) induce isomorphisms
jp o HY (Ko, MY) Ky /K™
jo: HY(K, M) ~ KiK.

12

Let a € HY(K,,M) and b € H'(K,, M"). By [McC, Lemma 2.7

(a,b)y = —Ind¢(jga, jpb)o (33)
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where (-,-), on the left is the Tate pairing and (-,-), on the right is
the Hilbert norm residue symbol. Under the assumption (32) we have
HY(K,, Elm]) = Hom(G,, (P, Q)).

PROPOSITION 2.12. Let v be a place of K satisfying (32) and
im d,, = Hom(G,, (rP + sQ)) (34)

for some (r : s) € PY(Z/mZ). Then
(1) im 05 = Hom(G,, (sQ)) and (sa, sb)s , = rsInd¢(jpa,jpb),
(11) im dg = Hom(G,, (rP)) and (ra,rb)s, = —rsInd¢(joa, jgb)s-

Proof. (i) We compute
(sa,sb)a, = (5a,sb), by Lemma 2.11
= —Ind¢(jo(3a),jp(sh))s by (33)

Ind¢(jp(ra),jp(sb))y by (34)
= rsInd¢(jpa,jpd)y.

(ii) This follows on interchanging P and @. Although both pairings are
skew symmetric a minus sign is introduced since we have taken e, (P, Q) =

¢

2.4. A description of the ratio (r: s).

Let m = 3, 4 or 5. Let E/K be an elliptic curve with E[m] =~ i, %
Z/mZ. In the notation of §1.3 we have E = E, for some t € K. In the
notation of §2.3 we have taken M = p,,,. We aim to compute the local
pairings (-, )5, and (-, )4 .

We treat an important special case, namely when v = p is a prime with
Normp =1 (mod m), equivalently ptm and p,,, C K,. For these primes
our hypothesis (32) is satisfied. In fact E has split multiplicative reduction
at p. As Beaver [Be] explains the Tate parametrisation may then be used
to establish (34). Instead we make use of the action of PSLy(Z/mZ) on
X (m). Our method gives a simple way of computing the ratio (r : s).

PROPOSITION 2.13. Let (E,P,Q) = (E, P, Q) with t € K. Let p be
a prime of bad reduction for E with Normp =1 (mod m). Then hypothe-
ses (32) and (34) are satisfied for the following values of (r : s)

_ t=0 (mod p) (1:0)
m=3 {tEC” (mod p) (v:1)
t=0 (mod p) (1:0)

m=4 t=4" (mod p) (v:1)
t=oco (mod p) (1:2)

e 5 {tEO,oo (mod p) (1:0)
t=¢"¢,("¢ (mod p) (v:1).
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Proof. Since p{m the cusps of X (m) are distinct when we reduce mod
p. We first consider the case t = 0 (mod p). Proposition 1.7 and Tate local
duality give imd, , = Kj/K;™ and imd5,, = 0. The diagram (28) shows
that there is an exact sequence

0— imdyp — iMdy,p — imds,, — 0.

We deduce imd,, , = Hom(Gy, (P)). So the hypothesis (34) is satisfied
with (r : s) = (1 : 0). We use the action of PSLy(Z/mZ) on X (m) to
b
d

(5 ) -(2)

It only remains to describe the action of PSLy(Z/mZ) on the cusps, and
this may be read off from Proposition 1.6. 1

extend to the general case. Indeed if z : t1 +— t9, then in an obvious

notation

Remark. The last two propositions give an alternative and perhaps
more natural proof of Proposition 1.7.

COROLLARY 2.14. Let (E,P,Q) = (Et, P;, Q) witht € K. Let p be a
prime with Normp = 1 (mod m). Suppose t = ¢” (mod p) (for m = 3,

4), respectively t = (¥ ¢,(¥¢ (mod p) (for m =5), for some v prime to m.
Then

(a,b)ap = v Inde(jpa,jpd), (35)
(a,b)pp = —1/vInd¢(jga,jqb)y. (36)

Proof. This is the case (r: s) = (v : 1) of the last two propositions.

Remark. Beaver [Be] obtained the formula (36) in the case m = 5. In
her notation A\, = 1/v is computed in terms of the Tate parametrisation.

We give an alternative approach to Corollary 2.14 that avoids both
the Tate parametrisation and the action of PSLo(Z/mZ). Putting our
equations for £ = F; into Weierstrass form and using Lemma 1.1 we blast
out the identities

¢t = Q)(t—¢?)? m
ipda(Q) = § =9+ +)° o om
I, ((t=¢"0)/(t—¢9)) m

tt2+t+1)/3
JQds(@Q)~" = { tt*+1)/2
tf(t)/g(t)

Il
U W

333
Il
Tt W
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where f(t) and g(t) are given by (4). For v as in Corollary 2.14 it follows

ordy (j@ds(Q)) = —vordy(jpda(Q)) (mod m). (37)

We check (35) in the case a = 05(Q) and ord, (jpb) = 0. Indeed

(06(Q),b)ap, = (95(Q),b)p by Lemma 2.11
= —Ind¢(jodos(Q),jrb), by (33)
= viInd¢(jpda(Q),jrb)y by (37).

Similarly we may check (36) in the case ord,(jga) = 0 and b = d3(Q).

<Cl, 65(@))5# = —(Cl, 6& (Q))p by Lemma 2.11
= Ind¢(jqa, jpda(@))s by (33)
= —1/vInd¢(jga,joos(Q)), by (37).

Under the hypotheses of Corollary 2.14 the pairings (-, )5, and (-, ->5
are, at the level of abelian groups, just skew symmetric pairings

,U

(Z/mZ)? x (Z/mZ)* — Q/Z.

Thus for m odd the formulae (35) and (36) may be established by check-
ing at a single pair of non-trivial values. The above calculations do this
whenever ord, (jgds(Q)) # 0 (mod m).

2.5. An example without split torsion

We compute the Cassels-Tate pairing for one of the curves found in [F1].
This section and §3 may be read in either order.

Let m = 5 and A = 100/9. The curve C) defined in §1.1 is labelled
570L4 in Cremona’s tables [Crl]. In [F1] we saw

S9(Cr/Q)~(2/5Z)* and S@P(D)/Q) = 0.

Descent by 2-isogeny [Crl], or equally an L-value computation, shows that
C)(Q) has rank 0. We were able to deduce II1(C,/Q)[5] ~(Z/5Z)?. In
this section we prove

PROPOSITION 2.15. Let m = 5 and A\ = 100/9. Then S®)(C,/Q) C
Q*/Q*° is generated by the primes 2, 3 and 5. The Cassels-Tate pairing
on this Selmer group is given by
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Not only does this give another proof that Cx\(Q) has rank 0, but we
also learn that III(C'\/Q) contains no element of order 25.

The idea is that we use our work in the split torsion case to give a for-
mula for the Cassels-Tate pairing over a certain subfield F' C Q(Dy[5]). We
must therefore explain the relationship between the Cassels-Tate pairing
over Q and the Cassels-Tate pairing over F'.

