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Abstract. We use an invariant-theoretic method to compute certain twists of

the modular curves X(n) for n = 7, 11. Searching for rational points on these

twists enables us to find non-trivial pairs of n-congruent elliptic curves over Q,

i.e. pairs of non-isogenous elliptic curves over Q whose n-torsion subgroups are

isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent

elliptic curves over Q(T ), and hence give an explicit infinite family of non-trivial

pairs of 11-congruent elliptic curves over Q.

1. Introduction

Elliptic curves E1 and E2 over a field K are n-congruent if their n-torsion
subgroups E1[n] and E2[n] are isomorphic as Galois modules. They are directly
n-congruent if the isomorphism φ : E1[n] ∼= E2[n] respects the Weil pairing en,
and reverse n-congruent if

en(φP, φQ) = en(P,Q)−1

for all P,Q ∈ E1[n]. The elliptic curves directly n-congruent to a given elliptic
curve E are parametrised by the modular curve YE(n) = XE(n) \ {cusps}.

For n ≤ 5 we have XE(n) ∼= P1 and the corresponding families of elliptic
curves were computed by Rubin and Silverberg [27], [29], [30]. It was shown
independently by Papadopoulos [25] and Rubin and Silverberg [28] that XE(6)
is the elliptic curve y2 = x3 + ∆E, where ∆E is the discriminant of E. However
for n ≥ 7 the genus of XE(n) is greater than 1. This prompted Mazur [23] to
ask whether there are any pairs of non-isogenous elliptic curves over Q that are
directly n-congruent for any n ≥ 7. This was answered by Kraus and Oesterlé
[22] who gave the example of the directly 7-congruent elliptic curves 152a1 and
7448e1. The labels here are those in Cremona’s tables [4]. Nowadays it is easy to
find further examples by searching in Cremona’s tables, for example

n = 11 190b1 and 2470a1,

n = 13 52a2 and 988b1,

n = 17 3675b1 and 47775b1.
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In each case the n-congruence is proved by computing sufficiently many traces of
Frobenius. See for example [22, Proposition 4].

Motivated by Mazur’s question, Kani and Schanz [18] studied the geometry of
the surfaces that parametrise pairs of n-congruent elliptic curves. This prompted
them to conjecture that for any n ≤ 12 there are infinitely many pairs of n-
congruent non-isogenous elliptic curves over Q. It is understood that we are
looking for examples with distinct pairs of j-invariants, since otherwise from any
single example we could construct infinitely many examples by taking quadratic
twists. The conjecture was proved in the case n = 7 by Halberstadt and Kraus
[15], who subsequently [16] gave an explicit formula for XE(7) and used it to
show that there are infinitely many 6-tuples of directly 7-congruent non-isogenous
elliptic curves over Q. In this paper we find a formula for XE(11) and use it to
construct a non-trivial pair of 11-congruent elliptic curves over Q(T ). This proves
the conjecture in the case n = 11. In contrast the proof by Kani and Rizzo [17]
does not construct any explicit examples.

We briefly mention three further motivations for studying n-congruence of el-
liptic curves.

• The modular approach to solving Diophantine equations sometimes re-
quires us to find all elliptic curves n-congruent to a given elliptic curve.
For example the paper of Poonen, Schaefer and Stoll [26] makes essential
use of the formula for XE(7) due to Halberstadt and Kraus.
• There is a correspondence between pairs of reverse n-congruent elliptic

curves and curves of genus 2 that admit a degree n morphism to an elliptic
curve. See for example [14].
• It was observed by Cremona and Mazur [6] that if elliptic curves E and F

are n-congruent then the Mordell-Weil group of F can sometimes be used
to explain elements of the Tate-Shafarevich group of E.

As each of these motivations makes clear, we should also be interested in congru-
ences that do not respect the Weil pairing. The elliptic curves reverse n-congruent
to E are parametrised by the modular curve Y −E (n) = X−E (n) \ {cusps}. The fam-
ilies of elliptic curves parametrised by Y −E (3) and Y −E (4) were computed in [11],
and the analogous problem for n = 5 was solved in [12]. An equation for X−E (7)
was given in [26, Section 7.2]. In this paper we find equations for X−E (11).

In Section 1.1 we recall the definitions of X(n) and its twists. We then record
the formulae for XE(n) and X−E (n) for n = 7, 11 in Section 1.2. In the case n = 7
these are the formulae given in [16], [26], but our method for finding them is new.
In the case n = 11 the formulae themselves are new.

In Section 2 we derive Klein’s equations for X(n) for n ≥ 5 an odd integer. The
original approach of Klein was via theta functions, but our treatment is purely
algebraic. We also give explicit formulae for the action of SL2(Z/nZ) on X(n).
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Then in Section 3 we use invariant theory for SL2(Z/nZ) to compute the twists
XE(n) and X−E (n) for n = 7, 11.

In Section 4 we work out formulae for the families of elliptic curves parametrised
by YE(n) and Y −E (n) for n = 7, 11. Computing the j-invariant maps j : XE(n)→
P1 and j : X−E (n)→ P1 is reasonably straightforward. Finding the right quadratic
twists takes considerably more work, although in specific numerical examples one
can always fall back on the method in [15], [22]. In the case of YE(7) a formula is
given in [16], but this formula does not quite cover all cases. We give a new proof
leading to formulae that work in all cases. We then generalise to the families of
elliptic curves parametrised by Y −E (7), YE(11) and Y −E (11).

Our formulae reduce the problem of finding elliptic curves n-congruent to E to
that of finding rational points on XE(n) and X−E (n). However before searching
for rational points it helps to simplify the equations by making a change of co-
ordinates. We have written programs in Magma [3] to do this in the case K =
Q, using ideas of minimisation and reduction similar to those in [5]. We will
report on this in future work. In fact we have written a program in Magma that
given an elliptic curve E/Q and n ∈ {7, 11} searches for rational points (up to a
specified height bound) on minimised and reduced models for XE(n) and X−E (n),
and returns the corresponding list of elliptic curves n-congruent to E. In Section 5
we give some examples over Q to illustrate how this works, and also some examples
over Q(T ), which by specialisation of T give infinite families of examples over Q.
The examples over Q may be checked, independent of the methods we use to find
them, by checking that the traces of Frobenius are congruent mod n for sufficiently
many primes.

All computer calculations in support of this work were performed using Magma
[3]. A Magma file checking all our formulae, together with a table of 11-congruent
elliptic curves over Q, is available from the website [13]. We have used the same
methods to study families of 9-congruent elliptic curves, and will report on this in
future work. Our restriction to odd n is explained by our use of Klein’s equations
(see Section 2.1).

1.1. Some modular curves. We work over a field K of characteristic 0 and
write K for the algebraic closure. Let n ≥ 3 be an integer and M a Galois
module, isomorphic to (Z/nZ)2 as an abelian group, and equipped with a non-
degenerate alternating Galois equivariant pairing M ×M → µn. We temporarily
write YM for the algebraic curve defined over K whose L-rational points (L a field
extension of K) parametrise the isomorphism classes of pairs (E, φ), where E is
an elliptic curve defined over L and φ : E[n] ∼= M is a symplectic isomorphism
(i.e. one that matches up the given pairing on M with the Weil pairing on E[n])
commuting with the action of Gal(L/L). Two such pairs (E1, φ1) and (E2, φ2) are
isomorphic if there is an L-isomorphism α : E1 → E2 such that φ1 = φ2 ◦ (α|E1[n]).
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Let XM be the smooth projective model of YM . We write X(n) and Y (n) for
XM and YM in the case M = µn × Z/nZ with pairing

〈(ζ, a), (ξ, b)〉 = ζbξ−a.

Given an elliptic curve E/K, let XE(n) be XM in the case M is E[n] equipped

with the Weil pairing. More generally let X
(r)
E (n) be XM in the case M is E[n]

equipped with the rth power of the Weil pairing for some r ∈ (Z/nZ)×. Since
multiplication by m ∈ (Z/nZ)× is an automorphism of E[n] that raises the Weil

pairing to the power m2, the curve X
(r)
E (n) only depends on the class of r mod

squares. Since we are interested in the cases n = 7, 11 it will suffice to take r = ±1.

We write X−E (n) for X
(−1)
E (n).

Let ζn ∈ K be a primitive nth root of unity. Over K(ζn) we may identify
the Galois modules µn × Z/nZ and (Z/nZ)2, and hence the group of symplectic
automorphisms of µn × Z/nZ with SL2(Z/nZ). There is then a natural action of
PSL2(Z/nZ) := SL2(Z/nZ)/{±I2} on X(n) with quotient map j : X(n) → P1.
From the analytic theory we know that the j-map is ramified above 0, 1728 and
∞ with ramification indexes 3, 2 and n. Hence by the Riemann-Hurwitz formula
the genus of X(n) is

g(n) =
n− 6

12n
# PSL2(Z/nZ) + 1

where for n ≥ 3 we have # PSL2(Z/nZ) = (n3/2)
∏

p|n(1− 1/p2). For some small
values of n the genus is as follows.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g(n) 0 0 0 0 1 3 5 10 13 26 25 50 49 73 81 133

1.2. Statement of results. A formula for XE(7) was obtained by Halberstadt
and Kraus [16]. Their method relies on studying the points on the Klein quartic
X(7) = {x3y + y3z + z3x = 0} ⊂ P2 corresponding to an elliptic curve E and the
elliptic curves Ea, Eb, Ec that are 2-isogenous to E. By combining this result with
some classical invariant theory, Poonen, Schaefer and Stoll [26, Section 7.2] then
gave a formula for X−E (7).

Theorem 1.1 ((Halberstadt, Kraus, Poonen, Schaefer, Stoll)). Let E be an elliptic

curve with Weierstrass equation y2 = x3 + ax+ b. Then XE(7) ⊂ P2 has equation

F = 0 where

F = ax4+7bx3z+3x2y2−3a2x2z2−6bxyz2−5abxz3+2y3z+3ay2z2+2a2yz3−4b2z4,

and X−E (7) ⊂ P2 has equation G = 0 where

G = −a2x4 + 2abx3y − 12bx3z − (6a3 + 36b2)x2y2 + 6ax2z2 + 2a2bxy3 − 12abxy2z

+ 18bxyz2 + (3a4 + 19ab2)y4 − (8a3 + 42b2)y3z + 6a2y2z2 − 8ayz3 + 3z4.
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We give a new proof of Theorem 1.1 and then extend to the case n = 11.
Although we believe our formulae in the case n = 11 are correct for all elliptic
curves E, our proof does not naturally extend to the cases j(E) = 0, 1728. We
therefore assume for simplicity that j(E) 6= 0, 1728. It was observed by Klein [20]
(see also [2, Example 22.3]) that X(11) may be embedded in P4 as the singular
locus of the Hessian of the cubic threefold

{v2w + w2x+ x2y + y2z + z2v = 0} ⊂ P4.

Theorem 1.2. Let E be an elliptic curve with Weierstrass equation y2 = x3 +

ax+ b. If j(E) 6= 0, 1728 then XE(11) ⊂ P4 is the singular locus of the Hessian of

F = v3 + av2z − 2avx2 + 4avxy − 6bvxz + avy2 + 6bvyz + a2vz2 − w3

+ aw2z − 4awx2 − 12bwxz + a2wz2 − 2bx3 + 3bx2y + 2a2x2z + 6bxy2

+ 4abxz2 + by3 − a2y2z + abyz2 + 2b2z3,

and X−E (11) ⊂ P4 is the singular locus of the Hessian of

G = v2z + 2vwy + 4vxy + 2w2x− aw2z + 2wx2 − 2awy2 − 6bwyz

+ 6x3 − 6ax2z + 2a2xz2 + by3 − 2a2y2z − 5abyz2 − b2z3.

