COMPUTING THE CASSELS-TATE PAIRING ON 3-ISOGENY
SELMER GROUPS VIA CUBIC NORM EQUATIONS

MONIQUE VAN BEEK AND TOM FISHER

ABSTRACT. We explain a method for computing the Cassels-Tate pairing on the
3-isogeny Selmer groups of an elliptic curve. This improves the upper bound on
the rank of the elliptic curve coming from a descent by 3-isogeny, to that coming
from a full 3-descent. One ingredient of our work is a new algorithm for solving
cubic norm equations, that avoids the need for any S-unit computations. As an
application, we show that the elliptic curves with torsion subgroup of order 3
and rank at least 13, found by Eroshkin, have rank exactly 13.

INTRODUCTION

Let E be an elliptic curve over a number field K. By the Mordell-Weil theorem,
the rational points F(K) form a finitely generated abelian group. The number
of points needed to generate the non-torsion part of E(K) is called the rank.
Determining the rank is a non-trivial problem, and indeed there is no known
algorithm that will compute it in all cases.

We may however bound the rank by following the proof of the Mordell-Weil
theorem. For each integer n > 2, the n-Selmer group S™(E/K) classifies the
n-coverings of F that have points everywhere locally. This group is finite and
effectively computable. Since E(K)/nE(K) injects into S(™(E/K), computing
the n-Selmer group gives an upper bound for the rank. This process is known as
(full) n-descent. In view of the short exact sequence

(1) 0 — E(K)/nE(K) — S™(E/K) — NI(E/K)[n] — 0

the rank bound coming from n-descent may be improved whenever the Tate-
Shafarevich group III(E/K) contains non-trivial n-torsion.

Cassels [Cas62] defined an alternating pairing (now known as the Cassels-Tate
pairing)

HI(E/K)x II(E/K) — Q/Z

with the property that III(E/K)[n| and nllI(E/K) are exact annihilators. One
consequence is that if HI(E/K) is finite (as conjectured by Tate and Shafarevich)
then its order is a square. Another consequence is that we can sometimes use the
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pairing to detect non-trivial elements of III(E/K). Specifically, computing the
pairing on S (E/K) improves the rank bound coming from n-descent, to that
coming from n?-descent. Thus, for example, Cassels used the pairing in [Cas98]
to turn a 2-descent into a 4-descent, and to some extent this has been generalised
in [SD13|, [FN14], [Donl5].

Descent calculations become very much more tractable in the case that our
elliptic curve admits a rational p-isogeny for some prime p. This is th/e\ situation
we consider in this paper. We write ¢ : E — E’ for the p-isogeny, and ¢ : ' — E
for its dual. Since (E o ¢ is multiplication-by-p, there is an exact sequence

0 —E(K)[¢] — E(K)p] 2 E'(K)[g]
s B(K)E(K) -5 B(K) [pE(K) —s E(K)J3E'(K) — 0,

from which we deduce that
prank B(K) _ |E(K)/pE(K)| _ |E'(K)/¢E(K)] - !E(K)@E'(K)I_
| E(K)[p]] |E(K)[¢]] - [E"(K)[4]]
Analogous to (1) there are exact sequences

0 — E'(K)/¢E(K) — S(E/K) — II(E/K)[p.] — 0,

and
0 — E(K)/E (K) — SO (E'/K) — TI(E'/K)[$.] — 0.

Computing the Selmer groups S (E/K) and S®(E'/K) gives an upper bound
for the rank. This process is known as descent by p-isogeny, and is described for
example in [Top93, Del.02, Fis01, Fis03, SS04, FG08, MS13|.

There is a commutative diagram with exact rows

E'(K)[¢] — E'(K)/¢B(K) — E(K)/pE(K) — E(K)/0E'(K)

| | | |

E'(K)[¢] —— SY(E/K) SP(E/K) SO(E'/K)

where the final map in the second row need not be surjective. Instead its image
is the kernel of the Cassels-Tate pairing

2) (Ve : SOEK) x SOE/K) — Q/Z.

This pairing is the lift of the one on IH(E//K)[QZ*] Computing the pairing (2)
allows us to turn a descent by p-isogeny into a full p-descent. If the pairing is
non-zero then this improves our upper bound for the rank.

The case p = 2 is treated in [Fisl7], so from now on we take p an odd prime.
In the first of his series of papers on elliptic curves, Cassels [Cash9] showed how
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to compute the pairing (2) when p = 3 and E’ takes the form 23 + y® = k. The
case where p = 3 or 5 and E[p| = p, x Z/pZ was treated in [Fis03].

We describe a method for computing the pairing (2) in the cases where E[¢] is
isomorphic (as a Galois module) to either p, or Z/pZ. In both cases the global
part of our method requires us to solve a norm equation Ny, x(§) = a where L/K
is a field extension of degree p. Moreover, when p = 3 and E|[¢| = Z/37Z, we
have L = K(v/b) for some b € K. In the case K = Q we give an algorithm for
solving such norm equations, that avoids the need for any S-unit computations.
This enables us to apply our methods to elliptic curves with large discriminant.

One particular computational challenge is to find elliptic curves over Q of large
rank with a given torsion subgroup. The current records are listed on Dujella’s
website [Dujl17]. Between 2007 and 2009, Y.G. Eroshkin found the following five
elliptic curves with torsion subgroup Z/37Z and rank at least 13.

y® + 101549607192y — 66798078951809458114391930400y = = 17
y® 4 84120733312y + 7384158420201525518270114400y = 2* 13

y® 4+ 192237497112y — 435665346791890005577936749600y = z° 13
y® + 85894236672y — 30679410326232604531989794400y = 2° 17
y? + 35429815349xy — 169064164426703584254124708800y = z° 15

The number on the right is the upper bound for the rank obtained by descent by
3-isogeny. By computing the Cassels-Tate pairing we were able to verify that each
of these curves has rank exactly 13. This is the largest known rank for an elliptic
curve with torsion subgroup Z/3Z.

We have also used the methods of this paper to find new examples of elliptic
curves with torsion subgroup Z/9Z and ranks 3 and 4 (see [vB15, Dujl7]). In
contrast, when we searched for elliptic curves with torsion subgroup Z/127 and
rank 4 we could not find any examples beyond the one already known. For both
of these torsion subgroups the largest known rank is 4.

In Section 1 we recall the definition of the Cassels-Tate pairing that is relevant
to our work. In Section 2 we give an explicit description of the long exact sequence

(3) H'(K, El¢]) - H'(K, Elp]) - H'(K, E'[¢]) — H*(K, E[¢])

in terms of étale algebras, and explain how lifting an element of H'(K, E'[¢]) to
HY(K, E[p]) comes down to solving a norm equation. As indicated above, we
concentrate on the cases where E[¢] = pu, or E[¢| = Z/pZ. Since it is always
possible to reduce to one of these two cases by making a field extension of degree
coprime to p, this is perhaps not such a severe restriction.

In Section 3 we present our new algorithm for solving norm equations for pure
cubic extensions Q(+/b)/Q. It is based on the Legendre-type method for solving
conics in [CR03]. When applied to suitably large examples, our algorithm performs
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much better than the standard approach using S-units, as described for example
in [Coh00, Section 7.5], [Sim02].

In Section 4 we give three examples computing the pairing (2) in the case K = Q
with E[¢] = ps or E[¢] = Z/3Z. The first two examples are small, and so do not
require any special methods to solve the norm equations. In the third example,
where we consider one of Eroshkin’s curves with torsion subgroup Z/3Z, we are
entirely reliant on the methods in Section 3.

It is interesting to remark that if we solve norm equations by the method in
Section 3, then the simplest case is when E[¢] = Z/37Z. However, if we solve norm
equations by trivialising the corresponding cyclic algebra (using the method in
[CFO™15]) then the simplest case is when E[¢] = pu3. For a general 3-isogeny we
may reduce to either one of these two simplest cases at the expense of making a
quadratic extension to our base field.

