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Abstract. We explain a method for computing the Cassels-Tate pairing on the
3-isogeny Selmer groups of an elliptic curve. This improves the upper bound on
the rank of the elliptic curve coming from a descent by 3-isogeny, to that coming
from a full 3-descent. One ingredient of our work is a new algorithm for solving
cubic norm equations, that avoids the need for any S-unit computations. As an
application, we show that the elliptic curves with torsion subgroup of order 3
and rank at least 13, found by Eroshkin, have rank exactly 13.

Introduction

Let E be an elliptic curve over a number field K. By the Mordell-Weil theorem,
the rational points E(K) form a finitely generated abelian group. The number
of points needed to generate the non-torsion part of E(K) is called the rank.
Determining the rank is a non-trivial problem, and indeed there is no known
algorithm that will compute it in all cases.

We may however bound the rank by following the proof of the Mordell-Weil
theorem. For each integer n ≥ 2, the n-Selmer group S(n)(E/K) classifies the
n-coverings of E that have points everywhere locally. This group is finite and
effectively computable. Since E(K)/nE(K) injects into S(n)(E/K), computing
the n-Selmer group gives an upper bound for the rank. This process is known as
(full) n-descent. In view of the short exact sequence

(1) 0 −→ E(K)/nE(K) −→ S(n)(E/K) −→X(E/K)[n] −→ 0

the rank bound coming from n-descent may be improved whenever the Tate-
Shafarevich group X(E/K) contains non-trivial n-torsion.

Cassels [Cas62] defined an alternating pairing (now known as the Cassels-Tate
pairing)

X(E/K)×X(E/K) −→ Q/Z
with the property that X(E/K)[n] and nX(E/K) are exact annihilators. One
consequence is that if X(E/K) is finite (as conjectured by Tate and Shafarevich)
then its order is a square. Another consequence is that we can sometimes use the
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pairing to detect non-trivial elements of X(E/K). Specifically, computing the
pairing on S(n)(E/K) improves the rank bound coming from n-descent, to that
coming from n2-descent. Thus, for example, Cassels used the pairing in [Cas98]
to turn a 2-descent into a 4-descent, and to some extent this has been generalised
in [SD13], [FN14], [Don15].

Descent calculations become very much more tractable in the case that our
elliptic curve admits a rational p-isogeny for some prime p. This is the situation

we consider in this paper. We write φ : E → E ′ for the p-isogeny, and φ̂ : E ′ → E

for its dual. Since φ̂ ◦ φ is multiplication-by-p, there is an exact sequence

0 −→E(K)[φ] −→ E(K)[p]
φ−→ E ′(K)[φ̂]

−→ E ′(K)/φE(K)
φ̂−→ E(K)/pE(K) −→ E(K)/φ̂E ′(K) −→ 0,

from which we deduce that

prankE(K) =
|E(K)/pE(K)|
|E(K)[p]|

=
|E ′(K)/φE(K)| · |E(K)/φ̂E ′(K)|

|E(K)[φ]| · |E ′(K)[φ̂]|
.

Analogous to (1) there are exact sequences

0 −→ E ′(K)/φE(K) −→ S(φ)(E/K) −→X(E/K)[φ∗] −→ 0,

and

0 −→ E(K)/φ̂E ′(K) −→ S(φ̂)(E ′/K) −→X(E ′/K)[φ̂∗] −→ 0.

Computing the Selmer groups S(φ)(E/K) and S(φ̂)(E ′/K) gives an upper bound
for the rank. This process is known as descent by p-isogeny, and is described for
example in [Top93, DeL02, Fis01, Fis03, SS04, FG08, MS13].

There is a commutative diagram with exact rows

E ′(K)[φ̂] // E ′(K)/φE(K)
� _

��

// E(K)/pE(K)
� _

��

// E(K)/φ̂E ′(K)
� _

��

E ′(K)[φ̂] // S(φ)(E/K) // S(p)(E/K) // S(φ̂)(E ′/K)

where the final map in the second row need not be surjective. Instead its image
is the kernel of the Cassels-Tate pairing

(2) 〈 , 〉CT : S(φ̂)(E ′/K)× S(φ̂)(E ′/K)→ Q/Z.

This pairing is the lift of the one on X(E ′/K)[φ̂∗]. Computing the pairing (2)
allows us to turn a descent by p-isogeny into a full p-descent. If the pairing is
non-zero then this improves our upper bound for the rank.

The case p = 2 is treated in [Fis17], so from now on we take p an odd prime.
In the first of his series of papers on elliptic curves, Cassels [Cas59] showed how
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to compute the pairing (2) when p = 3 and E ′ takes the form x3 + y3 = k. The
case where p = 3 or 5 and E[p] ∼= µp × Z/pZ was treated in [Fis03].

We describe a method for computing the pairing (2) in the cases where E[φ] is
isomorphic (as a Galois module) to either µp or Z/pZ. In both cases the global
part of our method requires us to solve a norm equation NL/K(ξ) = a where L/K
is a field extension of degree p. Moreover, when p = 3 and E[φ] ∼= Z/3Z, we

have L = K( 3
√
b) for some b ∈ K. In the case K = Q we give an algorithm for

solving such norm equations, that avoids the need for any S-unit computations.
This enables us to apply our methods to elliptic curves with large discriminant.

One particular computational challenge is to find elliptic curves over Q of large
rank with a given torsion subgroup. The current records are listed on Dujella’s
website [Duj17]. Between 2007 and 2009, Y.G. Eroshkin found the following five
elliptic curves with torsion subgroup Z/3Z and rank at least 13.

y2 + 10154960719xy − 66798078951809458114391930400y = x3 17

y2 + 8412073331xy + 7384158420201525518270114400y = x3 13

y2 + 19223749711xy − 435665346791890005577936749600y = x3 13

y2 + 8589423667xy − 30679410326232604531989794400y = x3 17

y2 + 35429815349xy − 169064164426703584254124708800y = x3 15

The number on the right is the upper bound for the rank obtained by descent by
3-isogeny. By computing the Cassels-Tate pairing we were able to verify that each
of these curves has rank exactly 13. This is the largest known rank for an elliptic
curve with torsion subgroup Z/3Z.

We have also used the methods of this paper to find new examples of elliptic
curves with torsion subgroup Z/9Z and ranks 3 and 4 (see [vB15, Duj17]). In
contrast, when we searched for elliptic curves with torsion subgroup Z/12Z and
rank 4 we could not find any examples beyond the one already known. For both
of these torsion subgroups the largest known rank is 4.

In Section 1 we recall the definition of the Cassels-Tate pairing that is relevant
to our work. In Section 2 we give an explicit description of the long exact sequence

(3) H1(K,E[φ])→ H1(K,E[p])→ H1(K,E ′[φ̂])→ H2(K,E[φ])

in terms of étale algebras, and explain how lifting an element of H1(K,E ′[φ̂]) to
H1(K,E[p]) comes down to solving a norm equation. As indicated above, we
concentrate on the cases where E[φ] ∼= µp or E[φ] ∼= Z/pZ. Since it is always
possible to reduce to one of these two cases by making a field extension of degree
coprime to p, this is perhaps not such a severe restriction.

In Section 3 we present our new algorithm for solving norm equations for pure
cubic extensions Q( 3

√
b)/Q. It is based on the Legendre-type method for solving

conics in [CR03]. When applied to suitably large examples, our algorithm performs
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much better than the standard approach using S-units, as described for example
in [Coh00, Section 7.5], [Sim02].

In Section 4 we give three examples computing the pairing (2) in the case K = Q
with E[φ] ∼= µ3 or E[φ] ∼= Z/3Z. The first two examples are small, and so do not
require any special methods to solve the norm equations. In the third example,
where we consider one of Eroshkin’s curves with torsion subgroup Z/3Z, we are
entirely reliant on the methods in Section 3.

It is interesting to remark that if we solve norm equations by the method in
Section 3, then the simplest case is when E[φ] ∼= Z/3Z. However, if we solve norm
equations by trivialising the corresponding cyclic algebra (using the method in
[CFO+15]) then the simplest case is when E[φ] ∼= µ3. For a general 3-isogeny we
may reduce to either one of these two simplest cases at the expense of making a
quadratic extension to our base field.

An alternative approach to improving a descent by p-isogeny to a full p-descent
is described in [CM12]. The method there does however require a rigorous com-
putation of S-units in a degree p extension of K. In contrast, we are free to
solve norm equations by any method we like, since once a solution is found it is
straightforward to verify it is correct.

The following notation will be used throughout. For K a field, we write K for
its separable closure and GK = Gal(K/K) for its absolute Galois group. The
Galois cohomology group H i(GK ,−) is abbreviated as H i(K,−), and we write
Hom(GK ,−) for the continuous homomorphisms. The unit group of a ring R is
denoted R×. We write µp for the group of pth roots of unity, and ζp for a generator.

The calculations in Section 4 were carried out using Magma [BCP97]. This
paper is based on the first author’s PhD thesis [vB15].