2. Equations for X(n)

We derive equations of Klein [19], [20], [21] for the modular curves X(n). Our
treatment follows the survey in [8, Chapter 4], but see also [2], [33].

2.1. Klein’s equations. Suppose to begin with that ζn ∈ K. Then the modular
curve Y (n) parametrises the triples (E,P,Q) where E is an elliptic curve and
P,Q is a basis for E[n] with en(P,Q) = ζn. If we embed E ⊂ Pn−1 by a complete
linear system |D| of degree n then the translation maps τP and τQ extend to
automorphisms of Pn−1. In fact we have the following lemma, as proved in [9,
Section 2.1].

Lemma 2.1. (i) We may change co-ordinates on Pn−1 (over K) so that τP and

τQ are given by

M1 =



1 0 0 · · · 0

0 ζn 0 · · · 0

0 0 ζ2n · · · 0
...

...
...

...

0 0 0 · · · ζn−1n


and M2 =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


.
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(ii) If n is odd and [−1]∗D ∼ D then there is a unique choice of co-ordinates (over

K) such that τP , τQ and multiplication by −1 are given by M1, M2 and

[−1] =



1 0 · · · 0 0

0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...

0 1 · · · 0 0


.

It is well known that if n ≥ 4 then the image of E ⊂ Pn−1 is defined by
quadrics. In fact the homogeneous ideal is generated by a vector space of quadrics
of dimension n(n− 3)/2. See [10, Section 5.1] for a short proof, or [24] for a more
general result.

We restrict to n ≥ 5 an odd integer. If we embed E ⊂ Pn−1 via the com-
plete linear system |n.0E|, and choose co-ordinates as in Lemma 2.1, then sending
(E,P,Q) to the image of 0E defines an embedding Y (n) ⊂ Pn−1. We check injec-
tivity as follows. If we know the co-ordinates of 0E ∈ Pn−1 then M1 and M2 allow
us to write down n2 points on E. By Bezout’s theorem any quadric not containing
E meets E in at most 2n points. Therefore E is defined by the quadrics containing
these n2 points, and P,Q ∈ E[n] are the translates of 0E under M1 and M2.

We now drop our assumption that ζn ∈ K. The subgroup of PGLn(K) generated
by M1 and M2 is isomorphic to µn × Z/nZ as a Galois module. In view of the
definition of X(n) in Section 1.1, it follows that the embedding Y (n) ⊂ Pn−1
described in the last paragraph is defined over K, and not just over K(ζn).

We write (x0 : x1 : . . . : xn−1) for our co-ordinates on Pn−1 and agree to read all
subscripts mod n. Since n is odd we have

n.0E ∼ 0E + P + 2P + . . .+ (n− 1)P.

The divisor on the right is a hyperplane section and is invariant under translation
by P . It is also the only such divisor with 0E in its support. Therefore 0E belongs
to exactly one of the hyperplanes fixed by M1. But 0E is fixed by [−1], so we have
either

0E = (0 : a1 : a2 : . . . : a2 : a1) (+)

or 0E = (0 : a1 : a2 : . . . : −a2 : −a1) (−)

where a1, a2, . . . are non-zero.
Let W be the vector space of quadrics on Pn−1 and V the subspace of quadrics

vanishing on E. Then dimW = n(n+ 1)/2 and dimV = n(n− 3)/2. The action
of M1 allows us to write these as direct sums V = ⊕Vi and W = ⊕Wi with

Vi ⊂ Wi = 〈x2i , xi−1xi+1, . . .〉.
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The Vi and Wi are the subspaces on which M1 acts with eigenvalue ζ2in . The action
of M2 shows that Vi ∼= Vi+1 and Wi

∼= Wi+1 for all i. Therefore dimVi = (n− 3)/2
and dimWi = (n + 1)/2. The requirement that the quadrics in V0 vanish at
0E = (a0 : a1 : . . . : an−1), and its translates under M2, imposes some linear
conditions on the coefficients of these quadrics. Since V0 ⊂ W0 has codimension 2
it follows that rank(ai−jai+j)

n−1
i,j=0 ≤ 2.

If 0E is of the form (+) then this matrix is symmetric, and the vanishing of the
top left 3× 3 minor contradicts that a1, a2, a3 are non-zero. Therefore 0E must be
of the form (−). This motivates the following definition.

Definition 2.2. For n ≥ 5 an odd integer let Z(n) ⊂ Pn−1 be the subvariety

defined by a0 = 0, an−i = −ai and

(1) rank(ai−jai+j)
n−1
i,j=0 ≤ 2.

We note that (1) is equivalent to the vanishing of the 4 × 4 Pfaffians of this
skew-symmetric matrix. Using minors instead of Pfaffians also works, but gives
equations of larger degree. The above construction shows that Y (n) ⊂ Z(n). It is
natural to ask whether X(n) = Z(n). Vélu [33] proved this in the case n = p is a
prime. However if n is composite then Z(n) has extra components.

When n = 7 we put 0E = (0 : a : b : −c : c : −b : −a) so that Z(7) ⊂ P2 with
co-ordinates (a : b : c). Then Z(7) is defined by

rank


0 −a2 −b2 −c2

a2 0 ac −bc
b2 −ac 0 ab

c2 bc −ab 0

 ≤ 2.

Computing the Pfaffian of this matrix (i.e. the square root of its determinant)
shows that X(7) = Z(7) is the Klein quartic {a3b+ b3c+ c3a = 0} ⊂ P2.

When n = 11 we put 0E = (0 : a : −c : b : e : d : −d : −e : −b : c : −a) so that
Z(11) ⊂ P4 with co-ordinates (a : b : c : d : e). Computing 4 × 4 Pfaffians shows
that X(11) = Z(11) is the singular locus of the Hessian of the cubic threefold

{a2b+ b2c+ c2d+ d2e+ e2a = 0} ⊂ P4.

In other words, X(11) is defined by the vanishing of the partial derivatives of the
determinant of the matrix

(2)


b a 0 0 e

a c b 0 0

0 b d c 0

0 0 c e d

e 0 0 d a

 .
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We refer to [2] for further details. In fact, as we checked using Magma, the
homogeneous ideal of X(11) is generated by the 4× 4 minors of (2).

2.2. The action of SL2(Z/nZ). We suppose ζn ∈ K so that Y (n) parametrises
the triples (E,P,Q) where E is an elliptic curve and P,Q is a basis for E[n] with
en(P,Q) = ζn. The natural action of SL2(Z/nZ) on Y (n) is given by

(3) ( a bc d ) : (E,P,Q) 7→ (E, dP − cQ,−bP + aQ).

This extends to an action on X(n), and so defines a group homomorphism

(4) ρ : SL2(Z/nZ)→ Aut(X(n)).

We now take n ≥ 5 an odd integer. In Section 2.1 we defined an embedding
X(n) ⊂ Pm−1 where m = (n−1)/2. In this setting (4) becomes a projective repre-
sentation ρ : SL2(Z/nZ) → PGLm(K). We show that it lifts to a representation.
See [2, Appendix I] for a discussion of how this relates to work of Weil. We write
∝ for equality in PGLn(K).

Proposition 2.3. The projective representation ρ : SL2(Z/nZ)→ PGLm(K) lifts

to a representation ρ : SL2(Z/nZ)→ GLm(K).

Proof. If we embed X(n) ⊂ Pn−1 as described in Section 2.1 then the action (3)

extends to a projective representation π : SL2(Z/nZ) → PGLn(K) where the

image of γ = ( a bc d ) is uniquely determined by the properties that

(5) π(γ)−1Mu
1M

v
2π(γ) ∝Mdu−bv

1 M−cu+av
2

for all u, v ∈ Z/nZ, and π(γ) commutes with [−1]. We regard π as describing an

action on Pn−1 = P(W ) where W is an n-dimensional vector space. The action of

[−1] gives an eigenspace decomposition W = W+⊕W− with dimW± = (n± 1)/2.

We may then identify ρ with the restriction of π to P(W−) = Pm−1. To prove

the proposition we prove the stronger result that π lifts to a representation π :

SL2(Z/nZ)→ GLn(K).

Let S = ( 0 1
−1 0 ) and T = ( 1 1

0 1 ) be the usual generators of SL2(Z/nZ). In

view of the relations (ST )3 = S4 = T n = I2, the only non-trivial 1-dimensional

characters of SL2(Z/nZ) are the ones, in the case n is a multiple of 3, that factor

via PSL2(Z/3Z) ∼= A4. Using (5) we compute

(6) π(S) ∝ (ζ ijn )n−1i,j=0 π(T ) ∝ Diag(ζ i
2/2
n )n−1i=0

where the exponents are read as elements of Z/nZ.

If M ∈ GLn(K) acts on each of the subspaces W± then we write M± for the

endomorphisms obtained by restricting to W±. Since

3(12 + 22 + . . .+m2) ≡ 0 (mod n)
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it is clear that if M = Diag(ζ
i2/2
n )n−1i=0 then the determinants of M+ and M− are

cube roots of unity. So by (6) there is a lift π(T ) of π(T ), and 1-dimensional

characters χ± of SL2(Z/nZ), such that det(π(T )±) = χ±(T ). Next we lift π(S) to

a matrix π(S) such that

(7) π(S)π(T )−1π(S) = π(T )π(S)π(T ).

Restricting to W± and taking determinants it follows that det(π(S)±) = 1 =

χ±(S). For each γ ∈ SL2(Z/nZ) we now let π(γ) be the unique lift of π(γ) such

that det(π(γ)±) = χ±(γ). These lifts exist since S and T generate SL2(Z/nZ) and

are unique since dimW− and dimW+ are coprime. It is evident that the map π

so defined is a group homomorphism. �

Remark 2.4. (i) A calculation using (7) shows that π(S) = g−1n (ζ ijn )n−1i,j=0 where

the Gauss sum gn =
∑n−1

i=0 ζ
−i2/2
n satisfies g2n = (−1)(n−1)/2n.

(ii) If we take 0E = (0 : a1 : a2 : . . . : −a2 : −a1) then with respect to co-ordinates

(a1 : . . . : am) we may take

ρ(S) = g−1n (ζ ijn − ζ−ijn )mi,j=1 ρ(T ) = Diag(ζ i
2/2
n )mi=1.

In particular ρ(−I2) = (−1)(n+1)/2Im.

(iii) If n is not divisible by 3 then SL2(Z/nZ) has no 1-dimensional characters,

and so the lift we have constructed is unique. If n is divisible by 3 then m is

not divisible by 3 and we can make ρ unique by demanding that det ρ(T ) = 1,

equivalently that ρ takes values in SLm(K).

3. Equations for XE(n) and X−E (n)

We derive our equations for XE(n) and X−E (n) by using invariant theory for the
group SL2(Z/nZ) to twist the equations for X(n) in Section 2.1. We first make
some general remarks about twisting and then split into the cases n = 7, 11.

3.1. Preliminaries on twisting. Let n ≥ 3 be an integer. We recall that Y (n)
parametrises the pairs (E, φ) where E is an elliptic curve and φ : E[n] ∼= µn×Z/nZ
is a symplectic isomorphism. We temporarily write Γ for the group of symplectic
automorphisms of µn × Z/nZ. Then Γ acts on Y (n) by γ : (E, φ) 7→ (E, γ φ).
This action extends to X(n), and so defines a group homomorphism

(8) ρ : Γ→ Aut(X(n)).