PROPOSITION 2.16. Let L/ K be a finite extension of number fields. Let
E/K be an elliptic curve. Then the restriction map II(E/K) — II(E/L)
and the corestriction map II(E/L) — HUI(E/K) are adjoints with respect
to the Cassels-Tate pairing.

Proof. We recall [Sel, VIL.7] that corestriction is the map on cohomol-
ogy corresponding to the norm in dimension 0. Let v be a place of K. For
any discrete Gx-module A and any ¢ > 0 there is commutative diagram

Hq(LvA) - 69w|v]{q(Lwa"4)
lCor lz Cor
HI(K,A) —  H(K,, A)

Indeed for ¢ = 0 this expresses a well-known property of the norm, and the
general case follows by dimension shifting. In particular the corestriction
map HY(L,F) — H'(K, E) preserves local triviality. We obtain a map on
Tate-Shafarevich groups as claimed.

We give one further preliminary to our calculation. Let w|v be places
of L and K and let n = [L,, : K,]. There are commutative diagrams

Bir(K,) % Q/Z Br(K,) % Q/Z
~LRes . an TCor . H
Br(L,) — Q/Z Br(L,) — Q/Z.

The diagram on the left is well-known [CF, VI.1]. Since the restriction
map Br(K,) — Br(L,) is surjective and CoroRes = n, the diagram on
the right is a formal consequence.

Now let z € III(E/K) and y € HI(E/L). Following the homogeneous
space definition, x corresponds to a torsor 1" defined over K. Then Resx
corresponds to T viewed as a curve over L. We choose f € H?(L, K(T)*)
such that f and y have the same image in H2(L, K(T)*/K"). Writing
fuw = t(ew) we have (Cor f), =¢3°,,, Core,. Finally we compute

(z,Cory) = 3, inv(},,Corey) = 3, inv(es) = (Resz,y).

We return to our numerical example. By Lemma 1.1 and (7) we have

Q(DA[5]) = Q(us, /n(A)). We put 7= {/n(A) and t = (¢7 + 1) /(T — ¢).
Then t is aroot of t f(t) —Ag(t) = 0 where f(t) and g(t) are the quartics (4).
We work over F' = Q(¢), a non-Galois degree 5 subfield of Q(D[5]).
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LEMMA 2.17. Let A =100/9. Then

S@(C\/Q) = {0€Q*/Q*°| ord,(0)

=0 (mod 5) for all p #2,3,5}
S@NC\/F) = {0¢€ F*/F*|ord,(0) =

0
0 (mod 5) for all p12,3,5}.
The Cassels-Tate pairings on these Selmer groups are related via

(Normp/q =,y)q = (z,y)r forxzc S@O(Cy\/F), y e S9(C\/Q).

Proof. The description of the Selmer groups is immediate from Propo-
sition 1.4. Let us note that A\* — 11X — 1 = 19/81 and that O}/O;% is
trivial for p|19. The relationship between the Cassels-Tate pairings is a
restatement of Proposition 2.16.

We are fortunate in our example to find that ¢, ¢ — 1 and ¢ — 2 belong to
S(#)(C\/F) and that their norms generate S(¢)(C/Q). So it only remains
to compute the Cassels-Tate pairing on S(®)(Cy/F). The primes of Q(ys)
above 2, 3 and 5 are (2), (3) and [ = (1 — (5). In each case n(\) = (¢°\ +
1)/(A—¢°) is locally a 5th power. So these primes split in Q(Dx[5])/Q(us)-
We label the primes upstairs

(2 = PoP1...P4 with7=¢"¢ (mod P,)
(3) = Qo0;...924 with7=¢"¢ (mod Q,)
[ = £0& ...L; with7=("¢ (mod £2).

Our treatment of the primes above 5 makes use of [CF, Exercise 2].

LEMMA 2.18. Let (E,P,Q) = (E, P, Q) with t as above. The primes
PBo,Qu, L, of Q(DaA[5]) above 2, 3 and 5 satisfy the hypotheses (32) and (34)
with (r:s)=(=1:v).

Proof. We closely follow the proof of Proposition 2.13. Since (t) =
P2Q, 2 L2 the case v = 0 may be deduced from Proposition 1.4. We then
use the action of Gal(Q(Dx[5])/Q(us)) to extend to the general case. In
the notation of Proposition 1.6, S : 7+ t. So we obtain (r : s) = (-1 : v)
rather than (v :1).

LEMMA 2.19. The Cassels-Tate pairing on S (Cy/F) is given by

<a7b> = Il’ldc(a,b)qgl (a’b)ﬂl(a’b)ﬂl' (38)

Proof. As in §1.3 we identify ¢ : C\ — Dy with §: E” — E. We have
already seen
. F:/F5  ifp|2,3,5
_ p p 9, I
i dgp = { 0;/0;®  otherwise.

The Cassels-Tate pairing is a sum of local pairings (-, -) g,p- By Lemmas 2.10
and 2.11 we need only consider the local pairings at the primes above 2,3
and 5. We have (2) = pp’ with p = PBo and p’ = P1P2P3P4. Since
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ordy(t) # 0 we know that imd,,, = F,/F;° and so p is not a switching
prime. On the other hand p’ splits in Q(D,[5])/F. By Proposition 2.12(ii)
we have

(a,b)ppr = (a;b)pp, = Indc(a,b)gp,
where in accordance with Lemma 2.17 we have suppressed the map jq.
Repeating for the primes above 3 and 5 we arrive at the formula (38). 1

Finally we use the congruences

7=(¢ (modP) = t=(*¢ (mod P;)
7=(¢ (modQ;) == t=(' (mod Q)
r=(¢ (mod £}) = t=('¢ (mod £7)

to reduce the proof of Proposition 2.15 to a calculation of Hilbert norm
residue symbols at the primes of Q(us) above 2, 3 and 5. We assume
that the reader is familiar with the rules for manipulating these symbols,
in particular the product formula, the relationship with the power residue
symbol, and Euler’s criterion. A good reference is [CF, Exercises 1 and 2].
We further make the observation that if a = 1 (mod [?) then (a,b); = 1 for
all b € Zz. This observation is useful since ¢ = ¢ (mod [?).

(i) Normyq(t) = 100/9. We have
(100/9,b) = Ind¢ (C"4,b)2(C*6,0)3(¢ '3, b)r.
Since ¢4 and (46 are units it follows
(100/9,2) = (100/9,3) = (100/9,5) = 0. (39)
(ii) Normpq(t — 1) = 1/9. We have
(1/9,b) = Ind¢(¢*¢ — 1,b)2(C*¢ — 1,b)3(¢*d — 1,b)1.

Now ¢*p —1 = —(2+¢?) is a prime above 11, whereas (*¢ — 1 = —(o is a
unit. We compute

(1/9,2) = Ind¢(2/2+¢%) = 1
(1/9,3) = 0 (40)
(1/9,5) = Indc(5/2+¢%) = 4

(iii) Normp,q(t —2) = 2/9. We have

(2/9,b) = Ind¢(¢* — 2,0)2(¢* e — 2,b)5(¢* ¢ — 2,b)1.