1. The Cassels-Tate pairing

In this section, we define the global Cassels-Tate pairing (2). The definition
is given as a sum of local pairings, so we define these first. Let Kv denote the

localisation of K at a place v. The Weil pairing eφ : E[φ]×E ′[φ̂]→ µp induces by
cup product a pairing

∪ : H1(Kv, E[φ])×H1(Kv, E
′[φ̂])→ H2(Kv, µp).

It terms of cocycles we have (ξ ∪ η)σ,τ = eφ(ξσ, σ(ητ )). Since H2(Kv, µp) ∼=
Br(Kv)[p] we can then apply the invariant map invKv : Br(Kv) → Q/Z, from
local class field theory, to obtain the local Tate pairing :

(4) 〈 , 〉v,eφ : H1(Kv, E[φ])×H1(Kv, E
′[φ̂])→ Q/Z.
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1.1. The global pairing. Taking Galois cohomology of the short exact sequences

0 // E[φ]
ι // E[p]

� _

��

φ // E ′[φ̂]
� _

��

// 0

0 // E[φ] // E
φ // E ′ // 0

we obtain a commutative diagram with exact rows

(5)

H1(K,E[p])
φ∗ //

��

H1(K,E ′[φ̂]) //

��

H2(K,E[φ])

��∏
vH

1(Kv, E) //
∏

vH
1(Kv, E

′) //
∏

vH
2(Kv, E[φ]).

Lemma 1.1. Any element x ∈ S(φ̂)(E ′/K) can be lifted to x1 ∈ H1(K,E[p]) with

φ∗(x1) = x.

Proof. The Selmer group S(φ̂)(E ′/K) is by definition the kernel of the middle

vertical map in (5). By a diagram chase, it suffices to show that the right hand

vertical map is injective. Making a finite extension L/K of degree coprime to p,

we may ensure that E[φ] ∼= µp over L, and so H2(L,E[φ]) ∼= Br(L)[p]. Let v be a

place of K. Then we have the following commutative diagram.

H2(K,E[φ])
Res //

loc1
��

H2(L,E[φ])

loc2
��

Cor // H2(K,E[φ])

loc1
��

H2(Kv, E[φ])
Res // ⊕w|vH2(Lw, E[φ])

Cor // H2(Kv, E[φ])

By global class field theory, the following exact sequence holds for any number

field L.

0 −→ Br(L) −→
⊕
w

Br(Lw)
∑

invw−−−−→ Q/Z −→ 0

Thus the map
∏

v loc2 is injective. By [GS06, Proposition 3.3.7] the composite

Cor ◦ Res is multiplication by n = [L : K]. The kernel of
∏

v loc1 is now both

p-torsion and n-torsion. Since p and n are coprime, it follows that
∏

v loc1 is

injective as required. �
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The Kummer exact sequences for [p] : E → E and φ̂ : E ′ → E give the rows of
the following commutative diagram

(6)

H1(K,E[φ])

ι∗
��

E(K)
p //

φ

��

E(K)
δp // H1(K,E[p])

φ∗
��

E ′(K)
φ̂ // E(K)

δ
φ̂ // H1(K,E ′[φ̂]).

The right hand column is the long exact sequence (3). We also consider the
analogue of this diagram with K replaced by Kv. In the terminology of [PS99],
the following is the “Weil pairing definition” of the Cassels-Tate pairing.

Definition 1.2 (Definition of the Cassels-Tate pairing). Let x, y ∈ S(φ̂)(E ′/K).

By Lemma 1.1 there exists x1 ∈ H1(K,E[p]) with φ∗(x1) = x. We write xv, yv, x1,v

for the localisations of x, y, x1 at a place v. For each place v we pick Pv ∈ E(Kv)

with δφ̂(Pv) = xv. Then x1,v − δp(Pv) = ι∗(ξv) for some ξv ∈ H1(Kv, E[φ]). The

Cassels-Tate pairing is defined as

〈x, y〉CT =
∑
v

〈ξv, yv〉v,eφ

where the sum is over all places v of K, and 〈 , 〉v,eφ is the local Tate pairing (4).

It may be shown that the pairing is independent of the choice of global lift x1 and
the choices of local points Pv. For further details, and properties of the pairing,
see for example [Cas62, Mil06, McC88, PS99, Fis03].

As we describe in the next section, the local Tate pairing is closely related to
the Hilbert norm residue symbol. It can therefore be computed using standard
techniques. A more serious problem is that of computing a global lift x1 of x. In
Section 2 we explain how this may be reduced to solving a norm equation. This
then motivates our work on norm equations in Section 3.

1.2. Computing the local pairing. Let p be a prime. Let φ : E → E ′ be a
p-isogeny of elliptic curves defined over a number field K. We fix L/K a finite
Galois extension of degree coprime to p, such that all points in the kernels of φ and

φ̂ are defined over L. By properties of the Weil pairing we have µp ⊂ L. We may

therefore fix isomorphisms E[φ] ∼= µp and E ′[φ̂] ∼= µp over L. These maps induce,
by restriction and the Kummer isomorphism, injective group homomorphisms

wφ : H1(K,E[φ]) −→ L×/(L×)p,

and
wφ̂ : H1(K,E ′[φ̂]) −→ L×/(L×)p.
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We also write wφ and wφ̂ for the local analogues of these maps.

Lemma 1.3. There exists a primitive pth root of unity ζp ∈ L such that for all

places v of K the local Tate pairing (4) is given by

(7) 〈x, y〉v,eφ =
1

[Lw : Kv]
Indζp(wφ(x), wφ̂(y))w

where w is any place of L dividing v,

( , )w : L×w/(L
×
w)p × L×w/(L×w)p → µp

is the Hilbert norm residue symbol, and Indζp : µp → 1
p
Z/Z is the isomorphism

sending ζp 7→ 1
p
.

Proof. We first treat the case L = K. The pairing

(8) µp × µp → µp; (ζap , ζ
b
p) 7→ ζabp

induces by cup product, the Kummer isomorphism and the local invariant map, a

pairing

{ , }v : K×v /(K
×
v )p ×K×v /(K×v )p → 1

p
Z/Z.

The Hilbert norm residue symbol is (x, y)v = ζ
p{x,y}v
p . By [Ser79, Prop. XIV.2.6]

it is independent of the choice of ζp.

If we make an appropriate choice of ζp then our identifications E[φ] ∼= µp and

E ′[φ̂] ∼= µp identify the Weil pairing eφ : E[φ] × E ′[φ̂] → µp with (8). This

proves (7). The general case, with L 6= K, follows by standard properties of the

cup product and the local invariant map under restriction, for which we refer to

[CF10, Proposition IV.7.9(iii)] and [CF10, Theorem VI.1.3]. �

Remark 1.4. In practice we are happy to compute the Cassels-Tate pairing up

to an overall scaling. Therefore the choice of ζp in Lemma 1.3 does not matter,

provided that the same global choice is used in all our local calculations.

We now suppose that µp ⊂ Kv and describe some methods for computing the
Hilbert norm residue symbol. In fact the symbol may be defined with p replaced
by any integer m ≥ 2, and we now work in this generality.

Proposition 1.5. Assume that µm ⊂ Kv. The Hilbert norm residue symbol

( , )v : K×v /(K
×
v )m ×K×v /(K×v )m → µm

has the following properties.

(i) (a, b)v(a, c)v = (a, bc)v
(ii) (a, b)v = 1 if b is a norm for the extension Kv( m

√
a)/Kv. In particular

(a,−a)v = (a, 1− a)v = 1.
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(iii) (a, b)v(b, a)v = 1

(iv) If v = p is a prime not dividing m and vp(a) = 0 then

(a, b)v =

(
a

p

)vp(b)

where

(
a

p

)
≡ a

Np−1
m (mod p).

Proof. See [CF10, Exercise 2] or [Gra03, Proposition II.7.1.1]. �

Proposition 1.5 can be used to compute (a, b)v whenever v - m∞. Taking
m = p an odd prime, the following will suffice for our purposes in the case v | p.
Let K = Q(ζp). Then λ = 1 − ζp generates the unique prime of K lying over p.
It is shown in [CF10, Exercise 2.13] that K×v /(K

×
v )p has basis λ, η1, . . . , ηp where

ηi = 1−λi, and an explicit recipe is given for computing the Hilbert norm residue
symbol. In the case p = 3 this works out as

(9)

λ η1 η2 η3

λ 0 0 0 ζ2
3

η1 0 0 ζ3 0

η2 0 ζ2
3 0 0

η3 ζ3 0 0 0

2. Galois cohomology

In this section, we give an explicit description of the long exact sequence (3) in
terms of étale algebras. As explained in Section 1 this will enable us to compute
the Cassels-Tate pairing.

2.1. Etale algebras. Following [SS04] we interpret the Galois cohomology groups
in (3) in terms of étale algebras. This makes the groups more amenable for prac-
tical computation. We work over a field K of characteristic 0.