If X1 and X2 are varieties defined over K, and α : X1 → X2 is a morphism
defined over K, then for each σ ∈ Gal(K/K) we write σ(α) for the morphism
X1 → X2 given on K-points by P 7→ σ(α(σ−1P )).
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Lemma 3.1. Let E/K be an elliptic curve and φ : E[n] ∼= µn ×Z/nZ a symplec-

tic, respectively anti-symplectic, isomorphism defined over K. Then there is an

isomorphism α : XE(n)→ X(n), respectively α : X−E (n)→ X(n), defined over K,

such that

σ(α)α−1 = ρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K).

Proof. The points of YE(n), respectively Y −E (n), correspond to pairs (F, ψ) where

F is an elliptic curve and ψ : F [n] ∼= E[n] is a symplectic, respectively anti-

symplectic, isomorphism. For φ as in the statement of the lemma, the composite

φψ : F [n] ∼= µn × Z/nZ is a symplectic isomorphism. Let α : Y ±E (n) → Y (n)

be the isomorphism defined by (F, ψ) 7→ (F, φψ). Then σ(α) maps (F, ψ) 7→
(F, σ(φ)ψ). Therefore σ(α)α−1 maps (F, ψ′) 7→ (F, σ(φ)φ−1ψ′). In our notation

this automorphism of Y (n) is denoted ρ(σ(φ)φ−1). �

Fixing a primitive nth root of unity ζn ∈ K, we identify µn × Z/nZ with
(Z/nZ)2 via (ζan, b) 7→ (a, b). Then Γ = SL2(Z/nZ), and the maps ρ defined in (4)
and (8) are the same. We now suppose, as happened in Section 2 for n ≥ 5 an
odd integer, that X(n) is embedded in Pm−1 for some m, and ρ is realised as a
projective representation (also denoted ρ by abuse of notation)

ρ : SL2(Z/nZ)→ PGLm(K).

We write ∝ for equality in PGLm(K), and use a superscript −T to indicate we
take the inverse transpose of a matrix. Let ι = ( 1 0

0 −1 ). We further suppose that

(9) ρ(ιγι) ∝ ρ(γ)−T

for all γ ∈ SL2(Z/nZ). Equivalently, ρ(S) and ρ(T ) are symmetric matrices, where
S and T are the generators for SL2(Z/nZ) defined in Section 2.2. Our strategy
for computing XE(n) and X−E (n) as twists of X(n) is explained by the following
lemma.

Lemma 3.2. Let E/K be an elliptic curve and φ : E[n] ∼= µn×Z/nZ a symplectic

isomorphism defined over K. Suppose h1, h2 ∈ GLm(K) satisfy

σ(h1)h
−1
1 ∝ ρ(σ(φ)φ−1) σ(h2)h

−1
2 ∝ ρ(σ(φ)φ−1)−T

for all σ ∈ Gal(K/K). Then XE(n) ⊂ Pm−1 and X−E (n) ⊂ Pm−1 are the twists of

X(n) ⊂ Pm−1 given by XE(n) ∼= X(n); x 7→ h1x and X−E (n) ∼= X(n); x 7→ h2x,

where x is a point in projective space written as a column vector.

Proof. Let X ′ = {x ∈ Pn−1 | h1x ∈ X(n)}. Since σ(h1)h
−1
1 is an automorphism of

X(n), we see that X ′ is defined over K. Then by Lemma 3.1 the curves XE(n)

and X ′ are twists of X(n) by the same cocycle. They are therefore isomorphic
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over K. The proof is the same for X−E (n), except that we apply Lemma 3.1 to the

pair (E, ιφ), and observe by (9) that

ρ(σ(ιφ) (ιφ)−1) = ρ(ισ(φ)φ−1ι) ∝ ρ(σ(φ)φ−1)−T .

For the first equality we use that ι corresponds to an automorphism of µn×Z/nZ
which is defined over K. �

Remark 3.3. If, as happened in Section 2 for n ≥ 5 an odd integer, the projective

representation ρ lifts to a representation

ρ : SL2(Z/nZ)→ GLm(K)

then the existence of a matrix h1 satisfying the conditions in Lemma 3.2 follows

from the generalised form of Hilbert’s Theorem 90 which states that

H1(Gal(K/K),GLm(K)) = 0.

We could then take h2 = h−T1 . Nonetheless we find it more convenient to compute

h1 and h2 using invariant theory for SL2(Z/nZ).

3.2. Formulae in the case n = 7. We saw in Section 2.1 that X(7) is the Klein
quartic {F = 0} ⊂ P2 where

F = a3b+ b3c+ c3a.

Let G ∼= PSL2(Z/7Z) be the image of ρ : SL2(Z/7Z) → GL3(K). It is generated
by

1

g7

ζ7 − ζ
6
7 ζ27 − ζ57 ζ47 − ζ37

ζ27 − ζ57 ζ47 − ζ37 ζ7 − ζ67
ζ47 − ζ37 ζ7 − ζ67 ζ27 − ζ57

 and

ζ7 0 0

0 ζ47 0

0 0 ζ27


where g7 = 1 + 2(ζ37 + ζ57 + ζ67 ) =

√
−7.

Definition 3.4. An invariant of degree m is a homogeneous polynomial I =

I(a, b, c) of degree m such that I ◦ g = I for all g ∈ G.

Following Klein (see for example [7], [16], [19]) we put

H = (−1/54)×

∣∣∣∣∣∣∣∣∣
∂2F
∂a2

∂2F
∂a∂b

∂2F
∂a∂c

∂2F
∂a∂b

∂2F
∂b2

∂2F
∂b∂c

∂2F
∂a∂c

∂2F
∂b∂c

∂2F
∂c2

∣∣∣∣∣∣∣∣∣ ,
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c4 = (1/9)×

∣∣∣∣∣∣∣∣∣∣∣∣

∂2F
∂a2

∂2F
∂a∂b

∂2F
∂a∂c

∂H
∂a

∂2F
∂a∂b

∂2F
∂b2

∂2F
∂b∂c

∂H
∂b

∂2F
∂a∂c

∂2F
∂b∂c

∂2F
∂c2

∂H
∂c

∂H
∂a

∂H
∂b

∂H
∂c

0

∣∣∣∣∣∣∣∣∣∣∣∣
, c6 = (1/14)×

∣∣∣∣∣∣∣∣∣
∂F
∂a

∂F
∂b

∂F
∂c

∂H
∂a

∂H
∂b

∂H
∂c

∂c4
∂a

∂c4
∂b

∂c4
∂c

∣∣∣∣∣∣∣∣∣ .
The ring of invariants K[a, b, c]G is generated by F,H, c4 and c6 subject to a single
relation which reduces when we set F = 0 to

c34 − c26 ≡ 1728H7 (mod F ).

Since F,H, c4 and c6 have degrees 4, 6, 14 and 21 it is clear that every invariant of
odd degree is divisible by c6.

Lemma 3.5. The j-invariant X(7)→ P1 is given by j = c34/H
7.

Proof. Both j and j0 = c34/H
7 define maps X(7) → P1 that quotient out by the

action of G ∼= PSL2(Z/7Z). So they can differ by at most a Möbius map. We

recall that j is ramified above 0, 1728 and ∞ with ramification indices 3, 2 and 7.

Since

#{F = c4 = 0} ≤ 4 deg(c4) = 1
3
|G|

#{F = c6 = 0} ≤ 4 deg(c6) = 1
2
|G|

#{F = H = 0} ≤ 4 deg(H) = 1
7
|G|

and j0 − 1728 = c26/H
7, we see that j0 is ramified above 0, 1728 and ∞ with

ramification indices at least 3, 2 and 7. It follows that j = j0 as required. �

Definition 3.6. A covariant column, respectively contravariant column, of degree

m is a column vector v = (v1, v2, v3)
T of homogeneous polynomials of degree m in

variables a, b, c such that v ◦ g = gv, respectively v ◦ g = g−Tv, for all g ∈ G.

We note that x = (a, b, c)T is a covariant column of degree 1, whereas if I is an
invariant of degree m then ∇I = (∂I

∂a
, ∂I
∂b
, ∂I
∂c

)T is a contravariant column of degree
m− 1.

Lemma 3.7. Let E/K be an elliptic curve and φ : E[7] ∼= µ7×Z/7Z a symplectic

isomorphism defined over K. Let (a : b : c) be the corresponding K-point on

X(7) ⊂ P2 with co-ordinates (a, b, c) scaled so that

(10) c4(a, b, c) = c4(E) and c6(a, b, c) = c6(E)

where E has Weierstrass equation y2 = x3−27c4(E)x−54c6(E). If j(E) 6= 0, 1728

and h ∈ GL3(K) is a matrix whose columns are covariant columns, respectively
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contravariant columns, of the same degree mod 7, evaluated at (a, b, c) then

σ(h)h−1 ∝ ρ(σ(φ)φ−1),

respectively

σ(h)h−1 ∝ ρ(σ(φ)φ−1)−T ,

for all σ ∈ Gal(K/K).

Proof. Let ξσ = σ(φ)φ−1 ∈ SL2(Z/7Z). Since ρ describes the action of SL2(Z/7Z)

on X(7) ⊂ P2 we have

(11) σ((a, b, c)T ) = λσρ(ξσ)(a, b, c)T

for some λσ ∈ K
×

. Now ρ(ξσ) ∈ G, whereas c4 and c6 are homogeneous polyno-

mials of degrees 14 and 21 invariant under the action of G. Therefore

σ(c4(a, b, c)) = λ14σ c4(a, b, c) and σ(c6(a, b, c)) = λ21σ c6(a, b, c)

for all σ ∈ Gal(K/K). We are given that c4(E), c6(E) ∈ K. So by (10), and our

assumption j(E) 6= 0, 1728, we have λ14σ = λ21σ = 1. Hence λσ is a 7th root of

unity. Now suppose the columns of h are obtain by specialising polynomials whose

degrees are all congruent to r mod 7. Then by (11) and Definition 3.6 we have

σ(h) = h ◦ (λσρ(ξσ)) = λrσρ(ξσ)h,

respectively

σ(h) = h ◦ (λσρ(ξσ)) = λrσρ(ξσ)−Th.

Therefore σ(h)h−1 ∝ ρ(ξσ), respectively σ(h)h−1 ∝ ρ(ξσ)−T , as required. �

We use Lemmas 3.2 and 3.7 to compute equations for XE(7) and X−E (7). First
we classify the covariant and contravariant columns. It is evident that

• The dot product of a covariant column and a contravariant column is an
invariant.
• The cross product of two covariant columns is a contravariant column.
• The cross product of two contravariant columns is a covariant column.

We also write [v1,v2,v3] = (v1 × v2) · v3 for the scalar triple product. It is
straightforward to solve for the covariant and contravariant columns of any given
degree by linear algebra. As above we put x = (a, b, c)T . Let e and f be the
covariant columns of degrees 9 and 11 given by

e =
I22(∇F ×∇H)− c4(∇F ×∇c4) + 12H2(∇H ×∇c4)

14c6

f =
I24(∇F ×∇H)− (16F 4 − 104FH2)(∇F ×∇c4) + c4(∇H ×∇c4)

14c6
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where

I22 = 448F 4H − 48F 2c4 − 2048FH3

I24 = 128F 6 − 160F 3H2 − 236FHc4 − 336H4.

We describe the covariant and contravariant columns as modules over the ring
K[F,H, c4] of invariants of even degree.

Lemma 3.8. (i) The covariant columns of odd, respectively even, degree form

a free K[F,H, c4]-module of rank 3 generated by x, e, f , respectively ∇F ×
∇H,∇F ×∇c4,∇H ×∇c4.

(ii) The contravariant columns of odd, respectively even, degree form a free

K[F,H, c4]-module of rank 3 generated by ∇F , ∇H, ∇c4, respectively x×
e,x× f , e× f .

