ON FAMILIES OF 7 AND 11-CONGRUENT ELLIPTIC CURVES
TOM FISHER

ABSTRACT. We use an invariant-theoretic method to compute certain twists of
the modular curves X (n) for n = 7,11. Searching for rational points on these
twists enables us to find non-trivial pairs of n-congruent elliptic curves over Q,
i.e. pairs of non-isogenous elliptic curves over Q whose n-torsion subgroups are
isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent
elliptic curves over Q(T"), and hence give an explicit infinite family of non-trivial
pairs of 11-congruent elliptic curves over Q.

1. INTRODUCTION

Elliptic curves E; and FEs over a field K are n-congruent if their n-torsion
subgroups Ej[n] and E3[n| are isomorphic as Galois modules. They are directly
n-congruent if the isomorphism ¢ : Ej[n] = Fs[n| respects the Weil pairing e,
and reverse n-congruent if

en(dP, 6Q) = e, (P, Q)"

for all P, € Ej[n]. The elliptic curves directly n-congruent to a given elliptic
curve E are parametrised by the modular curve Yg(n) = Xg(n) \ {cusps}.

For n < 5 we have Xg(n) = P! and the corresponding families of elliptic
curves were computed by Rubin and Silverberg [27], [29], [30]. It was shown
independently by Papadopoulos [25] and Rubin and Silverberg [28] that Xz(6)
is the elliptic curve y?> = 23 + Ag, where Ay is the discriminant of E. However
for n > 7 the genus of Xpg(n) is greater than 1. This prompted Mazur [23] to
ask whether there are any pairs of non-isogenous elliptic curves over Q that are
directly n-congruent for any n > 7. This was answered by Kraus and Oesterlé
[22] who gave the example of the directly 7-congruent elliptic curves 152al and
7448¢1. The labels here are those in Cremona’s tables [4]. Nowadays it is easy to
find further examples by searching in Cremona’s tables, for example

n=11 19061 and 2470al,
n =13 52a2 and 98801,
n =17 367501 and 47775b1.
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In each case the n-congruence is proved by computing sufficiently many traces of
Frobenius. See for example [22; Proposition 4].

Motivated by Mazur’s question, Kani and Schanz [18] studied the geometry of
the surfaces that parametrise pairs of n-congruent elliptic curves. This prompted
them to conjecture that for any n < 12 there are infinitely many pairs of n-
congruent non-isogenous elliptic curves over Q. It is understood that we are
looking for examples with distinct pairs of j-invariants, since otherwise from any
single example we could construct infinitely many examples by taking quadratic
twists. The conjecture was proved in the case n = 7 by Halberstadt and Kraus
[15], who subsequently [16] gave an explicit formula for Xpg(7) and used it to
show that there are infinitely many 6-tuples of directly 7-congruent non-isogenous
elliptic curves over Q. In this paper we find a formula for Xz(11) and use it to
construct a non-trivial pair of 11-congruent elliptic curves over Q(T"). This proves
the conjecture in the case n = 11. In contrast the proof by Kani and Rizzo [17]
does not construct any explicit examples.

We briefly mention three further motivations for studying n-congruence of el-
liptic curves.

e The modular approach to solving Diophantine equations sometimes re-
quires us to find all elliptic curves n-congruent to a given elliptic curve.
For example the paper of Poonen, Schaefer and Stoll [26] makes essential
use of the formula for Xg(7) due to Halberstadt and Kraus.

e There is a correspondence between pairs of reverse n-congruent elliptic
curves and curves of genus 2 that admit a degree n morphism to an elliptic
curve. See for example [14].

e It was observed by Cremona and Mazur [6] that if elliptic curves E and F'
are n-congruent then the Mordell-Weil group of F' can sometimes be used
to explain elements of the Tate-Shafarevich group of E.

As each of these motivations makes clear, we should also be interested in congru-
ences that do not respect the Weil pairing. The elliptic curves reverse n-congruent
to E are parametrised by the modular curve Y, (n) = X5 (n) \ {cusps}. The fam-
ilies of elliptic curves parametrised by Yy (3) and Y (4) were computed in [11],
and the analogous problem for n = 5 was solved in [12]. An equation for X (7)
was given in [26, Section 7.2]. In this paper we find equations for X (11).

In Section 1.1 we recall the definitions of X (n) and its twists. We then record
the formulae for Xg(n) and Xz (n) for n = 7,11 in Section 1.2. In the case n =7
these are the formulae given in [16], [26], but our method for finding them is new.
In the case n = 11 the formulae themselves are new.

In Section 2 we derive Klein’s equations for X (n) for n > 5 an odd integer. The
original approach of Klein was via theta functions, but our treatment is purely
algebraic. We also give explicit formulae for the action of SLy(Z/nZ) on X(n).
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Then in Section 3 we use invariant theory for SLy(Z/nZ) to compute the twists
Xg(n) and X, (n) for n =7,11.

In Section 4 we work out formulae for the families of elliptic curves parametrised
by Yr(n) and Yy (n) for n = 7,11. Computing the j-invariant maps j : Xg(n) —
P! and j : X5 (n) — P! is reasonably straightforward. Finding the right quadratic
twists takes considerably more work, although in specific numerical examples one
can always fall back on the method in [15], [22]. In the case of Yg(7) a formula is
given in [16], but this formula does not quite cover all cases. We give a new proof
leading to formulae that work in all cases. We then generalise to the families of
elliptic curves parametrised by Y (7), Yg(11) and Y (11).

Our formulae reduce the problem of finding elliptic curves n-congruent to £ to
that of finding rational points on Xg(n) and X (n). However before searching
for rational points it helps to simplify the equations by making a change of co-
ordinates. We have written programs in Magma [3] to do this in the case K =
Q, using ideas of minimisation and reduction similar to those in [5]. We will
report on this in future work. In fact we have written a program in Magma that
given an elliptic curve E/Q and n € {7,11} searches for rational points (up to a
specified height bound) on minimised and reduced models for Xg(n) and X (n),
and returns the corresponding list of elliptic curves n-congruent to E. In Section 5
we give some examples over Q to illustrate how this works, and also some examples
over Q(T'), which by specialisation of T' give infinite families of examples over Q.
The examples over Q may be checked, independent of the methods we use to find
them, by checking that the traces of Frobenius are congruent mod n for sufficiently
many primes.

All computer calculations in support of this work were performed using Magma
[3]. A Magma file checking all our formulae, together with a table of 11-congruent
elliptic curves over Q, is available from the website [13]. We have used the same
methods to study families of 9-congruent elliptic curves, and will report on this in
future work. Our restriction to odd n is explained by our use of Klein’s equations
(see Section 2.1).

1.1. Some modular curves. We work over a field K of characteristic 0 and
write K for the algebraic closure. Let n > 3 be an integer and M a Galois
module, isomorphic to (Z/nZ)? as an abelian group, and equipped with a non-
degenerate alternating Galois equivariant pairing M x M — p,. We temporarily
write Y}, for the algebraic curve defined over K whose L-rational points (L a field
extension of K') parametrise the isomorphism classes of pairs (E, ¢), where E is
an elliptic curve defined over L and ¢ : E[n] = M is a symplectic isomorphism
(i.e. one that matches up the given pairing on M with the Weil pairing on E[n])
commuting with the action of Gal(L/L). Two such pairs (E1, ¢1) and (Ey, ¢;) are
isomorphic if there is an L-isomorphism « : Ey — Ej such that ¢ = ¢ 0 (a|g,)-
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Let X be the smooth projective model of Yy, We write X (n) and Y (n) for
X and Yy in the case M = p,, X Z/nZ with pairing

((¢.a), (& 0)) = ("¢

Given an elliptic curve E/K, let Xg(n) be X, in the case M is Eln| equipped
with the Weil pairing. More generally let Xg)(n) be X in the case M is E|n|
equipped with the rth power of the Weil pairing for some r € (Z/nZ)*. Since
multiplication by m € (Z/nZ)* is an automorphism of F[n| that raises the Weil
pairing to the power m?, the curve Xg) (n) only depends on the class of r» mod
squares. Since we are interested in the cases n = 7, 11 it will suffice to take r = £1.
We write Xz (n) for Xé_l)(n).

Let ¢, € K be a primitive nth root of unity. Over K({,) we may identify
the Galois modules p,, X Z/nZ and (Z/nZ)?, and hence the group of symplectic
automorphisms of p, x Z/nZ with SLy(Z/nZ). There is then a natural action of
PSLy(Z/nZ) := SLy(Z/nZ)/{+I} on X (n) with quotient map j : X (n) — P
From the analytic theory we know that the j-map is ramified above 0, 1728 and
oo with ramification indexes 3, 2 and n. Hence by the Riemann-Hurwitz formula
the genus of X (n) is

gln) = ”12n6 # PSLy(Z/nZ) + 1
where for n > 3 we have # PSLy(Z/nZ) = (n®/2) [T (1= 1/p?). For some small
values of n the genus is as follows.

n‘2345678910111213141516 17
g(n)‘00001351013262550497381 133

1.2. Statement of results. A formula for Xz (7) was obtained by Halberstadt
and Kraus [16]. Their method relies on studying the points on the Klein quartic
X(7) = {23y + y32 + 23z = 0} C P? corresponding to an elliptic curve F and the
elliptic curves E,, Fy, E. that are 2-isogenous to E. By combining this result with
some classical invariant theory, Poonen, Schaefer and Stoll [26, Section 7.2] then
gave a formula for X (7).

Theorem 1.1 ((Halberstadt, Kraus, Poonen, Schaefer, Stoll)). Let E be an elliptic
curve with Weierstrass equation y*> = 23+ ax +b. Then Xg(7) C P? has equation
F =0 where

F = axt+7bx z4+-32%y? —3a? 2% 2° —6bry 2 —babr 23 4-2y3 2+ 3ay? 22+ 202y 23 — 4% 2%,

and X5 (7) C P? has equation G = 0 where

G = —a’z* + 2abx’y — 12b2°z — (6a® + 36b*)2%y? + 6ax?2* + 2a*bxy® — 12abry*z
+ 18bxy2* + (3a + 19ab?)y* — (8a® + 42b%)y* 2 + 6a’y*2* — 8ayz® + 327
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We give a new proof of Theorem 1.1 and then extend to the case n = 11.
Although we believe our formulae in the case n = 11 are correct for all elliptic
curves F, our proof does not naturally extend to the cases j(F) = 0,1728. We
therefore assume for simplicity that j(E) # 0,1728. It was observed by Klein [20]
(see also [2, Example 22.3]) that X (11) may be embedded in P* as the singular
locus of the Hessian of the cubic threefold

{v*w + v’z + 2%y + y?z + 2%v = 0} C PL.