An alternative approach to improving a descent by p-isogeny to a full p-descent
is described in [CM12]. The method there does however require a rigorous com-
putation of S-units in a degree p extension of K. In contrast, we are free to
solve norm equations by any method we like, since once a solution is found it is
straightforward to verify it is correct.

The following notation will be used throughout. For K a field, we write K for
its separable closure and G = Gal(K/K) for its absolute Galois group. The
Galois cohomology group H'(G,—) is abbreviated as H'(K,—), and we write
Hom(Gg, —) for the continuous homomorphisms. The unit group of a ring R is
denoted R*. We write p, for the group of pth roots of unity, and ¢, for a generator.

The calculations in Section 4 were carried out using Magma [BCP97]. This
paper is based on the first author’s PhD thesis [vB15].

1. THE CASSELS-TATE PAIRING

In this section, we define the global Cassels-Tate pairing (2). The definition
is given as a sum of local pairings, so we define these first. Let K, denote the

localisation of K at a place v. The Weil pairing ey : E[¢| X E'[¢] — p,, induces by
cup product a pairing

U H' (K, Bl9]) x H' (K, E'[9]) = H*(Ky, ).
It terms of cocycles we have (£ U)o, = €4(&,0(ny)). Since H*(K,, p,) =

Br(K,)[p] we can then apply the invariant map invg, : Br(K,) — Q/Z, from
local class field theory, to obtain the local Tate pairing:

(4) < ) >v,e¢ : Hl(KvaE[Qﬂ) X Hl(KvaE/[;ﬂ) — Q/Z
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1.1. The global pairing. Taking Galois cohomology of the short exact sequences

0 — E[¢] —> E[p| —*> E'[§] —=0
|
0 — E[¢] E E 0

we obtain a commutative diagram with exact rows

H'(K, E[p]) —~—~ H'(K, E'[3]) H(K, E[¢])

R | | |

[, H' (Ko, ) —= I, H' (Ko, E') — T, H*(K., E[¢]).

Lemma 1.1. Any element x € S@)(E’/K) can be lifted to xy € H' (K, E[p]) with
Pu(r1) = .

Proof. The Selmer group S@)(E’ /K) is by definition the kernel of the middle
vertical map in (5). By a diagram chase, it suffices to show that the right hand
vertical map is injective. Making a finite extension L/K of degree coprime to p,
we may ensure that E[¢] = u, over L, and so H*(L, E[¢]) = Br(L)[p]. Let v be a
place of K. Then we have the following commutative diagram.

H*(K, E[¢]) —=— H*(L, E[¢]) —>— H*(K, E[¢)])

locy l loco l loct L

H(K,, E[¢]) =% @y, H*(Ly, E[g]) 2 H*(K,, E[$))

By global class field theory, the following exact sequence holds for any number
field L.

0 — Br(L) — @ Br(L,) =% Q/Z — 0

Thus the map [], loc, is injective. By [GS06, Proposition 3.3.7] the composite
Cor o Res is multiplication by n = [L : K]. The kernel of ], loc; is now both
p-torsion and n-torsion. Since p and n are coprime, it follows that ], loc; is
injective as required. O
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The Kummer exact sequences for [p| : E — E and ¢ : E' — E give the rows of
the following commutative diagram

HY(K, E[¢])

|-

(6) B(K) "~ B(K) —"~ H'(K, Elp)

‘| H |o-

B(K) "= () = (K, B'3).

The right hand column is the long exact sequence (3). We also consider the

analogue of this diagram with K replaced by K,. In the terminology of [PS99],
the following is the “Weil pairing definition” of the Cassels-Tate pairing.

Definition 1.2 (Definition of the Cassels-Tate pairing). Let z,y € S@(E’/K).
By Lemma 1.1 there exists x; € H'(K, E[p]) with ¢, (x1) = . We write z,, ¥y, T1.
for the localisations of z,y,z; at a place v. For each place v we pick P, € E(K,)
with 05(P,) = @,. Then 1, — 6,(P,) = (&) for some &, € H'(K,, E[¢]). The
Cassels-Tate pairing is defined as

<l’, y>CT - Z<§va yv)v,%

v

where the sum is over all places v of K, and (, )y, is the local Tate pairing (4).

It may be shown that the pairing is independent of the choice of global lift z; and
the choices of local points P,. For further details, and properties of the pairing,
see for example [Cas62, Mil06, McC88, PS99, Fis03].

As we describe in the next section, the local Tate pairing is closely related to
the Hilbert norm residue symbol. It can therefore be computed using standard
techniques. A more serious problem is that of computing a global lift z; of z. In
Section 2 we explain how this may be reduced to solving a norm equation. This
then motivates our work on norm equations in Section 3.

1.2. Computing the local pairing. Let p be a prime. Let ¢ : E — E’ be a
p-isogeny of elliptic curves defined over a number field K. We fix L/K a finite
galois extension of degree coprime to p, such that all points in the kernels of ¢ and
¢ are defined over L. By properties of the Weil pairing we have yp, C L. We may

~

therefore fix isomorphisms E|[¢] = u, and E'[¢] = p, over L. These maps induce,
by restriction and the Kummer isomorphism, injective group homomorphisms

Wy H'(K, E[g]) — L*/(L*)",

and
wg Hl(K, E'[¢]) — L*/(L*)P.
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We also write w, and wy for the local analogues of these maps.

Lemma 1.3. There exists a primitive pth root of unity ¢, € L such that for all
places v of K the local Tate pairing (4) is given by

1 _ _
(7) <l'7 y>v,e¢ = mlnde (w¢(:c), waﬁ(y))w
where w is any place of L dividing v,
(o w o Lo/ (L) X L /(Ly)? =

is the Hilbert norm residue symbol, and Ind¢, : p, — %Z/Z 15 the isomorphism
sending C, — 1_17'

Proof. We first treat the case L = K. The pairing

(8) Hp X fp —> fp; ( San)HCSb
induces by cup product, the Kummer isomorphism and the local invariant map, a
pairing

[ ot KX/ % KK — 12/,
The Hilbert norm residue symbol is (z,y), = 5{“’3’}”. By [Ser79, Prop. XIV.2.6]
it is independent of the choice of (,.

If we make an appropriate choice of (, then our identifications E[¢] = u, and
E’[:ﬁ\] = u, identify the Weil pairing ey : E[¢] X E’[(E] — u, with (8). This
proves (7). The general case, with L # K, follows by standard properties of the
cup product and the local invariant map under restriction, for which we refer to
[CF10, Proposition 1V.7.9(iii)] and [CF10, Theorem VI.1.3]. O

Remark 1.4. In practice we are happy to compute the Cassels-Tate pairing up
to an overall scaling. Therefore the choice of (, in Lemma 1.3 does not matter,
provided that the same global choice is used in all our local calculations.

We now suppose that p, C K, and describe some methods for computing the
Hilbert norm residue symbol. In fact the symbol may be defined with p replaced
by any integer m > 2, and we now work in this generality.

Proposition 1.5. Assume that pu,, C K,. The Hilbert norm residue symbol
(5 o B CRE)™ X K ()™ =
has the following properties.