Now (*¢p—2 = —(3+¢?) is a prime above 61, whereas (*¢—2 = —(¢p(2+¢?)
is a prime above 11. We compute

(2/9,2) = Indc(2/3+¢%) = 1
(2/9,3) = Ind¢(3/2+¢%) = 3 (41)
(2/9,5) = Ind¢(5/3+¢%) = 2.
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Proposition 2.15 now follows from (39), (40) and (41) together with
linearity of (-,-) in the first argument. In fact our calculations are overkill,
since we know ahead of time that (-,-) is skew-symmetric and that A\ =
100/9 lies in the kernel. So it would have sufficed to compute a single
non-zero value of the pairing.

Remark. The Hasse norm theorem guarantees that the elements of
S(#)(Cy/Q) are norms from F*/F*5. However we cannot always expect
the elements upstairs to belong to S(®)(Cy/F). So although the above
method applies to several more of the examples in [F1], including some
with m = 7, we do not claim that it is a general method. Imposing local
conditions on the elements upstairs is also undesirable for computations.
By comparison with [Cal, Appendix B] we believe that there must be a
more general formula for the Cassels-Tate pairing on S(®)(Cy/Q) that does
not rely on Proposition 2.16.

3. EXAMPLES OVER Q

Let E/Q be an elliptic curve with E[m]~p,, x Z/mZ as a Galois

module. We write
JoUREy DR o

for the isogenies with Ela] = E"[f] = um and E’'[a] = E[B] =7Z/mZ. We
may estimate the Mordell-Weil rank using either (i) the pair of isogenies «
and @, or (ii) the pair of isogenies (3 and B, or (iii) the multiplication-by-m
map on E. Theorem 4 below makes these estimates explicit in the cases
m = 3 and 5.

The reader will notice that we have dropped from discussion the case
m = 4. We believe that the analogue of Theorem 4 in that case would
be considerably more complicated. Not least, a proper treatment would
need to explain the relationship between the Selmer groups attached to
many different isogenies. Let us also note that the elliptic curves E/Q
with E[4] ~ uy x Z/4Z are just rather special cases of (1).

3.1. Statement of the main theorem

Let m = 3 or 5. Let E/Q be an elliptic curve with E[m] ~ pi,, x Z/mZ.
Then E = E, for some t € Q. We recall from §1.3 that E; has equations

m=3 {ta}+23+23) - 3zom1720 =0 } C P2 (@)
2
m=>5 {tr2+z, 17,41 — 121, 27,.20=0} CP?

with0=(0:1:—-1)and0=(0:¢:1:—1:—t) respectively. Alternatively,

an equation for E; in Weierstrass form is given by substituting \ = #3/27,
respectively A = t°, into the equations for Cy appearing in §1.1.
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In the case m = 3 the modular curve X (3) has cusps at t = 0,1,¢, >
For t # 0,1 a rational number we define finite disjoint sets of rational
primes

P = {pprime | ord,(¢/3) >0}

_ . t?+t+1=0 (modp)and p=1 (mod 3)
Q@ = {p prime or p=3and ords(t+1)#0
R =

i t—1=0 (modp)and p=1 (mod 3)
p prime or p=3andt=1or4 (mod?9) ‘
In the case m = 5 the modular curve X (5) has cusps at t = 0, 0o, V¢, (Y&,
where v runs over Z/5Z. For ¢t # 0 a rational number we define finite
disjoint sets of rational primes

P = {pprime | ord,(t) #0 }
Q = {pprime|f()g(t)=0 (modp)and p=1 (mod5)}

t2—t—1=0 (modp)and p=1 (mod 5) }

R = {ppmme or p=5andt=3 (mod 5)

where f(t) and ¢(t) are the polynomials (4).

Each prime p € QU R satisfies either p =1 (mod m) or p = m. So we
may choose non-trivial characters

Xp : (Z/pZ)* — Z/mZ, respectively xy, : (Z/m*Z)* — Z/mZ.

We write [A, B] for the matrix with entries (x4(p))pea,qen and define

Zo = ([P,Q [P,R]) =5 = Ggg)
0 [P, Q] [P, R]
Em=|-[P, Q" [29-129" [QR]
—[P,RIT —-[Q,R]T

It is to be understood that =, is a skew-symmetric matrix, and that the
diagonal entries are therefore zero.

THEOREM 4. Let m = 3 or 5. Let E/Q be an elliptic curve with
Elm] >~y X Z/mZ. Then E~FE; for somet € Q and t determines ma-
trices =4, 2g and =, as above.

(i) The Selmer groups attached to o and @ are S (E/Q) ~ kerp,(Z,) and
S@)(E'/Q) ~ kerg(E,). The corresponding estimate for rank E(Q) is

re = |P|+|Q| + |R| — 1 — 2rank(Z,).
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(ii) The Selmer groups attached to B and B are S (E"/Q) ~ kery,(Eg)
and SP)(E/Q) ~ kerg(Eg). The corresponding estimate for rank E(Q) is

rg = |P|+1Q| +|R| — 1 — 2rank(Zp).

(111) Suppose that the characters x, for p € Q are compatible in a sense
to be defined below. Then SU™(E/Q)~ ker(E,,) and the corresponding
estimate for rank E(Q) is

rm =[P +]Q + R = 1 - rank(Zy).

Remarks. (i) The estimates 74,73 and 7, are upper bounds which,
granted the finiteness of III(E/Q), differ from rank E(Q) by an even inte-
ger. Some authors call these Selmer ranks.

(i) The choice of characters x, does not affect the rank of =, or =g, but
may affect the rank of =,,. So in computing r,, a further condition on the
characters is essential.

(iii) It is clear both from theory and our explicit recipes that r,, < min{r,,rs}.
In §3.4 and §3.5 we give some examples where this inequality is strict.

(iv) The estimates 74,7 and 7, all have the same parity. By Tate’s algo-
rithm [Si2, IV.9] together with [R], [Co] it may be checked that the set of
places for which E has root number —1 is P U QU R U {co}. The parity
result so obtained is a special case of a theorem of Monsky [Mo].

(v) In the case m = 5 we have E; ~ E_; ;. It is instructive to check that
replacing ¢ by —1/t does not alter our estimates 7,75 and r,.

We specify a preferred choice of characters x, for primes p € Q. By
definition of Q we have either p = 1 (modm) or p=m =3. If p =1
(mod m) we may choose® ¢ € (Z/pZ)* an element of order m. According

as m = 3 or 5 we have either t = (¥ (mod p) or t = (¥¢,("¢ (mod p) for
some v € (Z/mZ)*. The character

Xp: (Z/pZ)* — Z/mZ; x— zP~D/™ followed by (¥ 1 (43)
is independent of our choice of (. If p = m = 3 we define

1 if ordz(t+1) <0

2 if ordg(t+1) > 0. (44)

X3 :(Z/92) — Z/3Z; 2+ {
The case p = m = 5 does not occur. We say that the characters x,, for

p € Q are compatible if they are all chosen to be the same scalar multiple
of the characters (43) and (44).

Remark. It would be interesting to understand the relationship be-
tween our Theorem 4 and [CSS, Proposition 1.2.3] which express the 2-
Selmer group for the curves (1) as the kernel of a (skew-)symmetric pairing.