Proof. By direct calculation we have [x, e, f ] = −c6, whereas the definition of

c6 may be rewritten as [∇F,∇H,∇c4] = 14c6. Since c6 is not identically zero

it follows that x, e, f are linearly independent over K(a, b, c), and likewise for

∇F,∇H,∇c4.
Let v be a covariant column of odd degree. We write v = I1x + I2e + I3f where

I1, I2, I3 are rational functions in a, b, c. Taking the dot product with e× f shows

that [v, e, f ] = I1[x, e, f ]. But [v, e, f ] is an invariant of odd degree and therefore

divisible by c6. It follows that I1 is an invariant, and likewise for I2 and I3.

The other cases are similar. �

Theorem 3.9. Let E/K be an elliptic curve with Weierstrass equation y2 =

x3 − 27c4x− 54c6 and let ∆ = (c34 − c26)/1728. If j(E) 6= 0, 1728 then XE(7) ⊂ P2

has equation F = 0 where

F = 12x3z + 108x2y2 + 3c4x
2z2 + 72c4xy

2z − 108c4y
4 − 12c6xyz

2

+ 84c6y
3z + c24xz

3 − 15c24y
2z2 + c4c6yz

3 + 768∆z4,

and X−E (7) ⊂ P2 has equation G = 0 where

G = 3x4 + c4x
3z − 18c4x

2y2 − 3c6x
2yz + 24c6xy

3 + 3c24xy
2z

− 9c24y
4 − c4c6y3z + 168∆xz3 + 1728∆y2z2 + 5c4∆z

4.

Proof. The covariant columns x, ∇F × ∇H, He have degrees 1, 8, 15, and the

contravariant columns∇F , x×e, H2∇H have degrees 3, 10, 17. The determinants

of the matrices formed from these columns are

(12)
det(x, (∇F ×∇H), He) = 72H4 − 4c4FH

det(∇F, (x× e), H2∇H) = 72H5 − 4c4FH
2.
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Therefore the matrices h1 and h2 obtained by evaluating at a point of Y (7) are

non-singular.

The coefficients of the quartic F̃ (x, y, z) = F (xx + y(∇F ×∇H) + zHe) are in-

variants. Using linear algebra to rewrite these invariants as polynomials in F,H, c4
and c6 we find

F̃ (x, y, z) = Fx4 + 12H3x3z + (108H3 − 6c4F )x2y2 − 8c6Fxy
3

+ 3c4H
3x2z2 + (72c4H

3 + 4128F 2H4 + 48c4F
3H − 768F 5H2)xy2z

+ (−108c4H
3 − 3c24F − 11376F 2H4 + 32c4F

3H + 3392F 5H2 − 256F 8)y4

− 12c6H
3xyz2 + (84c6H

3 − 16c6F
3H)y3z + (c24H

3 + 688FH7

+ 8c4F
2H4 − 128F 4H5)xz3 + (−15c24H

3 − 10512FH7 − 384c4F
2H4

+ 6144F 4H5 + 96c4F
5H2 − 768F 7H3)y2z2 + (c4c6H

3 − 8c6F
2H4)yz3

+ (768H10 − 36c4FH
7 − c24F 2H4 + 176F 3H8 + 16c4F

4H5 − 64F 6H6)z4.

Likewise G̃(x, y, z) = F (x∇F + y(x× e) + zH2∇H) becomes

G̃(x, y, z) = (3H2 + 28F 3)x4 + (c4H
2 + 168F 2H3)x3z + (−18c4H

2

− 816F 2H3 − 24c4F
3 + 192F 5H)x2y2 − 3c6H

2x2yz + 24c6H
2xy3

+ (222FH6 + 24F 4H4)x2z2 + (3c24H
2 + 3744FH6 − 576F 4H4)xy2z

+ (−9c24H
2 − 5184FH6 − 240c4F

2H3 − 4c24F
3 + 2240F 4H4 + 64c4F

5H

− 256F 7H2)y4 + (−c4c6H2 + 8c6F
2H3)y3z + (168H9 + 3c4FH

6

+ 24F 3H7)xz3 + (1728H9 − 78c4FH
6 + 816F 3H7 + 24c4F

4H4

− 192F 6H5)y2z2 + c6FH
6yz3 + (5c4H

9 + 35F 2H10 − 4F 5H8)z4.

Let (a : b : c) be the K-point on X(7) corresponding to (E, φ) for some choice

of symplectic isomorphism φ : E[7] ∼= µ7 × Z/7Z. By Lemma 3.5 we may scale

(a, b, c) to satisfy (10). With this choice of scaling we also have H(a, b, c)7 = ∆. By

Lemma 3.7 the matrix h1, respectively h2, formed by evaluating the covariant, re-

spectively contravariant, columns at (a, b, c), satisfies the conditions of Lemma 3.2.

Therefore a formula for XE(7), respectively X−E (7), is given by specialising the co-

efficients of F̃ , respectively G̃, to this choice of (a, b, c). Explicitly we set F = 0,

divide through by H3, respectively H2, and replace H7 by ∆. �

Remark 3.10. It is not immediately clear how the equations for XE(7) and

X−E (7) found by our method (see Theorem 3.9) are related to those already in the

literature (see Theorem 1.1). In fact writing a = −27c4 and b = −54c6 we have

F(x, y, z) = 1
4
F(6c4z − 1

3
y, x,−18z), G(x, y, z) = G(9c4y + z, 3x, 108y).
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3.3. Formulae in the case n = 11. We saw in Section 2.1 that X(11) is the
singular locus of the Hessian of the cubic threefold {F = 0} ⊂ P4 where

F = a2b+ b2c+ c2d+ d2e+ e2a.

Let G ∼= PSL2(Z/11Z) be the image of ρ : SL2(Z/11Z)→ GL5(K). It is generated
by

1

g11


ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411

ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111

ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311

ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911

ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511


and Diag(ζ11, ζ

9
11, ζ

4
11, ζ

3
11, ζ

5
11), where g11 = 1+2(ζ11+ζ311+ζ911+ζ511+ζ411) =

√
−11.

We define the invariants, covariant columns and contravariant columns exactly
as in Section 3.2. Let

∑
denote a sum over all cyclic permutations, so that for

example F =
∑
a2b. Other examples of invariants of small degree include

H = 3abcde+
∑

(a3c2 − a3de),
I7 =

∑
(a6e+ 3a5d2 − 15a4bce+ 5a3b3d+ 15a3bcd2),

I8 =
∑

(a7c− 7a4bd3 − 7a4de3 + 7a3b2c3 + 21a3c2d2e).

Writing A and B for the matrices of second partial derivatives of F and H we find

det(A+ tB) = 32H − 32I7t− 24I9t
2 − 8c4t

3 + . . .

where I9 and c4 are invariants of degrees 9 and 11. Although we will not need a
complete set of generators for the ring of invariants, we remark that such a set is
given in [1], and may also be computed using Magma. Let I be the homogeneous
ideal of X(11), i.e. the ideal generated by the 4× 4 minors of the Hessian matrix
of F . The degree 19 polynomial

c̃6 = a9b10 − 509b18d− 14107b14d4e+ 510b9c10 + 42326b7d12 + 20669b3d15e

− 14107b2d2e15 − 277419bc2d10e6 − 248909bcd16e− 209926bcd5e12

+ 762409bd11e7 + be18 − 1018c18e− 14107c16de2 − 586835c12d3e4

+ 197780c10d4e5 + 1019c9d10 − 787130c8d5e6 + 15634c7d11e+ 42326c7e12

+ 2007576c6d6e7 + 247382c5d12e2 − 528424c5de13 − 616653c4d7e8

+ 376744c3d13e3 + 1067732c3d2e14 − 225004c2d8e9 + 463659cd14e4

− 582142cd3e15 + 70511d9e10,

is not an invariant but satisfies

c̃ 2
6 ≡ abcde(c34 − 1728F 11) (mod I).
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Lemma 3.11. The j-invariant X(11)→ P1 is given by j = c34/F
11.

Proof. Both j and j0 = c34/F
11 define maps X(11)→ P1 that quotient out by the

action of G ∼= PSL2(Z/11Z). So they can differ by at most a Möbius map. We

recall that j is ramified above 0, 1728 and ∞ with ramification indices 3, 2 and

11. It is shown in [2, Corollary 23.28] that X(11) ⊂ P4 has degree 20. Since

#X(11) ∩ {c4 = 0} ≤ 20 deg(c4) = 1
3
|G|

#X(11) ∩ {c̃6 = 0} ≤ 20 deg(c̃6) < |G|
#X(11) ∩ {F = 0} ≤ 20 deg(F ) = 1

11
|G|

and j0 − 1728 = c̃ 2
6 /((abcde)F

11) it follows that j = j0 as required. �

Lemma 3.12. Let E/K be an elliptic curve and φ : E[11] ∼= µ11 × Z/11Z a

symplectic isomorphism defined over K. Let (a : b : c : d : e) be the corresponding

K-point on X(11) ⊂ P4 with co-ordinates (a, b, c, d, e) scaled so that

(13) c4(a, b, c, d, e) = c4(E)

where E has Weierstrass equation y2 = x3 − 27c4(E)x − 54c6(E). If j(E) 6= 0

and h ∈ GL5(K) is a matrix whose columns are covariant columns, respectively

contravariant columns, of the same degree mod 11, evaluated at (a, b, c, d, e) then

σ(h)h−1 ∝ ρ(σ(φ)φ−1),

respectively

σ(h)h−1 ∝ ρ(σ(φ)φ−1)−T ,

for all σ ∈ Gal(K/K).

Proof. The proof is similar to that of Lemma 3.7. Recall that c4 is a homogeneous

polynomial of degree 11 and so (13) determines the scaling of (a, b, c, d, e) up to

an 11th root of unity. �

We use Lemmas 3.2 and 3.12 to compute equations for XE(11) and X−E (11).
First we compute some covariant columns. Let x1 = (a, b, c, d, e)T . If γ ∈
SL2(Z/11Z) is diagonal then ρ(γ) cyclically permutes the co-ordinates a, b, c, d, e.
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A covariant column is therefore uniquely determined by its first entry. By averag-
ing over the group we found covariant columns x4,x5,x9 with first entries

f4 = 2a2e2 + 4ab2c− 4ac2d+ 4bce2 + d4,

f5 = −5a3ce+ 5a2b2d+ 5a2cd2 + 5abc2e− 10abde2 + b5 − 5b3cd+ 5bd3e+ 5c2e3,

f9 = −14a6bde− 8a5bd3 + 9a5c2e2 + 2a5de3 + 8a4b4e+ 5a4b2c3 + 63a4b2cde

+ 6a4c4d− 18a4c2d2e+ 8a4d3e2 + 31a3b4d2 − 21a3b3e3 + 47a3b2cd3 + 35a3bc3e2

+ 14a3bcde3 − 12a3c2d4 + 10a3d5e+ 3a2b5ce− 26a2b3c4 − 42a2b3c2de

− 75a2b3d2e2 + 3a2b2e5 + 18a2bc5d− 30a2bc3d2e− 36a2bcd3e2 + 2a2c3e4

− 9a2cde5 + a2d7 − 2ab7d− 6ab5cd2 + 50ab4ce3 − 7ab3c2d3 − 6ab3d4e

− 54ab2c4e2 − 3ab2c2de3 − 9ab2d2e4 − 29abc3d4 + 21abcd5e+ abe7 + 9ac5de2

+ 25ac3d2e3 − 7acd3e4 − 10b6c2e− 2b6de2 + 4b4c5 + 40b4c3de− 6b4cd2e2

+ 13b3ce5 − 3b3d6 − 15b2c4d2e− 54b2c2d3e2 + 31b2d4e3 − 11bc4e4 + 3bc2de5

− 2bcd7 − 7bd2e6 − c7d2 + 5c5d3e− 9c3d4e2 + 8cd5e3 − e9.
We temporarily write a1, . . . , a5 for a, b, c, d, e and let Ξ be the 5 × 5 alternating
matrix with entries

Ξij =
∂F

∂ar

∂I7
∂as
− ∂F

∂as

∂I7
∂ar

where r ≡ (i− j− 2)3 + i+ 3 (mod 5) and s ≡ (j− i− 2)3 + j+ 3 (mod 5). Then
x14 = Ξ∇I7 is a covariant column of degree 14.