(i) (a,b)u(a,c)y = (a,bc),
(i) (a,b), = 1 if b is a norm for the extension K,(%/a)/K,. In particular
(a,—a), = (a,1 —a), = 1.
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(iii) (a,b)y(b,a), =1

(iv) If v =1 is a prime not dividing m and vy(a) = 0 then

vp(b)
a a Np—1
a,b),=1{—- where -l =am mod p).
(@) (p) (p) ( b)

Proof. See [CF10, Exercise 2] or [Gra03, Proposition I1.7.1.1]. O

Proposition 1.5 can be used to compute (a,b), whenever v t moo. Taking
m = p an odd prime, the following will suffice for our purposes in the case v | p.
Let K = Q((,). Then A = 1 — (,, generates the unique prime of K lying over p.
It is shown in [CF10, Exercise 2.13] that K /(K )P has basis A, ny,...,n, where
n; = 1 — X\, and an explicit recipe is given for computing the Hilbert norm residue
symbol. In the case p = 3 this works out as

Ao om2 m3
A0 0 O C§
(9) T 0 0 C3 0

m |0 ¢ 0 0
n|G 0 0 0

2. GALOIS COHOMOLOGY

In this section, we give an explicit description of the long exact sequence (3) in
terms of étale algebras. As explained in Section 1 this will enable us to compute
the Cassels-Tate pairing.

2.1. Etale algebras. Following [SS04] we interpret the Galois cohomology groups
in (3) in terms of étale algebras. This makes the groups more amenable for prac-
tical computation. We work over a field K of characteristic 0.

Let ® be a finite set with Gk-action. The étale algebra D associated to ® is
the set of all G g-equivariant maps ® — K. This is a K -algebra under pointwise
operations. If Py, ..., P, € ® are representatives for the GG x-orbits then evaluation
at these points gives an isomorphism

D= K(P)x...x K(P,).

In particular D is a product of finite field extensions of K. We also write D =
D ®k K. This is the K-algebra of all maps ® — K.

We fix p an odd prime. Let ¢ : E — E'’ be an isogeny of elliptic curves with
E[y] C Elp], and let ¢ be its dual. Let D be the étale algebra of E'[¢)]. Let

wy : B[Y] — pp(D)
Pr— (Q = ey(P,Q)),
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be the map induced by the Weil pairing e,. This induces a map on H'’s that on
composing with the Kummer isomorphism gives a group homomorphism

wy : H' (K, E[Y]) — D*/(D*)".
Now let ¢ : E — E’ be a p-isogeny. The Weil pairings ey, e, and e are
compatible in the sense that they give an isomorphism between the exact sequence
(10) 0 — E[¢] - E[p] % E'[¢] — 0.

and the exact sequence of Cartier duals. Let A;, A> and A be the étale algebras

of E'[¢], E[¢] and E[p]. By the compatibility of the Weil pairings, we obtain a
commutative diagram

H\(K, E[¢]) > H'(K, E[p]) =~ H'(K, E'[3))

(11) w| l |

AT J(AT ) —Tm A% (AR —m AT J(AS )Y

where the first row is (3), i.e. the long exact sequence associated to (10). The
maps in the second row (which is not exact) are the pull backs by ¢ and ¢.

It is shown in [SS04, Section 5] that the vertical maps in (11) are injective, and
their images are described as follows. We fix g a primitive root mod p, and let
o, be the automorphism of A;, Ay or A given by (o,0)(P) = a(gP). By [SS04,
Lemma 5.2] we have

(12) H'(K, B[g]) = ker(g — 0+ A J(AY)" — A[/(AY))

-~

and likewise for H'(K, E'[¢]). The corresponding description of H'(K, E[p]) in-
volves the set A of affine lines in E[p] that do not pass through the origin O. Let
B be the étale algebra of A. Then the map

w: pip(A) = pp(B); o (E = HO‘(P»
pet
induces a map on H'’s, and so by the Kummer isomorphism gives us a group
homomorphism @ : A*/(A*)? — B*/(B*)P.
Theorem 2.1 (Schaefer-Stoll [SS04, Corollary 5.9]).
HY (K, E[p]) 2 ker(g — 0, : AJ(A*)P — A*/(A)P) Nker(u).

In fact we have A = K x A’ where A’ is the étale algebra of E[p]\ {O}, and in
Theorem 2.1 we are free to replace A by A’. This description of H*(K, E[p]) can
sometimes be simplified using the following lemma.
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Lemma 2.2. Let o € Im(w,) C A*/(A*)P. If S,T € E[p] then

a(S)a(T)
a(S+1T)

Proof. See [CFOT08, Lemma 3.8]. O

€ (K(S,T)")".

Let E/K be an elliptic curve and G the image of the mod p Galois represen-
tation pg, : Gk — GL(E[p]). Fixing a basis S, T for Elp], this is a subgroup of
GL2(Z/pZ). In the next two sections we consider two specific possibilities for G,
which we call the p,-nonsplit and Z/pZ-nonsplit cases. The case where E[p] splits
as [, X Z/pZ is significantly easier, as described in [McC88|, [Fis03].

2.2. u,-nonsplit case. We consider £//K an elliptic curve whose mod p Galois

representation has image
kK
G = { (0 1) } C GLy(Z/pZ)

generated by o = (§ 1) and 7 = (§?) where g is a primitive root mod p. Thus we
have a basis S, T of E[p| such that

o(S) =S5 7(S) = ¢S

o(T)=S+T m(T)=T.

Note that 70 = 097. Let Ly = K(S) = K((,), L» = K(T') and M = K(EI[p)).
M
L, Ly
px %
K

Recall that p is an odd prime. Let ey : Gk — (Z/pZ)* be the cyclotomic
character. Then for N a (Z/pZ)|Gk]-module we write N® for the eigenspace
where G acts as xiy..

Theorem 2.3. We have H' (K, E[p]) = H, where H is the group of pairs (a,b) €
(L /(L)) x Ly /(L3P satisfying Ni,/x(b) € (K*)P and o(b)/(ab) € (M*)?.

Proof. We use the description of H'(K, E[p]) in Theorem 2.1 as the intersection
of ker(g — o,) and ker(@).
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There are p orbits for the action of Gk on E[p] \ {O}, with representatives S
and T for i € {1,...,p — 1}. Therefore H' (K, E[p]) C A™*/(A”)? where

A/g[qXLQX...XLQ.
S ——
p—1
Moreover (a, by, by, ..., b,—1) € A /(A)? belongs to ker(g — o,) if and only if
a € (LY /(LY)P)M and b; = b mod (LS)P for all i € {1,...,p — 1}. Accordingly
we represent elements of H'(K, E[p]) as pairs (a,b) where b = b;.

We consider the action of Gk on the set A of affine lines in F[p| missing the
origin. There are p — 1 orbits of one line each, given by ¢y,...,¢,_; where

;= {iT, S +4iT,25S +4iT,...,(p—1)S +iT},
and just one further orbit of size p?> — p represented by
m={S,S+T,5+2T,....,S+ (p—1)T}.
Thus the étale algebra B associated to A is given by

B2 K x---x KxM.
1
i

A pair (a,b) corresponding to o« € A* represents an element in ker(w) if and
only if

Ni,r(b)' = H a(P)=1 mod (K*)?

PEK—;

foralli e {1,2,...,p—1}, and

p—1
(13) a[[o @) = [[aP)=1 mod (M)
=1 Pem
where inverses are taken in (Z/pZ)*. This proves the theorem when p = 3.
In general (13) may be simplified as follows. First Lemma 2.2 tells us that for
an element in the image of H'(K, E[p]) we have

ob)  a(S+T)

(14) ab  a(S)a(T)

e (M™)P.

Conversely, if we assume (14) then (13) follows by an easy calculation. d

Let ¢ : E — E’ be the isogeny with kernel generated by S. The first row of
the following diagram is the long exact sequence (3). Since E[¢| = p, as Galois
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modules, we have H'(K, E[¢]) & K*/(K*)? and H*(K, E[¢]) = Br(K)[p]. The
other two vertical maps are given by Theorem 2.3 and (12).

H\(K, El¢]) > H(K, Elp]) ==~ H'(K, E'[§]) —~ H(K, E[¢])

(15) j j
KX J(E<)P H—"— (L} /(L})")D —=— Br(K)[p)

The maps f, g and A are defined so that this diagram commutes. We now describe
these maps explicitly.

Lemma 2.4. We have f : b+~ (1,b) and g : (a,b) — a.