Theorem 1.2. Let E be an elliptic curve with Weierstrass equation y?> = 2% +
ar+b. If j(E) # 0,1728 then Xg(11) C P* is the singular locus of the Hessian of

F =0 + av’z — 2ava® + davay — 6bvxz + avy® + 6bvyz + a’vz® — w?

+ aw?z — dawx® — 12bwxz + a*wz? — 2bx® + 3bx’y + 2a*x?z + 6bry?
+ dabzz? + by — a®y*z + abyz? + 20723,

and X5 (11) C P* is the singular locus of the Hessian of

G = vz + 2vwy + dvzy + 20w — aw’z + 2wr? — 2awy? — 6bwyz
+ 622 — 6ax’z + 2a’x2? 4 by® — 2a%y*z — babyz? — b223,

2. EQUATIONS FOR X (n)

We derive equations of Klein [19], [20], [21] for the modular curves X (n). Our
treatment follows the survey in [8, Chapter 4], but see also [2], [33].

2.1. Klein’s equations. Suppose to begin with that (, € K. Then the modular
curve Y (n) parametrises the triples (F, P,Q) where E is an elliptic curve and
P, Q is a basis for E[n] with e, (P, Q) = (,. If we embed E C P"! by a complete
linear system |D| of degree n then the translation maps 7p and 7o extend to
automorphisms of P"~1. In fact we have the following lemma, as proved in [9,
Section 2.1].

Lemma 2.1. (i) We may change co-ordinates on P"~' (over K ) so that Tp and
To are given by

1 0 0 --- 0 00 --- 01
0 &G 0 -+ 0 10 --- 00

Mi=]00 ¢ -~ 0 and Mp=|0 1 --- 0 0

n
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(ii) If n is odd and [—1]*D ~ D then there is a unique choice of co-ordinates (over
K ) such that mp, 7o and multiplication by —1 are given by My, My and

10 - 00
00 -~ 01
-1]=]00 - 10
01 - 00

It is well known that if n > 4 then the image of £ C P" ! is defined by
quadrics. In fact the homogeneous ideal is generated by a vector space of quadrics
of dimension n(n — 3)/2. See [10, Section 5.1] for a short proof, or [24] for a more
general result.

We restrict to n > 5 an odd integer. If we embed £ C P* ! via the com-
plete linear system |n.0g|, and choose co-ordinates as in Lemma 2.1, then sending
(E, P,Q) to the image of O defines an embedding Y (n) C P"~!. We check injec-
tivity as follows. If we know the co-ordinates of O € P*~! then M, and M, allow
us to write down n? points on E. By Bezout’s theorem any quadric not containing
E meets E in at most 2n points. Therefore F is defined by the quadrics containing
these n? points, and P, € E|[n] are the translates of 0z under M; and M.

We now drop our assumption that ¢,, € K. The subgroup of PGL,,(K) generated
by M; and M, is isomorphic to p, X Z/nZ as a Galois module. In view of the
definition of X (n) in Section 1.1, it follows that the embedding Y (n) C P* !
described in the last paragraph is defined over K, and not just over K((,).

We write (zg : @1 : ... : x,_1) for our co-ordinates on P! and agree to read all
subscripts mod n. Since n is odd we have

nlOg~0g+P+2P+...4(n—1)P.

The divisor on the right is a hyperplane section and is invariant under translation
by P. It is also the only such divisor with Og in its support. Therefore 0r belongs
to exactly one of the hyperplanes fixed by M;. But O is fixed by [—1], so we have
either

O = (0:aj:as:...:as:ay) (+)
or OE = (O:CLl:QQZ...I—aQZ—al) (_)
where aq, as, ... are non-zero.

Let W be the vector space of quadrics on P*~! and V the subspace of quadrics
vanishing on E. Then dimW = n(n + 1)/2 and dim V' = n(n — 3)/2. The action
of M; allows us to write these as direct sums V = @V, and W = W, with

‘/i C Wz = <l‘?,$i_1l‘z‘+1, o >
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The V; and W; are the subspaces on which M acts with eigenvalue (*. The action
of My shows that V; =V, ; and W; = W, for all i. Therefore dimV; = (n—3)/2
and dimW; = (n + 1)/2. The requirement that the quadrics in V{ vanish at
Op = (ap : a1 : ... : a,_1), and its translates under M, imposes some linear
conditions on the coefficients of these quadrics. Since Vo C Wy has codimension 2
it follows that rank(ai_jaiﬂ)z;:lo < 2.

If Og is of the form (+) then this matrix is symmetric, and the vanishing of the
top left 3 x 3 minor contradicts that ai, as, as are non-zero. Therefore 0 must be

of the form (—). This motivates the following definition.

Definition 2.2. For n > 5 an odd integer let Z(n) C P" ! be the subvariety
defined by ag =0, a,,_; = —a; and

(1) rank(aifjawj)z;:lo <2

We note that (1) is equivalent to the vanishing of the 4 x 4 Pfaffians of this
skew-symmetric matrix. Using minors instead of Pfaffians also works, but gives
equations of larger degree. The above construction shows that Y (n) C Z(n). It is
natural to ask whether X (n) = Z(n). Vélu [33] proved this in the case n = p is a
prime. However if n is composite then Z(n) has extra components.

When n=7weput Og = (0:a:b:—c:c:—b: —a) so that Z(7) C P? with
co-ordinates (a : b: ¢). Then Z(7) is defined by

2 be —ab 0

Computing the Pfaffian of this matrix (i.e. the square root of its determinant)
shows that X (7) = Z(7) is the Klein quartic {a®b + b3c + c3a = 0} C P2,
Whenn=11weput Op =(0:a:—c:b:e:d:—d: —e:—b:c: —a) so that
Z(11) C P* with co-ordinates (a : b: c: d : e). Computing 4 x 4 Pfaffians shows
that X (11) = Z(11) is the singular locus of the Hessian of the cubic threefold

{a®b+ b?c+ *d + d*e + e*a = 0} C PL.

In other words, X (11) is defined by the vanishing of the partial derivatives of the
determinant of the matrix

b a 0 e
a c b 0
(2) 0 bdc O
0 0 ¢c e d
e 0 0 a
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We refer to [2] for further details. In fact, as we checked using Magma, the
homogeneous ideal of X (11) is generated by the 4 x 4 minors of (2).

2.2. The action of SLy(Z/nZ). We suppose ¢, € K so that Y (n) parametrises
the triples (E, P, Q) where E is an elliptic curve and P, @ is a basis for F[n] with
en(P, Q) = (,. The natural action of SLy(Z/nZ) on Y (n) is given by

(3) (28): (E,P,Q) — (E,dP — cQ,—bP + aQ).
This extends to an action on X (n), and so defines a group homomorphism
(4) 7 : SLo(Z/nZ) — Aut(X (n)).

We now take n > 5 an odd integer. In Section 2.1 we defined an embedding
X(n) Cc P! where m = (n—1)/2. In this setting (4) becomes a projective repre-
sentation p : SLy(Z/nZ) — PGL,,(K). We show that it lifts to a representation.
See [2, Appendix I] for a discussion of how this relates to work of Weil. We write
o for equality in PGL,,(K).

Proposition 2.3. The projective representation p : SLo(Z/nZ) — PGL,,(K) lifts
to a representation p : SLy(Z/nZ) — GLy,(K).

Proof. If we embed X (n) C P"! as described in Section 2.1 then the action (3)
extends to a projective representation 7 : SLg(Z/nZ) — PGL,(K) where the

image of v = (2%) is uniquely determined by the properties that

5) F() ™ MEMR() ox Mgy e

for all w,v € Z/nZ, and 7(y) commutes with [—1]. We regard 7 as describing an
action on P"~! = P(WW) where W is an n-dimensional vector space. The action of
[—1] gives an eigenspace decomposition W = W, @ W_ with dim W, = (n+1)/2.
We may then identify p with the restriction of @ to P(W_) = P™~1. To prove
the proposition we prove the stronger result that 7 lifts to a representation 7 :
SLy(Z/nZ) — GL,(K).

Let S = (%) and T = (}1) be the usual generators of SLy(Z/nZ). In
view of the relations (ST)? = S* = T™ = I,, the only non-trivial 1-dimensional
characters of SLy(Z/nZ) are the ones, in the case n is a multiple of 3, that factor
via PSLy(Z/37) = A,. Using (5) we compute

(6) 7(S) o< (¢)rt 7(T) o Diag(C /%))

n )i,j=0
where the exponents are read as elements of Z/nZ.

If M € GL,(K) acts on each of the subspaces W, then we write M. for the
endomorphisms obtained by restricting to W... Since

312+2°+...+m*) =0 (mod n)
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it is clear that if M = Diag({fﬂ)?z_ol then the determinants of M, and M_ are
cube roots of unity. So by (6) there is a lift 7(7") of 7(7T"), and 1-dimensional
characters x4 of SLy(Z/nZ), such that det(7(7")+) = x+(T). Next we lift 7(5) to
a matrix m(5) such that

(7) 7(S)a(T) "' (S) = m(T)m(S)m(T).

Restricting to Wy and taking determinants it follows that det(w(S)y) = 1 =
X+(5). For each v € SLy(Z/nZ) we now let 7(y) be the unique lift of 7(y) such
that det(m(v)+) = x4 (7). These lifts exist since S and T" generate SLo(Z/nZ) and
are unique since dim W_ and dim W are coprime. It is evident that the map =
so defined is a group homomorphism. O

Remark 2.4. (i) A calculation using (7) shows that 7(S) = g,*(¢)};, where
the Gauss sum g, = > CEZQ/Q satisfies g2 = (—1)("=1/2p,

(ii) If we take Og = (0 :ay :ag :...: —ay : —aq) then with respect to co-ordinates
(ay :...:am,) we may take
p(S) = 9. (¢ = Gy p(T) = Diag (G /)L,

In particular p(—1Iy) = (—1)™+)/2[

(iii) If n is not divisible by 3 then SLy(Z/nZ) has no 1-dimensional characters,
and so the lift we have constructed is unique. If n is divisible by 3 then m is
not divisible by 3 and we can make p unique by demanding that det p(T') = 1,
equivalently that p takes values in SL,,(K).

3. EQUATIONS FOR Xg(n) AND X (n)

We derive our equations for Xz (n) and Xz (n) by using invariant theory for the
group SLo(Z/nZ) to twist the equations for X (n) in Section 2.1. We first make
some general remarks about twisting and then split into the cases n =7, 11.