Theorem 3.13. Let E/K be an elliptic curve with Weierstrass equation y2 =

x3− 27c4x− 54c6 and let ∆ = (c34− c26)/1728. If j(E) 6= 0, 1728 then XE(11) ⊂ P4

is the singular locus of the Hessian of

F = v3 + 3v2w + c4v
2y + 3vw2 + 2c4vwy − c4∆vx2 + 48∆vxy + 9w3

+ 5c4w
2y − c24w2z + c24wy

2 − 576∆wyz + 72c4∆wz
2 − 4∆2x3 − 72∆2x2z

+ 4c4∆xy
2 + 2c24∆xyz − (c34∆− 1728∆2)xz2 + 64∆y3 − 72c4∆y

2z + 12c24∆yz
2

+ (c34∆− 3456∆2)z3,

and X−E (11) ⊂ P4 is the singular locus of the Hessian of

G = 5v3 − c4v2x− 60v2y + 28c4v
2z − 2c4∆vw

2 − 48∆vwx− 240∆vwz

− 16c4vxy + 1680vy2 − 872c4vyz + 121c24vz
2 + 8∆2w3 + 44c4∆w

2y

− 11c24∆w
2z + c4∆wx

2 + 336∆wxy − 122c4∆wxz + 25c24wy
2 − 14160∆wyz

+ 817c4∆wz
2 − 20∆x3 + 5c24x

2y − 1884∆x2z − 364c4xy
2 + 160c24xyz

− 34764∆xz2 + 19840y3 − 10268c4y
2z + 1643c24yz

2 − 129220∆z3.
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Proof. The covariant columns x1,x4,x5,x9,x14 have degrees 1, 4, 5, 9, 14 and the

contravariant columns ∇F,∇I7,∇I8,∇I9,∇c4 have degrees 2, 6, 7, 8, 10. The de-

terminants of the matrices formed from these columns satisfy

(14)
det(x1,x4,x5,x9,x14) = c34 − 1728F 11 (mod I)

det(∇F,∇I7,∇I8,∇I9,∇c4) = 55(c34 − 1728F 11) (mod I).

The coefficients of the cubic F̃ (v, w, x, y, z) = F (vx1+wx4+xx5+yx9+zx14) are

invariants. Using the Gröbner basis machinery in Magma to rewrite the coefficients

mod I as polynomials in c4 and F we find

F̃ = Fv3 + 3F 2v2w + c4v
2y + 3F 3vw2 + 2Fc4vwy − c4vx2 + 48F 5vxy + 9F 4w3

+ 5F 2c4w
2y − c24w2z + c24wy

2 − 576F 9wyz + 72F 7c4wz
2 − 4F 5x3 − 72F 8x2z

+ 4F 4c4xy
2 + 2F 2c24xyz − (c34 − 1728F 11)xz2 + 64F 9y3 − 72F 7c4y

2z + 12F 5c24yz
2

+ (F 3c34 − 3456F 14)z3.

Likewise G̃(v, w, x, y, z) = F (v∇F + w∇I7 + x∇I8 + y∇I9 + z∇c4) becomes

G̃ = 5F 2v3 − c4v2x− 60F 4v2y + 28Fc4v
2z − 2Fc4vw

2 − 48F 5vwx− 240F 6vwz

− 16F 2c4vxy + 1680F 6vy2 − 872F 3c4vyz + 121c24vz
2 + 8F 6w3 + 44F 3c4w

2y

− 11c24w
2z + F 3c4wx

2 + 336F 7wxy − 122F 4c4wxz + 25c24wy
2 − 14160F 8wyz

+ 817F 5c4wz
2 − 20F 7x3 + 5c24x

2y − 1884F 8x2z − 364F 4c4xy
2 + 160Fc24xyz

− 34764F 9xz2 + 19840F 8y3 − 10268F 5c4y
2z + 1643F 2c24yz

2 − 129220F 10z3.

Let (a : b : c : d : e) be the K-point on X(11) corresponding to (E, φ) for

some choice of symplectic isomorphism φ : E[11] ∼= µ11 ×Z/11Z. By Lemma 3.11

we may scale (a, b, c, d, e) to satisfy (13) and F (a, b, c, d, e)11 = ∆. Moreover the

determinants (14) are non-zero by our assumption j(E) 6= 1728. By Lemmas 3.2

and 3.12 we obtain cubic forms describing XE(11) and X−E (11) by putting

(15)
F(v, w, x, y, z) =

1

F 4
F̃ (Fv, w, F 7x, F 2y, F 4z)

G(v, w, x, y, z) =
1

F 8
G̃(F 2v, F 8w,F 4x, y, F 3z)

and replacing F 11 by ∆. �

Remark 3.14. We simplify the cubic forms F and G in Theorem 3.13 by putting

F(v, w, x, y, z) =
1

23c36
F(−v′, w′,−864x,−36c4x− 108c6z, 72y)

G(v, w, x, y, z) =
1

2536(55c6)3
G(v′′,−427680y, x′′,−y′′,−z′′)
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where a = −27c4, b = −54c6 and

v′ = c6v + 2c6w − 6c24x+ 3c24y − 9c4c6z w′ = c6v + 6c24x+ 3c24y + 9c4c6z

v′′ = 44(2c4v − 6c6w + 33c6x+ 135c24y + 810c4c6z) x′′ = 60(5v + 729c4y + 2187c6z)

y′′ = 11(c4v − 3c6w − 6c6x) z′′ = 60(v + 27c4y + 81c6z).

This gives the cubic forms F and G in Theorem 1.2.

4. Modular interpretation

In Section 3 we computed equations for XE(n) and X−E (n) for n = 7, 11. In this
section we compute equations for the families of curves they parametrise.

4.1. Computing the j-invariant. We give formulae for the j-maps XE(n)→ P1

and X−E (n)→ P1 by adapting the formulae in Lemmas 3.5 and 3.11.
First we define the invariant Ψ(F ) of a polynomial F of the form considered in

Theorems 1.1 and 1.2. For F a polynomial in variables x1, . . . , xm and M = (Mij)
an m×m matrix we write F ◦M for F (x′1, . . . , x

′
m) where x′i =

∑
jMijxj.

Definition 4.1. We split into the cases n = 7, 11.

(i) The invariant Ψ of a twisted form µ(F ◦M) of F = x3y + y3z + z3x is

Ψ(µ(F ◦M)) := µ3(detM)4.

(ii) The invariant Ψ of a twisted form µ(F ◦M) of F = v2w + w2x + x2y +

y2z + z2v is

Ψ(µ(F ◦M)) := µ5(detM)3.

Lemma 4.2. Let F be one of the twisted forms in Definition 4.1. Then

(i) Ψ(F) is well-defined, i.e. it is independent of the choice of M ∈ GLm(K).

(ii) If F has coefficients in K then Ψ(F) ∈ K.

Proof. (i) This is easy to check for M a scalar matrix. In general we appeal to

the fact, proved in [2, Lemma 20.4], that Aut(X(n)) ∼= PSL2(Z/nZ). Therefore it

suffices to consider M = ρ(γ) for γ ∈ SL2(Z/nZ). We then use that SL2(Z/nZ)

has no non-trivial 1-dimensional characters.

(ii) This follows from (i) by Galois theory. �

Remark 4.3. (i) In the case n = 7 it is shown in [26, Section 7.1] that Ψ(F) is

an integer coefficient polynomial in the coefficients of F . We expect this is also

true in the case n = 11, but we have not worked out the details.
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(ii) By following the proofs in Section 3, the twisted forms in Theorems 1.1 and

1.2 have invariants

XE(n) X−E (n)

n = 7 −4(4a3 + 27b2) 16(4a3 + 27b2)2

n = 11 −4(4a3 + 27b2)2 8(4a3 + 27b2).

We now split into the cases n = 7, 11 and give formulae for the j-map.
Case n = 7. Let X = {F = 0} ⊂ P2 be a twist of X(7). Starting with F in

place of the Klein quartic F , the formulae in Section 3.2 define polynomials H(F),
c4(F) and c6(F). If F = µ(F ◦M) then Ψ(F) = µ3(detM)4 and

(16)

H(F) = µ3(detM)2(H ◦M)

c4(F) = µ8(detM)6(c4 ◦M)

c6(F) = µ12(detM)9(c6 ◦M)

As observed in [26, Lemma 7.2], the syzygy c34 − c26 ≡ 1728H7 (mod F ) becomes

c4(F)3 − c6(F)2 ≡ 1728 Ψ(F)H(F)7 (mod F).

In particular the j-map X → P1 is given by

j =
c4(F)3

Ψ(F)H(F)7
.

Case n = 11. Let X ⊂ P4 be a twist of X(11) given as the singular locus of
the Hessian of a cubic form F = F(v, w, x, y, z). Starting with F in place of the
cubic form F = v2w + w2x + x2y + y2z + z2v, the formulae in Section 3.3 define
polynomials H(F) and c4(F). If F = µ(F ◦M) then Ψ(F) = µ5(detM)3 and

(17)
H(F) = µ5(detM)2(H ◦M)

c4(F) = µ17(detM)8(c4 ◦M)

By Lemma 3.11 the j-map X → P1 is given by

j =
c4(F)3

Ψ(F)8F11
.

4.2. Modular interpretation of X(n). In Section 2.1 we gave equations for
X(n). In [8, Chapter 4] it is shown that (analogous to Definition 2.2) the elliptic
curve E ⊂ Pn−1 above (0 : a1 : a2 : . . . : −a2 : −a1) ∈ Y (n) is defined by

rank(ai−jxi+j)
n−1
i,j=0 ≤ 2.

The following theorem gives an equation for this curve in Weierstrass form. Notice
that the coefficients are homogeneous polynomials of degrees 4t and 6t for some
integer t. An alternative proof in the case n = 7 is sketched in [16, Section 3].
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Theorem 4.4. We split into the cases n = 7, 11.

(i) The family of curves parametrised by X(7) = {a3b+ b3c+ c3a = 0} ⊂ P2 is

(18) y2 = x3 − 27(abc)2c4(a, b, c)x− 54(abc)3c6(a, b, c)

where c4, c6 ∈ K[a, b, c] are as defined in Section 3.2.

(ii) The family of curves parametrised by X(11) ⊂ P4 is

(19) y2 = x3 − 27(abcde)c4(a, b, c, d, e)x− 54(abcde)c̃6(a, b, c, d, e).

where c4, c̃6 ∈ K[a, b, c, d, e] are as defined in Section 3.3.

Proof. The modular curve Y1(n) parametrises pairs (E,P ) where E is an elliptic

curve and P ∈ E is a point of order n. If n = 7 then we choose a coordinate λ

on X1(7) ∼= P1. If n = 11 then X1(11) is the elliptic curve ν2 + ν = λ3 − λ2. We

write λ to indicate λ in the cases n = 7, and the pair λ, ν in the case n = 11. By

[31, Exercise 8.13] the elliptic curves Dλ parametrised by Y1(7) and Y1(11) have

Weierstrass equations

y2 − (λ2 − λ− 1)xy − (λ3 − λ2)y = x3 − (λ3 − λ2)x2,
y2 + (λν + 2λ− (ν + 1)2)xy − λ2ν(ν + 1)(λ− ν − 1)y = x3 − λν(ν + 1)(λ− ν − 1)x2.