Proof. The second rows in (11) and (15) differ in that we have applied projection
maps

A1—>K A—)L:[XLQ A2—>L1
a— a(¢T) a— (a(S),a(T)) a— aS)

From this it is easy to see that the maps f and g in the statement of the lemma
do indeed correspond to pull back by ¢ and . U

Our description of A will be in terms of cyclic algebras, so we introduce these
first. Let x € Hom(Gg,Z/pZ) and b € K*. If x is non-trivial then it factors via
an isomorphism Gal(L/K) = Z/pZ; v — 1, for some degree p cyclic extension
L/K. The cyclic algebra A = A(y,b) is the K-algebra {37 a;v" : a; € L} with
multiplication determined by v? = b and

(16) vr = y(x)v

for all z € L. This is a central simple algebra of dimension p*. We write (y, b) for
its class in Br(K'). This construction is compatible with the cup product, in the
sense that the following diagram commutes.

HY(K,Z/pZ) x H\(K, p,) —— H*(K, 11,)

(17) l l l

Hom(Gr, Z/pZ) x K* /(K<) -~ Br(K)[p].

The next two lemmas are well known. See for example [GS06, Section 4.7]. We
include the proofs since they are needed for our algorithms.

Lemma 2.5. Let A = A(x,b) be a cyclic algebra. Then A = Mat,(K) if and only
if b is a norm for L/ K.
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Proof. If x € L then by (16) we have (zv)? = Ny /k(x)vP. So if b is a norm then
A(x,b) = A(x, 1). We then have the trivialisation

A(x,1) = Endg (L) = Mat,(K)

Z av’ = (x> Z a;iy' ().

Conversely, suppose we are given an isomorphism ¢ : A = Mat,(K). We fix
a non-zero vector e; € K?. Since L is a field, the map of K-vector spaces L —
KP; x — «(x)e; is injective. By a dimension count it is also surjective. Making
this identification, we now have ¢ : A = Endg (L) with «(z)y = xy for all z,y € L.
Let v; € A with «(v1) = 7. Since (16) is satisfied by both v and v, it follows
that ¢ = v;'v commutes with every element of L, and hence is in L. Finally
Npjk(§) = (vi§)? =P =b. O

Lemma 2.6. Let K be a field containing a primitive pth root of unity (,. Let
a,b € K* and let A be the K-algebra generated by x and y subject to the relations
2P =a, y? = b and vy = Gyx. Then the following are equivalent.

(i) @ is a norm for K(¥/b)/K.
(i) b is a norm for K(¥/a)/K.
(iii) A = Mat,(K).
Proof. The equivalence of (ii) and (iii) is a special case of Lemma 2.5. By symmetry
this also gives the equivalence of (i) and (iii). d
We also need the following fact about cup products.
Lemma 2.7. Let 0 — Ay — Ay — Z/pZ — 0 be a short exact sequence of
(Z/pZ)|Gk]-modules. Then the connecting maps in the long exact sequence
7/pZ 2 HY(K, A)) — H'(K, A)) = H'(K,Z/pZ) 2+ HX(K, A;)
are related by d2(b) = 61(1) U b.

Proof. Let b be represented by a cocycle (b,). Let x € Ay with x — 1. Then
92(b)gr = 0(brx) — bgrx + by = b (0x — ) = (01(1) UD)yr.
Alternatively, this is [GS06, Proposition 3.4.8] with A3 = B = Z/pZ. O

We are now ready to describe the map A in (15). We have E'(K) [q/ﬁ\] = 7/pZ
generated by ¢(7T'). The image of ¢(7") under the connecting map in the long exact
sequence associated to (10) is an element 3 € H'(K, E[¢]) = K*/(K*)P. This is

a Kummer generator for the extension M/L;. We write x, — a for the natural
isomorphism (depending on a choice of primitive pth root of unity)

(18) Hom(Gx, Z/pL) = (L /(L))
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By Lemma 2.7 and (17), the map A in (15) is given by A : a — (x4, 5), at least up
to multiplication by a fixed element of (Z/pZ)*, which we have no need to make
explicit.

Since the diagram (15) commutes, and the first row is exact, the second row is
also exact. In particular, if @ € (L/(L})?)Y) with A(a) = 0 then there exists b €

L /(L3)? such that (a,b) € H. We show that making the lift from H'(K, E'[¢])
to H'(K, E[p]) explicit comes down to solving a norm equation.

Theorem 2.8. Let E/K be an elliptic curve with p-torsion of type p,-nonsplit. Let
a € (LY/(LY)P)D. If A(a) = 0 then there exists £ € M satisfying Ny, (§) = a,
and we may lift a to (a,b) € H where

b= N, (ﬁ a@'(&)f) .

i=1
Proof. Let x, + a under the isomorphism (18), and let F' be the fixed field of the
kernel of y,. In other words, F//K is the degree p subextension of Li(¥/a)/K.

Ly (¥/a)

If A(a) = 0 then Lemma 2.5 tells us that 5 is a norm for F/K, and hence for
Ly(¢/a)/Ly. Tt follows by Lemma 2.6 that a is a norm for M /L.

Now let £ and b be as in the statement of the theorem. We show that (a,b) € H
by checking the conditions in Theorem 2.3. First we compute

p—1
Nioie(b) = Najxc (H o"<5>2‘> = Ny (a) @072,
i=1

Since p is odd this gives Ny, x(b) € (K*)P. Since 70 = 097 we have

p—2 p—1 p—2 p—1
o) =[]~ I]e" @ =]]7][©" mod <y
r=0 =0 r=0 =0
Then since Ny, (§) = a and 7(a) = a? mod (Ly)P we have
p—2 p—2
b/o(b) = HTTNM/Ll(f)g_T = H(Tra)g_T =a' mod (M)
r=0 r=0

Therefore o(b)/(ab) € (M*)P as required. O
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2.3. Z/pZ-nonsplit case. We consider F /K an elliptic curve whose mod p Galois
representation has image

G = { ((1) *> } C GLo(Z/pZ)

generated by o = (§ 1) and 7 = (§5) where g is a primitive root mod p. Thus we
have a basis S, T of E[p] such that

S)y=S 7(8) =S

T)=S+T 7(T) = gT

Note that 709 = o7. Let L1 = K((,) and M = K(T) = K(E[p]). Let Ly be the
subfield of M fixed by 7. The diagram of fields is the same as in Section 2.2.
Theorem 2.9. We have H' (K, E[p]) = H, where H is the group of pairs (a,b) €
KXJ(K*)P x M*/(M*)P satisfying b9/7(b) € (M*)?, Ny, (b) € (L7)P and
a(b)/(ab) € (M*)P.

2

Proof. Again we use the description of H'(K, E[p]) in Theorem 2.1 as the inter-
section of ker(g — o,) and ker(@).

There are p orbits for the action of Gx on Elp| \ {O}, with representatives .S
fori e {1,...,p— 1}, and T. Therefore H'(K, E[p]) C A /(A™)P where

A=K x--x K xM.
p—1

Moreover (aq,as,...,a,-1,b) € A /(A™)P belongs to ker(g — o,) if and only if
a; = a; mod (K*)P for alli € {1,...,p— 1}, and 9/7(b) € (M*)P. Accordingly
we represent elements of H'(K, E[p]) as pairs (a,b) where a = a;.

We consider the action of G on the set A of affine lines in F[p| missing the
origin. There is one orbit of size p — 1 represented by the line

C={T,S+T,25+T,...,(p—1)S+T},
and p — 1 orbits of size p, represented by the lines my, ..., m,_1 where
m; = {iS,iS +T,iS +2T,...,iS+ (p— 1)T}.