3Tt is equivalent to choose a prime p of Q(um) above p.
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3.2. Proof of the main theorem

We begin the proof of Theorem 4 by computing the images of the local
connecting maps attached to a : E — E’ and 8 : E” — E. Since m is odd
we need only concern ourselves with the finite places.

PRrROPOSITION 3.1. Let E = E; for somet € Q. Then
/" ifpeP

imé,, = Z:/Z;™  ifpg PUQUR
1 ifpe QUR
Q,/Q;" ifpePuUQ
imds, = Z:/Z5"  ifpg PUQUR
1 ifpeR.

Proof. Assume first that p # m. We apply Propositions 1.2 and 1.4
for the two values of A given in the table of §1.3, noting that Z,/Z;™ is
trivial if p Z 1 (mod m). The case p = m = 3 is postponed to §3.3. The
remaining details in the case m = 5 are recalled from [F1]. 1

As in §1.3 we take (E, P,Q) = (E¢, P;,Q:), so that e,,(P,Q) = ¢ and
Q@ € E(Q). In the notation of §2.3 we have taken M = pu,, generated by
P and MV = Z/mZ generated by Q. The maps = — e,(Q,x) and Q — 1
allow us to identify

HY(Q, M) HY(Q, pm) = Q/Q™
HYQMY) = HYQZ/mZ) — Hom(Gq,Z/mZ).
Let A and B be finite sets of rational primes and suppose that B consists
of primes p with p =1 (mod m) or p = m. We define
A = {0€Q*/Q""| ord,(0) =0 (mod m) for allp & A}
(B) = {x€Hom(Gq,Z/mZ)|x, is unramified at all p & B }.
Then [A] has basis A. For each prime p € B we choose p¥ € Hom(Gq, Z/mZ)
a non-trivial element ramified only at p. By class field theory, specifically
the Kronecker-Weber theorem, such an element exists and is unique up to
scalars. Now (B) has basis {p"|p € B}.
By Proposition 3.1 and Tate local duality we have
S@(E/Q) = {xeHYQ,M) |z, €imd,, for all primes p }
= {z€[P]|axp,=0forallpe QUR }
{ze HY(Q,MY) | z, € imds, for all primes p }
{ze€(QUR) |z, =0forallpeP }.

(45)

S@(E'/Q)

Asin [F1, §2.4] we identify S(*)(E/Q) and S©® (E’/Q) as the left and right
kernels of a pairing
[P] x (QUR) — Z/mZ
(z,y) = EpeQUR(l‘a Y)p
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where (-,-),, is the Tate pairing. In terms of the bases {p} and {p"} this
pairing is represented by the matrix =,. We note that the arbitrary choice
of characters y, corresponds to the arbitrary choice of elements p". Specif-
ically we have taken

Xp:Zy—Z/mZ; x— (z,p"),. (46)

Since E(Q)[a] = 0 and E'(Q)[a] = Z/mZ it follows from the exact se-
quence (3) with ¢ = o and ¢ = @ that

rank E(Q) + 1 + dim,, [II(E/Q)[«] + dim,, TI(E’'/Q)[a]
= |P|+ |QUR| — 2rank(E,,).

This furnishes the estimate r,, of Theorem 4(i) and granted Proposition 3.1
the proof of Theorem 4(ii) is entirely analogous. Theorem 4(iii) will follow
from

PROPOSITION 3.2. Let m = 3 or 5. Let E = E; for somet € Q and
suppose that the characters x, for p € Q are compatible.
(i) The Cassels-Tate pairing on S (E'/Q) is represented by

(129180 12

[

(ii) The Cassels-Tate pairing on S (E" Q) is represented by

B = - (‘[P(,)Q]T ) Q]T> '

Proof. (1) We read off from Proposition 3.1 that Q is the set of switching
primes. We define some global pairings by summing the local pairings of
Proposition 2.9.

(v (QUR) x (QUR) = Z/mZ; (x,y) — ZpeQ@pai‘/p)a,p
(- '>ﬁ D [PUQIx[PUQ] — Z/mZ; (z,y) — Zpeg<$pvyp>ﬁ,p

The Cassels-Tate pairings on S(®(E’'/Q) and S (E"/Q) are restrictions
of these pairings. For p € Q we now make our choice of global element
p¥ € HY(Q, M) such that locally at p the isomorphism (31) satisfies

HY(Qp, M) — H'(Q,, MY); p—p” (47)

Later we will check that this choice means the characters x, defined by (46)
are compatible in the sense of §3.1. Subject to this, we complete the proof

of Proposition 3.2 by showing that Z' and Z" represent the pairings (-, -);
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and (-,-) ; with respect to the bases {p} and {p"}.
(i) For p, q € Q distinct primes we compute

0,4 = ®.,4")ap—(q¢".p")ay by Lemma 2.10
= (»q")p —(g,p")q by Lemma 2.11 and (47)
= —(p,q")g+ (¢.p")p by the product formula
= —xq(P) + xp(q) by (46).

The other cases (say with p € Q and ¢ € R) are similar.
(ii) For p,q € Q distinct primes we compute

(,9)s = —(¢,p)pp+ (P;q)p,q by Lemma 2.10
= (¢,p")p—(p,q")q Dby Lemma 2.11 and (47)
= Xp(2) — xq(p) by (46).

The other cases are similar.

To explain how Theorem 4(iii) follows from Proposition 3.2 we need a
lemma from linear algebra.

LEMMA 3.3. Let V' be a finite dimensional vector space over a field F'.
LetV =U®W and write pr : V.— W for the projection map. Let {(-,-) be a
skew-symmetric pairing on 'V and suppose that U is an isotropic subspace,
ie. (u,u') =0 for allu,u' € U. Let Wy = WNUL. Then

pr(VE) =WinWwi.

Proof. Let v = u+w € V+ withu € U and w € W. Then w € W, since
U is isotropic, and w € Wit since u, v € Wi-. Thus pr(V+) ¢ Wy n Wit

Conversely, given w € Wi N Wit we seek u € U such that u +w € V*.
But for any choice of u, we have u +w € U+~ since U is isotropic and
w € Wp. Thus it suffices to find v € U such that u +w € WL. We
write ¢ : V. — W* for the linear map induced by (-,-). We must show
Y(w) € Y(U). By counting dimensions we have (U) = (W/W7)*. Finally
the assumption w € Wit implies ¥(w) is trivial on W and we are done.

We apply Lemma 3.3 with U = [P], W = (QUR) and (-, -) the pairing
represented by =, with respect to the bases {p} and {pY}. By Theo-
rem 4(i) we have S(M(E/Q) = UN VL and S©®(E'/Q) = W;. Then
Propositions 2.9(i) and 3.2(i) give aS"™) (E/Q) = WiNWj-. So Lemma 3.3
allows us to identify the exact sequences

0— S(E/Q) — $™(E/Q) - SW(E'/Q)
and
0— UNV:— vVt 25 Wy,
In particular S (E/Q) = V* = ker(Z,,). Since E(Q)[m]~Z/mZ it
follows from the exact sequence (3) with ¢ = [m] that
rank F(Q) + 1 4 dim,,, [II(E/Q)[m] = |P U QU R| — rank(=,,).