3.1. Preliminaries on twisting. Let n > 3 be an integer. We recall that Y (n)
parametrises the pairs (E, ¢) where F is an elliptic curve and ¢ : E[n] = p, X Z/nZ
is a symplectic isomorphism. We temporarily write I" for the group of symplectic
automorphisms of p, x Z/nZ. Then I" acts on Y(n) by v : (E,¢) — (E,v¢).
This action extends to X (n), and so defines a group homomorphism

(8) p:I'—= Aut(X(n)).

If X; and X, are varieties defined over K, and o : X; — X3 is a morphism
defined over K, then for each o € Gal(K/K) we write o(a) for the morphism
X1 — X, given on K-points by P +— o(a(c™1P)).
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Lemma 3.1. Let E/K be an elliptic curve and ¢ : E[n] = p, X Z/nZ a symplec-
tic, respectively anti-symplectic, isomorphism defined over K. Then there is an
isomorphism o : Xg(n) — X (n), respectively o : Xz (n) — X(n), defined over K,
such that

o(0)o™! = p(o(@)s7)
for all o € Gal(K/K).

Proof. The points of Yg(n), respectively Yz (n), correspond to pairs (F, 1) where
F is an elliptic curve and ¢ : F[n] = E[n] is a symplectic, respectively anti-
symplectic, isomorphism. For ¢ as in the statement of the lemma, the composite
¢ : F[n] = p, x Z/n7Z is a symplectic isomorphism. Let a : Yi(n) — Y(n)
be the isomorphism defined by (F,v) — (F,¢). Then o(a) maps (F,v) —
(F,o(¢) ). Therefore o(a)a™! maps (F,¢') — (F,o(¢)¢p~'¢’). In our notation
this automorphism of Y'(n) is denoted p(o(¢)p™1). O

Fixing a primitive nth root of unity ¢, € K, we identify p, x Z/nZ with
(Z/nZ)? via ({2, b) — (a,b). Then I' = SLy(Z/nZ), and the maps p defined in (4)
and (8) are the same. We now suppose, as happened in Section 2 for n > 5 an
odd integer, that X (n) is embedded in P™~! for some m, and p is realised as a
projective representation (also denoted p by abuse of notation)

p: SLy(Z/nZ) — PGL,,(K).
We write o< for equality in PGL,,(K), and use a superscript —7' to indicate we
take the inverse transpose of a matrix. Let ¢ = ({ % ). We further suppose that
(9) pleye) o< p(y) ™"
for all v € SLy(Z/nZ). Equivalently, p(S) and p(T") are symmetric matrices, where
S and T are the generators for SLy(Z/nZ) defined in Section 2.2. Our strategy
for computing Xg(n) and X;(n) as twists of X (n) is explained by the following
lemma.

Lemma 3.2. Let E/K be an elliptic curve and ¢ : E[n] = u, x Z/nZ a symplectic
isomorphism defined over K. Suppose hi, hy € GL,,(K) satisfy

o(h)hi" o< plo(¢)g™) o(ha)hy" o plo(g)e™") ™"
for all 0 € Gal(K/K). Then Xg(n) C P! and X, (n) C P! are the twists of
X(n) € P™! given by Xp(n) 2 X(n); x — hix and X5 (n) = X(n); x — hox,
where X is a point in projective space written as a column vector.
Proof. Let X' = {x € P! | hyx € X(n)}. Since o(h;)h; " is an automorphism of

X (n), we see that X' is defined over K. Then by Lemma 3.1 the curves Xg(n)
and X’ are twists of X(n) by the same cocycle. They are therefore isomorphic
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over K. The proof is the same for X (n), except that we apply Lemma 3.1 to the
pair (E,t¢), and observe by (9) that

plo(e9) (19)™") = pleo()d™"e) o pla(d)™!) 7"

For the first equality we use that ¢ corresponds to an automorphism of p,, X Z/nZ
which is defined over K. Il

Remark 3.3. If, as happened in Section 2 for n > 5 an odd integer, the projective
representation p lifts to a representation

p:SLy(Z/nZ) — GL,,(K)

then the existence of a matrix h; satisfying the conditions in Lemma 3.2 follows
from the generalised form of Hilbert’s Theorem 90 which states that

H'(Gal(K/K), GL,,(K)) = 0.

We could then take hy = h;*. Nonetheless we find it more convenient to compute
hy and hy using invariant theory for SLy(Z/nZ).

3.2. Formulae in the case n = 7. We saw in Section 2.1 that X (7) is the Klein
quartic {F' = 0} C P? where

F =d’b+ bPc+ ta.

Let G = PSLy(Z/7Z) be the image of p : SLy(Z/7Z) — GL3(K). It is generated
by

fa-¢ ¢-¢ g-¢ G 00
p G—¢G G-G G-¢G | and 0 & 0
G-G G-G ¢-@ 0 0 ¢

where g7 = 1+ 2(G + ¢ + &) = V7.

Definition 3.4. An invariant of degree m is a homogeneous polynomial I =
I(a,b,c) of degree m such that [ o g = I for all g € G.

Following Klein (see for example [7], [16], [19]) we put

9%°F  9°F  9%F

Oa? 0adb  Oadc

_(_ 0%°F  9*°F  9%F
H=(=1/54) x| 55 S e |

0%°F  9*°F  9%F

Oadc  ObOc Oc?
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PF PF PR ol
da? 0adb  Odadc  Oa 9F OF OF
BQF 82F BQF 8_H da ob de
0adb Ob2 0boc ob H H H
Cq = (1/9) X 2 2 2 ? Ce = (1/14) X %_ %_b %_
2F  9°F 9*F 9H @ ¢
dadc  ObOc Oc? dc Ocy Ocy Ocy
ol oH oH 0 Oa ob Oc
da ob dc

The ring of invariants K|a, b, c|“ is generated by F, H, ¢, and ¢ subject to a single
relation which reduces when we set F' =0 to
ci —ct =1728H" (mod F).

Since F, H, ¢4 and cg have degrees 4,6, 14 and 21 it is clear that every invariant of
odd degree is divisible by c¢g.

Lemma 3.5. The j-invariant X (7) — P is given by j = ¢3/H".

Proof. Both j and jo = ¢3/H" define maps X (7) — P! that quotient out by the
action of G = PSLy(Z/77Z). So they can differ by at most a Mdébius map. We
recall that j is ramified above 0, 1728 and oo with ramification indices 3, 2 and 7.
Since

#{F =cy =0} < 4ddeg(cy) = %|G|
#{F = cs =0} < 4ddeg(ce) = %|G|
#{F = H =0} <4deg(H) = 1|G]
and jo — 1728 = ¢2/H', we see that jy is ramified above 0, 1728 and co with

ramification indices at least 3, 2 and 7. It follows that j = jo as required. U

Definition 3.6. A covariant column, respectively contravariant column, of degree
m is a column vector v = (v1, vz, v3)? of homogeneous polynomials of degree m in
variables a, b, ¢ such that v o g = gv, respectively vo g = g~ 'v, for all g € G.

We note that x = (a, b, c¢)” is a covariant column of degree 1, whereas if I is an

invariant of degree m then VI = (g—é, %, %)T is a contravariant column of degree

m — 1.

Lemma 3.7. Let E/K be an elliptic curve and ¢ : E[7| = pur X Z/TZ a symplectic
isomorphism defined over K. Let (a : b : ¢) be the corresponding K -point on
X (7) € P? with co-ordinates (a,b,c) scaled so that

(10) ca(a,b,c) = cy(E)  and cg(a,b,c) = c(E)

where E has Weierstrass equation y* = 13 —27c,(E)x —54c6(E). If j(E) # 0,1728
and h € GL3(K) is a matriz whose columns are covariant columns, respectively
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contravariant columns, of the same degree mod 7, evaluated at (a,b,c) then

a(M)h™" o< p(a(d)o™),
respectively
a(M)h~" o< p(a(¢)o™") ",
for all o € Gal(K/K).

Proof. Let & = o(¢)¢~1 € SLy(Z/TZ). Since p describes the action of SLy(Z/77Z)
on X(7) C P? we have

(11) O'((CL, b, C)T) = /\Up(ga)(a7 b, C)T

for some A, € K . Now p(&,) € G, whereas ¢4 and ¢g are homogeneous polyno-
mials of degrees 14 and 21 invariant under the action of G. Therefore

o(cy(a, b, c)) = )\;404(a, b,c) and o(cs(a,b,c)) = )\3.106(@, b, c)

for all o € Gal(K/K). We are given that c4(F),cs(E) € K. So by (10), and our
assumption j(E) # 0,1728, we have A\}* = A\2! = 1. Hence ), is a Tth root of
unity. Now suppose the columns of h are obtain by specialising polynomials whose
degrees are all congruent to r mod 7. Then by (11) and Definition 3.6 we have

U<h) =ho (/\op(ga)) = A;p(fo)h,
respectively

a(h) =ho(A\p(&)) = Nop(&) ™" h.
Therefore o(h)h™" o p(&,), respectively a(h)h™t o p(&,)~7T, as required. O

We use Lemmas 3.2 and 3.7 to compute equations for Xg(7) and X (7). First
we classify the covariant and contravariant columns. It is evident that

e The dot product of a covariant column and a contravariant column is an
invariant.

e The cross product of two covariant columns is a contravariant column.

e The cross product of two contravariant columns is a covariant column.

We also write [vq, vy, v3] = (vi X vy) - v for the scalar triple product. It is
straightforward to solve for the covariant and contravariant columns of any given
degree by linear algebra. As above we put x = (a,b,¢)T. Let e and f be the
covariant columns of degrees 9 and 11 given by
o I9(VF x VH) — ¢y(VF X Veg) + 12H?*(VH X Vey)
14cq
_ Iy(VF x VH) — (16F* — 104F H?)(VF x Veg) + ¢o(VH x Vey)
14cq

f
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where
Iy = 448 F*H — 48F?¢, — 2048 FH*®
Iy = 128F% — 160F2H? — 236 F Hey — 336 H.

We describe the covariant and contravariant columns as modules over the ring
K|[F, H, ¢, of invariants of even degree.

Lemma 3.8. (i) The covariant columns of odd, respectively even, degree form
a free K[F, H, c4]-module of rank 3 generated by x, e, £, respectively VF x
VH, VF x VC4,VH X VC4.
(ii) The contravariant columns of odd, respectively even, degree form a free
K|F, H, c4]-module of rank 3 generated by VF, VH, Vey, respectively x x
exxfexf.

Proof. By direct calculation we have [x,e,f] = —cg, whereas the definition of
cg may be rewritten as [VF,VH,Vey| = 14cg. Since cg is not identically zero
it follows that x,e,f are linearly independent over K (a,b,c), and likewise for
VF,VH,Vey.