Thus the étale algebra B associated to A is given by

B=LiXxLyx---X1Ly.

p—1
A pair (a,b) corresponding to o € A* represents an element in ker(u) if and
only if
Nayr,(0) = [[a(P)=1 mod (L})

Pel
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and
(19) @' Nyyyr, (o' (b)) = [] e(P)=1 mod (L3)?
pPem;
foralli e {1,2,...,p—1}.
The condition (19) may be simplified as follows. First Lemma 2.2 tells us that

for an element in the image of H'(K, E[p]) we have
ob)  af(S+T)
ab  a(S)a(T)
Conversely, if we assume (20) then ¢'(b) = a'b mod (M*)P. If in addition
b /7(b) € (M*)? then by taking norms from M down to L it follows that

CLiNM/LQ(O'i(b)) = Numyr,(b) =1 mod (L3)P. O

Let ¢ : E — E' be the isogeny with kernel generated by S. The first row
of the following diagram is the long exact sequence (3). Since E[¢| = Z/pZ
over K, we have E[¢] = p, over Ly and hence H'(Ly, E[¢]) = Ly /(Ly)?P and
H?*(Ly,E[¢]) = Br(Ly)[p]. The first and last vertical maps are then obtained

-~

(20) e (MX).

by the inflation-restriction exact sequence. Since E'[¢] = p, over K we have

-~

HY (K, FE'[¢]) 2 K*/(K*)P. The remaining vertical map is given by Theorem 2.9.

2. H(K, E[¢))

|-

Br(Ly)[p]™

H\(K, El¢]) —“— H\(K, E[p|) -~ H'(K, E'[3))
(21) lg - l
(L3 /(L) — L L (K%

Again we define the maps f, g and A so that this diagram commutes. We now
describe these maps explicitly.

Lemma 2.10. We have f : b~ (1,b) and g : (a,b) — a.
Proof. The proof is almost identical to that of Lemma 2.4. U

IR

A

Let 8 be a Kummer generator for M/L;. We write x, +— a for the Kummer
isomorphism H'(Ly, p,) = L /(Ly)P. Then exactly as in Section 2.2, the map A

~

is given by A : a > (Xq, 3). Again we show that making the lift from H'(K, E'[¢])
to H'(K, E[p]) explicit comes down to solving a norm equation.

Theorem 2.11. Let E/K be an elliptic curve with p-torsion of type 7/ pZ-nonsplit.
Let a € K*/(K*)P. If A(a) = 0 then there exists & € Lo satisfying Ni,/x(§) = a,
and we may lift a to (a,b) € H where

p—1
b=]o'€"
=1
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Proof. If A(a) = 0 then Lemma 2.5 tell us that § is a norm for L, (¥/a)/L;. Tt
follows by Lemma 2.6 that a is a norm for M /L, and hence for Ly/K.

We show that (a,b) € H by checking the conditions in Theorem 2.9. Since
709 = o1 and 7(§) = £ we have

= Hagfli(g)_i = Hoi(g)—gi =07 mod (M*)P.

Since Gal(M/L;) = (o) and p is odd, we have Ny, (b) = a?®~D/2 € (K*)P, and
o(b)/b= Npyr, (&) =a mod (M*)P. O

Remark 2.12. It can be shown that 5 € (L /(LY)?)?. In particular, if p = 3
then 8 € K*/(K*)? and L, = K (/) is a pure cubic extension of K. Norm
equations for extensions of this form are the subject of the next section.

3. SOLVING NORM EQUATIONS

In this section, we present a new algorithm for solving norm equations in pure
cubic extensions of the rationals. It is based on the Legendre-type method for
solving conics in [CRO3].

3.1. Diagonal cubic surfaces. Let K be a number field with ring of integers
Ok. Let L=K (\3/5) for some b € K not a cube. We may represent any element

§:A—|—B\3/B—|—C\3/52 in L in the form

o+ VDb
(22) §=——r~.
v+ 6v/b
Indeed this is clear if B = C' = 0, and otherwise we put
a=AB—C? f=DB?—-AC
Taking norms in (22) we see that solving the norm equation Ny x(§) = a is

equivalent to find a K-rational point on the diagonal cubic surface
Vap = {x‘;’ + azxs + b$§ + abxd = 0} C P3.

Theorem 3.1. Let a,b € K. Then the following are equivalent
(i) @ is a norm for K(v/b)/K.
(ii) b is a norm for K(/a)/K.

(iii) a?b is a norm for K(3/a +b)/K.

(iv) a2b is a norm for K(¥/a —b)/K.

(v) Vas(K) # 0.
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Proof. We may assume that a and b are not cubes, otherwise conditions (i), (ii) and
(v) are trivially satisfied. We have already shown that (i) and (v) are equivalent.
The symmetry in (v) also shows that (ii) and (v) are equivalent.

We now prove that (ii) and (iii) are equivalent. Suppose that b is a norm
for K(¥/a)/K. Then b/a is a norm for K(y/a)/K, and so by the equivalence
of (i) and (i), a is a norm for K({/b/a)/K. But then a +b = a(l + b/a) is a
norm for K ({/b/a)/K, and again by the equivalence of (i) and (ii), b/a is a norm
for K(v/a+0b)/K. The converse is proved by reversing these steps. The same
argument, with b replaced by —b, shows that (ii) and (iv) are equivalent. O

As observed by Selmer [Sel53], it follows from the equivalence of (i) and (v) in
Theorem 3.1, and the Hasse norm theorem, that the surfaces V,; satisfy the Hasse
principle. We now turn this into an algorithm for solving norm equations, at least
in the case K = Q. First we record an easy lemma.

Lemma 3.2. Let a,b € Ok. If the surface V,; is locally soluble at a prime p and
vy(b) # 0 (mod 3) then a is a cube mod p.

Proof. Working in the completion K, we may assume that v,(b) = 1 or 2. Let
(z1:...:x4) be alocal point with minv,(z;) = 0. Then 23 + az3 = 0 (mod p).
If @ is not a cube mod p then z; = 3 = 0 (mod p). But then zj + az? = 0
(mod p), and we likewise deduce that x3 = x4 = 0 (mod p). This contradicts that
min vy(x;) = 0. Therefore a must be a cube mod p. O

We suppose as above that a,b € Ok, and that V,; is everywhere locally soluble.
If K has class number 1 then we may assume that (b) is cube-free, and indeed write
(b) = by b3 where by and b, are coprime and square-free. Then by Lemma 3.2 and
the Chinese Remainder Theorem there exists ¢ € Of such that a = ¢® (mod by).
Writing by = (by) for some b; € Ok it follows that the binary cubic form

(23) F(X)Y) = bl((cX +bY)? — aX3)

1

has coefficients in Ok. This form has discriminant A(F) = —27a2b3.
We seek to find u,v € Ok, not both zero, such that F(u,v) is small. In the
next section we explain how to do this in the case K = Q.

3.2. Reduction of binary cubic forms. Let G in R[X, Y] be a binary quadratic
form, and A(G) its discriminant:
G(X,Y) =aX?+bXY +cY?,
A(G) = b* — 4ac.
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The group SLy(Z) acts on R[X, Y] via
a B
G(X,Y)- ( 6) = G(aX + Y,y X +Y)
g

and the discriminant is invariant under this action.

Definition 3.3. A positive definite binary quadratic form G(X,Y) = aX? +
bXY + cY? is reduced if |b] < a < c¢. Equivalently, G is reduced if the root of
G(X,1) =0 in the upper half plane H lies in the fundamental region

f:{z

Consider now the general binary cubic form and its discriminant
(24) f(X)Y) =aX?+bX?Y +cXY?+dY?
A(f) = b*c* — dac® — 4b*d — 27a*d* + 18abcd.

1 1
z€H, |z| >1, —§§Re(z)§§}.

If A(f) <0, then f has one real root and a pair of complex conjugate roots 3, 5.
We associate to f the binary quadratic form

(25) Q(f) = (X = BY)(X - BY).
There are other forms we could choose, some of which are discussed in [Cre99],

however this is the simplest option, and is sufficient for our purposes.