This furnishes the estimate r,, for rank £(Q).
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Remark. Theorem 4(iii) equally follows from Proposition 3.2(ii) and
the exact sequence

00— 8g®B (E/Q) — s 5(m) (E/Q) ﬂ S (E"/Q).

In this case we apply Lemma 3.3 with U = (R) and W = [P U Q].

It remains to examine our choice of characters x;, for p € Q. We recall
that eitherp=1 (mod m) orp=m=3. If p=1 (mod m) then p,,, C Q,
and we may apply Corollary 2.14. The identifications (45) suppress the map
Jq- For x € Z;, we compute

Xp(x) = (z,p)p by (46)
= —(z,p)g,p by Lemma 2.11 and (47)
= 1/vInd¢(x,p), by Corollary 2.14
= Indev (x/p).

But Euler’s criterion tells us (z/p) = x®~Y/™ (mod p). So x, is the
character specified in §3.1. The case p = m = 3 is the subject of the next
section.

3.3. Further calculations with p=m =3
To complete the proof of Proposition 3.1 we must show

PROPOSITION 3.4. Let m =3 and E = E; as in §1.3. Then

Q;/Qi  ift=0 (mod9)
imdas = Z:/Z:  ift=3,6,7 (mod 9)

1 ift=1,4 (mod9) or ords(t+1)#0
Q;/Qi®  ift=0 (mod9) or ords(t+1)#0
7373 ift=3,6,7 (mod9)

1 ift=1,4 (mod?9).

im55,3

Proof. (i) Let A = t3/27. Then for ords(¢) > 0 our description of im 6, 3
follows from Proposition 1.2. We must modify the proof to treat the case
ords(t) < 0. We find imd, 3 C Z5/Z3* with equality if and only if the
congruence

xd + 4x? + Ty — 3t worire =0 (mod 27)

is soluble for xg,x1,x2 € Z3 not all divisible by 3. Writing z, = 1 + 3a,
this is equivalent to t =7 (mod 9).

(ii) We first make the claim that if ords(\) = —1 then imd, 3 = Q}/Q3>.
For any 6 € Q3/Q3 we may arrange C) g ~T'[10, 71, T2] with ord,(r,) =
(1,—1,—1). So our assertion is that for any b, ¢ € Z3 the equation

9953 + bm? + cx% —3xgx129 =0
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is soluble over Zs. Taking x1,x2 = +1 gives a solution mod 3. We then
use Hensel’s lemma to solve for xg € Z3. This proves our claim.

Now let A = ¢(t2+t+1)/(3(2t+1)3). If ordz(t) > 0 then ordz(\) > 0 and
our description of imdg 3 follows from Proposition 1.2. If ords(¢ + 1) # 0,
then ords(A) = —1 and we are done by the above claim. It remains to
consider the case t =1 (mod 3). We recall from §1.3 the identity

t—1Y)°
SNRRTE
If t =1 or 4 (mod 9) then ordz(27\ — 1) # 0. It follows that A\ = 73/27
for some 7 € Qs with either ords(7) < 0 or 7 =1 (mod 9). We are done
by (i). Finally if t = 7 (mod 9) then 27X = 2 (mod 3). By case (e) of
the proof of Proposition 1.2 we have imdz 5 C Z5/Z%3. Then Lemma 1.1
shows that we have equality. 1

Now suppose that 3 is a switching prime, i.e. ords(t + 1) # 0. In §3.2
we defined a character

X3 : (Z/9Z)* — Z/3Z; x+— (x,3Y)3 (48)

where 3V € HY(Q,Z/3Z) is unramified outside 3 and satisfies (47). To
complete the proof of Theorem 4 it remains to give an explicit description
of this character. We make use of the explicit calculations at the end of
§2.4. We recall

JPda(Q) C(t—¢)/(t—¢?)
Jjoos(@Q)™t = t(t>+t+1)/3.

The identifications (45) suppress the map jg. Since (-, -) 5.3 is alternating
it is clear that for x € Z3 we have

(2,3)8,3 = (2,05(Q))p,3- (49)

Let p = (1 — (3) be the prime of Q(u3) above 3. For z € Z§ we compute

xs(z) = (2,3Y)s by (48)
= (z,04(Q))s by Lemma 2.11 and (49)
= (00 (@Q) since [Qus)y : Qs = 2
= Tude(ojpoa(@)y by (33)
_ Ind¢(z,¢)p,  if ords(t+1) <0
o Ind¢(z,¢%), if ords(t+1) > 0.

But (2,{), = (¢/2) = (. So xs is the character specified in §3.1. The proof
of Theorem 4 is now complete.
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3.4. Examples with E[3]|~us x Z/3Z

We apply Theorem 4 to all elliptic curves E/Q with E[3] ~pus x Z/3Z
and conductor N < 10%. With the help of Cremona’s tables [Cr2] we know
that there are 264 such curves. All but 4 satisfy one of

(i) 1L1(E/Q)(3) = LL(E'/Q)(3) = LLI(E"/Q)(3) = 0
(i) II(E/Q)(3) = II(E'/Q)(3) = 0 and II(E”/Q)(3) ~ (Z/3Z)?
(it}) II(E/Q)(3) = LII(E"/Q)(3) = 0 and LI(E'/Q)(3) ~ (Z/3Z)".

We record, against the rank, the frequency with which these possibilities
occur.
| (i) (il) (i) other
rank F(Q)=0| 84 58 5
rank F(Q)=1{103 5 0 0
rank F(Q) = 2 5 0 0 0

The exceptional curves are E = FE; for t = 1/9,—1/31,18/17 and 105/104.
Their behaviour is illustrated in Examples 1 and 2 below. Table 1 in §3.6
gives data for the first 40 of the 264 curves.

EXAMPLE 1. Let E = E; and t = 1/9. Then E,E’', E" are labelled
4914N2,1,3 in Cremona’s tables. We have P = 0, Q = {3,7,13} and
R = 0. A compatible choice of characters is

X3 :(Z/92)* — Z/3Z; x — a2 followed by 4 +— 1
x7:(Z/72)* — Z/3Z; x — 22 followed by 4 +— 1
X13 : (Z/13Z)* — Z/3Z; x+ 2* followed by 3 + 1.

The matrix =3 has entries in Z/3Z

Theorem 4 gives r, = rz =2 and r3 = 0. So E(Q) has rank 0 and

HI(E/Q)(3) = 0
LI(E'/Q)(3)  ~ (Z/3Z)
LI(E"/Q)(3) ~ (Z/3Z)%

EXAMPLE 2. Let F = F; and t = 18/17. Then E, E’, E" are labelled
5514A2,1,3 in Cremona’s tables. We have P = {2,3}, Q@ = {919} and
R = . But 23% = 3306 = 1 (mod 919). So Z3 is the zero matrix and
Theorem 4 gives ro, = rg = r3 = 2. Cremona’s tables tell us that E(Q)
has rank 0. We deduce

I(E"/Q)[A] = IL(E"/Q)[3] ~ (Z/3Z)".
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By Proposition 3.2(ii) the Cassels-Tate pairing on this space is trivial. The-
orem 3 applied to the multiplication-by-3 map on E” then shows that
III(E” /Q) contains an element of order 9.