Let v be a covariant column of odd degree. We write v = [1x+ Ire + I3f where
I, Iy, I3 are rational functions in a, b, c. Taking the dot product with e x f shows
that [v, e, f| = I1[x,e,f]. But [v,e, f] is an invariant of odd degree and therefore
divisible by cg. It follows that [; is an invariant, and likewise for I and I3.

The other cases are similar. U

Theorem 3.9. Let E/K be an elliptic curve with Weierstrass equation y> =
x3 — 27cyx — Hdcg and let A = (¢} — ¢2)/1728. If j(E) # 0,1728 then Xg(7) C P?
has equation F = 0 where
F = 12232 + 1082%)° + 3ca2?2® + T2c42y%2 — 108c4y™ — 12¢4xy2>
+ 84cey®z + cAaz® — 15c3y% 2% + cyceyz® + T68AZY,
and X (7) C P? has equation G = 0 where
G = 32* + c,2°2 — 18cy2*y® — 3cga®yz + 24cery® + 3ciay’ 2

— 92yt — cycey®z + 168Aw2° 4+ 1728 Ay 2% 4 Seg Azt
Proof. The covariant columns x, VF x VH, He have degrees 1, 8, 15, and the
contravariant columns VF, xx e, H?>V H have degrees 3, 10, 17. The determinants
of the matrices formed from these columns are

det(x, (VF x VH), He) = 72H* — 4c,FH

(12) 20 1y 7o 115 2
det(VF, (x x €), H*VH) = T2H® — 4, FH>.
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Therefore the matrices h; and hy obtained by evaluating at a point of Y (7) are
non-singular.

The coefficients of the quartic F(z,y, z) = F(zx+y(VF x VH) + zHe) are in-
variants. Using linear algebra to rewrite these invariants as polynomials in F, H, ¢4
and cg we find

F(z,y,2) = Fr* + 12H%2%2 + (108H® — 6¢,F)2%y? — 8cgFry’
+ 3ca H3 2?22 + (T2c4 H? + 4128 F? H* + 48¢, F* H — T68F° H?) vy’
+ (—108cs H? — 3c3F — 11376 F* H* + 32c4F* H + 3392F° H? — 256 F®)y*
— 12c6H?zy2* + (84ce H? — 16c6F° H )y 2 + (c3H® + 688FH”
+ 8¢y F2H* — 128 F*H?)22* + (—15ciH? — 10512F H" — 384c,F*H*
+ 6144F*H® + 96c4 F° H? — 768 F"H*)y*2* + (cyce H® — 8cg F*H*)y2*
+ (T68H" — 36c, FH™ — AF*H* + 176 F3H® 4 16¢, F*H® — 64F°H®)2*.
Likewise G(z,y,z) = F(zVF + y(x x €) + zH*VH) becomes
G(z,y,2) = (3H? + 28F%)a* + (c4H? + 168F2H?) 2%z + (—18¢, H?
— 816F2H?® — 24c, F? + 192F° H)a*y* — 3cg H* 2 yz + 24ce H?x1)°
+ (222F H® + 24F*H*)2*2* + (3c1H? + 3744F HS — 576 F*H*Y) 2
+ (=9t H? — 5184F H® — 240c, F? H? — 4¢3 F® + 2240 F*H* + 64c, F° H
— 256 H?)y* + (—cacg H? + 8c F2H?)y* 2 + (168 H® + 3¢y F HE
+24F*H 22 + (1728 H® — T8¢, FH® + 816 F°H' + 24c, F*H?
— 192FH®)y?2* + cs FHOyz* + (5c4HY + 35F?H' — 4F°H®)2*.

Let (a: b : c) be the K-point on X (7) corresponding to (E, ¢) for some choice
of symplectic isomorphism ¢ : E[7] = u; x Z/7Z. By Lemma 3.5 we may scale
(a,b, c) to satisfy (10). With this choice of scaling we also have H(a,b,c)” = A. By
Lemma 3.7 the matrix hy, respectively ho, formed by evaluating the covariant, re-
spectively contravariant, columns at (a, b, ¢), satisfies the conditions of Lemma 3.2.
Therefore a formula for X E(Z), respectively X, (7), is given by specialising the co-

efficients of F', respectively G, to this choice of (a,b,c). Explicitly we set F' = 0,
divide through by H?, respectively H?, and replace H™ by A. O

Remark 3.10. It is not immediately clear how the equations for Xg(7) and
X (7) found by our method (see Theorem 3.9) are related to those already in the
literature (see Theorem 1.1). In fact writing a = —27¢, and b = —54cg we have

Flz,y,2) = }EF<6C4Z — %y, xr,—18z), G(x,y,z) = G(9¢4y + 2z, 3z, 108y).
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3.3. Formulae in the case n = 11. We saw in Section 2.1 that X (11) is the
singular locus of the Hessian of the cubic threefold {F = 0} C P* where

F = a®b + b*c+ *d + d*e + e*a.
Let G =2 PSLy(Z/117Z) be the image of p : SLy(Z/11Z) — GL5(K). It is generated
by
=Gt Gi=G’ GG =G GG
GG’ =G -G -Gt =Gy
(=G’ =G =G =Gt G-
=G’ Ch—Gi -Gt G-t -G
Ghi—Cn' u—Gnt G-’ -G’ G- G
and Diag(Ci1, ¢y, ¢l ¢, €B1), where gy = 142(Ci +¢F + ¢ +¢5 +¢h) = V=11
We define the invariants, covariant columns and contravariant columns exactly

as in Section 3.2. Let ) denote a sum over all cyclic permutations, so that for
example F' = > a?b. Other examples of invariants of small degree include

H = 3abede + Y (aPc? — a’de),
I; = > (a%e + 3a®d* — 15a*bce + 5ab3d + 15abed?),
Is =Y (a"c — Ta*bd® — Ta'de® + Ta®b?c® + 21a3cAd>e).
Writing A and B for the matrices of second partial derivatives of F' and H we find
det(A +tB) = 32H — 327t — 241gt* — 8cyt® + . ..

1

g11

where Iy and ¢4 are invariants of degrees 9 and 11. Although we will not need a
complete set of generators for the ring of invariants, we remark that such a set is
given in [1], and may also be computed using Magma. Let Z be the homogeneous
ideal of X (11), i.e. the ideal generated by the 4 x 4 minors of the Hessian matrix
of F'. The degree 19 polynomial

¢ = a’b' — 509b'%d — 14107b"d"e + 5106%¢'” + 4232607 d"? + 20669b°d e
— 14107V d*e*® — 277419bc%d™ b — 248909bcd®e — 209926bcd’ e
+ 762409bd €™ + be'® — 1018¢'%e — 14107¢'%de? — 586835¢ 2 d>e?
4 197780c'd*e® 4 1019°d™ — 7871303 d° e’ + 15634c"d e + 42326¢ e
+2007576c5d%e™ + 247382 d 2 e? — 528424c°de’® — 616653¢*d"e®
+ 3767443 dM3e® + 10677323 d% et — 2250047 dBe” + 463659cd e
— 582142cde'® + 70511d"e™,

is not an invariant but satisfies

¢¢ = abede(c) — 1728FM)  (mod I).
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Lemma 3.11. The j-invariant X (11) — P! is given by j = 3/ F*L.

Proof. Both j and jo = ¢3/F! define maps X (11) — P! that quotient out by the
action of G = PSLy(Z/11Z). So they can differ by at most a Mdbius map. We
recall that j is ramified above 0, 1728 and oo with ramification indices 3, 2 and
11. Tt is shown in [2, Corollary 23.28] that X (11) C P* has degree 20. Since

#X(11) N {es = 0} < 20deg(cq) = 1[G
#X(11) N{cg = 0} < 20deg(cs) < |G|
#X(11) N{F =0} < 20deg(F) = |G|

and jo — 1728 = ¢/ ((abede) FM) it follows that j = jg as required. 0

Lemma 3.12. Let E/K be an elliptic curve and ¢ : E[11] = pupy X Z/11Z a
symplectic isomorphism defined over K. Let (a :b:c:d: e) be the corresponding
K -point on X(11) C P* with co-ordinates (a,b,c,d,e) scaled so that

(13) ca(a,b,c,d,e) = cy(E)

where E has Weierstrass equation y*> = x3 — 27cy(E)x — bdcs(E). If j(E) # 0
and h € GLs(K) is a matriz whose columns are covariant columns, respectively
contravariant columns, of the same degree mod 11, evaluated at (a,b,c,d,e) then

a(h)h™ o p(a(p)o™),
respectively
a(h)h™" o< p(o(@)¢™) ",
for all o € Gal(K/K).

Proof. The proof is similar to that of Lemma 3.7. Recall that ¢, is a homogeneous
polynomial of degree 11 and so (13) determines the scaling of (a,b, ¢, d,e) up to
an 11th root of unity. U

We use Lemmas 3.2 and 3.12 to compute equations for Xg(11) and X, (11
First we compute some covariant columns. Let x; = (a,b,c,d,e)T. If

).
=
SLy(Z/11Z) is diagonal then p(7) cyclically permutes the co-ordinates a, b, ¢, d, e.
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A covariant column is therefore uniquely determined by its first entry. By averag-
ing over the group we found covariant columns x4, x5, X9 with first entries
f1 = 2a%€?® + 4ab*c — dac’d + 4bce* + d*,
fs = —bace + 5a’b*d + 5a’cd? + babc’e — 10abde? + b° — 5b3ed + 5bdPe + 5c%e?,
fo = —14abde — 8a°bd® + 9a’c?e? + 2a°de® + Sa'ble + 5a'b*c® + 63a’b*cde
+ 6a’c'd — 18a*PdPe + 8atd®e® + 31a®b*d* — 21a3b3e® + 47a3b%cd® + 35abc3e?
+ 14a3bede® — 12a3c2d* 4+ 10a3dPe + 3a*bce — 26ab3c* — 42a2b3c*de
— 75a°b*d*e* + 3a°b%e” + 18a°bc’d — 30a°b’d*e — 36a’bed’e® + 2a* e’
— 9a%cde® 4+ a*d" — 2ab"d — 6ab’cd?® + 50ab’ce® — TabcPd® — 6ab*d'e
— 5dab’cte? — 3ab’cide® — 9ab d?et — 29abc3d* + 21abed’e + abe” + 9ac’de?
+ 25actd?e® — Tacd®e* — 106°c%e — 20%de® + 4b*c® + 40b*Pde — 6b* cd®e?
+ 13b%ce® — 36°d° — 150 de — 54b°PdPe? + 316%d*e® — 11bc*e* + 3bc*de®
— 2bed” — Thd*e® — "d? 4+ 5P dPe — 93 d e? + ScdPed — €°.
We temporarily write aq, ..., a5 for a,b,c,d, e and let = be the 5 x 5 alternating

matrix with entries
B oF 0I, OF 09I,

~" da, da,  day da,
where r = (i —j —2)>+7+3 (mod 5) and s = (j —i—2)3+j+3 (mod 5). Then
x14 = =V 17 is a covariant column of degree 14.