Definition 3.4. A binary cubic form (24) is Minkowski-reduced if the positive
definite form Q(f) in (25) is reduced in the sense of Definition 3.3.

We use the following result from the geometry of numbers [Cas97, 11.5.4].

Theorem 3.5 (Davenport [Dav45]). If f in Z[X,Y] is a binary cubic form with
discriminant A = A(f) < 0, then there are integers (u,v) # (0,0) such that
1/4

‘f(uav)l < %

If, further, f is Minkowski-reduced in the sense of Definition 3.4, then
1/4

win{1f(1,0) 10, DI, LF 1D 1,2} < | 5

with equality only when f(X,+Y) = A(X3 + X?Y 4+ 2XY? +Y?3).

Y

The second part of the theorem, together with the well known algorithm for
reducing positive definite binary quadratic forms, gives an algorithm for finding
integers u, v satisfying the conditions in the first part of the theorem.
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3.3. An algorithm over the rationals. We now take K = Q. Let a and b be
positive cube-free integers. We write b = b,b2 where b; and b, are positive, coprime
and square-free. Applying the results of Section 3.2 to the binary cubic (23), we
can find u,v € Z such that

27\ /4
(26) 0< F(u,v) < <2—3> (aby)'/2.
We observe that
(27) N@( Ya)/Q (bg((Cu + bﬂ)) - %u)) = blbgF(U, ’U) = beF(U, U).

If we can find n € Q(v/a) such that Ny ym),0(n) = b2F(u,v) then, by the mul-
tiplicativity of the norm, we can find { € Q(y/a) such that Ng g (&) = b.
Ideally, we want by F'(u,v) < b, so that our norm equation is replaced by a smaller
one. Unfortunately, the bound (26) isn’t quite strong enough to prove this. Our
solution to this problem is to use condition (iv) in Theorem 3.1.

Algorithm 3.6. (Legendre-type algorithm for solving cubic norm equations)
Input: A pair of positive integers (a,b) such that b is a norm for Q(/a)/Q.
Output: A list of pairs (a,b), with b a norm for Q(y/a)/Q, such that a solution
to each norm equation allows us to read off a solution to the previous one.
(i) Replace a and b by their cube-free parts. If a > b then swap a and b.
(ii) If a =0 or 1 then stop.
(iii) Write b = b;b3 where b; and by are positive, coprime and square-free. Solve
for ¢ € Z such that a = ¢3 (mod by).
(iv) Define F' € Z[X,Y] as in (23). Use reduction theory to find u,v € Z
satisfying (26).
(v) If by F'(u,v) < 2b then replace (a,b) by (a, bsF(u,v)) and go to Step (i).
(vi) Otherwise, replace (a,b) by (b — a,a?b) and go to Step (i).
When the algorithm terminates, it is clear by (27) and the proof of Theorem 3.1
that we may solve the original norm equation.

Theorem 3.7. If a,b < B then Algorithm 3.6 takes O((logB)?) iterations.

Proof. In Step (v) we have ayey = a and byey < %b. So if we never reach Step (vi)
then the algorithm takes O(log B) iterations. If we reach Step (vi) then

3 27\ /!
< i 1/2
4b < byF(u,v) < (23) (ab)

and so b < 1.93a. In this case anew = b — a < 0.93a, and so the total number of
applications of Step (vi) is O(log B). Moreover by, = a?b < 2a®> < 2B? and so
Step (v) is applied O(log B) times between each application of Step (vi). d
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Remark 3.8. The bottleneck in Algorithm 3.6 comes in Steps (i) and (iii), as
these are the steps that involve factoring. We expect it would be possible to
modify the algorithm, along the lines of [CR03, Section 2.5], so that factoring is
only required on the first iteration. However we have not worked out the details.

We give two examples, the first illustrating the need for Step (vi), and the second
in preparation for Example 4.3. The actual solutions to the norm equations are
rather large, so we do not record them here.

Example 3.9. Let a = 5316 and b = 35685. The steps taken by Algorithm 3.6
are recorded in the rows of the following table. On the second iteration we have
boF(u,v) = 5382 > b and so we reach Step (vi).

a b by b c U )
5316 35685 3965 3 2521 —11 7
5316 5364 149 6 5 -2 1

48 151585867584 [take cube-free parts]

6 87723303 447 443 123 —-11 3
6 6202 6202 1 2596 —43 18
6 77 7 1 41 2 -1
1 6

Example 3.10. Let a = 17 and b = 2850760453176384635894983495759. On the
first iteration we have ¢ = 2512758208506770505416151958382 and

(u,v) = (—1056910260262351,931597016217248).

On this and subsequent iterations we have b; = b and by = 1.

a b c u v

17 3227115996467513 | 3079766255214306 1678826 —1602171
17 69326065 67724958 —3767 3680
17 13311 [take cube-free parts|

17 493 476 -1 1

10 17 3 1 0

1 10

In [vB15, Chapter 4] we investigated analogues of Algorithm 3.6 over other
number fields with small discriminant. Although we couldn’t prove that these
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methods always work, they seem to perform quite well in practice, at least in
reducing the norm equations to ones that can be solved by traditional methods.

4. EXAMPLES

In this section, we give some examples in the case K = Q, showing how the
results of Sections 2 and 3 may be used to compute the Cassels-Tate pairing on
3-isogeny Selmer groups. Further examples are given in [vB15].

We identify %Z /Z with Z/3Z via multiplication by 3, so that the matrices below
have entries 0, 1,2 rather than 0, %, % We also write (aq,as . ..) for the subgroup
generated by aq,as, .. ..

Example 4.1. Let £ and E’ be the 3-isogenous elliptic curves labelled 63531cl
and 63531c2 in Cremona’s tables [Cre97].
E: y?=21*—3(4z +52)*
E': = 2® 4+ 36%(z + 543)*
The Galois action on E[3] is of type ps-nonsplit. Indeed E[3] is generated by
S =(0,52v/=3) and T = (156/(0 —4),1560/(0 — 4))

where § = v/181. We set (3 = (=1 + v/—3)/2. As in Section 2.2 we have fields
Ly = Q(¢3), Ly = Q(f) and M = Q((3,6). A descent by 3-isogeny (see the
introduction for references) computes the Selmer groups

SW(B/Q) = (181) € Q*/(Q*)’

SO(E'/Q) = ((3,39¢ +52) © (L3 /(L))
This gives an upper bound of 2 for the rank of E(Q). We seek to improve this
bound by computing the Cassels-Tate pairing on S (E'/Q).

We start by lifting a; = (3 and as = 39(3 + 52 globally to H'(Q, E[3]) = H,
where H C L /(L})3 x Ly /(Ly)? is given by Theorem 2.3. We used the existing
function NormEquation in Magma (this example is too small for the methods of
Section 3 to be needed) to solve the norm equations Nys/p, (§) = a; for i = 1,2,
and then computed b; with (a;,b;) € H using Theorem 2.8. We used the method
in [Fis08, Section 2] to find a small representative for b; in Ly /(L5 )3. By (15) we
are free to multiply b; by any element in Q* /(Q*)3

by = 76° + 400 + 217 Ni,/o(by) = 2°3°
by = 5960 + 3146 + 3011 Ny, o(bs) = 2°3'%13°

The connecting map 3 : F(Q) — H'(Q, E[3]) in (6) may be computed as
described in [Sil09, Chapter X]. It is given by the tangent lines at S and T, i.e.