We give an example beyond the range of Cremona’s tables.

EXAMPLE 3. Let E = E; and ¢t = 124/167. We have P = {2,31}, Q =
{3,7,13,19,37} and R = {43}. Making a compatible choice of characters
the matrix Z3 is

|2 313 7 13 19 37|43
20 0]2 2 1 1 1]0
3100 011 0 0 0]1
31 2002 0 1 21
71 2010 2 1 02
132 001 0 0 1]2
1902 of2 2 0 0o 2|1
372 010 2 1 01
30 221 1 2 2]0

We find r, =3, 73 =5 and r3 = 1. Let A = t(t> +t +1)/(3(2t + 1)3) =
22.31.32.7.13.19.37/12453 and 6 = 3534 = 2.31.3.19. By Lemma 1.5 the
torsor C’Mg has equation

o3 + 353423 4 2020225 — 1245x07129 = 0.

A solution is (zg : x1 : x2) = (12:1: —1). Thus F(Q) has rank 1 and
oI(E/Q)(3) = 0
LI(E'/Q)(3)  ~ (Z/3Z)?
II(E"/Q)(3) ~ (Z/3Z)".

3.5. Examples with E[5]|~us; x Z/5Z

Cremona’s tables [Cr2] tell us that there are only 3 elliptic curves E/Q
with E[5] >~ us x Z/5Z and conductor N < 10*. Instead we search over
all E = E; with t = a/b, a,b coprime integers and |al, |b] < 103. Table
2 gives data for the first 40 of these curves, ordered by conductor. We
give further details for some of the curves on our list, beginning with the
example considered by Beaver [Be]. Let us note that E = FE_g5 has non-split
multiplicative reduction at p = 29.

EXAMPLE 4. Let E = E; and t = —5. We have P = {5}, Q =
{11,31,991} and R = ). Beaver made a compatible choice of characters

11:(Z/11Z2)* — Z/5Z; x +— 22 followed by 5+ 1
s31:(Z/31Z)* — Z/5Z; x> 2% followed by 16 — 1
X991 : (Z/991Z)* — Z/5Z; x +— x'9® followed by 799 — 1.
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The matrix =5 has entries in Z/5Z

|5]11 31 991
5 [0[2 0 2
11[3/0 0 3
sLifojo 0 o0
991/3[2 0 o0

Theorem 4 gives ro, =5 = 1 and rg = 3. An L-value computation, details
of which appear in [Be], shows that E(Q) has rank 1. We deduce

II(E/Q)(5) = II(E'/Q)(5) =0 and II(E"/Q)(5)~(Z/5Z)".

As Beaver conjectured the hypothesis “A1; # 0” of [Be, Corollary 1.3
is unnecessary.

COROLLARY 3.5. Let E = E, witht € Z, ords(t) > 0, ord;1(t) = 0 and
t2 —t—1 not divisible by any prime congruent to 1 mod 5. Then II(E"/Q)
contains a subgroup isomorphic to (Z/5Z)2.

Proof. Since (12 —t — 1)f(t)g(t) = t1© — 11#5 — 1 it is clear® that 11
always belongs to one of the sets P, Q or R. Our hypotheses now give
5€P,11 € Q and R = 0. Then Theorem 4(ii) and Proposition 3.2(ii) tell
us that the Cassels-Tate pairing on S(®(E”/Q) is non-zero. The result
follows.

In fact Beaver only considered the case ords(t) > 0. So the next two
examples are new.

EXAMPLE 5. Let E = Eyandt = 7. We have P = {7}, @ = {11, 31,61, 331}
and R = {41}. Making a compatible choice of characters the matrix =5 is

| 7]11 31 61 331]41

7T (404 3 2 1 1
mjyryo 1 2 2 |2
31 |24 0 2 1 2
61 (313 3 0 2 1
3314/3 4 3 0|0
41 1413 3 4 0 |0

Theorem 4 gives ro, = r3 = 3 and 75 = 1. Table 4 in §3.6 exhibits a rational
point of infinite order. Thus F(Q) has rank 1 and

HI(E/Q)(B) = 0
II(E'/Q)(5) ~ (Z/5Z)?
II(E"/Q)(5) ~ (Z/5Z)*.

4 Alternatively, applying Hasse’s bounds to the reduction of E at a prime of Q(us)
above 11, we see that £ must have bad reduction at 11.
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EXAMPLE 6. Let E = E; and ¢t = 5/4. We have P = {2,5}, Q =
{521,4621} and R = {11}. Making a compatible choice of characters the
matrix =5 is

[2 5521 462111

2 o o] 2 2 |1
5 Jo o3 3 |4
521 [[3 2] 0 4 |2
46213 2| 1 0 |0
1m 413 0|0

Theorem 4 gives 1o = rg = r5 = 2. According to pari L(E,1) # 0. By
the work of Kolyvagin, F(Q) has rank 0. We deduce

I(E"/Q)[6] = TI(E"/Q)[5] ~ (Z/5Z)*.

By Proposition 3.2(ii) the Cassels-Tate pairing on this space is trivial. It
follows that III(E”/Q) contains an element of order 25.

3.6. Tables

Tables 1 and 2. We apply Theorem 4 to the first 40 elliptic curves E/Q
with E[m]~ p,,, x Z/mZ, ordered by conductor. In the case m = 3 our list
is extracted from Cremona’s tables [Cr2] and so guaranteed to be complete.
In the case m = 5 we have checked that there are no gaps within the range
of Table 6. Table 1 (m = 3) lists our parameter ¢, the conductor N, the
Cremona labels # for E, E', E”, the sets of primes P, Q, R, the estimates
Ta,78,73 and finally r = rank F(Q) taken directly from Cremona’s tables.
Table 2 (m = 5) has the same column headings, except that we omit the
Cremona labels, and the entry r = rank E(Q) remains to be justified below.
It is unconditional in all cases except t = —8.

Tables 3 and 4. The curves listed in Table 2 are nearly all beyond
the range of Cremona’s tables. We perform some further computations
whenever r5 > 0. Theorem 4 suggests that Cy o(Q) # 0 for A = tf(¢)/g(t)
and certain § € Q*/Q*®. Lemma 1.5 provides equations for Cy g in the
form T'[rg, ... ,74], and we may arrange for the 7, to be coprime. We write
T, = a, /b, with a,, b, coprime integers and b, > 0. Putting =, = b, X,
we arrive at the equations

{ al/bVXE + buflbqulXuleVJrl - au72au+2X1/72Xu+2 =0 } C P4

where as usual v runs over Z/5Z. Table 3 records when a search for Q-
points was successful. Next we use the degree 5 map Cyp — Dy, given
in [FO, Appendix C], to determine rational points of infinite order on E.
We record these solutions to (42) in Table 4, together with their canonical
height. In accordance with [Crl, §3.4] our heights are twice those computed
by pari. We note that cyclically permuting the x, corresponds to addition
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of 5-torsion. So no essentially new solutions are obtained in this way.
Similarly, reversing the order of the x, corresponds to the map [—1].