—_

Theorem 3.13. Let E/K be an elliptic curve with Weierstrass equation y* =
13 —27cyx — Hdeg and let A = (¢} —c2)/1728. If j(E) # 0,1728 then Xg(11) C P*
1s the singular locus of the Hessian of

F =0 + 30w + cyv’y + 3vw? + 2covwy — caAva® + 48Avzxy + Jw?
+ beqwy — Aw?z 4 Awy? — 576Awyz + T2c,Awz® — 4A%? — 72A%2°2
+ degAzy? + 263 Axyz — (A — 1728A%) w27 + 64Ay° — T2c4Ay? 2 + 12¢3 Ay 22
+ (A — 3456A%) 23,
and X (11) C P* is the singular locus of the Hessian of
G = 5% — v’z — 6007y + 28c4v%2 — 2c,Avw® — 48 Avwx — 240Avwz
— 16cqvzy + 1680vy?* — 872c,vyz + 121c5v2* + 8A%w? + 44c,Aw?y
— 114 AWz + cyAwr? + 336 Awry — 122c,Awxz + 25ciwy? — 14160 Awyz
+ 817c, Awz? — 20A2® + 5cia’y — 1884Ax?z — 364cyry® + 160ci0y2
— 34764Ax2* 4 19840y> — 10268c,y*z + 1643c3yz* — 129220A2°.
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Proof. The covariant columns Xi, X4, X5, X9, X14 have degrees 1,4,5,9,14 and the
contravariant columns VF,VI;, VIg, Vliy, Vecy have degrees 2,6,7,8,10. The de-
terminants of the matrices formed from these columns satisfy

(14) det(x1, X4, X5, Xg, X14) = ¢3 — 1728F""  (mod T)
det(VF,VI;, Vg, Viy, Vey) = 55(c; — 1728F')  (mod I).
The coefficients of the cubic ﬁ(v, w, x,y, z2) = F(vx; +wx4+rX5+YyXo+2X14) are

invariants. Using the Grobner basis machinery in Magma to rewrite the coefficients
mod Z as polynomials in ¢4 and F’ we find

F = Fv® + 3F%0%w + 041)23/ + 3F3%w? + 2F cyuowy — cavx® + 48F5v:cy + 9F w3
+ 5F%cywy — cjw?z + cwy® — 576 F wyz + T2F cqwz?® — AF%23 — 72F82% 2
+ 4F cqry® + 2F2Cwyz — (c3 — 1728 F ™) w2? + 64F % — T2F ¢y’ 2 + 12F°chy2?
+ (FPc} — 3456 F )22,
Likewise é(v, w,x,y,z) = F(oVF +wVI; +x2Vig + yViy + 2Vey) becomes
G =5F2 — cavx — 60F4v2y + 28Fc,0%2 — 2F cyvw? — 48 FPvwz — 240 FSvwz
— 16F2cqvzy + 1680 FSvy? — 872 F3cyuyz + 121c3v2* + 8FOw® 4 44 F3 cquw?y
— 11wz + Fieywa® + 336 F wry — 122F* cywrz + 25ciwy? — 14160 F3wyz
+ 817TFPcywz? — 20F 2 + 5oty — 1884F% 2?2 — 364F cyxy® + 160F caayz
— 34764F 2% + 19840 F %y — 10268 F°cyy®z + 1643 F%ciyz* — 129220 F 1023,
Let (a : b:c:d:e) be the K-point on X(11) corresponding to (E,®) for
some choice of symplectic isomorphism ¢ : E[11] = py; x Z/11Z. By Lemma 3.11
we may scale (a,b,c,d,e) to satisfy (13) and F(a,b,c,d,e)! = A. Moreover the

determinants (14) are non-zero by our assumption j(E) # 1728. By Lemmas 3.2
and 3.12 we obtain cubic forms describing Xg(11) and X (11) by putting

1 ~
F(v,w,r,y,2) = —F(Fv,w, Fz, F*y, F*z)

(15) B
Gv,w,z,y,z) = 7 (Fv, F3w, Fz,y, F°2)
and replacing F'' by A. O

Remark 3.14. We simplify the cubic forms F and G in Theorem 3.13 by putting

1

3.3
25¢cg

1
2536(55¢4)3

Fo,w,z,y,2) = F(—v',w', —864x, —36¢c4x — 108¢q2, T2y)

Gv,w,x,y, 2) G(v", —427680y, 2", —y", —2")
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where a = —27¢4, b = —b4dcg and

V' = cgv + 2c6w — 6 + 3ciy — Yeacer w' = cgv + 6cix + 3ciy + eucez
V" = 44(2c4v — 6cgw + 33cew + 135c5y + 810c4c62) 1" = 60(5v + 729¢4y + 2187¢62)
y" = 11(eqv — 3cgw — Gegr) 2" =60(v + 27cuy + 81cs2).

This gives the cubic forms F and G in Theorem 1.2.

4. MODULAR INTERPRETATION

In Section 3 we computed equations for Xg(n) and X5 (n) for n = 7,11. In this
section we compute equations for the families of curves they parametrise.

4.1. Computing the j-invariant. We give formulae for the j-maps Xg(n) — P!
and X, (n) — P! by adapting the formulae in Lemmas 3.5 and 3.11.

First we define the invariant W(F) of a polynomial F' of the form considered in
Theorems 1.1 and 1.2. For F' a polynomial in variables z1, ..., z,, and M = (M;;)

: . / / r_ o
an m x m matrix we write F'o M for F(z},...,27,) where z; = >, M;;x;.

rYm

Definition 4.1. We split into the cases n = 7,11.
(i) The invariant ¥ of a twisted form p(F o M) of F = 23y + y32 + 23z is

U(u(F o M)) = p’(det M)*.

(i) The invariant ¥ of a twisted form u(F o M) of F = v*w + w?z + =’y +
Y2z + 2% is

U(u(F o M)) = u’(det M)>.

Lemma 4.2. Let F be one of the twisted forms in Definition 4.1. Then

(i) W(F) is well-defined, i.e. it is independent of the choice of M € GL,,(K).
(ii) If F has coefficients in K then V(F) € K.

Proof. (i) This is easy to check for M a scalar matrix. In general we appeal to
the fact, proved in [2, Lemma 20.4], that Aut(X(n)) = PSLy(Z/nZ). Therefore it
suffices to consider M = p(v) for v € SLo(Z/nZ). We then use that SLy(Z/nZ)
has no non-trivial 1-dimensional characters.

(ii) This follows from (i) by Galois theory. O

Remark 4.3. (i) In the case n = 7 it is shown in [26, Section 7.1] that W(F) is
an integer coefficient polynomial in the coefficients of F. We expect this is also
true in the case n = 11, but we have not worked out the details.
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(ii) By following the proofs in Section 3, the twisted forms in Theorems 1.1 and
1.2 have invariants

Xp(n) Xp(n)
n="7 —4(4a®+270*) 16(4a® + 270?)*
n=11 —4(4a®+270%)* 8(4a® + 27b%).
We now split into the cases n = 7,11 and give formulae for the j-map.
Case n = 7. Let X = {F = 0} C P? be a twist of X (7). Starting with F in

place of the Klein quartic F', the formulae in Section 3.2 define polynomials H (F),
cy(F) and cg(F). If F = pu(F o M) then W(F) = p3(det M)* and

H(F) = p*(det M)*(H o M)
(16) cy(F) = pB(det M)®(cy o M)
ce(F) = p'?(det M)?(cg o M)
As observed in [26, Lemma 7.2|, the syzygy i — ¢z = 1728 H” (mod F') becomes
cs(F)? — cs(F)? = 1728 U(F) H(F)" (mod F).
In particular the j-map X — P! is given by
. 04(.7)3
C U(AHF)T
Case n = 11. Let X C P* be a twist of X(11) given as the singular locus of
the Hessian of a cubic form F = F(v,w, z,y, z). Starting with F in place of the
cubic form F = v*w + w2z + 2%y + y*2 + 2%v, the formulae in Section 3.3 define
polynomials H(F) and ¢4(F). If F = u(F o M) then W(F) = p°(det M)? and
a7 H(F) = p°(det M)*(H o M)
cs(F) = p*"(det M)®(cs 0 M)
By Lemma 3.11 the j-map X — P! is given by
_alF)?
S OW(FRFI
4.2. Modular interpretation of X(n). In Section 2.1 we gave equations for
X (n). In [8, Chapter 4] it is shown that (analogous to Definition 2.2) the elliptic

curve £ C P" tabove (0:ay:as:...: —ay: —a;) € Y(n) is defined by
rank(a;_;zi ;) 2o < 2.

The following theorem gives an equation for this curve in Weierstrass form. Notice
that the coefficients are homogeneous polynomials of degrees 4¢ and 6t for some
integer ¢. An alternative proof in the case n = 7 is sketched in [16, Section 3].
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Theorem 4.4. We split into the cases n = 7,11.
(i) The family of curves parametrised by X (7) = {a*b+b3c+c*a = 0} C P? is
(18) y* = 2 — 27(abc)*cy(a, b, c)x — 54(abc)>cs(a, b, )
where ¢4, ce € Kla,b, c| are as defined in Section 3.2.
(ii) The family of curves parametrised by X (11) C P* is
(19) y* = 2 — 27(abede)cy(a, b, ¢, d, e)x — 54(abede)cs(a, b, ¢, d, e).

where ¢y, ¢6 € Kla,b,c,d, e] are as defined in Section 3.3.

Proof. The modular curve Y;(n) parametrises pairs (F, P) where E is an elliptic
curve and P € FE is a point of order n. If n = 7 then we choose a coordinate A
on X;(7) 2 P If n = 11 then X;(11) is the elliptic curve v? + v = X3 — A2, We
write A to indicate A in the cases n = 7, and the pair A, v in the case n = 11. By
[31, Exercise 8.13] the elliptic curves Dy parametrised by Y;(7) and Y;(11) have
Weierstrass equations

= (A= A= Day — (N = Ny =2° — (\* — \?)2?