On each of these curves P = (0, 0) is a point of order n. If we write the Weierstrass

equation for Dλ as y2 + a1xy + a3y = x3 + a2x
2 then by Vélu’s formulae [32] the

n-isogenous elliptic curve Cλ = Dλ/〈P 〉 has Weierstrass equation

(20) y2 + a1xy + a3y = x3 + a2x
2 − 5tx− (a21 + 4a2)t− 7w

where t = 6s2 + (a21 + 4a2)s1 + a1a3s0, w = 10s3 + 2(a21 + 4a2)s2 + 3a1a3s1 + a23s0
and sk =

∑(n−1)/2
j=1 x(jP )k. The Weierstrass equations (20) have discriminant

(21)
n = 7 ∆(Cλ) = λ(λ− 1)(λ3 − 8λ2 + 5λ+ 1)7

n = 11 ∆(Cλ,ν) = λ(λ− 1)(λν + 2λ2 − 2λ+ 1)(ν + 1)6f(λ, ν)11

where f(λ, ν) = (−3λν + 2ν − λ3 + 5λ2 − 5λ+ 1)/(λ− 1).

Let φ : Cλ → Dλ and φ̂ : Dλ → Cλ be the dual isogenies of degree n with

ker φ̂ = 〈P 〉. Then by properties of the Weil pairing kerφ is isomorphic to µn as

a Galois module. Let Q ∈ Cλ(K) with φ(Q) = P . Then σ 7→ σ(Q) − Q is a

cocycle taking values in µn. By Hilbert’s Theorem 90 there exists q ∈ K×/(K×)n

such that σ(Q)−Q = σ( n
√
q)/ n
√
q for all σ ∈ Gal(K/K). Computing q = q(λ) as

described in [9, Section 1.2] we find

(22) q(λ) =

 λ4(λ− 1) if n = 7

λν2(λ− 1)(λ− ν − 1)3 if n = 11.
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Now X(n) is birational to {q(λ) = τn} ⊂ X1(n) × Gm. In the case n = 7 an

explicit birational map is given in [9, Section 2.2]. Applying the same method for

n = 11 we obtain

n = 7 (a : b : c) 7→ (λ, τ) = (−ac2/b3, ac/b2),
n = 11 (a : b : c : d : e) 7→ (λ, ν, τ) = (−abd/c2e, ab3/c3e,−ab/c2).

We checked directly that these are birational maps, and that the cusps of X(n),

i.e. (1 : 0 : . . . : 0) and its translates under the action of SL2(Z/nZ), map to the

cusps of X1(n), i.e. the roots of (21).

Let c4(λ) and c6(λ) be the invariants of the Weierstrass equation for Cλ. Using

Magma we compute

n = 7
c4(−ac2/b2) ≡ ξ47(abc)2c4(a, b, c) mod (a3b+ b3c+ c3a)

c6(−ac2/b2) ≡ ξ67(abc)3c6(a, b, c) mod (a3b+ b3c+ c3a)

n = 11
c4(−abd/c2e, ab3/c3e) ≡ ξ411(abcde)c4(a, b, c, d, e) mod I
c6(−abd/c2e, ab3/c3e) ≡ ξ611(abcde)c̃6(a, b, c, d, e) mod I

where ξ7 = a/b5c and ξ11 = a3b/c6e2. Since we are free to cancel 4th powers

and 6th powers from the coefficients of a shorter Weierstrass equation, the result

follows. �

4.3. An alternative projective embedding. We take p ≥ 5 a prime and let
G = PSL2(Z/pZ) act on X(p) in the usual way.

Theorem 4.5 ((Adler, Ramanan)). The group of G-invariant divisor classes on

X(p) is free of rank 1 generated by a divisor class [Λ] of degree (p2 − 1)/24.

Proof. See [2, Theorem 24.1]. �

Let m = (p − 1)/2. Klein showed there are embeddings X(p) ⊂ Pm−1 and
X(p) ⊂ Pm with linear G-action. The images are called the z-curve and the A-
curve respectively. The corresponding hyperplane sections are (m− 1)Λ and mΛ,
and indeed the divisor Λ in Theorem 4.5 is constructed by taking the difference
of these. It is conjectured that each of these embeddings is via a complete linear
system (the WYSIWYG Hypothesis in [2]) and this is known for p = 7, 11. The
equations for X(p) introduced in Section 2.1 are for the z-curve. However in
Sections 4.4 and 4.5 we also need the A-curve.

Case p = 7. The z-curve is the Klein quartic X(7) = {x3y+y3z+z3x = 0} ⊂ P2.
The cusps of X(7) are the 24 points of inflection. We recall from [26] that the
cusps are naturally partitioned into eight sets of three {P1, P2, P3} with

P1 + 3P2 ∼ P2 + 3P3 ∼ P3 + 3P1 ∼ H
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where H ∼ 2Λ is the hyperplane section. We write T0, . . . , T7 for the effective
divisors of degree 3 of the form P1 +P2 +P3. One of these divisors, T0 say, satisfies
X(7) ∩ {xyz = 0} = 4T0. As observed in [26, Section 11] we have 2Ti ∼ 2Tj for
all 0 ≤ i, j ≤ 7. It follows by Theorem 4.5 that 2T0 ∼ 3Λ. Since 3Λ ∼ 3H − 2T0
and L(3H − 2T0) has basis x2y, y2x, z2x, xyz, the A-curve is the image of

X(7)→ P3 ; (x : y : z) 7→ (t1 : t2 : t3 : t4) = (x2y : y2z : z2x : xyz)

with equations

rank

t1 0 t4 −t2
t2 −t3 0 t4

t3 t4 −t1 0

 ≤ 2.

Case p = 11. The z-curve is the singular locus of the Hessian of

{F = v2w + w2x+ x2y + y2z + z2v = 0} ⊂ P4.

We write H ∼ 4Λ for the hyperplane section. The cusps are the 60 points of
intersection of X(11) with {F = 0}. They are naturally partitioned into twelve
sets of five {P1, . . . , P5} with

P1 + 6P3 + 3P4 + 10P5 ∼ H

and likewise under all cyclic permutations of the Pi. We write T0, . . . , T11 for the
effective divisors of degree 5 of the form P1 + . . . + P5. One of these divisors, T0
say, satisfies X(11) ∩ {vwxyz = 0} = 20T0. It may be shown that 5Ti ∼ 5Tj for
all 0 ≤ i, j ≤ 11 and hence 5T0 ∼ 5Λ by Theorem 4.5. Since 5Λ ∼ 5H − 15T0 we
find by computing a basis for L(5H − 15T0) that the A-curve is the image of the
morphism X(11)→ P5 given by

(v : w : x : y : z) 7→ (t1 : . . . : t6) = (v2wxz : vw2xy : wx2yz : vxy2z : vwyz2 : vwxyz).

It is shown in [2, Theorem 51.1], and we checked using Magma, that this is the
singular locus of the quartic hypersurface

t46 − (t21t2 + t22t3 + t23t4 + t24t5 + t25t1)t6 + t21t3t5 + t22t4t1 + t23t5t2 + t24t1t3 + t25t2t4 = 0.

4.4. Formulae in the case n = 7.

Theorem 4.6. Let X = {F = 0} ⊂ P2 be a twist of the Klein quartic, with

hyperplane section H. Let T = P1+P2+P3 where P1, P2, P3 are points of inflection

on X with

P1 + 3P2 ∼ P2 + 3P3 ∼ P3 + 3P1 ∼ H.

Let d ∈ K[x, y, z] be a cubic form with {d = 0} meeting X in a divisor 2D with

D ∼ 2T . Then there is a Gal(K/K)-module M such that for every field extension



ON FAMILIES OF 7 AND 11-CONGRUENT ELLIPTIC CURVES 25

L/K and rational point P = (x : y : z) ∈ X (L)\{d = 0}, not a point of inflection,

the elliptic curve

(23) Y 2 = X3 − 27
c4(F)(x, y, z)

d(x, y, z)2
X − 54

c6(F)(x, y, z)

d(x, y, z)3

has 7-torsion isomorphic to M as a Gal(L/L)-module.

Proof. If d1, d2 ∈ K[x, y, z] are cubic forms meeting X in divisors 2D1 and 2D2

with D1 ∼ D2 then d1/d2 is the square of a rational function, and hence the

elliptic surfaces (23) with d = d1 and d = d2 are isomorphic over K. Since X is

a twist of the Klein quartic it follows (by taking D = 2T0 as defined in the last

section) that the elliptic surfaces (18) and (23) are isomorphic over K. Notice it

does not matter whether we write the terms d(x, y, z) in the numerator or in the

denominator. We are done by [27, Proposition 2.1]. �

In Theorem 4.8 below we determine rational functions d satisfying the hypoth-
esis of Theorem 4.6 in the cases X = XE(7) and X = X−E (7). We also show how
to scale these functions to give the quadratic twist with M ∼= E[7].

Remark 4.7. Recall that XE(7) has a trivial K-rational point corresponding to

E itself. Following [27] one method for finding the right quadratic twist would

be to specialise at this point. However this approach fails when d vanishes at the

trivial point, and also does not generalise to X−E (7).

Theorem 4.8. Let E/K be an elliptic curve with Weierstrass equation y2 =

x3 − 27c4x− 54c6 and let ∆ = (c34 − c26)/1728. If j(E) 6= 0, 1728 then the families

of elliptic curves parametrised by YE(7) and Y −E (7) are given by (23) with (F , d) =

(F, d1) and (G, d2) where F and G are the quartics in Theorem 3.9 and

d1(x, y, z) = −6(3x2 + c4xz − 3c4y
2 + c6yz)z

d2(x, y, z) = 2∆(4x3 + c4x
2z − 12c4xy

2 − 2c6xyz + 8c6y
3 + c24y

2z + 200∆z3).

Proof. We fix a symplectic isomorphism φ : E[7] ∼= µ7×Z/7Z and let (a : b : c) be

the K-point on X(7) corresponding to (E, φ). As in the proof of Theorem 3.9 we

scale (a, b, c) so that c4(a, b, c) = c4 and c6(a, b, c) = c6. The action of SL2(Z/7Z)

on both the z-curve and the A-curve suggests we start with the forms

s1(x, y, z) = (a2c3 − 2ab3c)x2y + (a3b2 − 2abc3)y2z

+ (b3c2 − 2a3bc)z2x+ (a3c2 + a2b3 + b2c3)xyz,

s2(x, y, z) = a2bx2y + b2cy2z + c2az2x+ 2abcxyz.

We then let r1 and r2 be the unique cubic forms satisfying

(24) ri(x, y, z)xyz ≡ si(x, y, z)2 mod (x3y + y3z + z3x)
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for i = 1, 2. The coefficients of r1 and r2 are homogeneous polynomials in a, b, c

of degrees 10 and 6. Recall that in the proof of Theorem 3.9 we put

F(x, y, z) =
1

H3
F (xx + y(∇F ×∇H) + zHe),

G(x, y, z) =
1

H2
F (x∇F + y(x× e) + zH2∇H).

The cubics d1 and d2 in the statement of the theorem are likewise found by putting

(25)
d1(x, y, z) =

1

2abcH4
r1(xx + y(∇F ×∇H) + zHe),

d2(x, y, z) =
2H5

abc
r2(x∇F + y(x× e) + zH2∇H).