We justify the entries r = rank E(Q) in Table 2. In the cases where
Table 4 fails to exhibit sufficient points of infinite order, we make use of
the following implications due to Wiles, Kolyvagin, Gross and Zagier.

ords=1 L(E,s) =0 = rankE(Q)=0

ords—1 L(E,s) =1 = rankE(Q)=1. (50)

We also make use of the program bg.gp written by T. Womack [W] that
computes L") (E, 1) using the Buhler-Gross algorithm.

If r5 = 1 then Remark (iv) of §3.1 tells us that ords—; L(E,s) is odd.
Running bg.gp we find L'(F,1) # 0. By (50) we have r = 1. Our 5-
descent then gives III(E/Q)(5) = 0, and assuming III(E/Q) = 0, the Birch
Swinnerton-Dyer conjecture predicts the minimal height of a rational point
of infinite order. To the accuracy of T. Womack’s program this agrees with
the heights of the points listed in Table 4.

If r5 = 2 then Remark (iv) of §3.1 tells us that ords—1 L(E, s) is even.
The case t = 5/4 was treated in Example 6 of §3.5. In the remaining
cases, Table 4 lists at least one point of infinite order. By (50) we have
L(E,1) = 0. Running bg.gp we find L"(E,1) # 0. Assuming the weak
Birch Swinnerton-Dyer conjecture it follows that » = 2. Our 5-descent then
gives III(E/Q)(5) = 0, and assuming [II(E/Q) = 0, the Birch Swinnerton-
Dyer conjecture predicts a value for the regulator

t | -6 -8 —9/2 12
Regulator | 12.686 196.322 41.688 76.056

In the cases t = —6,—9/2,—12, Table 4 lists two independent points of
infinite order. They generate a subgroup with the predicted regulator. In
the case t = —8 we have found only one of the generators. The claim r = 2
remains conditional on either the weak Birch Swinnerton-Dyer conjecture,
or equally on the finiteness of III(E/Q)(5). The predicted value of the
regulator suggests that we are looking for a second generator whose height
is approximately 66.

Tables 5 and 6. Finally we apply Theorem 4 for all rational numbers
t of the form a/b with a, b coprime integers and |al, [b| < 10%. For m = 3
we obtain data for 1216 765 ~ 2.10°(6/72) curves. For m = 5 we ignore
repeats of the form ¢ and —1/¢, and so obtain data for 608 383 ~ 10°(6/72)
curves. Tables 5 and 6 give a frequency count for each of the estimates 7,
rg, min{ry, r3} and ry,. The second number in each column is a percentage.
For example, in the case m = 3, we find 4101 curves with min{r,,rz} = 4.
These amount to 4101/1216 765 x 100% =~ 0.34% of the curves considered.
We see that the estimate 7, is often an improvement on both r, and rg.
We also see that rg is usually much larger than r,. It is therefore somewhat
perverse that our proof of Theorem 1 works by showing that r, — rg may
become arbitrarily large.
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Table 1 Elliptic curves F/Q with E[3] ~pus x Z/3Z

t N # P Q R rq T8 T3 T
-3 14 A1,43 0 {77 0 0 0 0 0
3/6 14 A26,5 0 {74 ® 0 0 0 O
3/2 19 A1L,3,2 @ {19} 0 0 0 0 O
3 26 A1,3,2 0 {134 0 0 0 0 O
co 27 AL3,2 0 {34 0 0 0 0 O
—1/2 27 A3,4,1 0 P {34 0 0 0 O
-3/2 35 ALL3,2 O {7 O 0 0 0 O
3/4 37 BL32 @ {37} 0 0 0 0 O
-3/5 38 ALL3,2 O {19y 0 0 0 0 O
-1 54 AL,3,2 0 {3} ® 0 0 0 O
-2 54 BL3,2 {2} ©® ©® 0 O O O
-3/8 77 BL32 O {7 O 0 0 0 O
-3/4 91 B2,1,3 0 {13} {7} 1 1 1 1
—4/5 126 A3,5,1 {2} {7} {3} 0 0 0 O
2/11 126 A4,6,2 {2} {7} {3 0 0 0 0O
3/7 158 D1,3,2 @ {79} 0 0 0 0 O
-1/8 1711 B2,3,1 0 {19} {3y 1 1 1 1
6/5 182 B2,1,3 {2} {7,13} ®# 0 2 0 O
1/2 189 B2,1,3 0 3,74 ¢ 1 1 1 1
1/4 189 C1,3,2 ® {7} ® 0 O 0 O
—2/7 234 E2,3,1 {2} {13} {3} 0 0 0 0
6/7 254 A2,1,3 {2} {127} 0 1 1 1 1
-3/13 278 B1,3,2 0 {139} ¢ 0 O 0 O
—5/4 315 A2,3,1 {5} {7} {3} 0 0 0 O
3/11 326 C1,3,2 0 {163} 0 0 0 0 O
1/10 333 A2,3,1 0 {37} {3} 1 1 1 1
-8 342 A2,3,1 {2} {19} {3} 0 0 0 O
-3/7 3710 CL,3,2 O {374 O 0 0O O O
2 378 A2,1,3 {2} {3,7v # 0 2 0 O
-1/5 3718 BL,3,2 O {74 0O 0 0 0 O
4 378 EL3,2 {2} {7} {34 0 0 0 0
-1/3 378 F2,1,3 0 {3,74 # 1 1 1 1
-9/7 402 D2,1,3 {3} {67} © 1 1 1 1
6 430 €2,1,3 {2} {43} 0 1 1 1 1
—6 434 B2,1,3 {2} {31} {7} 0 0 0 O
3/8 485 A1,3,2 @ {97} 0 O O 0 O
9 546 D2,1,3 {3} {7,13} # 0 2 0 O
9/8 651 E2,1,3 {3} {7,31} 0 0 2 0 0
—6/5 682 A2,1,3 {2} {31} ¢ 1 1 1 1
11/2 693 C2,3,1 {11} {7} {3 0 0 0 0
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Table 2 Elliptic curves E/Q with E[5] ~pus X Z/5Z

t N P Q R Ta T T5 T

1 11 0 {11} 0 0 0 0 0
-2 550 {2} {11} {5} 0 0 0 O

2 1342 {2} {11,61} 0 0 2 0 0

3 33825 {3} {11,41} {5} 1 1 1 1
3/2 165066  {2,3}  {11,41,61} 0 0 4 0 0
-3 185163 {3} {31,181} {113 1 1 1 1
—4 192698 {2} {11,461} 0 0 2 0 0
—3/2 861366 {2,3} {31,421} {113 0 2 0 0
—4/3 2032734  {2,3} {11,1621} 0 1 3 1 1

4 2074622 {2} {181,521} {113 1 1 1 1
4/3 2097150 {2,3}  {11,31,41} {5y 1 3 1 1
5/3 20301765  {3,5} {11,41,3001} 0 0 4 0 0