Y4+ +2— v+ DHzy = AN+ 1A —v -1y =2 - @+ 1)(A—v —1)2?

On each of these curves P = (0, 0) is a point of order n. If we write the Weierstrass

equation for Dy as y? + a1xy + azy = 23 + axx? then by Vélu's formulae [32] the

n-isogenous elliptic curve Cy = Dy /(P) has Weierstrass equation

(20) y? + aroy + azy = 1° + apa® — Str — (a3 + 4ay)t — Tw

where t = 65y + (a? + 4ag)sy + ajazso, w = 10s3 + 2(a? + 4az)sy + 3a1azs; + aso

and s = Z(" Y72 2(jP)k. The Weierstrass equations (20) have discriminant

1) n=T7 A(Cy) =AA=1)(A* =8\ +5A+1)7

n=11 A(Cy,) = XA =1 +222 =22+ 1)(r + 1)’ f(\, )"

where f(\,v) = (=3 v +2v — X3+ 5 2 = 5X + 1) /(A = 1).

Let ¢ : Cx — Dy and ¢ : Dy — (' be the dual isogenies of degree n with
ker ¢ = (P). Then by properties of the Weil pairing ker ¢ is isomorphic to p,, as
a Galois module. Let Q € Cy(K) with ¢(Q) = P. Then o + 0(Q) — Q is a
cocycle taking values in p,,. By Hilbert’s Theorem 90 there exists ¢ € K*/(K*)"

such that 0(Q) — Q = o(/q)/ /q for all o € Gal(K/K). Computing ¢ = ¢(\) as
described in [9, Section 1.2] we find

AN\ — 1) ifn =7

(22) 9(A) = MEA =) A—v— 17 ifn=1L,
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Now X(n) is birational to {g(A) = 7"} C Xi(n) X Gy. In the case n = 7 an
explicit birational map is given in [9, Section 2.2|. Applying the same method for
n = 11 we obtain

n="7T (a:b:c)— (\7)=(—ac® /b ac/b?),

n=11 (a:b:c:d:e)— (\v,7) = (—abd/c?e,ab®/c*e, —ab/c?).
We checked directly that these are birational maps, and that the cusps of X (n),
ie. (1:0:...:0) and its translates under the action of SLy(Z/nZ), map to the
cusps of X;(n), i.e. the roots of (21).

Let c4(A) and ¢g(A) be the invariants of the Weierstrass equation for Cy. Using
Magma we compute

. ca(—ac? /b*) = &7 (abe)’cy(a,b,c) mod (a’b + bPc + c*a)
" ce(—ac?/b*) = 2(abe)’cs(a,b,c) mod (a’b + bPc + c*a)
. cu(—abd/cPe, ab®/c3e) = €1, (abede)cy(a, b, c,d,e) mod T
n= f
ce(—abd/c?e, ab®/ce) = €5, (abede)cg(a, b, c,d,e) mod T

where &7 = a/b°c and &7 = a’b/cPe?. Since we are free to cancel 4th powers
and 6th powers from the coefficients of a shorter Weierstrass equation, the result
follows. O

4.3. An alternative projective embedding. We take p > 5 a prime and let
G = PSLy(Z/pZ) act on X (p) in the usual way.

Theorem 4.5 ((Adler, Ramanan)). The group of G-invariant divisor classes on
X (p) is free of rank 1 generated by a divisor class [A] of degree (p* — 1)/24.

Proof. See [2, Theorem 24.1]. O

Let m = (p — 1)/2. Klein showed there are embeddings X(p) C P™ ! and
X(p) C P™ with linear G-action. The images are called the z-curve and the A-
curve respectively. The corresponding hyperplane sections are (m — 1)A and mA,
and indeed the divisor A in Theorem 4.5 is constructed by taking the difference
of these. It is conjectured that each of these embeddings is via a complete linear
system (the WYSIWYG Hypothesis in [2]) and this is known for p = 7,11. The
equations for X (p) introduced in Section 2.1 are for the z-curve. However in
Sections 4.4 and 4.5 we also need the A-curve.

Case p = 7. The z-curve is the Klein quartic X (7) = {z3y+y*z+2%z = 0} C P2
The cusps of X (7) are the 24 points of inflection. We recall from [26] that the
cusps are naturally partitioned into eight sets of three { P, P, P3} with

P1+3P2NP2+3P3NP3+3P1NH
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where H ~ 2A is the hyperplane section. We write Ty, ..., T7 for the effective
divisors of degree 3 of the form P, + P, + P3. One of these divisors, T say, satisfies
X(7) N {zyz = 0} = 4T,. As observed in [26, Section 11] we have 27; ~ 27} for
all 0 < 14,5 < 7. It follows by Theorem 4.5 that 27Ty ~ 3A. Since 3A ~ 3H — 2T
and L(3H — 2Ty) has basis 2%y, y*x, 2%z, xyz, the A-curve is the image of
X(7) =P (v:y:z)= (t ittty ty) = (2%y Y22 : 2°0 : wy2)

with equations

ty 0 ty —io

rank | t, —t3 0 tg | <2
ts t, —t; O
Case p = 11. The z-curve is the singular locus of the Hessian of
{F =v*w+w?z + 2%y + y*2 + 2*v = 0} C P~

We write H ~ 4A for the hyperplane section. The cusps are the 60 points of
intersection of X (11) with {F' = 0}. They are naturally partitioned into twelve
sets of five {Py,..., Ps} with

and likewise under all cyclic permutations of the P;. We write Ty, ..., T7; for the
effective divisors of degree 5 of the form P, + ...+ P5. One of these divisors, Ty
say, satisfies X (11) N {vwzyz = 0} = 207,. It may be shown that 57; ~ 57} for
all 0 <14,5 <11 and hence 5Ty ~ 5A by Theorem 4.5. Since b5A ~ 5H — 15T, we
find by computing a basis for L(5H — 15Tj) that the A-curve is the image of the
morphism X (11) — P® given by

(Viw:x:y:2) e (... tg) = (Viwzrz : vwlry s wrtyz s veyz vwyz? s vwryz).

It is shown in [2, Theorem 51.1], and we checked using Magma, that this is the
singular locus of the quartic hypersurface

te — (t5tg + tots + 15ty + tits + taty )ts + titsts + totaty + totst + titits + tataty = 0.
4.4. Formulae in the case n = 7.

Theorem 4.6. Let X = {F = 0} C P? be a twist of the Klein quartic, with
hyperplane section H. LetT = P+ Py+ P3 where Py, Py, Py are points of inflection
on X with

P, +3P,~ P, +3P;~ Py + 3P, ~ H.

Let d € K[z,y,z] be a cubic form with {d = 0} meeting X in a divisor 2D with
D ~ 2T. Then there is a Gal(K /K)-module M such that for every field extension
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L/K and rational point P = (z :y : z) € X(L)\{d = 0}, not a point of inflection,
the elliptic curve

(F)(,y, 2)

(23) Y2 — x3 2704 (F)(x,y, 2)

Ce
X — 54
d(z,y,z)* d(z,y,2)3

has T-torsion isomorphic to M as a Gal(L/L)-module.

Proof. 1f dy,dy € Klz,y, z] are cubic forms meeting X in divisors 2D; and 2D,
with D7 ~ Dy then d;/dy is the square of a rational function, and hence the
elliptic surfaces (23) with d = d; and d = dy are isomorphic over K. Since X is
a twist of the Klein quartic it follows (by taking D = 2T, as defined in the last
section) that the elliptic surfaces (18) and (23) are isomorphic over K. Notice it
does not matter whether we write the terms d(z,y, z) in the numerator or in the
denominator. We are done by [27, Proposition 2.1]. O

In Theorem 4.8 below we determine rational functions d satisfying the hypoth-
esis of Theorem 4.6 in the cases X = Xg(7) and X = X (7). We also show how
to scale these functions to give the quadratic twist with M = E[7].

Remark 4.7. Recall that Xg(7) has a trivial K-rational point corresponding to
E itself. Following [27] one method for finding the right quadratic twist would
be to specialise at this point. However this approach fails when d vanishes at the
trivial point, and also does not generalise to X (7).

Theorem 4.8. Let E/K be an elliptic curve with Weierstrass equation y*> =
13 — 2Tcyw — bdeg and let A = (¢ — 2)/1728. If j(E) # 0,1728 then the families
of elliptic curves parametrised by Yg(7) and Yz (7) are given by (23) with (F,d) =
(F,dy) and (G, dy) where F and G are the quartics in Theorem 3.9 and

dy(z,y,2) = —6(32” + c4rz — 3cay® + coy2)2
do(,y, 2) = 20 (423 + 42z — 12¢c429° — 2c62yz + Scey® + Ay’ z + 200A2%).

Proof. We fix a symplectic isomorphism ¢ : E[7] = u; X Z/77Z and let (a : b : ¢) be
the K-point on X (7) corresponding to (E, ¢). As in the proof of Theorem 3.9 we
scale (a, b, c) so that c4(a,b,c) = ¢4 and cg(a,b, ¢) = cg. The action of SLy(Z/77)
on both the z-curve and the A-curve suggests we start with the forms

si(x,y, 2) = (a*c® — 2ab’c)x”y + (a®b* — 2abc®)y*z
+ (b°c* — 2a’be) 2%z + (aPc® + a®b’ + b*cP)ayz,
so(2,y, 2) = a’bx’y + b?cy’z + Faz’x + 2abcxyz.
We then let r; and r5 be the unique cubic forms satisfying

(24) Ti(ff,y,Z)fL‘yZ = Si<l’,y72)2 mod ($3y+y32’+231‘)
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for ¢ = 1,2. The coefficients of r; and ry are homogeneous polynomials in a, b, ¢
of degrees 10 and 6. Recall that in the proof of Theorem 3.9 we put

1

F(z,y,2) = ﬁF(mc +y(VF x VH) + zHe),
1

G(z,y,2) = ﬁF@Z‘VF +y(x x e) + zH?VH).

The cubics d; and dj in the statement of the theorem are likewise found by putting

di(x,y,z2) = 2abcH4r1(mX+ y(VF x VH) + zHe),
(25) 2H?
do(x,y, 2) = %r2($VF +y(x x e)+ zH*VH).