Let Φ be a finite set with GK-action. The étale algebra D associated to Φ is
the set of all GK-equivariant maps Φ → K. This is a K-algebra under pointwise
operations. If P1, . . . , Pn ∈ Φ are representatives for the GK-orbits then evaluation
at these points gives an isomorphism

D ∼= K(P1)× . . .×K(Pn).

In particular D is a product of finite field extensions of K. We also write D =
D ⊗K K. This is the K-algebra of all maps Φ→ K.

We fix p an odd prime. Let ψ : E → E ′ be an isogeny of elliptic curves with

E[ψ] ⊂ E[p], and let ψ̂ be its dual. Let D be the étale algebra of E ′[ψ̂]. Let

wψ : E[ψ] −→ µp(D)

P 7−→ (Q 7→ eψ(P,Q)),
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be the map induced by the Weil pairing eψ. This induces a map on H1’s that on
composing with the Kummer isomorphism gives a group homomorphism

wψ : H1(K,E[ψ]) −→ D×/(D×)p.

Now let φ : E → E ′ be a p-isogeny. The Weil pairings eφ, ep and eφ̂ are
compatible in the sense that they give an isomorphism between the exact sequence

(10) 0 −→ E[φ]
ι−→ E[p]

φ−→ E ′[φ̂] −→ 0.

and the exact sequence of Cartier duals. Let A1, A2 and A be the étale algebras

of E ′[φ̂], E[φ] and E[p]. By the compatibility of the Weil pairings, we obtain a
commutative diagram

(11)

H1(K,E[φ])

wφ
��

ι∗ // H1(K,E[p])

wp

��

φ∗ // H1(K,E ′[φ̂])

w
φ̂

��
A×1 /(A

×
1 )p

φ∗ // A×/(A×)p
ι∗ // A×2 /(A

×
2 )p

where the first row is (3), i.e. the long exact sequence associated to (10). The
maps in the second row (which is not exact) are the pull backs by φ and ι.

It is shown in [SS04, Section 5] that the vertical maps in (11) are injective, and
their images are described as follows. We fix g a primitive root mod p, and let
σg be the automorphism of A1, A2 or A given by (σgα)(P ) = α(gP ). By [SS04,
Lemma 5.2] we have

(12) H1(K,E[φ]) ∼= ker(g − σg : A×1 /(A
×
1 )p → A×1 /(A

×
1 )p)

and likewise for H1(K,E ′[φ̂]). The corresponding description of H1(K,E[p]) in-
volves the set Λ of affine lines in E[p] that do not pass through the origin O. Let
B be the étale algebra of Λ. Then the map

u : µp(A)→ µp(B); α 7→
(
` 7→

∏
P∈`

α(P )
)

induces a map on H1’s, and so by the Kummer isomorphism gives us a group
homomorphism u : A×/(A×)p −→ B×/(B×)p.

Theorem 2.1 (Schaefer-Stoll [SS04, Corollary 5.9]).

H1(K,E[p]) ∼= ker(g − σg : A×/(A×)p → A×/(A×)p) ∩ ker(u).

In fact we have A ∼= K ×A′ where A′ is the étale algebra of E[p] \ {O}, and in
Theorem 2.1 we are free to replace A by A′. This description of H1(K,E[p]) can
sometimes be simplified using the following lemma.
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Lemma 2.2. Let α ∈ Im(wp) ⊂ A×/(A×)p. If S, T ∈ E[p] then

α(S)α(T )

α(S + T )
∈ (K(S, T )×)p.

Proof. See [CFO+08, Lemma 3.8]. �

Let E/K be an elliptic curve and G the image of the mod p Galois represen-
tation ρE,p : GK → GL(E[p]). Fixing a basis S, T for E[p], this is a subgroup of
GL2(Z/pZ). In the next two sections we consider two specific possibilities for G,
which we call the µp-nonsplit and Z/pZ-nonsplit cases. The case where E[p] splits
as µp × Z/pZ is significantly easier, as described in [McC88], [Fis03].

2.2. µp-nonsplit case. We consider E/K an elliptic curve whose mod p Galois
representation has image

G =

{(
∗ ∗
0 1

)}
⊂ GL2(Z/pZ)

generated by σ = ( 1 1
0 1 ) and τ = ( g 0

0 1 ) where g is a primitive root mod p. Thus we
have a basis S, T of E[p] such that

σ(S) = S τ(S) = gS

σ(T ) = S + T τ(T ) = T.

Note that τσ = σgτ . Let L1 = K(S) = K(ζp), L2 = K(T ) and M = K(E[p]).

M
〈σ〉 〈τ〉

Cp

L1

p−1

L2

p

K

G

Recall that p is an odd prime. Let χcyc : GK → (Z/pZ)× be the cyclotomic
character. Then for N a (Z/pZ)[GK ]-module we write N (i) for the eigenspace
where GK acts as χicyc.

Theorem 2.3. We have H1(K,E[p]) ∼= H, where H is the group of pairs (a, b) ∈
(L×1 /(L

×
1 )p)(1) × L×2 /(L×2 )p satisfying NL2/K(b) ∈ (K×)p and σ(b)/(ab) ∈ (M×)p.

Proof. We use the description of H1(K,E[p]) in Theorem 2.1 as the intersection

of ker(g − σg) and ker(u).
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There are p orbits for the action of GK on E[p] \ {O}, with representatives S

and iT for i ∈ {1, . . . , p− 1}. Therefore H1(K,E[p]) ⊂ A′×/(A′×)p where

A′ ∼= L1 × L2 × . . .× L2︸ ︷︷ ︸
p−1

.

Moreover (a, b1, b2, . . . , bp−1) ∈ A′×/(A′×)p belongs to ker(g − σg) if and only if

a ∈ (L×1 /(L
×
1 )p)(1) and bi ≡ bi1 mod (L×2 )p for all i ∈ {1, . . . , p − 1}. Accordingly

we represent elements of H1(K,E[p]) as pairs (a, b) where b = b1.

We consider the action of GK on the set Λ of affine lines in E[p] missing the

origin. There are p− 1 orbits of one line each, given by `1, . . . , `p−1 where

`i = {iT, S + iT, 2S + iT, . . . , (p− 1)S + iT},

and just one further orbit of size p2 − p represented by

m = {S, S + T, S + 2T, . . . , S + (p− 1)T}.

Thus the étale algebra B associated to Λ is given by

B ∼= K × · · · ×K︸ ︷︷ ︸
p−1

×M.

A pair (a, b) corresponding to α ∈ A× represents an element in ker(u) if and

only if

NL2/K(b)i ≡
∏
P∈`i

α(P ) ≡ 1 mod (K×)p

for all i ∈ {1, 2, . . . , p− 1}, and

(13) a

p−1∏
i=1

σi
−1

(b)i ≡
∏
P∈m

α(P ) ≡ 1 mod (M×)p

where inverses are taken in (Z/pZ)×. This proves the theorem when p = 3.

In general (13) may be simplified as follows. First Lemma 2.2 tells us that for

an element in the image of H1(K,E[p]) we have

(14)
σ(b)

ab
=
α(S + T )

α(S)α(T )
∈ (M×)p.

Conversely, if we assume (14) then (13) follows by an easy calculation. �

Let φ : E → E ′ be the isogeny with kernel generated by S. The first row of
the following diagram is the long exact sequence (3). Since E[φ] ∼= µp as Galois
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modules, we have H1(K,E[φ]) ∼= K×/(K×)p and H2(K,E[φ]) ∼= Br(K)[p]. The
other two vertical maps are given by Theorem 2.3 and (12).

(15)

H1(K,E[φ])

∼=
��

ι∗ // H1(K,E[p])

∼=
��

φ∗ // H1(K,E ′[φ̂])

∼=
��

δ2 // H2(K,E[φ])

∼=
��

K×/(K×)p
f // H

g // (L×1 /(L
×
1 )p)(1) ∆ // Br(K)[p]

The maps f , g and ∆ are defined so that this diagram commutes. We now describe
these maps explicitly.

Lemma 2.4. We have f : b 7→ (1, b) and g : (a, b) 7→ a.

Proof. The second rows in (11) and (15) differ in that we have applied projection

maps

A1 → K A→ L1 × L2 A2 → L1

α 7→ α(φT ) α 7→ (α(S), α(T )) α 7→ α(S)

From this it is easy to see that the maps f and g in the statement of the lemma

do indeed correspond to pull back by φ and ι. �

Our description of ∆ will be in terms of cyclic algebras, so we introduce these
first. Let χ ∈ Hom(GK ,Z/pZ) and b ∈ K×. If χ is non-trivial then it factors via
an isomorphism Gal(L/K) ∼= Z/pZ; γ 7→ 1, for some degree p cyclic extension
L/K. The cyclic algebra A = A(χ, b) is the K-algebra {

∑p−1
i=0 aiv

i : ai ∈ L} with
multiplication determined by vp = b and

(16) vx = γ(x)v

for all x ∈ L. This is a central simple algebra of dimension p2. We write (χ, b) for
its class in Br(K). This construction is compatible with the cup product, in the
sense that the following diagram commutes.