. In this way we obtain

(28)
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P — (tang(P), tany(P)) where

tang(z,y) = y — 4V —3x — 52y/ =3,
tany(z,y) =y — 2(0 + 2)z + 156(0 + 4) /(0 — 4).
The local analogue of this map is given by the same formula.
Let (a,b) = (a1, b1) or (ag, by). Since a € S (E'/Q) there exists for each prime
p a local point P, € E(Q,) with tang(P,) = a mod (Q,(¢3)*)®. Then (a,b) and
(tang(P,), tany(P,)) are both local lifts of a. By (15) and Lemma 2.4 it follows
that b/ tanp(P,) = &, mod (Q,(¢s)*)? for some &, € Q) /(Q))?. By Definition 1.2

and Lemma 1.3 we have

(29) (a,a")or = Z mlnd@ (& a)p

where (, ), is the Hilbert norm residue symbol on Q,((3). If p # 3 is a prime
of good reduction for £, and v,(b) =0 mod 3 for all primes p dividing p, then p
makes no contribution to the sum (29).

Returning to our example, F has minimal discriminant —3% - 133 - 181 and the
norms of the b; were recorded in (28). The Cassels-Tate pairing is therefore a
sum of local pairings at the primes 2, 3,13 and 181. Since 3 is odd, there is no
contribution from the infinite place.

Contribution at p = 2. The local point P = (4,2% + 2% + O(28)) € E(Qy) satisfies
tang(P) = a; = ay mod (Q2(¢3)*)?. Embedding L, in Q, via 6 — 1+ 2%+ 0(2%)
we find that tanp(P) = by = by = 1 mod (Q5)3. Therefore the local pairing at
p = 2 is trivial.

Contribution at p = 3. The local points
P =(4,2+3+234+0(3)) € BE(Q3)
Py= (37237 +1+3"+0(3)) € E(Q;)
satisfy tang(P;) = a; mod (Q3((3)*)? for i = 1,2. Embedding L, in Q3 via
6 — 1+ 2.3+ 3%+ 0(3*) we compute
bi/tany(P) =3 mod (Q3(¢3)*)?
by/tany(Py) =6 mod (Q3(¢3)*)?
We recall from Section 1.2 that Q3((3)*/(Qs(¢3)*)? has basis A, 11, 12, 73 where
A=1—(3and n; =1 — A" In terms of this basis we have
3= mod (Q3(¢3)*)? ay =n mod (Qs(¢3)*)?
6= Nnimyn;  mod (Qs(¢3)*)° a; =n;  mod (Qs(G)*)°
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Using (9) to compute the Hilbert norm residue symbol, and not forgetting the
factor [Q3((3) : Q3] = 2 in (29), the local pairing at p = 3 is as given in (30).

Contribution at p = 13. We embed L; = Q({3) in Q13 via (3 — 3+11.13+0O(13?).
The local points
Py = (6,10 +4.13 + 12.13* + O(13%)) € E(Qy3)
Py = (13,413 + 3.13* +- 5.13° + O(13")) € E(Qu3)
satisfy tang(P;) = a; mod (Qg35)? for ¢« = 1,2. Embedding L, = Q(6) in Q3 via
0 — 4+ 13+ 7.13% + O(13?) we compute
by/tanp(P) =1 mod (Q})* a; =2 mod (Q%)?
by/ tany(P;) =2 mod (Q}y)? as = 13> mod (Q}y)?

By Proposition 1.5(iv) we have (2,13)13 = (3. The local pairing at p = 13 is now
given by the second matrix in (30).

Contribution at p = 181. We embed L; = Q((3) in Q51 via (3 — 48 + O(181).
We find that a; = as =1 mod (Qs%;)? and hence the local pairing at p = 181 is
trivial.

Adding together the local pairings at p = 3 and 13 gives the (global) Cassels-
Tate pairing on S (E'/Q) = (a1, ay) C LY /(LY)3.

Local pairing at p = 3 Local pairing at p = 13 Global pairing

a; Qg a; G2 a; G2
(30) a | 0 1 a0 0 a | 0 1
a9 2 1 (05} 0 2 (05} 2 0

Since the pairing is non-degenerate, it follows that E(Q) has rank 0. Moreover

the 3-primary parts of HI(F/Q) and III(E’/Q) are 0 and (Z/37Z)>.

Example 4.2. Let F and E’ be the 3-isogenous elliptic curves labelled 24060f1
and 24060f2 in Cremona’s tables [Cre97].

E: y*=2+ (z+15)
E': y?=1°—3(x+401/9)°
The Galois action on E[3] is of type Z/3Z-nonsplit. Indeed E[3] is generated by
S=(0,15) and T =(=90/(0+2),—15v/=30/(0 +2))
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where 6 = v/802. We set (3 = (—1 + v/—3)/2. As in Section 2.3 we have fields
Ly = Q((3), La = Q(0) and M = Q((3,0). A descent by 3-isogeny computes the
Selmer groups

SNE/Q) = {1} € (L /(L)Y

SO(E'/Q) = (2,3,5) € Q/(@")*
This gives an upper bound of 2 for the rank of E(Q). We seek to improve this
bound by computing the Cassels-Tate pairing on S (E’/Q).

We start by lifting a; = 2, as = 3 and a3 = 5 globally to H'(Q, E[3]) = H,
where H C K*/(K*)3 x M*/(M*)3 is given by Theorem 2.9. We used the
existing function in Magma (again this example is too small for the methods of
Section 3 to be needed) to solve the norm equations Ny, k(&) = a; for i = 1,2, 3,

and then computed b; with (a;,b;) € H using Theorem 2.11. Replacing b; by a
small representative for its coset in M* /(M*)? we obtain

by = 1(5¢; +5)0% + 3(11¢; — 4)0 + 2(41¢5 + 290)
by = 2(36% — 1¢50 — 1(490¢5 + 213)
by = L(7¢; + 34)6% + 1(66¢ + 317)6 + £(308¢; + 2991)
It may be checked that these elements satisfy the conditions in Theorem 2.9.
The minimal discriminant of F is —2*-3%.5%.401. We find that v,(b;) = 0

(mod 3) for all primes p of M not dividing 30. The Cassels-Tate pairing is therefore
a sum of local pairings at the primes 2, 3,5 and 401.

Contribution at p = 2. We have tang(—S5) = —30 =2 mod (Q;)3. We compute

by/tanp(—S) = ¢ mod (Qy((3,0)*)? a1 =2 mod (Q5)*
by =1 mod (Qy((s,0)%)? a; =1 mod (Q5)?
by=1 mod (Qu((s,0)%)3 as=1 mod (Q})*

The local pairing at 2 is therefore given by the first matrix in (31).

Contribution at p = 3. Let P = (—5/2,2.3 4+ 2.3 + 3> + O(3%)) € F(Qs3). Then
tang(P) =2 =5"" mod (Q5)? and tang(—S5) =3 mod (Q5)3. We embed L, in
Q3 via 0 — 1+ 2.3+ 2.3% + O(3%). We recall that Q3(¢3)*/(Q3(¢3)*)? has basis
A, M1, M2, m3 where A = 1 — (3 and 7; = 1 — \*. We compute
bi/tanr(P) = nins mod (Q3(¢:)")*  ar =myn; mod (Q3(¢)*)°
bo/ tany(—S) =n7 mod (Qs(¢3)*)° a = N mod (Q3(¢)*)°
b3/ tang(—P) = mn;  mod (Qs(Cs)*)° ag = nans mod (Q3(¢3)")’?
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Using (9) to compute the Hilbert norm residue symbol, the local pairing at 3 is
given by the second matrix in (31).

Contribution at p = 5. We have tang(—S) = —30 =5 mod (Q)*. We embed L,
in Q5 via 6 — 3 + 3.5 + 5* + O(5°) and compute

by = ¢ mod (Q5(G))° a; =1 mod (QF)°
by =1 mod (Q5((3)*)? az =1 mod (QF)°
bs/tanp(—S) = ¢ mod (Q5((s))? a3 =5 mod (QF)?

The local pairing at 5 is therefore given by the third matrix in (31).

Contribution at p = 401. Since 401 = 2 (mod 3) we have 2,3,5 € (Q}y;)?3, and so
the local pairing at p = 401 is trivial.