It is clear from these constructions that {d; = 0} and {d2 = 0} meet the
corresponding twists of the Klein quartic in divisors of the form specified in Theo-
rem 4.6. So our formulae for the families of elliptic curves parametrised by Yz(7)
and Y (7) are correct up to quadratic twist, say by 6 € K*. It remains to show
that § is a square. As noted in [16, Section 7.1] it suffices to check this in the case
¢ E[7] = pr x Z)7Z is defined over K. Then (a : b : ¢) is a K-rational point on
X(7). We write (a, b, c) = (Aag, Aby, Acg) with ag, by, co € K. By our earlier choice
of scaling for a, b, c we have \” € K. Comparing the Weierstrass equation (18) for
E with that in the statement of the theorem it follows that A7agbocy € (K*)2. So
a’,b",c¢" € K and (abc)” € (K*)?. Using (12) and (16) we compute

cr(F)(x,y,2) = (2°3%)"2ci(xx + y(VF x VH) + zHe)
cx(G)(z,y,2) = (223°H 2, (2 VF + y(x x €) + zH*VH).
for k = 4,6. It follows by (25) that

a(F)(x,y,2) ch(tHx +yH(VF x VH) + 2H?e)
dy(z,y,2)%2 > ((abc)bri(zHx + yH(VFE x VH) + zH2%e))*/2
a(G)(z,y,2) cx(rH3VF + yH3(x x e) + 2H°VH)
do(z,y, 2)k/2 1 ((abc)S Hro(zH3VF + yH?(x X €) + zH°V H))k/2
for some &, € K*. The covariant columns Hx, H(VFEF x VH), H?e have degrees

7,14,21 and the contravariant columns H3*VF, H3(x x e), H°V H have degrees
21,28, 35. Since each column has degree a multiple of 7, its evaluation at (a, b, ¢)

is K-rational. Therefore the families of curves in the statement of the theorem are
K-isomorphic to

C4(x7ya Z) X — 54 Cﬁ(x7y72>

AT 27((abc)67“1(x,y,z))2 ((abe)ori(x,y, 2))°
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and

Y2:Xd_27 C4($,y,Z) X — 54 Cﬁ(x>y72) )
((abc)6H10r2(x,y,z))2 ((CLbC)6H107’2(x,y7Z))3
To identify these with (18) we note that the cubic forms (abc)®si(z,y,z) and
(abe)® H5so(x,y, z) have coefficients in K (since the degree of each coefficient is a
multiple of 7) and then use (24). O

Making the change of co-ordinates in Remark 3.10, we can replace d; and dy by
cubic forms that satisfy the conditions of Theorem 4.6 for Xg(7) = {F = 0} C P?
and X5 (7) = {G = 0} C P?, where F and G are the quartics in Theorem 1.1.
Moreover having found one such form we can use the Riemann-Roch machinery
in Magma to find further such forms.

In the case of Xg(7) we obtain a cubic form dy; with Xg(7) N {d;; =0} = 2D,
for some divisor Dy ~ 2T. Then L£L(3H — D) has basis

dy1 = —2(ax® + 3bzz + 3y* + 2ayz)z,

dyy = 2(az? + 3bxz + 3y* + 2ayz)z,

dyz = 4(3bx* — 2axy — 2a’xz — 3byz — 2abz?)z,
diy = 4(a*z® + 3bzy + 4abrz + ay® + 3b*2%)z.

More generally there are cubic forms d;; for 1 < 4,7 < 4 such that the matrix
(d;;) is symmetric and each 2 x 2 minor vanishes mod F. The remaining d;; are
computed using dlldij = dlidlj (mod f) Then XE(7) N {de = 0} = Dz + Dj
where Dy, ..., D, are divisors all linearly equivalent to 27". The family of elliptic
curves parametrised by Yg(7) is now given by (23) with (F,d) = (F,d;;) for any
1<i<4.

The A-curve is the image of Xp(7) — P3%; (z : y : 2) — (diy : ... : di4) with
equations

0 t3 —t4 20,t1 + t4
rank tl 2at1 + t4 2bt1 + Cltg + at3 26Lt2 —+ CLt3 S 2.
to 20t +aty —a®ty + bty —aty 2bty — bty — aty

Our formula for the elliptic curve corresponding to P € Yg(7) fails when d;;(P) =
0. However the zeros of d;; correspond to the hyperplane section {¢; = 0} on
the A-curve. Therefore, for any given point P, we have d;;(P) # 0 for some i.
So unlike the treatment in [16, Theorem 5.2], where only the cubic form d;; was
given, we have found formulae that cover all cases.
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In the case of X (7) we likewise find cubic forms d;; for 1 <4, j < 4 such that
the matrix (dj;) is symmetric and each 2 x 2 minor vanishes mod G. Explicitly

d), = —Tax*y + 627z + 3a*y® — Say?z + 3y,
d)y = 2az® + 1202y — 2azyz — 3aby® + 6by*z,
dyy = 2a’zy* — 10azyz + 622 + Saby® — 12by°2,
dy, = 2a2x2y — 3ax’z + 5abxy2 — 12bzyz — 3a2y2z + 8ay22 — 323
The remaining d;; are computed using d,d;; = dj;d;; (mod G). The family of

elliptic curves parametrised by Y (7) is now given by (23) with (F,d) = (G, Ad};)
for any 1 < i < 4. Exactly as before, these formulae cover all cases.

4.5. Formulae in the case n = 11. Our approach is similar to that in the last
section. As one would expect the formulae in the case n = 11 are more complicated
than those in the case n = 7. There are however two further complications. One
is that there is no invariant cg. The other is that the form we are looking for is
no longer uniquely determined by its image in the co-ordinate ring. Indeed in the
case n = 7 we were looking for a cubic form, and in the case n = 11 we are looking
for a quintic form. But in both cases our twist of X (n) is defined by quartics.

The action of SLy(Z/11Z) on both the z-curve and the A-curve suggests we
start with the forms

*bc? + bed® — ab*cPde — 2bc*de’ v w2
(bPed® + ctde? — abc*d*e — 2a’cd®e)vw ry
(Pde® + a*d*e — abed®e® — 2ab*de? ) wayz
(a®dPe + ab®e* — a’bede?® — 2abcde) vy~
+ (ab®e® 4 a*bc? — a*b?cde — 2ab*cd® vwy2?
+ 2(a’b*c®e + a’b*de® + a’cd’e? + ab’Pd® + b dPe*vwayz,

s1(v,w,x,y, 2)

= (a
+
+
+

so(v,w, 2,9, 2) = a’beev?wrz + ab*cdvw’zy + bldews?yz + acd®evay®z
+ abde*vwyz* + 2abcdevwryz.
We then solve for r; and ry satisfying
(26) 7“1‘(“;“’;%% Z)(’UU)ZL’yZ)s = Sz‘(%“’;%% 2)4 (mOd qu/>
where Z and Z' are the homogeneous ideals for X (11) C P* with respect to the
two sets of variables a,b,c,d, e and v, w,z,y,z. The coefficients of r; and r, are
homogeneous polynomials of degrees 28 and 20 in a,b,c,d,e. It is important to
note that r; and ry are not uniquely determined by (26). However by averaging
over the group we were able to choose r; = (abcde)3T; in such a way that the
coefficients of
71 (VX1 + wx4 + X5 + YXg + 2X14)



ON FAMILIES OF 7 AND 11-CONGRUENT ELLIPTIC CURVES 29

and
?{2(UVF + ’IUV[7 + .TV[g + yV[g + ZVC4)
are congruent mod Z to certain polynomials in F' and ¢4. The result is a pair of
quintic forms d; (v, w, z,y, z) and ds(v, w, x,y, z) with coefficients in Q[F’, c4]. We
then put
di(v,w,x,y,2) = CE(FU, w, F'x, F?y, F*2)
1

Tt
and replace F'! by A so that d; and dy have coefficients in Q|cg, A].

d2(vawax7yaz) C@(F2U7 F8w7F4x7y7 F3Z)

Remark 4.9. The polynomials 7; and d; would take several pages to print out, so
we must refer the reader to the accompanying Magma file [13] for further details.
The computation of d; and dy took several hours of computer time, whereas all
other calculations up to this point ran in a few seconds.

Theorem 4.10. Let E/K be an elliptic curve with Weierstrass equation y* =
x3 — 2Tcyw — Bdcg and let A = (¢ — ¢2)/1728. Assume j(E) # 0,1728 and let
X = Xg(11), respectively X5 (11), be as given in Theorem 3.13. If (v : w : x :
y:z) € X(K)\{d; =0}, not a cusp, then the corresponding elliptic curve E'/K
satisfies

ci(E) = dy(v,w, 2,1y, 2) co(F)(v,w, 2, y,2) mod (K*)*,
respectively

cy(E) = dy(v,w, 2,9, 2) cs(G) (v, w, z,y,2) mod (K*)*.

Proof. As noted in [16, Section 7.1] we are free to extend our field K so that
¢ E[11] = pyy x Z/11Z is defined over K. Let (a : b : ¢ : d : e) be the
corresponding K-point on X (11). We scale a, b, ¢, d, e so that c4(a,b, c,d,e) = cy.
Then a'',... e!! € K and by comparing the Weierstrass equation for E in the
statement of the theorem with (19) we deduce that (abede)' € (K*)*. The
polynomials F and G were computed in Section 3.3 as twists of F'. Putting

W, w2y, ) = vF"x) + wFxy 4+ o F3xs + yFxg 4+ 2F %1y,
(W w2y N = vF*VE +wFVI; + 2F°VIg + yFVIy + 2:F*Vey,
it follows by (14), (15) and (17) that
(¢} — 1728 F1)8
722
(55(ci — 1728 F'1))8
Pl

a(F)(v,w,z,y,2) = cy(v' w2y ),

C4(G)(/U7w7 x?y? Z) - C4(U//7w,/7 x”?y”? Z”)'
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By construction of d; and dy we have

1

dl (’U, w? 'CE’ y? z) = er (UI7 w/7 ','1:/7 y” Zl)?
1

da(v, w0, 2y, 2) = Wﬁ(?}”,w”,x”,y”,z”).

In view of Theorem 4.4 our aim is to show that

dy(v,w, 2,1, 2) ca(F) (v, w, 2, y, 2) = v'w'z'y 2 es(V', 0, 2y, 2)  mod (K*)*,

do(v,w, 2,9y, 2) ca(G) (v, w, z,y, 2) = V"W 2"y c,(V", W, 2"y, 2") mod (K*)*,
equivalently
(abede)® F*%r (v w', 2y, 2') = v'w'z’y'2? mod (K*)*,
(abede)® F*ry(v” w” 2" ", 2") = v"w"2"y"2”  mod (K*)*.
To finish the proof we note that the quintic forms
(abede)*Fos (v, w',2',y/,2') and  (abede)?FCsy(v” w” 2",y 2")

have coefficients in K (since the degree of each coefficient is a multiple of 11) and
then use (26). O

We already gave a formula for the j-invariant in Section 4.1. So (assuming
J(E") #0) Theorem 4.10 determines E’ up to quadratic twist by —1. In the case
K = Q it is easy to decide which of the remaining two possibilities is correct by
looking at traces of Frobenius.