(17)

H1(K,Z/pZ)×H1(K,µp)

∼=
��

∪ //

∼=
��

H2(K,µp)

∼=
��

Hom(GK ,Z/pZ)×K×/(K×)p
( , )

// Br(K)[p].

The next two lemmas are well known. See for example [GS06, Section 4.7]. We
include the proofs since they are needed for our algorithms.

Lemma 2.5. Let A = A(χ, b) be a cyclic algebra. Then A ∼= Matp(K) if and only

if b is a norm for L/K.
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Proof. If x ∈ L then by (16) we have (xv)p = NL/K(x)vp. So if b is a norm then

A(χ, b) ∼= A(χ, 1). We then have the trivialisation

A(χ, 1) ∼= EndK(L) ∼= Matp(K)∑
aiv

i 7→ (x 7→
∑

aiγ
i(x)).

Conversely, suppose we are given an isomorphism ι : A ∼= Matp(K). We fix

a non-zero vector e1 ∈ Kp. Since L is a field, the map of K-vector spaces L →
Kp; x 7→ ι(x)e1 is injective. By a dimension count it is also surjective. Making

this identification, we now have ι : A ∼= EndK(L) with ι(x)y = xy for all x, y ∈ L.

Let v1 ∈ A with ι(v1) = γ. Since (16) is satisfied by both v and v1 it follows

that ξ = v−1
1 v commutes with every element of L, and hence is in L. Finally

NL/K(ξ) = (v1ξ)
p = vp = b. �

Lemma 2.6. Let K be a field containing a primitive pth root of unity ζp. Let

a, b ∈ K× and let A be the K-algebra generated by x and y subject to the relations

xp = a, yp = b and xy = ζpyx. Then the following are equivalent.

(i) a is a norm for K( p
√
b)/K.

(ii) b is a norm for K( p
√
a)/K.

(iii) A ∼= Matp(K).

Proof. The equivalence of (ii) and (iii) is a special case of Lemma 2.5. By symmetry

this also gives the equivalence of (i) and (iii). �

We also need the following fact about cup products.

Lemma 2.7. Let 0 → A1 → A2 → Z/pZ → 0 be a short exact sequence of

(Z/pZ)[GK ]-modules. Then the connecting maps in the long exact sequence

Z/pZ δ1−→ H1(K,A1)→ H1(K,A2)→ H1(K,Z/pZ)
δ2−→ H2(K,A1)

are related by δ2(b) = δ1(1) ∪ b.

Proof. Let b be represented by a cocycle (bσ). Let x ∈ A2 with x 7→ 1. Then

δ2(b)στ = σ(bτx)− bστx+ bσx = bτ (σx− x) = (δ1(1) ∪ b)στ .
Alternatively, this is [GS06, Proposition 3.4.8] with A3 = B = Z/pZ. �

We are now ready to describe the map ∆ in (15). We have E ′(K)[φ̂] ∼= Z/pZ
generated by φ(T ). The image of φ(T ) under the connecting map in the long exact
sequence associated to (10) is an element β ∈ H1(K,E[φ]) ∼= K×/(K×)p. This is
a Kummer generator for the extension M/L1. We write χa 7→ a for the natural
isomorphism (depending on a choice of primitive pth root of unity)

(18) Hom(GK ,Z/pZ) ∼= (L×1 /(L
×
1 )p)(1).



14 MONIQUE VAN BEEK AND TOM FISHER

By Lemma 2.7 and (17), the map ∆ in (15) is given by ∆ : a 7→ (χa, β), at least up
to multiplication by a fixed element of (Z/pZ)×, which we have no need to make
explicit.

Since the diagram (15) commutes, and the first row is exact, the second row is
also exact. In particular, if a ∈ (L×1 /(L

×
1 )p)(1) with ∆(a) = 0 then there exists b ∈

L×2 /(L
×
2 )p such that (a, b) ∈ H. We show that making the lift from H1(K,E ′[φ̂])

to H1(K,E[p]) explicit comes down to solving a norm equation.

Theorem 2.8. Let E/K be an elliptic curve with p-torsion of type µp-nonsplit. Let

a ∈ (L×1 /(L
×
1 )p)(1). If ∆(a) = 0 then there exists ξ ∈ M satisfying NM/L1(ξ) = a,

and we may lift a to (a, b) ∈ H where

b = NM/L2

(
p−1∏
i=1

σi(ξ)i

)
.

Proof. Let χa 7→ a under the isomorphism (18), and let F be the fixed field of the

kernel of χa. In other words, F/K is the degree p subextension of L1( p
√
a)/K.

L1( p
√
a)

p
p−1

L1 = K(ζp)

p−1

F

p

K

If ∆(a) = 0 then Lemma 2.5 tells us that β is a norm for F/K, and hence for

L1( p
√
a)/L1. It follows by Lemma 2.6 that a is a norm for M/L1.

Now let ξ and b be as in the statement of the theorem. We show that (a, b) ∈ H
by checking the conditions in Theorem 2.3. First we compute

NL2/K(b) = NM/K

(
p−1∏
i=1

σi(ξ)i

)
= NL1/K(a)p(p−1)/2.

Since p is odd this gives NL2/K(b) ∈ (K×)p. Since τσ = σgτ we have

σ(b) ≡
p−2∏
r=0

τ r
p−1∏
i=0

σi+g
−r

(ξ)i ≡
p−2∏
r=0

τ r
p−1∏
i=0

σi(ξ)i−g
−r

mod (M×)p.

Then since NM/L1(ξ) = a and τ(a) ≡ ag mod (L×1 )p we have

b/σ(b) ≡
p−2∏
r=0

τ rNM/L1(ξ)
g−r ≡

p−2∏
r=0

(τ ra)g
−r ≡ a−1 mod (M×)p.

Therefore σ(b)/(ab) ∈ (M×)p as required. �
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2.3. Z/pZ-nonsplit case. We consider E/K an elliptic curve whose mod p Galois
representation has image

G =

{(
1 ∗
0 ∗

)}
⊂ GL2(Z/pZ)

generated by σ = ( 1 1
0 1 ) and τ = ( 1 0

0 g ) where g is a primitive root mod p. Thus we
have a basis S, T of E[p] such that

σ(S) = S τ(S) = S

σ(T ) = S + T τ(T ) = gT

Note that τσg = στ . Let L1 = K(ζp) and M = K(T ) = K(E[p]). Let L2 be the
subfield of M fixed by τ . The diagram of fields is the same as in Section 2.2.

Theorem 2.9. We have H1(K,E[p]) ∼= H, where H is the group of pairs (a, b) ∈
K×/(K×)p × M×/(M×)p satisfying bg/τ(b) ∈ (M×)p, NM/L1(b) ∈ (L×1 )p and

σ(b)/(ab) ∈ (M×)p.

Proof. Again we use the description of H1(K,E[p]) in Theorem 2.1 as the inter-

section of ker(g − σg) and ker(u).

There are p orbits for the action of GK on E[p] \ {O}, with representatives iS

for i ∈ {1, . . . , p− 1}, and T . Therefore H1(K,E[p]) ⊂ A′×/(A′×)p where

A′ ∼= K × · · · ×K︸ ︷︷ ︸
p−1

×M.

Moreover (a1, a2, . . . , ap−1, b) ∈ A′×/(A′×)p belongs to ker(g − σg) if and only if

ai ≡ ai1 mod (K×)p for all i ∈ {1, . . . , p− 1}, and bg/τ(b) ∈ (M×)p. Accordingly

we represent elements of H1(K,E[p]) as pairs (a, b) where a = a1.

We consider the action of GK on the set Λ of affine lines in E[p] missing the

origin. There is one orbit of size p− 1 represented by the line

` = {T, S + T, 2S + T, . . . , (p− 1)S + T},
and p− 1 orbits of size p, represented by the lines m1, . . . ,mp−1 where

mi = {iS, iS + T, iS + 2T, . . . , iS + (p− 1)T}.
Thus the étale algebra B associated to Λ is given by

B ∼= L1 × L2 × · · · × L2︸ ︷︷ ︸
p−1

.

A pair (a, b) corresponding to α ∈ A× represents an element in ker(u) if and

only if

NM/L1(b) ≡
∏
P∈`

α(P ) ≡ 1 mod (L×1 )p
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and

(19) aiNM/L2(σ
i(b)) ≡

∏
P∈mi

α(P ) ≡ 1 mod (L×2 )p

for all i ∈ {1, 2, . . . , p− 1}.
The condition (19) may be simplified as follows. First Lemma 2.2 tells us that

for an element in the image of H1(K,E[p]) we have

(20)
σ(b)

ab
=
α(S + T )

α(S)α(T )
∈ (M×)p.