Adding together the local pairings at p = 2, 3 and 5 gives the (global) Cassels-
Tate pairing on S®(E'/Q) = (2,3,5) C Q*/(Q*)>.

p=2 p=3 p=>5 Global pairing
2 35 2 35 2 35 2 35
1 00 212 11 210 01 210 1 2
(31)
310 00 312 01 310 00 312 01
5/0 0 0 501 2 2 5/0 0 1 5(1 2 0

This again shows that rank £(Q) = 0, and the 3-primary parts of III(£/Q) and
HI(E'/Q) are 0 and (Z/3Z)>.

As described in the introduction, Eroshkin found five examples of elliptic curves
E/Q with torsion subgroup Z/37Z and rank at least 13. We now consider the first
of these examples. The other examples are similar, and are treated in detail in
[vB15, Section 6.1].

Example 4.3. Let E/Q be the elliptic curve y? + Ajzy + Azy = x> where A; =
10154960719 and A3 = —66798078951809458114391930400. The primes of bad
reduction for F are those appearing in the following prime factorisations.
Ag=-2°.3%.52.72.11-13-17-19-23-29-31-37-41-43-47-53-59 - 61 - 113,
AZ{’ — 27A3 =197 - 317 - 3313949 - 2831657657 - 4864617187.

The Galois action on E[3] is of type Z/3Z-nonsplit. Indeed E[3] is generated by
S = (0, 0) and T = (3A3/(9—A1), Ag((ge—Al)/(g—Al)) where 0 = \3/ Ai’ - 27A3
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Let ¢ : E — E’ be the 3-isogeny with kernel generated by S. A descent by 3-
isogeny [Fis03, Proposition 1.2] shows that

SO(E Q) = { v e @ /(@) “P@lz(z(mod@ for all p Ay

e (Q)? for all p | (A3 — 27Aj3)

Noting that only one of the prime factors of A? — 27Aj3 is congruent to 1 mod 3,
we find that S®(E’/Q) is the 18-dimensional Fs-vector space with basis

2, 5, 11, 17, 31, 47, 53, 3.7, 3-13, 3-19, 3-23,

(32) 2
3-29 3-37, 3-41, 3-43, 3-59, 3°-61, 3-113.

By the analogue (for n = 3) of [Fis01, Theorem 1], or by Cassels’ formula [Cas65],
it follows that S (E/Q) is trivial. This gives an upper bound of 17 for the
rank of F(Q). We improve this bound by computing the Cassels-Tate pairing on
the subspace of S(®)(E’/Q) generated by the first 5 basis elements in (32), say
ai,...,as.

As in Section 2.3 we have fields Ly = Q((3), Lo = Q(0) and M = Q((3,60). In
Example 3.10 we solved one of the norm equations Np,/g(§) = a;. The other cases
are similar. We then used Theorem 2.11 to compute b; € M with (a;,b;) € H,
where H is as defined in Theorem 2.9. So that they could sensibly be recorded
in the paper, we went to some effort to simplify the b;, both by multiplying by
elements of (L' /(L;)*)") and by finding small representatives modulo cubes.

by = 805066560090% — 11760488997160520848416

— 14935178208744640295856847246416(3 — 15036024242599209733354645439703,
by = 147263630490% — 798748747659660265296

+ 8657187467761497385350294134040(3 — 8434480171840925245748610923511,
by = 2188233726840% — 46309534878536819327166

+ 34676125489353056066296086569091(3 + 60807466313987014328526 766460838,
by = 2863723866660° — 14485119486080436075246

— 57528276376283017594756117712901(3 — 38980928584242432627609103951923,
bs = 33261129088262 + 11681599254372077645166

— 67751649380200776098612752578639¢3 + 71449768157279254278949836738165

We find that v,(b;) = 0 (mod 3) for all primes p of M not dividing a;. Therefore
only the bad primes for E contribute to the Cassels-Tate pairing. The local con-
ditions used to compute S®)(E’/Q) show that its elements are locally trivial at
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the primes dividing A% — 27A3. So we only need to compute the local pairings at
the primes dividing As.

Let Py,..., Pi3 be the known independent points of infinite order in F(Q), as
listed on Dujella’s website [Duj17].

For the primes p with p =1 mod 3 we find that tang(P;) generates Z /(Z)?
where j = 6,4,1,1,2,2,7 for p = 7,13,19,31,37,43,61. Moreover tany(P;) is a
unit mod cubes at the primes dividing p. So we only need to consider the primes
that additionally divide one of the a;. The only such prime is 31. Embedding M
in Q3 via (3 — 5+ 14.31 + O(31?) and 0 — 1 — 2.312 + O(31%), we compute

by =5 mod (Q3)? a; =1 mod (Q3)°

b tanr(—P) =1 mod (@)° w=5 mod (@3)°

bs/tanp(—P) =1 mod (Q5)* az =5 mod (Q3)°
by/tanp(P) =1 mod (Q})* a; =5 mod (QF)°
bs/ tany(Ps) = 31> mod (Q3)* a5 =31 mod (Q3)°

This gives the local pairing at p = 31 as recorded below.

For the primes p with p = 2 mod 3 the group Z;/(Z;)?’ is trivial. So we only
need to consider those primes p that additionally divide one of aq,...,a5. We
find that tang(P;) = p mod (Q))* where j = 5,2,1,5 for p = 2,5,11,17. The
unique embedding of Ly in Q, determines an embedding of M in Q,(¢3). Then

bi/ tang(P;)*(@) takes the following values mod (Q,((3)*)®.

p=2 p=>5 p=11 p=17

i=1 1 G (G+3)?
i=2] 1 1 1 1
i=3] G 1 I (G+3)?
i=4| 1 2 1

i=5| ¢ 3 Gs G3+3

This gives the local pairings at p = 2,5,11,17 as recorded below.

Finally, when p = 3, we find that tang(Ps) = 2 mod (QJ )3, whereas the ele-
ments by, ...,bs and tangy(P) all belong to the subgroup of Qsz((3)*/(Qs(¢3)*)3
generated by 73 = 1 — (1 — (3)®. The local pairing at p = 3 is therefore trivial.

Adding together the local pairings gives the (global) Cassels-Tate pairing on the
5-dimensional subspace (2,5,11,17,31) of S@)(E’/Q) C Q*/(Q*)3. The fact we
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obtain an alternating matrix provides some check on our calculations.

Local pairing at p = 2 Local pairing at p =5 Local pairing at p = 11

2 5 11 17 31 2 5 11 17 31 2 5 11 17 31
2100 0 0 O 2100 0 0 O 200 1 0 O
510 0 0 0 O 510 0 0 0 O 5100 0 0 O
11(2 0 0 0 O 1110 0 0 0 O 1110 0 0 0 O
1710 0 0 O 1710 0 0 0 O 170 0 1 0 O
3110 0 0 O 3110 2 0 0 O 310 0 2 0 O

Local pairing at p = 17 Local pairing at p = 31 Global pairing

2 5 11 17 31 2 5 11 17 31 2 5 11 17 31
200 0 2 0 2100 0 0 2 200 1 2 2
5100 0 0 O 510 0 0 0 O 5100 0 0 O
1110 0 0 2 0 1110 0 0 0 O 11/2 0 0 2 0
1710 0 0 0 O 1710 0 0 0 O 171 0 1 0 O

310 0 0 1 O 310 1.1 2 0 3110 0 0 O

Since the Cassels-Tate pairing on this 5-dimensional subspace of S (‘Z)(E’ /Q) has
rank 4, it follows that rank F(Q) = 13. Moreover the 3-primary parts of III(£/Q)
and III(E'/Q) are 0 and (Z/37Z)*. The 18 x 18 matrix (still of rank 4) giving the
Cassels-Tate pairing on all of S (‘5)(E’ /Q) is recorded in [vB15, Example 6.1.2].

[BCPY7]
[Cas59]
[Cas62]
[Cas65]
[Cas97]
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