5 48656245 {5}  {11,101,461} 0 1 3 1 1
-5 48999995 {5} {11,31,991} 0 1 3 1 1
—-8/3 68986434  {2,3} {11,101,131} 0 0 4 0 0
5/2 86646010 {2,5}  {421,1871} {11} 0 2 0 O
—5/2 108646010 {2,5} {11,151,211} {31} 1 3 1 1
7/4 257915350 {2,7} {11,31,2161} {5} 1 3 1 1
5/4 264829510 {2,5}  {521,4621} {11} 2 2 2 0
—5/3 270895515 {3,5} {11,211,251} {31} 1 3 1 1

6 362283834 {2,3} {11,191,991} 0 0 4 0 0
-6 363310266 {2,3} {11,31,61,71} {41} 2 4 2 2
-7 395724175 {7} {311,661} {5,11} 2 0 0 O

8 429352550 {2} {661,1181} {5,11} 2 0 0 0
—5/4 439170490 {2,5} {11,31,4441} 0 0 4 0 0
8/5 624238010 {2,5} {11,31,61,3001} 0 1 5 1 1
9/4 1538513394  {2,3} {11,181,4441} 0 0 4 0 0

7 1976032597 {7} {11,31,61,331} {41} 3 3 1 1
—8 2148204542 {2}  {11,491,2801} {71} 2 2 2 2
7/2 3871814254  {2,7} {11,41,131,151} {31} 2 4 0 0
—7/2 4037464046 {2,7} {11,431,1031} 0 0 4 0 0
—9/2 4209082350 {2,3} {11,31,61,71} {5} 2 4 2 2
7/3 4987312869 {3,7} {11,701,1621} 0 0 4 0 0
8/3 5916563466  {2,3} {11,41,251,281} {31} 2 4 0 O
6/5 6497983470 {2,3,5}{11,31,101,331} 0 0 6 0 0
—7/4 6590370094 {2,7} {11,41,71,241} {61} 2 4 0 O
—12 6754920150 {2,3} {11,41,3221} {5,31} 2 2 2 2
—7/3 6874167531 {3,7} {11,71,6871} {61} 1 3 1 1
11/3 8333929857 {3,11} {31,101,1021} 0 0 4 0 0
—10 9091909090 {2,5} {11,31,61,401} 0 1 5 1 1
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Table 3 Rational points on T'[rg, 71, T2, T3, T4]

t (7'0,7‘1,7'277'3,7'4) (X02X12X21X32X4)
3 (1,41,1/11,1,3) (2:1:1:7:3)
-3 (3,1/181,1,1,-31) (7:1:-17:2:-1)
4/3 (1,4/3,1/41,31,11) (2:21:2: —4: —4)
—5/2 (1/151,1/2,1/11,1,—1055) (1:86:—7:3: —1)
7/4 (1/4,2161,7,1,1/341) (27 :4: 14 : —694 : —52)
—-5/3 (1,211/11,1,5/251,—1/3) (5666 : 149 : —9811 : —167 : —4863)
-6 (1,1/31,22,1/61,-213) (17:5:-8:1:-3)
(22/61,3,71/31,1,—1) (2:67:—1:65: —149)
7 (1,7,331,11,1/1891) (5:13:1:-27: —4)
—8 (1/491,8,2801,1/11,—1)  (—4:41:—2:—12: 1448)
—9/2 (11/31,1,1,549/71,—1/2) (=9 :207 : —177:—1:168)
(1/2,1,9/2201,61,—11) (90:519: —1: —21: —9)
12 (1/121,1,9663,1,—4/41)  (211:175: —3 : —169 : —68)
(3221,1,3,1/121, —4/41) (26 : 356 : 740 : 514 : —71)

Table 4 Mordell-Weil generators for £ = F;

t (o :x1:x9: X3 Xy) height

3 (6:81:21:31:71) 1.134

—3 (189:—1893:1037 : 482 : —2433) 2.641

—4/3 generator not known 33.633

4 generator not known 22.371

4/3 (7502 : —56208 : —46608 : 37942 : 57267) 3.595

b) generator not known 34.142

-5 generator not known 29.241

—5/2 (10505 : —48848 : 39977 : 12630 : —70250) 3.776

T/4 (4118592447 : 31088470672 : 13020915922 : —20707618498 : —27516097648)  8.637
—5/3  (11545293032268586 : —6439289981637105 : —5956542269698375 :

11787905264099415 : —4210746652191867)  14.152

—6  (51:—891:786:64: —2050) 2.244

(331728 : —29317538 : 7117825 : 4046253 : —35387658) 6.202

8/5 generator not known 80.610

7 (175 : —304604 : —47007 : 41867 : 316589) 4.280

—8 (352:—23168 : 372 : —8101 : 8282) 2.992

generator not known =~ 66

—9/2 (275581521 : 525816846 : —1540675614 : 43145111 : —1910013504) 7.362

(1798854480 : —55092369 : 1126546802 : —637931742 : —155814921) 7.471

—12 (29830412804 : —274049792 : —7483139508 : 9909498771 : —157064775) 8.531

(25841586446 : —1537085461 : 121031257722 : —455623920 : —47238156912)  9.028

—7/3 generator not known 70.563

—10 generator not known 108.806
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Table 5 Elliptic curves E/Q with E[3] ~ us x Z/3Z

To T3 min{r,,rs} r3
01247594 20.35| 57032 4.69 | 267633 22.00 | 378527 31.11
1]512138 42.09 | 213730 17.57 | 536514 44.09 | 582220 47.85
2350525 28.81| 351275 28.87 | 336657 27.67 | 229402 18.85
3] 95849 7.88 333628 2742 | 71844 590 | 26154 2.15
4| 10266 0.84 | 191164 15.71 4101 0.34 462 0.04
) 387 0.03] 60585 4.98 16 0.00 0 0.00
6 6 0.00 8918 0.73 0 0.00 0 0.00
7 0 0.00 431  0.04 0 0.00 0 0.00
8 0 0.00 2 0.00 0 0.00 0 0.00
Table 6 Elliptic curves F/Q with E[5] ~ us x Z/5Z

Ta T3 min{rq,, 73} 5
0] 84598 13.91 102 0.02 | 84698 13.92| 219047 36.00
1] 191544 31.48 1128 0.19 | 192107 31.58 | 292742 48.12
2174895 28.75 5804 0.95| 175815 28.90 | 84272 13.85
3| 98506 16.19 | 19049 3.13| 98832 16.25 | 10943 1.80
4] 42040 691 | 46730 7.68| 41436 6.81 1285 0.21
51 13284 218 | 87395 14.37| 12524  2.06 93 0.02
6 3029 0.50 | 124089 20.40 2634 043 1 0.00
7 442 0.07 | 130931 21.52 314 0.05 0 0.00
8 43 0.01 | 102667 16.88 22 0.00 0 0.00
9 2 000 | 58348 9.59 1 0.00 0 0.00
10 0 0.00] 23838 3.92 0 0.00 0 0.00
11 0 0.00 6764 1.11 0 0.00 0 0.00
12 0 0.00 1362 0.22 0 0.00 0 0.00
13 0 0.00 162 0.03 0 0.00 0 0.00
14 0 0.00 13 0.00 0 0.00 0 0.00
15 0 0.00 1 0.00 0 0.00 0 0.00
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