Conversely, if we assume (20) then σi(b) ≡ aib mod (M×)p. If in addition

bg/τ(b) ∈ (M×)p then by taking norms from M down to L2 it follows that

aiNM/L2(σ
i(b)) ≡ NM/L2(b) ≡ 1 mod (L×2 )p. �

Let φ : E → E ′ be the isogeny with kernel generated by S. The first row
of the following diagram is the long exact sequence (3). Since E[φ] ∼= Z/pZ
over K, we have E[φ] ∼= µp over L1 and hence H1(L1, E[φ]) ∼= L×1 /(L

×
1 )p and

H2(L1, E[φ]) ∼= Br(L1)[p]. The first and last vertical maps are then obtained

by the inflation-restriction exact sequence. Since E ′[φ̂] ∼= µp over K we have

H1(K,E ′[φ̂]) ∼= K×/(K×)p. The remaining vertical map is given by Theorem 2.9.

(21)

H1(K,E[φ])

∼=
��

ι∗ // H1(K,E[p])

∼=
��

φ∗ // H1(K,E ′[φ̂])

∼=
��

δ2 // H2(K,E[φ])

∼=
��

(L×1 /(L
×
1 )p)(1) f // H

g // K×/(K×)p
∆ // Br(L1)[p](1)

Again we define the maps f , g and ∆ so that this diagram commutes. We now
describe these maps explicitly.

Lemma 2.10. We have f : b 7→ (1, b) and g : (a, b) 7→ a.

Proof. The proof is almost identical to that of Lemma 2.4. �

Let β be a Kummer generator for M/L1. We write χa 7→ a for the Kummer
isomorphism H1(L1, µp) ∼= L×1 /(L

×
1 )p. Then exactly as in Section 2.2, the map ∆

is given by ∆ : a 7→ (χa, β). Again we show that making the lift from H1(K,E ′[φ̂])
to H1(K,E[p]) explicit comes down to solving a norm equation.

Theorem 2.11. Let E/K be an elliptic curve with p-torsion of type Z/pZ-nonsplit.

Let a ∈ K×/(K×)p. If ∆(a) = 0 then there exists ξ ∈ L2 satisfying NL2/K(ξ) = a,

and we may lift a to (a, b) ∈ H where

b =

p−1∏
i=1

σi(ξ)p−i.
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Proof. If ∆(a) = 0 then Lemma 2.5 tell us that β is a norm for L1( p
√
a)/L1. It

follows by Lemma 2.6 that a is a norm for M/L1, and hence for L2/K.

We show that (a, b) ∈ H by checking the conditions in Theorem 2.9. Since

τσg = στ and τ(ξ) = ξ we have

τ(b) ≡
p−1∏
i=1

σg
−1i(ξ)−i ≡

p−1∏
i=1

σi(ξ)−gi ≡ bg mod (M×)p.

Since Gal(M/L1) = 〈σ〉 and p is odd, we have NM/L1(b) = ap(p−1)/2 ∈ (K×)p, and

σ(b)/b ≡ NM/L1(ξ) ≡ a mod (M×)p. �

Remark 2.12. It can be shown that β ∈ (L×1 /(L
×
1 )p)(2). In particular, if p = 3

then β ∈ K×/(K×)p and L2 = K( 3
√
β) is a pure cubic extension of K. Norm

equations for extensions of this form are the subject of the next section.

3. Solving norm equations

In this section, we present a new algorithm for solving norm equations in pure
cubic extensions of the rationals. It is based on the Legendre-type method for
solving conics in [CR03].

3.1. Diagonal cubic surfaces. Let K be a number field with ring of integers
OK . Let L = K( 3

√
b) for some b ∈ K not a cube. We may represent any element

ξ = A+B 3
√
b+ C 3

√
b

2
in L in the form

ξ =
α + β 3

√
b

γ + δ 3
√
b
.(22)

Indeed this is clear if B = C = 0, and otherwise we put

α = AB − C2b β = B2 − AC
γ = B δ = −C.

Taking norms in (22) we see that solving the norm equation NL/K(ξ) = a is
equivalent to find a K-rational point on the diagonal cubic surface

Va,b = {x3
1 + ax3

2 + bx3
3 + abx3

4 = 0} ⊂ P3.

Theorem 3.1. Let a, b ∈ K. Then the following are equivalent

(i) a is a norm for K( 3
√
b)/K.

(ii) b is a norm for K( 3
√
a)/K.

(iii) a2b is a norm for K( 3
√
a+ b)/K.

(iv) a2b is a norm for K( 3
√
a− b)/K.

(v) Va,b(K) 6= ∅.
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Proof. We may assume that a and b are not cubes, otherwise conditions (i), (ii) and

(v) are trivially satisfied. We have already shown that (i) and (v) are equivalent.

The symmetry in (v) also shows that (ii) and (v) are equivalent.

We now prove that (ii) and (iii) are equivalent. Suppose that b is a norm

for K( 3
√
a)/K. Then b/a is a norm for K( 3

√
a)/K, and so by the equivalence

of (i) and (ii), a is a norm for K( 3
√
b/a)/K. But then a + b = a(1 + b/a) is a

norm for K( 3
√
b/a)/K, and again by the equivalence of (i) and (ii), b/a is a norm

for K( 3
√
a+ b)/K. The converse is proved by reversing these steps. The same

argument, with b replaced by −b, shows that (ii) and (iv) are equivalent. �

As observed by Selmer [Sel53], it follows from the equivalence of (i) and (v) in
Theorem 3.1, and the Hasse norm theorem, that the surfaces Va,b satisfy the Hasse
principle. We now turn this into an algorithm for solving norm equations, at least
in the case K = Q. First we record an easy lemma.

Lemma 3.2. Let a, b ∈ OK. If the surface Va,b is locally soluble at a prime p and

vp(b) 6≡ 0 (mod 3) then a is a cube mod p.

Proof. Working in the completion Kp we may assume that vp(b) = 1 or 2. Let

(x1 : . . . : x4) be a local point with min vp(xi) = 0. Then x3
1 + ax3

2 ≡ 0 (mod p).

If a is not a cube mod p then x1 ≡ x2 ≡ 0 (mod p). But then x3
3 + ax3

4 ≡ 0

(mod p), and we likewise deduce that x3 ≡ x4 ≡ 0 (mod p). This contradicts that

min vp(xi) = 0. Therefore a must be a cube mod p. �

We suppose as above that a, b ∈ OK , and that Va,b is everywhere locally soluble.
If K has class number 1 then we may assume that (b) is cube-free, and indeed write
(b) = b1b

2
2 where b1 and b2 are coprime and square-free. Then by Lemma 3.2 and

the Chinese Remainder Theorem there exists c ∈ OK such that a ≡ c3 (mod b1).
Writing b1 = (b1) for some b1 ∈ OK it follows that the binary cubic form

F (X, Y ) =
1

b1

(
(cX + b1Y )3 − aX3

)
(23)

has coefficients in OK . This form has discriminant ∆(F ) = −27a2b2
1.

We seek to find u, v ∈ OK , not both zero, such that F (u, v) is small. In the
next section we explain how to do this in the case K = Q.

3.2. Reduction of binary cubic forms. Let G in R[X, Y ] be a binary quadratic
form, and ∆(G) its discriminant:

G(X, Y ) = aX2 + bXY + cY 2,

∆(G) = b2 − 4ac.
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The group SL2(Z) acts on R[X, Y ] via

G(X, Y ) ·

(
α β

γ δ

)
= G(αX + βY, γX + δY )

and the discriminant is invariant under this action.

Definition 3.3. A positive definite binary quadratic form G(X, Y ) = aX2 +

bXY + cY 2 is reduced if |b| ≤ a ≤ c. Equivalently, G is reduced if the root of

G(X, 1) = 0 in the upper half plane H lies in the fundamental region

F =

{
z

∣∣∣∣∣ z ∈ H, |z| ≥ 1, −1

2
≤ Re(z) ≤ 1

2

}
.

Consider now the general binary cubic form and its discriminant

f(X, Y ) = aX3 + bX2Y + cXY 2 + dY 3(24)

∆(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

If ∆(f) < 0, then f has one real root and a pair of complex conjugate roots β, β.
We associate to f the binary quadratic form

Q(f) = (X − βY )(X − βY ).(25)

There are other forms we could choose, some of which are discussed in [Cre99],
however this is the simplest option, and is sufficient for our purposes.

Definition 3.4. A binary cubic form (24) is Minkowski-reduced if the positive

definite form Q(f) in (25) is reduced in the sense of Definition 3.3.

We use the following result from the geometry of numbers [Cas97, II.5.4].

Theorem 3.5 (Davenport [Dav45]). If f in Z[X, Y ] is a binary cubic form with

discriminant ∆ = ∆(f) < 0, then there are integers (u, v) 6= (0, 0) such that

|f(u, v)| ≤
∣∣∣∣∆23

∣∣∣∣1/4 .
If, further, f is Minkowski-reduced in the sense of Definition 3.4, then

min
{
|f(1, 0)|, |f(0, 1)|, |f(1,±1)|, |f(1,±2)|

}
≤
∣∣∣∣∆23

∣∣∣∣1/4 ,
with equality only when f(X,±Y ) = A(X3 +X2Y + 2XY 2 + Y 3).