It is clear from these constructions that {d1 = 0} and {d2 = 0} meet the

corresponding twists of the Klein quartic in divisors of the form specified in Theo-

rem 4.6. So our formulae for the families of elliptic curves parametrised by YE(7)

and Y −E (7) are correct up to quadratic twist, say by δ ∈ K×. It remains to show

that δ is a square. As noted in [16, Section 7.1] it suffices to check this in the case

φ : E[7] ∼= µ7 × Z/7Z is defined over K. Then (a : b : c) is a K-rational point on

X(7). We write (a, b, c) = (λa0, λb0, λc0) with a0, b0, c0 ∈ K. By our earlier choice

of scaling for a, b, c we have λ7 ∈ K. Comparing the Weierstrass equation (18) for

E with that in the statement of the theorem it follows that λ7a0b0c0 ∈ (K×)2. So

a7, b7, c7 ∈ K and (abc)7 ∈ (K×)2. Using (12) and (16) we compute

ck(F)(x, y, z) = (2936)k/2ck(xx + y(∇F ×∇H) + zHe)

ck(G)(x, y, z) = (2936H7)k/2ck(x∇F + y(x× e) + zH2∇H).

for k = 4, 6. It follows by (25) that

ck(F)(x, y, z)

d1(x, y, z)k/2
= ξk

ck(xHx + yH(∇F ×∇H) + zH2e)

((abc)6r1(xHx + yH(∇F ×∇H) + zH2e))k/2

ck(G)(x, y, z)

d2(x, y, z)k/2
= ηk

ck(xH
3∇F + yH3(x× e) + zH5∇H)

((abc)6H10r2(xH3∇F + yH3(x× e) + zH5∇H))k/2

for some ξ, η ∈ K×. The covariant columns Hx, H(∇F ×∇H), H2e have degrees

7, 14, 21 and the contravariant columns H3∇F , H3(x × e), H5∇H have degrees

21, 28, 35. Since each column has degree a multiple of 7, its evaluation at (a, b, c)

is K-rational. Therefore the families of curves in the statement of the theorem are

K-isomorphic to

Y 2 = X3 − 27
c4(x, y, z)

((abc)6r1(x, y, z))2
X − 54

c6(x, y, z)

((abc)6r1(x, y, z))3
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and

Y 2 = X3 − 27
c4(x, y, z)

((abc)6H10r2(x, y, z))2
X − 54

c6(x, y, z)

((abc)6H10r2(x, y, z))3
.

To identify these with (18) we note that the cubic forms (abc)3s1(x, y, z) and

(abc)3H5s2(x, y, z) have coefficients in K (since the degree of each coefficient is a

multiple of 7) and then use (24). �

Making the change of co-ordinates in Remark 3.10, we can replace d1 and d2 by
cubic forms that satisfy the conditions of Theorem 4.6 for XE(7) = {F = 0} ⊂ P2

and X−E (7) = {G = 0} ⊂ P2, where F and G are the quartics in Theorem 1.1.
Moreover having found one such form we can use the Riemann-Roch machinery
in Magma to find further such forms.

In the case of XE(7) we obtain a cubic form d11 with XE(7)∩ {d11 = 0} = 2D1

for some divisor D1 ∼ 2T . Then L(3H −D1) has basis

d11 = −2(ax2 + 3bxz + 3y2 + 2ayz)z,

d12 = 2(ax2 + 3bxz + 3y2 + 2ayz)x,

d13 = 4(3bx2 − 2axy − 2a2xz − 3byz − 2abz2)z,

d14 = 4(a2x2 + 3bxy + 4abxz + ay2 + 3b2z2)z.

More generally there are cubic forms dij for 1 ≤ i, j ≤ 4 such that the matrix
(dij) is symmetric and each 2 × 2 minor vanishes mod F . The remaining dij are
computed using d11dij ≡ d1id1j (mod F). Then XE(7) ∩ {dij = 0} = Di + Dj

where D1, . . . , D4 are divisors all linearly equivalent to 2T . The family of elliptic
curves parametrised by YE(7) is now given by (23) with (F , d) = (F , dii) for any
1 ≤ i ≤ 4.

The A-curve is the image of XE(7) → P3; (x : y : z) 7→ (d11 : . . . : d14) with
equations

rank

0 t3 −t4 2at1 + t4

t1 2at1 + t4 2bt1 + at2 + at3 2at2 + at3

t2 2bt1 + at3 −a2t1 + bt3 − at4 2bt2 − bt3 − at4

 ≤ 2.

Our formula for the elliptic curve corresponding to P ∈ YE(7) fails when dii(P ) =
0. However the zeros of dii correspond to the hyperplane section {ti = 0} on
the A-curve. Therefore, for any given point P , we have dii(P ) 6= 0 for some i.
So unlike the treatment in [16, Theorem 5.2], where only the cubic form d11 was
given, we have found formulae that cover all cases.
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In the case of X−E (7) we likewise find cubic forms d′ij for 1 ≤ i, j ≤ 4 such that
the matrix (d′ij) is symmetric and each 2× 2 minor vanishes mod G. Explicitly

d′11 = −7ax2y + 6x2z + 3a2y3 − 8ay2z + 3yz2,

d′12 = 2ax3 + 12bx2y − 2axyz − 3aby3 + 6by2z,

d′13 = 2a2xy2 − 10axyz + 6xz2 + 5aby3 − 12by2z,

d′14 = 2a2x2y − 3ax2z + 5abxy2 − 12bxyz − 3a2y2z + 8ayz2 − 3z3.

The remaining d′ij are computed using d′11d
′
ij ≡ d′1id

′
1j (mod G). The family of

elliptic curves parametrised by Y −E (7) is now given by (23) with (F , d) = (G,∆d′ii)
for any 1 ≤ i ≤ 4. Exactly as before, these formulae cover all cases.

4.5. Formulae in the case n = 11. Our approach is similar to that in the last
section. As one would expect the formulae in the case n = 11 are more complicated
than those in the case n = 7. There are however two further complications. One
is that there is no invariant c6. The other is that the form we are looking for is
no longer uniquely determined by its image in the co-ordinate ring. Indeed in the
case n = 7 we were looking for a cubic form, and in the case n = 11 we are looking
for a quintic form. But in both cases our twist of X(n) is defined by quartics.

The action of SL2(Z/11Z) on both the z-curve and the A-curve suggests we
start with the forms

s1(v, w, x, y, z) = (a3bc3 + b4cd2 − ab2c2de− 2bc2de3)v2wxz

+ (b3cd3 + c4de2 − abc2d2e− 2a3cd2e)vw2xy

+ (c3de3 + a2d4e− abcd2e2 − 2ab3de2)wx2yz

+ (a3d3e+ ab2e4 − a2bcde2 − 2a2bc3e)vxy2z

+ (ab3e3 + a4bc2 − a2b2cde− 2ab2cd3)vwyz2

+ 2(a2b2c2e+ a2b2de2 + a2cd2e2 + ab2c2d2 + bc2d2e2)vwxyz,

s2(v, w, x, y, z) = a2bcev2wxz + ab2cdvw2xy + bc2dewx2yz + acd2evxy2z

+ abde2vwyz2 + 2abcdevwxyz.

We then solve for r1 and r2 satisfying

(26) ri(v, w, x, y, z)(vwxyz)3 ≡ si(v, w, x, y, z)4 (mod I, I ′)
where I and I ′ are the homogeneous ideals for X(11) ⊂ P4 with respect to the
two sets of variables a, b, c, d, e and v, w, x, y, z. The coefficients of r1 and r2 are
homogeneous polynomials of degrees 28 and 20 in a, b, c, d, e. It is important to
note that r1 and r2 are not uniquely determined by (26). However by averaging
over the group we were able to choose ri = (abcde)3r̃i in such a way that the
coefficients of

r̃1(vx1 + wx4 + xx5 + yx9 + zx14)
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and

r̃2(v∇F + w∇I7 + x∇I8 + y∇I9 + z∇c4)
are congruent mod I to certain polynomials in F and c4. The result is a pair of

quintic forms d̃1(v, w, x, y, z) and d̃2(v, w, x, y, z) with coefficients in Q[F, c4]. We
then put

d1(v, w, x, y, z) = d̃1(Fv, w, F
7x, F 2y, F 4z)

d2(v, w, x, y, z) =
1

F 4
d̃2(F

2v, F 8w,F 4x, y, F 3z)

and replace F 11 by ∆ so that d1 and d2 have coefficients in Q[c4,∆].

Remark 4.9. The polynomials r̃i and di would take several pages to print out, so

we must refer the reader to the accompanying Magma file [13] for further details.

The computation of d1 and d2 took several hours of computer time, whereas all

other calculations up to this point ran in a few seconds.

Theorem 4.10. Let E/K be an elliptic curve with Weierstrass equation y2 =

x3 − 27c4x − 54c6 and let ∆ = (c34 − c26)/1728. Assume j(E) 6= 0, 1728 and let

X = XE(11), respectively X−E (11), be as given in Theorem 3.13. If (v : w : x :

y : z) ∈ X(K) \ {di = 0}, not a cusp, then the corresponding elliptic curve E ′/K

satisfies

c4(E
′) ≡ d1(v, w, x, y, z) c4(F)(v, w, x, y, z) mod (K×)4,

respectively

c4(E
′) ≡ d2(v, w, x, y, z) c4(G)(v, w, x, y, z) mod (K×)4.

Proof. As noted in [16, Section 7.1] we are free to extend our field K so that

φ : E[11] ∼= µ11 × Z/11Z is defined over K. Let (a : b : c : d : e) be the

corresponding K-point on X(11). We scale a, b, c, d, e so that c4(a, b, c, d, e) = c4.

Then a11, . . . , e11 ∈ K and by comparing the Weierstrass equation for E in the

statement of the theorem with (19) we deduce that (abcde)11 ∈ (K×)4. The

polynomials F and G were computed in Section 3.3 as twists of F . Putting

(v′, w′, x′, y′, z′)T = vF 7x1 + wF 6x4 + xF 13x5 + yF 8x9 + zF 10x14,

(v′′, w′′, x′′, y′′, z′′)T = vF 3∇F + wF 9∇I7 + xF 5∇I8 + yF∇I9 + zF 4∇c4,

it follows by (14), (15) and (17) that

c4(F)(v, w, x, y, z) =
(c34 − 1728F 11)8

F 22
c4(v

′, w′, x′, y′, z′),

c4(G)(v, w, x, y, z) =
(55(c34 − 1728F 11))8

F 11
c4(v

′′, w′′, x′′, y′′, z′′).
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By construction of d1 and d2 we have

d1(v, w, x, y, z) =
1

(abcde)3F 30
r1(v

′, w′, x′, y′, z′),

d2(v, w, x, y, z) =
1

(abcde)3F 9
r2(v

′′, w′′, x′′, y′′, z′′).

In view of Theorem 4.4 our aim is to show that

d1(v, w, x, y, z) c4(F)(v, w, x, y, z) ≡ v′w′x′y′z′c4(v
′, w′, x′, y′, z′) mod (K×)4,

d2(v, w, x, y, z) c4(G)(v, w, x, y, z) ≡ v′′w′′x′′y′′z′′c4(v
′′, w′′, x′′, y′′, z′′) mod (K×)4,

equivalently

(abcde)8F 36r1(v
′, w′, x′, y′, z′) ≡ v′w′x′y′z′ mod (K×)4,

(abcde)8F 24r2(v
′′, w′′, x′′, y′′, z′′) ≡ v′′w′′x′′y′′z′′ mod (K×)4.