In principle it should be possible to find alternative quintic forms to be used at
points where d; or ds vanishes. The quintic forms in question are those meeting
the z-curve in a divisor 4D where D is a hyperplane section for the A-curve. In
the case n = 7 we managed to find the alternative forms using the Riemann-Roch
machinery in Magma. Unfortunately the analogue of this in the case n = 11 does
not appear to be practical. In the case of X (11) this is not a problem, since
the 25 points with do = 0 correspond to the elliptic curves ¢-isogenous to E for
¢ = 2,7,13. We can also account for 7 of the points on Xg(11) with d; = 0 as
corresponding to the elliptic curve F itself and the elliptic curves 5-isogenous to
E. We are yet to encounter an example (over K = Q) where one of the remaining
points with d; = 0 is rational.

5. EXAMPLES

We use the formulae in Theorems 1.1 and 1.2 to give examples of non-trivial
n-congruences for n = 7,11 over Q and Q(7"). By “non-trivial” we mean that
the elliptic curves are not isogenous. The examples over QQ illustrate the value of
minimising and reducing, as mentioned in the introduction. The examples over
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Q(T') were found by setting a = b = —27;/(4(j — 1728)) to obtain a surface fibred
over the j-line and then intersecting with one of the co-ordinate hyperplanes in the
hope of finding a rational curve. We refer to elliptic curves over QQ by their labels
in Cremona’s tables [4]. For elliptic curves beyond the current range of Cremona’s
tables we simply write the conductor followed by a *.

Remark 5.1. If elliptic curves F and E’ are related by an isogeny of degree d
coprime to n, then they are clearly n-congruent. Since dual isogenies are adjoints
with respect to the Weil pairing, the curves are directly n-congruent if d is a square
in (Z/nZ)* and reverse n-congruent if —d is a square in (Z/nZ)*.

5.1. Examples in the case n = 7.

Example 5.2. Let E be the elliptic curve 162cl. Let F and G be the equations
for Xg(7) and X;(7) in Theorem 1.1 with @ = 3645 and b = —13122. These
have invariants W(F) = —2! . 38 and ¥(G) = 2?2 - 335, Minimising and reducing
suggests that we substitute

F(z,y,2) F(36y — 92,1944x — 972y — 12152, 2)

~ 910314

G(z,y,2) G(18x + 18y + 9z, 2, —486x + 1458y + 19442)

= 912320
to give quartics
F(z,y,2) = 32°z + 32°y* — 62°yz + 32°2% — 3wy?

+ 3223 + 2y — P2 — 9y? 22 4+ dy2® — 52t

32 — 62222 + 6ay° 2 — 6ay2>
+ 622% + 2y + 232 — 6y22% — 38y2® — 821

with invariants W(F) = —2 - 3* and ¥(G) = 2% - 3*. We find rational points
Pb=(1:0:0), P =3:-2:-1)on {F =0} C P? and rational points
Ps=(1:0:0),P =(1:1:-1), 5= (4:—-1:1)on{G =0} C P2 The
corresponding elliptic curves 7-congruent to £ are

G(z,y,z) = -2’y —x

P 162cl Vray=2>—2>+3r—1
P, 29370622  y? 4+ xy = 2° — 2% — 629305622 — 192134303740
Py 162c2 Y+ xy = 2° — 2% — 422 — 100

Py 17334f1 4oy =2 — 2® — 54739772 — 4956193171
P;  624186x y: + oy = a® — 2% — 117514022822 + 360746315347508.

Since the elliptic curves 162c1 and 162¢2 are 3-isogenous, it was already clear from
Remark 5.1 that they are reverse 7-congruent.
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It is shown in [16, Proposition 6.3] that there are infinitely many 6-tuples of
directly 7-congruent non-isogenous elliptic curves over Q. The following example
shows that there are infinitely many pairs of reverse 7-congruent non-isogenous
elliptic curves over Q.

Example 5.3. Let E/Q(T) be the elliptic curve y?> = 2® + ax + b where a =
b= —275/(4(j — 1728)) and j = 27T3(5T — 56)/(T — 1). Then on X;(7), with
equation as given in Theorem 1.1, we find the rational point

(z:y:2)=(0:—4(T* = 12T + 8)(5T* + 4T + 8) : 9T*(T + 4)(5T — 56)).

Specialising T' (and taking quadratic twists by d as indicated) we obtain the fol-
lowing pairs of reverse 7-congruent elliptic curves F; and FEs.

T d K o
—16 —38 36lal  36la2
8 —10 70091  2100q1
2 —2 2116b1  10580h1
16/5 —42 24255r1 24255m2

The existence of specialisations E; and E, that are not isogenous is enough to
show that there are infinitely many such specialisations.

5.2. Examples in the case n = 11.

Example 5.4. Let E be the elliptic curve 1782b1. Let F be the cubic form
describing Xg(11) C P* in Theorem 1.2 with a = 765 and b = 15102. The

invariant is W(F) = —2%.312. 115 Minimising and reducing suggests that we
substitute
v 984 12900 —9093 —34056 13689 v
w —2040 —24252 —-3315 0 —16857 w
ol 328 164 —435 0 —57 T
Y —352 88 —264 264 —1056 Y
-8 —4 —13 0 25

so that Xg(11) C P is the singular locus of the Hessian of
—v*w + vir — vy + 202 — vw? + dvwz — dvr? — Svay + 2wz + 6uyz
+3v2% 4 2u® — 3wr — 2wy + 8w’z + 6wr® + 2wy + 2wrz + 6wy® — 6wy
+9wz? — x® — 122 — 3zy® — 6ayz — 9wz — 6y + 9yt +3y2 722 =0
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with invariant 2% - 3* - 112, We find rational points P, = (=1 : 5 : 1 : 2 : 1),
P,=(0:0:0:1:0)and Ps=(1:1:—1:0:—4). The corresponding elliptic
curves directly 11-congruent to E are

P, 1782b1 y? 4+ xy = 2% — 2 + 482 + 224
P, 1782b2 v oy = a3 — 2% — 4472 — 7795
Py 447282x oy +ay = 2% — 2% — 175521719222 — 227953575178678

Since the elliptic curves 178201 and 1782b2 are 3-isogenous, it was already clear
from Remark 5.1 that they are directly 11-congruent.

Example 5.5. Let E be the elliptic curve 4466¢l. Let G be the cubic form
describing X5 (11) € P* in Theorem 1.2 with a = 85 and b = —83162. The
invariant is U(G) = 2% . 7. 112 - 292, Minimising and reducing suggests that we
substitute

v 4096 —1408 128 —1312 45088
w 0 128 128 32 110
T 0 0 -256 -96 —103
y 0 0 0 —-32 -11
z 0 0 0 0 —1

so that Xz (11) C P* is the singular locus of the Hessian of
—20%2 — dvwy + 12vxy + 4vrz + 5vy? + 6vyz — 43v2° — wir + wy
—dwzry — 2wrz — 3wy + 196wyz + 83wz* — 112% — 122%y — 9222
—11zy? + 366xyz + 125222 + 322y3 + 447y%2 + 275y2% + 6322° = 0

with invariant —22 - 7 - 112 - 292, We find rational points P, = (—=7:11:3:1:1)
and P, = (7830 : —3553 : 510 : —281 : 71). The corresponding elliptic curves

reverse 11-congruent to £ are
Py 44662  y* +ay+y=2® —2* — 17552 — 27349
Py 1174558% 3° + 2y +y = 2° — 2% 4+ 117885809240z + 16240157710556505

Since the elliptic curves 4466¢1 and 4466¢2 are 2-isogenous, it was already clear
from Remark 5.1 that they are reverse 11-congruent.

A table of pairs of 11-congruent elliptic curves over Q is available from the
website [13]. These were found by searching for rational points on Xpg(11) and
X (11) for all elliptic curves £/Q in Cremona’s tables. As happened in Exam-
ples 5.4 and 5.5, the elliptic curves 11-congruent to E that we find, often have
conductor beyond the current range of Cremona’s tables.
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The following example shows that there are infinitely many pairs of directly
11-congruent non-isogenous elliptic curves over Q.

Example 5.6. Let E/Q(T) be the elliptic curve y* = 23 + a(T)z + b(T) where

a(T) = =3(T — 3)(T* — 5T? — 24T — 92)/(T® — T? + AT + 24)
b(T) = —2(T — 3)(T° — T* — 11T% — 43T* — 62T — 316)/(T° — T* + 4T + 24).

Then Xpg(11), with equations as given in Theorem 1.2, has rational point

v TS + TP + 31T* 4 25973 + 52072 + 6767 + 1248
w —(T — 3)(T5 + 4T* + 4373 + 100T? — 44T — 320)
| = —(T? + 3T + 14)(T3 — T? + 4T + 24)

Y 0

z (T +4)(T? — T? + 4T + 24)

Specialising T' (and taking quadratic twists by d as indicated) we obtain the fol-
lowing pairs of directly 11-congruent elliptic curves E; and FEs.

T d Ey Ey

2 —6  1la3 11a2

1 42 49al 49a4

-3 =2 216b1 1512¢c1

11 —426 10082c1 70574h1

The elliptic curve 11-congruent to F is y? = 23 + A(T)x + B(T) where

A(T) = =3(T — 3)(T* — 8T — 17)(T?® — T? + 4T + 24)(T** — 250T"" + 3473T*°
— 2382477 4 106654T° — 35455677 + 890186T° — 17105687
+2386357T* — 20541707 + 179978172 + 9566807 + 3570796),

B(T) = —2(T — 3)(T? — T? + 4T + 24)*(T?° 4 476T" — 27815T"® + 55671817
— 60466647 + 424508487 — 2138326367'* + 82370288873
— 249799885072 4 5954643736 T — 107987488187 + 136443398927
— 79278951087 — 1039824563277 + 255816365327° — 103662687607
— 608760617197 + 1640621100607 — 9812080044772 + 2629484215187
+ 141270230564).
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These elliptic curves have discriminants
2123%(T — 5)(T — 3)*(T + 1)>(T?* + 7)/(T? — T? + 4T + 24)*,
—21235(T — 5)YT — 3)A(T + 1)3(T? + 7) (T3 — T? + 4T 4 24)3(T® — T? + 15T — 31)*..

We did not find any pairs of reverse 11-congruent non-isogenous elliptic curves
over Q(T"). We note that according to [18, Theorem 4] the modular diagonal
surface in this case is of general type.
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