The second part of the theorem, together with the well known algorithm for
reducing positive definite binary quadratic forms, gives an algorithm for finding
integers u, v satisfying the conditions in the first part of the theorem.
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3.3. An algorithm over the rationals. We now take K = Q. Let a and b be
positive cube-free integers. We write b = b1b

2
2 where b1 and b2 are positive, coprime

and square-free. Applying the results of Section 3.2 to the binary cubic (23), we
can find u, v ∈ Z such that

0 < F (u, v) <

(
27

23

)1/4

(ab1)1/2.(26)

We observe that

(27) NQ( 3√a)/Q

(
b2((cu+ b1v)− 3

√
au)

)
= b1b

3
2F (u, v) = bb2F (u, v).

If we can find η ∈ Q( 3
√
a) such that NQ( 3√a)/Q(η) = b2F (u, v) then, by the mul-

tiplicativity of the norm, we can find ξ ∈ Q( 3
√
a) such that NQ( 3√a)/Q(ξ) = b.

Ideally, we want b2F (u, v) < b, so that our norm equation is replaced by a smaller
one. Unfortunately, the bound (26) isn’t quite strong enough to prove this. Our
solution to this problem is to use condition (iv) in Theorem 3.1.

Algorithm 3.6. (Legendre-type algorithm for solving cubic norm equations)

Input: A pair of positive integers (a, b) such that b is a norm for Q( 3
√
a)/Q.

Output: A list of pairs (a, b), with b a norm for Q( 3
√
a)/Q, such that a solution

to each norm equation allows us to read off a solution to the previous one.

(i) Replace a and b by their cube-free parts. If a > b then swap a and b.

(ii) If a = 0 or 1 then stop.

(iii) Write b = b1b
2
2 where b1 and b2 are positive, coprime and square-free. Solve

for c ∈ Z such that a ≡ c3 (mod b1).

(iv) Define F ∈ Z[X, Y ] as in (23). Use reduction theory to find u, v ∈ Z
satisfying (26).

(v) If b2F (u, v) < 3
4
b then replace (a, b) by (a, b2F (u, v)) and go to Step (i).

(vi) Otherwise, replace (a, b) by (b− a, a2b) and go to Step (i).

When the algorithm terminates, it is clear by (27) and the proof of Theorem 3.1
that we may solve the original norm equation.

Theorem 3.7. If a, b ≤ B then Algorithm 3.6 takes O((logB)2) iterations.

Proof. In Step (v) we have anew = a and bnew <
3
4
b. So if we never reach Step (vi)

then the algorithm takes O(logB) iterations. If we reach Step (vi) then

3

4
b ≤ b2F (u, v) <

(
27

23

)1/4

(ab)1/2

and so b < 1.93a. In this case anew = b − a < 0.93a, and so the total number of

applications of Step (vi) is O(logB). Moreover bnew = a2b < 2a3 ≤ 2B3 and so

Step (v) is applied O(logB) times between each application of Step (vi). �
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Remark 3.8. The bottleneck in Algorithm 3.6 comes in Steps (i) and (iii), as

these are the steps that involve factoring. We expect it would be possible to

modify the algorithm, along the lines of [CR03, Section 2.5], so that factoring is

only required on the first iteration. However we have not worked out the details.

We give two examples, the first illustrating the need for Step (vi), and the second
in preparation for Example 4.3. The actual solutions to the norm equations are
rather large, so we do not record them here.

Example 3.9. Let a = 5316 and b = 35685. The steps taken by Algorithm 3.6

are recorded in the rows of the following table. On the second iteration we have

b2F (u, v) = 5382 > b and so we reach Step (vi).

a b b1 b2 c u v

5316 35685 3965 3 2521 −11 7

5316 5364 149 6 52 −2 1

48 151585867584 [take cube-free parts]

6 87723303 447 443 123 −11 3

6 6202 6202 1 2596 −43 18

6 77 77 1 41 2 −1

1 6

Example 3.10. Let a = 17 and b = 2850760453176384635894983495759. On the

first iteration we have c = 2512758208506770505416151958382 and

(u, v) = (−1056910260262351, 931597016217248).

On this and subsequent iterations we have b1 = b and b2 = 1.

a b c u v

17 3227115996467513 3079766255214306 1678826 −1602171

17 69326065 67724958 −3767 3680

17 13311 [take cube-free parts]

17 493 476 −1 1

10 17 3 1 0

1 10

In [vB15, Chapter 4] we investigated analogues of Algorithm 3.6 over other
number fields with small discriminant. Although we couldn’t prove that these
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methods always work, they seem to perform quite well in practice, at least in
reducing the norm equations to ones that can be solved by traditional methods.

4. Examples

In this section, we give some examples in the case K = Q, showing how the
results of Sections 2 and 3 may be used to compute the Cassels-Tate pairing on
3-isogeny Selmer groups. Further examples are given in [vB15].

We identify 1
3
Z/Z with Z/3Z via multiplication by 3, so that the matrices below

have entries 0, 1, 2 rather than 0, 1
3
, 2

3
. We also write 〈a1, a2 . . .〉 for the subgroup

generated by a1, a2, . . ..

Example 4.1. Let E and E ′ be the 3-isogenous elliptic curves labelled 63531c1

and 63531c2 in Cremona’s tables [Cre97].

E : y2 = x3 − 3(4x+ 52)2

E ′ : y2 = x3 + 362(x+ 543)2

The Galois action on E[3] is of type µ3-nonsplit. Indeed E[3] is generated by

S = (0, 52
√
−3) and T = (156/(θ − 4), 156θ/(θ − 4))

where θ = 3
√

181. We set ζ3 = (−1 +
√
−3)/2. As in Section 2.2 we have fields

L1 = Q(ζ3), L2 = Q(θ) and M = Q(ζ3, θ). A descent by 3-isogeny (see the

introduction for references) computes the Selmer groups

S(φ)(E/Q) = 〈181〉 ⊂ Q×/(Q×)3

S(φ̂)(E ′/Q) = 〈ζ3, 39ζ3 + 52〉 ⊂
(
L×1 /(L

×
1 )3
)(1)

.

This gives an upper bound of 2 for the rank of E(Q). We seek to improve this

bound by computing the Cassels-Tate pairing on S(φ̂)(E ′/Q).

We start by lifting a1 = ζ3 and a2 = 39ζ3 + 52 globally to H1(Q, E[3]) ∼= H,

where H ⊂ L×1 /(L
×
1 )3 × L×2 /(L×2 )3 is given by Theorem 2.3. We used the existing

function NormEquation in Magma (this example is too small for the methods of

Section 3 to be needed) to solve the norm equations NM/L1(ξ) = ai for i = 1, 2,

and then computed bi with (ai, bi) ∈ H using Theorem 2.8. We used the method

in [Fis08, Section 2] to find a small representative for bi in L×2 /(L
×
2 )3. By (15) we

are free to multiply bi by any element in Q×/(Q×)3. In this way we obtain

(28)
b1 = 7θ2 + 40θ + 217 NL2/Q(b1) = 2636

b2 = 59θ2 + 314θ + 3011 NL2/Q(b2) = 23312133

The connecting map δ3 : E(Q) → H1(Q, E[3]) in (6) may be computed as

described in [Sil09, Chapter X]. It is given by the tangent lines at S and T , i.e.
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P 7→ (tanS(P ), tanT (P )) where

tanS(x, y) = y − 4
√
−3x− 52

√
−3,

tanT (x, y) = y − 2(θ + 2)x+ 156(θ + 4)/(θ − 4).

The local analogue of this map is given by the same formula.

Let (a, b) = (a1, b1) or (a2, b2). Since a ∈ S(φ̂)(E ′/Q) there exists for each prime

p a local point Pp ∈ E(Qp) with tanS(Pp) ≡ a mod (Qp(ζ3)×)3. Then (a, b) and

(tanS(Pp), tanT (Pp)) are both local lifts of a. By (15) and Lemma 2.4 it follows

that b/ tanT (Pp) ≡ ξp mod (Qp(ζ3)×)3 for some ξp ∈ Q×p /(Q×p )3. By Definition 1.2

and Lemma 1.3 we have

(29) 〈a, a′〉CT =
∑
p

1

[Qp(ζ3) : Qp]
Indζ3(ξp, a

′)p

where ( , )p is the Hilbert norm residue symbol on Qp(ζ3). If p 6= 3 is a prime

of good reduction for E, and vp(b) ≡ 0 mod 3 for all primes p dividing p, then p

makes no contribution to the sum (29).

Returning to our example, E has minimal discriminant −33 · 133 · 181 and the

norms of the bi were recorded in (28). The Cassels-Tate pairing is therefore a

sum of local pairings at the primes 2, 3, 13 and 181. Since 3 is odd, there is no

contribution from the infinite place.