To finish the proof we note that the quintic forms

(abcde)2F 9s1(v
′, w′, x′, y′, z′) and (abcde)2F 6s2(v

′′, w′′, x′′, y′′, z′′)

have coefficients in K (since the degree of each coefficient is a multiple of 11) and

then use (26). �

We already gave a formula for the j-invariant in Section 4.1. So (assuming
j(E ′) 6= 0) Theorem 4.10 determines E ′ up to quadratic twist by −1. In the case
K = Q it is easy to decide which of the remaining two possibilities is correct by
looking at traces of Frobenius.

In principle it should be possible to find alternative quintic forms to be used at
points where d1 or d2 vanishes. The quintic forms in question are those meeting
the z-curve in a divisor 4D where D is a hyperplane section for the A-curve. In
the case n = 7 we managed to find the alternative forms using the Riemann-Roch
machinery in Magma. Unfortunately the analogue of this in the case n = 11 does
not appear to be practical. In the case of X−E (11) this is not a problem, since
the 25 points with d2 = 0 correspond to the elliptic curves `-isogenous to E for
` = 2, 7, 13. We can also account for 7 of the points on XE(11) with d1 = 0 as
corresponding to the elliptic curve E itself and the elliptic curves 5-isogenous to
E. We are yet to encounter an example (over K = Q) where one of the remaining
points with d1 = 0 is rational.

5. Examples

We use the formulae in Theorems 1.1 and 1.2 to give examples of non-trivial
n-congruences for n = 7, 11 over Q and Q(T ). By “non-trivial” we mean that
the elliptic curves are not isogenous. The examples over Q illustrate the value of
minimising and reducing, as mentioned in the introduction. The examples over
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Q(T ) were found by setting a = b = −27j/(4(j− 1728)) to obtain a surface fibred
over the j-line and then intersecting with one of the co-ordinate hyperplanes in the
hope of finding a rational curve. We refer to elliptic curves over Q by their labels
in Cremona’s tables [4]. For elliptic curves beyond the current range of Cremona’s
tables we simply write the conductor followed by a ∗.

Remark 5.1. If elliptic curves E and E ′ are related by an isogeny of degree d

coprime to n, then they are clearly n-congruent. Since dual isogenies are adjoints

with respect to the Weil pairing, the curves are directly n-congruent if d is a square

in (Z/nZ)× and reverse n-congruent if −d is a square in (Z/nZ)×.

5.1. Examples in the case n = 7.

Example 5.2. Let E be the elliptic curve 162c1. Let F and G be the equations

for XE(7) and X−E (7) in Theorem 1.1 with a = 3645 and b = −13122. These

have invariants Ψ(F) = −211 · 318 and Ψ(G) = 222 · 336. Minimising and reducing

suggests that we substitute

F (x, y, z) =
1

210314
F(36y − 9z, 1944x− 972y − 1215z, z)

G(x, y, z) =
1

212320
G(18x+ 18y + 9z, z,−486x+ 1458y + 1944z)

to give quartics

F (x, y, z) = 3x3z + 3x2y2 − 6x2yz + 3x2z2 − 3xy3

+ 3xz3 + 2y4 − y3z − 9y2z2 + 4yz3 − 5z4

G(x, y, z) = −x3y − x3z − 6x2z2 + 6xy2z − 6xyz2

+ 6xz3 + 2y4 + 2y3z − 6y2z2 − 38yz3 − 8z4

with invariants Ψ(F ) = −2 · 34 and Ψ(G) = 22 · 34. We find rational points

P1 = (1 : 0 : 0), P2 = (3 : −2 : −1) on {F = 0} ⊂ P2, and rational points

P3 = (1 : 0 : 0), P4 = (1 : 1 : −1), P5 = (4 : −1 : 1) on {G = 0} ⊂ P2. The

corresponding elliptic curves 7-congruent to E are

P1 162c1 y2 + xy = x3 − x2 + 3x− 1

P2 293706x2 y2 + xy = x3 − x2 − 62930562x− 192134303740

P3 162c2 y2 + xy = x3 − x2 − 42x− 100

P4 17334f1 y2 + xy = x3 − x2 − 5473977x− 4956193171

P5 624186∗ y2 + xy = x3 − x2 − 11751402282x+ 360746315347508.

Since the elliptic curves 162c1 and 162c2 are 3-isogenous, it was already clear from

Remark 5.1 that they are reverse 7-congruent.
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It is shown in [16, Proposition 6.3] that there are infinitely many 6-tuples of
directly 7-congruent non-isogenous elliptic curves over Q. The following example
shows that there are infinitely many pairs of reverse 7-congruent non-isogenous
elliptic curves over Q.

Example 5.3. Let E/Q(T ) be the elliptic curve y2 = x3 + ax + b where a =

b = −27j/(4(j − 1728)) and j = 27T 3(5T − 56)/(T − 1). Then on X−E (7), with

equation as given in Theorem 1.1, we find the rational point

(x : y : z) = (0 : −4(T 2 − 12T + 8)(5T 2 + 4T + 8) : 9T 2(T + 4)(5T − 56)).

Specialising T (and taking quadratic twists by d as indicated) we obtain the fol-

lowing pairs of reverse 7-congruent elliptic curves E1 and E2.

T d E1 E2

−16 −38 361a1 361a2

8 −10 700g1 2100q1

2 −2 2116b1 10580h1

16/5 −42 24255r1 24255m2

The existence of specialisations E1 and E2 that are not isogenous is enough to

show that there are infinitely many such specialisations.

5.2. Examples in the case n = 11.

Example 5.4. Let E be the elliptic curve 1782b1. Let F be the cubic form

describing XE(11) ⊂ P4 in Theorem 1.2 with a = 765 and b = 15102. The

invariant is Ψ(F) = −228 · 312 · 116. Minimising and reducing suggests that we

substitute

v

w

x

y

z


←



984 12900 −9093 −34056 13689

−2040 −24252 −3315 0 −16857

328 164 −435 0 −57

−352 88 −264 264 −1056

−8 −4 −13 0 25





v

w

x

y

z


so that XE(11) ⊂ P4 is the singular locus of the Hessian of

−v2w + v2x− v2y + 2v2z − vw2 + 4vwz − 4vx2 − 8vxy + 2vxz + 6vyz

+3vz2 + 2w3 − 3w2x− 2w2y + 8w2z + 6wx2 + 2wxy + 2wxz + 6wy2 − 6wyz

+9wz2 − x3 − x2z − 3xy2 − 6xyz − 9xz2 − 6y3 + 9y2z + 3yz2 − 7z3 = 0
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with invariant 22 · 34 · 112. We find rational points P1 = (−1 : 5 : 1 : 2 : 1),

P2 = (0 : 0 : 0 : 1 : 0) and P3 = (1 : 1 : −1 : 0 : −4). The corresponding elliptic

curves directly 11-congruent to E are

P1 1782b1 y2 + xy = x3 − x2 + 48x+ 224

P2 1782b2 y2 + xy = x3 − x2 − 447x− 7795

P3 447282∗ y2 + xy = x3 − x2 − 17552171922x− 227953575178678

Since the elliptic curves 1782b1 and 1782b2 are 3-isogenous, it was already clear

from Remark 5.1 that they are directly 11-congruent.

Example 5.5. Let E be the elliptic curve 4466c1. Let G be the cubic form

describing X−E (11) ⊂ P4 in Theorem 1.2 with a = 85 and b = −83162. The

invariant is Ψ(G) = 221 · 7 · 112 · 292. Minimising and reducing suggests that we

substitute 

v

w

x

y

z


←



4096 −1408 128 −1312 45088

0 128 128 32 110

0 0 −256 −96 −103

0 0 0 −32 −11

0 0 0 0 −1





v

w

x

y

z


so that X−E (11) ⊂ P4 is the singular locus of the Hessian of

−2v2z − 4vwy + 12vxy + 4vxz + 5vy2 + 6vyz − 43vz2 − w2x+ w2y

−4wxy − 2wxz − 3wy2 + 196wyz + 83wz2 − 11x3 − 12x2y − 9x2z

−11xy2 + 366xyz + 125xz2 + 322y3 + 447y2z + 275yz2 + 632z3 = 0

with invariant −22 · 7 · 112 · 292. We find rational points P1 = (−7 : 11 : 3 : 1 : 1)

and P2 = (7830 : −3553 : 510 : −281 : 71). The corresponding elliptic curves

reverse 11-congruent to E are

P1 4466c2 y2 + xy + y = x3 − x2 − 1755x− 27349

P2 1174558∗ y2 + xy + y = x3 − x2 + 117885809240x+ 16240157710556505

Since the elliptic curves 4466c1 and 4466c2 are 2-isogenous, it was already clear

from Remark 5.1 that they are reverse 11-congruent.

A table of pairs of 11-congruent elliptic curves over Q is available from the
website [13]. These were found by searching for rational points on XE(11) and
X−E (11) for all elliptic curves E/Q in Cremona’s tables. As happened in Exam-
ples 5.4 and 5.5, the elliptic curves 11-congruent to E that we find, often have
conductor beyond the current range of Cremona’s tables.
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The following example shows that there are infinitely many pairs of directly
11-congruent non-isogenous elliptic curves over Q.

Example 5.6. Let E/Q(T ) be the elliptic curve y2 = x3 + a(T )x+ b(T ) where

a(T ) = −3(T − 3)(T 4 − 5T 2 − 24T − 92)/(T 3 − T 2 + 4T + 24)

b(T ) = −2(T − 3)(T 5 − T 4 − 11T 3 − 43T 2 − 62T − 316)/(T 3 − T 2 + 4T + 24).

Then XE(11), with equations as given in Theorem 1.2, has rational point

v

w

x

y

z


=



T 6 + T 5 + 31T 4 + 259T 3 + 520T 2 + 676T + 1248

−(T − 3)(T 5 + 4T 4 + 43T 3 + 100T 2 − 44T − 320)

−(T 2 + 3T + 14)(T 3 − T 2 + 4T + 24)

0

(T + 4)(T 3 − T 2 + 4T + 24)


Specialising T (and taking quadratic twists by d as indicated) we obtain the fol-

lowing pairs of directly 11-congruent elliptic curves E1 and E2.

T d E1 E2

2 −6 11a3 11a2

1 42 49a1 49a4

−3 −2 216b1 1512c1

11 −426 10082c1 70574h1

The elliptic curve 11-congruent to E is y2 = x3 + A(T )x+B(T ) where

A(T ) = −3(T − 3)(T 2 − 8T − 17)(T 3 − T 2 + 4T + 24)(T 12 − 250T 11 + 3473T 10

− 23824T 9 + 106654T 8 − 354556T 7 + 890186T 6 − 1710568T 5

+ 2386357T 4 − 2054170T 3 + 1799781T 2 + 956680T + 3570796),

B(T ) = −2(T − 3)(T 3 − T 2 + 4T + 24)2(T 20 + 476T 19 − 27815T 18 + 556718T 17

− 6046664T 16 + 42450848T 15 − 213832636T 14 + 823702888T 13

− 2497998850T 12 + 5954643736T 11 − 10798748818T 10 + 13644339892T 9

− 7927895108T 8 − 10398245632T 7 + 25581636532T 6 − 10366268760T 5

− 60876061719T 4 + 164062110060T 3 − 98120800447T 2 + 262948421518T

+ 141270230564).
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These elliptic curves have discriminants

21236(T − 5)(T − 3)2(T + 1)5(T 2 + 7)/(T 3 − T 2 + 4T + 24)3,

− 21236(T − 5)4(T − 3)2(T + 1)3(T 2 + 7)(T 3 − T 2 + 4T + 24)3(T 3 − T 2 + 15T − 31)11.

We did not find any pairs of reverse 11-congruent non-isogenous elliptic curves
over Q(T ). We note that according to [18, Theorem 4] the modular diagonal
surface in this case is of general type.
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