Contribution at p = 2. The local point P = (4, 22 + 26 +O(28)) ∈ E(Q2) satisfies

tanS(P ) ≡ a1 ≡ a2 mod (Q2(ζ3)×)3. Embedding L2 in Q2 via θ 7→ 1 + 22 +O(23)

we find that tanT (P ) ≡ b1 ≡ b2 ≡ 1 mod (Q×2 )3. Therefore the local pairing at

p = 2 is trivial.

Contribution at p = 3. The local points

P1 = (4, 2 + 3 + 2.32 +O(35)) ∈ E(Q3)

P2 = (3−2, 3−3 + 1 + 32 +O(35)) ∈ E(Q3)

satisfy tanS(Pi) ≡ ai mod (Q3(ζ3)×)3 for i = 1, 2. Embedding L2 in Q3 via

θ 7→ 1 + 2.3 + 33 +O(34) we compute

b1/ tanT (P1) ≡ 3 mod (Q3(ζ3)×)3

b2/ tanT (P2) ≡ 6 mod (Q3(ζ3)×)3

We recall from Section 1.2 that Q3(ζ3)×/(Q3(ζ3)×)3 has basis λ, η1, η2, η3 where

λ = 1− ζ3 and ηi = 1− λi. In terms of this basis we have

3 ≡ λ2η2
1 mod (Q3(ζ3)×)3 a1 ≡ η1 mod (Q3(ζ3)×)3

6 ≡ λ2η2
1η

2
2η

2
3 mod (Q3(ζ3)×)3 a2 ≡ η2

3 mod (Q3(ζ3)×)3
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Using (9) to compute the Hilbert norm residue symbol, and not forgetting the

factor [Q3(ζ3) : Q3] = 2 in (29), the local pairing at p = 3 is as given in (30).

Contribution at p = 13. We embed L1 = Q(ζ3) in Q13 via ζ3 7→ 3+11.13+O(132).

The local points

P1 = (6, 10 + 4.13 + 12.132 +O(133)) ∈ E(Q13)

P2 = (13, 4.13 + 3.132 + 5.133 +O(134)) ∈ E(Q13)

satisfy tanS(Pi) ≡ ai mod (Q×13)3 for i = 1, 2. Embedding L2 = Q(θ) in Q13 via

θ 7→ 4 + 13 + 7.132 +O(133) we compute

b1/ tanT (P1) ≡ 1 mod (Q×13)3 a1 ≡ 2 mod (Q×13)3

b2/ tanT (P2) ≡ 2 mod (Q×13)3 a2 ≡ 132 mod (Q×13)3

By Proposition 1.5(iv) we have (2, 13)13 = ζ3. The local pairing at p = 13 is now

given by the second matrix in (30).

Contribution at p = 181. We embed L1 = Q(ζ3) in Q181 via ζ3 7→ 48 + O(181).

We find that a1 ≡ a2 ≡ 1 mod (Q×181)3 and hence the local pairing at p = 181 is

trivial.

Adding together the local pairings at p = 3 and 13 gives the (global) Cassels-

Tate pairing on S(φ̂)(E ′/Q) = 〈a1, a2〉 ⊂ L×1 /(L
×
1 )3.

Local pairing at p = 3 Local pairing at p = 13 Global pairing

a1 a2

a1 0 1

a2 2 1

a1 a2

a1 0 0

a2 0 2

a1 a2

a1 0 1

a2 2 0

(30)

Since the pairing is non-degenerate, it follows that E(Q) has rank 0. Moreover

the 3-primary parts of X(E/Q) and X(E ′/Q) are 0 and (Z/3Z)2.

Example 4.2. Let E and E ′ be the 3-isogenous elliptic curves labelled 24060f1

and 24060f2 in Cremona’s tables [Cre97].

E : y2 = x3 + (x+ 15)2

E ′ : y2 = x3 − 3 (x+ 401/9)2

The Galois action on E[3] is of type Z/3Z-nonsplit. Indeed E[3] is generated by

S = (0, 15) and T = (−90/(θ + 2),−15
√
−3θ/(θ + 2))
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where θ = 3
√

802. We set ζ3 = (−1 +
√
−3)/2. As in Section 2.3 we have fields

L1 = Q(ζ3), L2 = Q(θ) and M = Q(ζ3, θ). A descent by 3-isogeny computes the

Selmer groups

S(φ)(E/Q) = {1} ⊂ (L×1 /(L
×
1 )3)(1)

S(φ̂)(E ′/Q) = 〈2, 3, 5〉 ⊂ Q×/(Q×)3.

This gives an upper bound of 2 for the rank of E(Q). We seek to improve this

bound by computing the Cassels-Tate pairing on S(φ̂)(E ′/Q).

We start by lifting a1 = 2, a2 = 3 and a3 = 5 globally to H1(Q, E[3]) ∼= H,

where H ⊂ K×/(K×)3 × M×/(M×)3 is given by Theorem 2.9. We used the

existing function in Magma (again this example is too small for the methods of

Section 3 to be needed) to solve the norm equations NL2/K(ξ) = ai for i = 1, 2, 3,

and then computed bi with (ai, bi) ∈ H using Theorem 2.11. Replacing bi by a

small representative for its coset in M×/(M×)3 we obtain

b1 = 1
3
(5ζ3 + 5)θ2 + 1

3
(11ζ3 − 4)θ + 1

3
(41ζ3 + 290)

b2 = 5
3
ζ3θ

2 − 7
3
ζ3θ − 1

3
(490ζ3 + 213)

b3 = 1
3
(7ζ3 + 34)θ2 + 1

3
(66ζ3 + 317)θ + 1

3
(308ζ3 + 2991)

It may be checked that these elements satisfy the conditions in Theorem 2.9.

The minimal discriminant of E is −24 · 33 · 53 · 401. We find that vp(bi) ≡ 0

(mod 3) for all primes p ofM not dividing 30. The Cassels-Tate pairing is therefore

a sum of local pairings at the primes 2, 3, 5 and 401.

Contribution at p = 2. We have tanS(−S) = −30 ≡ 2 mod (Q×2 )3. We compute

b1/ tanT (−S) ≡ ζ2
3 mod (Q2(ζ3, θ)

×)3 a1 ≡ 2 mod (Q×2 )3

b2 ≡ 1 mod (Q2(ζ3, θ)
×)3 a2 ≡ 1 mod (Q×2 )3

b3 ≡ 1 mod (Q2(ζ3, θ)
×)3 a3 ≡ 1 mod (Q×2 )3

The local pairing at 2 is therefore given by the first matrix in (31).

Contribution at p = 3. Let P = (−5/2, 2.3 + 2.32 + 33 + O(38)) ∈ E(Q3). Then

tanS(P ) ≡ 2 ≡ 5−1 mod (Q×3 )3 and tanS(−S) ≡ 3 mod (Q×3 )3. We embed L2 in

Q3 via θ 7→ 1 + 2.3 + 2.32 + O(34). We recall that Q3(ζ3)×/(Q3(ζ3)×)3 has basis

λ, η1, η2, η3 where λ = 1− ζ3 and ηi = 1− λi. We compute

b1/ tanT (P ) ≡ η2
1η3 mod (Q3(ζ3)×)3 a1 ≡ η2

2η
2
3 mod (Q3(ζ3)×)3

b2/ tanT (−S) ≡ η2
1 mod (Q3(ζ3)×)3 a2 ≡ λ2η2

1 mod (Q3(ζ3)×)3

b3/ tanT (−P ) ≡ η1η
2
3 mod (Q3(ζ3)×)3 a3 ≡ η2η3 mod (Q3(ζ3)×)3
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Using (9) to compute the Hilbert norm residue symbol, the local pairing at 3 is

given by the second matrix in (31).

Contribution at p = 5. We have tanS(−S) = −30 ≡ 5 mod (Q×5 )3. We embed L2

in Q5 via θ 7→ 3 + 3.52 + 54 +O(55) and compute

b1 ≡ ζ3 mod (Q5(ζ3)×)3 a1 ≡ 1 mod (Q×5 )3

b2 ≡ 1 mod (Q5(ζ3)×)3 a2 ≡ 1 mod (Q×5 )3

b3/ tanT (−S) ≡ ζ3 mod (Q5(ζ3)×)3 a3 ≡ 5 mod (Q×5 )3

The local pairing at 5 is therefore given by the third matrix in (31).

Contribution at p = 401. Since 401 ≡ 2 (mod 3) we have 2, 3, 5 ∈ (Q×401)3, and so

the local pairing at p = 401 is trivial.

Adding together the local pairings at p = 2, 3 and 5 gives the (global) Cassels-

Tate pairing on S(φ̂)(E ′/Q) = 〈2, 3, 5〉 ⊂ Q×/(Q×)3.

p = 2 p = 3 p = 5 Global pairing

2 3 5

2 1 0 0

3 0 0 0

5 0 0 0

2 3 5

2 2 1 1

3 2 0 1

5 1 2 2

2 3 5

2 0 0 1

3 0 0 0

5 0 0 1

2 3 5

2 0 1 2

3 2 0 1

5 1 2 0

(31)

This again shows that rankE(Q) = 0, and the 3-primary parts of X(E/Q) and

X(E ′/Q) are 0 and (Z/3Z)2.

As described in the introduction, Eroshkin found five examples of elliptic curves
E/Q with torsion subgroup Z/3Z and rank at least 13. We now consider the first
of these examples. The other examples are similar, and are treated in detail in
[vB15, Section 6.1].

Example 4.3. Let E/Q be the elliptic curve y2 + A1xy + A3y = x3 where A1 =
10154960719 and A3 = −66798078951809458114391930400. The primes of bad
reduction for E are those appearing in the following prime factorisations.

A3 = −25 · 33 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 113,

A3
1 − 27A3 = 197 · 317 · 3313949 · 2831657657 · 4864617187.

The Galois action on E[3] is of type Z/3Z-nonsplit. Indeed E[3] is generated by

S = (0, 0) and T = (3A3/(θ−A1), A3(ζ3θ−A1)/(θ−A1)) where θ = 3
√
A3

1 − 27A3.
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Let φ : E → E ′ be the 3-isogeny with kernel generated by S. A descent by 3-

isogeny [Fis03, Proposition 1.2] shows that

S(φ̂)(E ′/Q) =

x ∈ Q×/(Q×)3

∣∣∣∣∣ vp(x) ≡ 0 (mod 3) for all p - A3

x ∈ (Q×p )3 for all p | (A3
1 − 27A3)

 .

Noting that only one of the prime factors of A3
1 − 27A3 is congruent to 1 mod 3,

we find that S(φ̂)(E ′/Q) is the 18-dimensional F3-vector space with basis

(32)
2, 5, 11, 17, 31, 47, 53, 32 · 7, 3 · 13, 3 · 19, 3 · 23,

3 · 29, 3 · 37, 3 · 41, 3 · 43, 3 · 59, 32 · 61, 3 · 113.

By the analogue (for n = 3) of [Fis01, Theorem 1], or by Cassels’ formula [Cas65],

it follows that S(φ)(E/Q) is trivial. This gives an upper bound of 17 for the

rank of E(Q). We improve this bound by computing the Cassels-Tate pairing on

the subspace of S(φ̂)(E ′/Q) generated by the first 5 basis elements in (32), say

a1, . . . , a5.
As in Section 2.3 we have fields L1 = Q(ζ3), L2 = Q(θ) and M = Q(ζ3, θ). In

Example 3.10 we solved one of the norm equations NL2/Q(ξ) = ai. The other cases
are similar. We then used Theorem 2.11 to compute bi ∈ M with (ai, bi) ∈ H,
where H is as defined in Theorem 2.9. So that they could sensibly be recorded
in the paper, we went to some effort to simplify the bi, both by multiplying by
elements of (L×1 /(L

×
1 )3)(1) and by finding small representatives modulo cubes.

b1 = 80506656009θ2 − 1176048899716052084841θ

− 14935178208744640295856847246416ζ3 − 15036024242599209733354645439703,

b2 = 14726363049θ2 − 79874874765966026529θ

+ 8657187467761497385350294134040ζ3 − 8434480171840925245748610923511,

b3 = 218823372684θ2 − 4630953487853681932716θ

+ 34676125489353056066296086569091ζ3 + 60807466313987014328526766460838,

b4 = 286372386666θ2 − 1448511948608043607524θ

− 57528276376283017594756117712901ζ3 − 38980928584242432627609103951923,

b5 = 332611290882θ2 + 1168159925437207764516θ

− 67751649380200776098612752578639ζ3 + 71449768157279254278949836738165

We find that vp(bi) ≡ 0 (mod 3) for all primes p of M not dividing ai. Therefore

only the bad primes for E contribute to the Cassels-Tate pairing. The local con-

ditions used to compute S(φ̂)(E ′/Q) show that its elements are locally trivial at
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the primes dividing A3
1 − 27A3. So we only need to compute the local pairings at

the primes dividing A3.

Let P1, . . . , P13 be the known independent points of infinite order in E(Q), as

listed on Dujella’s website [Duj17].

For the primes p with p ≡ 1 mod 3 we find that tanS(Pj) generates Z×p /(Z×p )3

where j = 6, 4, 1, 1, 2, 2, 7 for p = 7, 13, 19, 31, 37, 43, 61. Moreover tanT (Pj) is a

unit mod cubes at the primes dividing p. So we only need to consider the primes

that additionally divide one of the ai. The only such prime is 31. Embedding M

in Q31 via ζ3 7→ 5 + 14.31 +O(312) and θ 7→ 1− 2.312 +O(314), we compute

b1 ≡ 52 mod (Q×31)3 a1 ≡ 1 mod (Q×31)3

b2/ tanT (−P1) ≡ 1 mod (Q×31)3 a2 ≡ 5 mod (Q×31)3

b3/ tanT (−P1) ≡ 1 mod (Q×31)3 a3 ≡ 5 mod (Q×31)3

b4/ tanT (P1) ≡ 1 mod (Q×31)3 a4 ≡ 52 mod (Q×31)3

b5/ tanT (P6) ≡ 312 mod (Q×31)3 a5 ≡ 31 mod (Q×31)3

This gives the local pairing at p = 31 as recorded below.

For the primes p with p ≡ 2 mod 3 the group Z×p /(Z×p )3 is trivial. So we only

need to consider those primes p that additionally divide one of a1, . . . , a5. We

find that tanS(Pj) ≡ p mod (Q×p )3 where j = 5, 2, 1, 5 for p = 2, 5, 11, 17. The

unique embedding of L2 in Qp determines an embedding of M in Qp(ζ3). Then

bi/ tanT (Pj)
vp(ai) takes the following values mod (Qp(ζ3)×)3.

p = 2 p = 5 p = 11 p = 17

i = 1 1 1 ζ2
3 (ζ3 + 3)2

i = 2 1 1 1 1

i = 3 ζ3 1 1 (ζ3 + 3)2

i = 4 ζ2
3 1 ζ2

3 1

i = 5 ζ2
3 ζ2

3 ζ3 ζ3 + 3

This gives the local pairings at p = 2, 5, 11, 17 as recorded below.

Finally, when p = 3, we find that tanS(P8) ≡ 2 mod (Q×3 )3, whereas the ele-

ments b1, . . . , b5 and tanT (P8) all belong to the subgroup of Q3(ζ3)×/(Q3(ζ3)×)3

generated by η3 = 1− (1− ζ3)3. The local pairing at p = 3 is therefore trivial.

Adding together the local pairings gives the (global) Cassels-Tate pairing on the

5-dimensional subspace 〈2, 5, 11, 17, 31〉 of S(φ̂)(E ′/Q) ⊂ Q×/(Q×)3. The fact we
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obtain an alternating matrix provides some check on our calculations.

Local pairing at p = 2 Local pairing at p = 5 Local pairing at p = 11

2 5 11 17 31

2 0 0 0 0 0

5 0 0 0 0 0

11 2 0 0 0 0

17 1 0 0 0 0

31 1 0 0 0 0

2 5 11 17 31

2 0 0 0 0 0

5 0 0 0 0 0

11 0 0 0 0 0

17 0 0 0 0 0

31 0 2 0 0 0

2 5 11 17 31

2 0 0 1 0 0

5 0 0 0 0 0

11 0 0 0 0 0

17 0 0 1 0 0

31 0 0 2 0 0

Local pairing at p = 17 Local pairing at p = 31 Global pairing

2 5 11 17 31

2 0 0 0 2 0

5 0 0 0 0 0

11 0 0 0 2 0

17 0 0 0 0 0

31 0 0 0 1 0

2 5 11 17 31

2 0 0 0 0 2

5 0 0 0 0 0

11 0 0 0 0 0

17 0 0 0 0 0

31 0 1 1 2 0

2 5 11 17 31

2 0 0 1 2 2

5 0 0 0 0 0

11 2 0 0 2 0

17 1 0 1 0 0

31 1 0 0 0 0

Since the Cassels-Tate pairing on this 5-dimensional subspace of S(φ̂)(E ′/Q) has

rank 4, it follows that rankE(Q) = 13. Moreover the 3-primary parts of X(E/Q)

and X(E ′/Q) are 0 and (Z/3Z)4. The 18× 18 matrix (still of rank 4) giving the

Cassels-Tate pairing on all of S(φ̂)(E ′/Q) is recorded in [vB15, Example 6.1.2].

References

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[Cas59] J.W.S. Cassels. Arithmetic on curves of genus 1. I. On a conjecture of Selmer. J. reine

angew. Math., 202:52–99, 1959.

[Cas62] J.W.S. Cassels. Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung.

J. reine angew. Math., 211:95–112, 1962.

[Cas65] J.W.S. Cassels. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and

Swinnerton-Dyer. J. reine angew. Math., 217:180–199, 1965.

[Cas97] J.W.S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics.

Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.

[Cas98] J.W.S. Cassels. Second descents for elliptic curves. J. reine angew. Math., 494:101–

127, 1998.



30 MONIQUE VAN BEEK AND TOM FISHER
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