
ON PAIRS OF 17-CONGRUENT ELLIPTIC CURVES

T.A. FISHER

Abstract. We compute explicit equations for the surfaces Z(17, 1) and Z(17, 3)

parametrising pairs of 17-congruent elliptic curves. We find that each is a dou-

ble cover of the same elliptic K3-surface. We use these equations to exhibit the

first non-trivial example of a pair of symplectically 17-congruent elliptic curves

over the rationals. We also compute the corresponding genus 2 curve whose

Jacobian has a (17, 17)-splitting.

1. Introduction

Let p be a prime number. Elliptic curves over the rationals are said to be
p-congruent if their p-torsion subgroups are isomorphic as Galois modules, and
symplectically p-congruent if the isomorphism can be chosen to respect the Weil
pairing. For example if φ : E → E ′ is an isogeny of degree d, and d is coprime to p,
then E and E ′ are p-congruent, and symplectically p-congruent if d is a quadratic
residue mod p. Such congruences, arising from an isogeny, are said to be trivial.

Examples of non-trivial symplectic p-congruences were previously known for all
primes p ≤ 13. We exhibit the first such example with p = 17. Specifically, the
elliptic curves

E1 : y2 + xy = x3 − x2 − 128973503459x+ 17827877649739965

E2 : y2 + xy = x3 − x2 − 184201215542543714x− 34187608332483214491862380

with conductors

N(E1) = 279809270 = 2 · 5 · 13 · 59 · 1912,

N(E2) = 3077901970 = 2 · 5 · 11 · 13 · 59 · 1912,

are symplectically 17-congruent. This claim may be verified using either of the
techniques we review in Sections 2 and 3.

A pair of anti-symplectically 17-congruent elliptic curves was previously found
by Cremona [B, CF, F1]. These are the elliptic curves

E ′1 : y2 + xy = x3 − 8x+ 27

E ′2 : y2 + xy = x3 + 8124402x− 11887136703
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with conductors

N(E ′1) = 3675 = 3 · 52 · 72,

N(E ′2) = 47775 = 3 · 52 · 72 · 13.

In [F3] we completed the proof that for all primes p ≤ 13 there are infinitely
many non-trivial pairs of p-congruent elliptic curves (with infinitely many pairs
of j-invariants) both symplectic and anti-symplectic. The Frey-Mazur conjecture
predicts that for p sufficiently large, there are no such examples. We suggest the
following strong form of their conjecture.

Conjecture 1.1. Let p ≥ 17 be a prime. Then any pair of p-congruent elliptic

curves over the rationals is either explained by an isogeny, or the elliptic curves

are simultaneous quadratic twists of one of the pairs (E1, E2) or (E ′1, E
′
2).

We say that a p-congruence has power k if the isomorphism of p-torsion sub-
groups raises the Weil pairing to the power k. Let Z(p, k) be the surface parametris-
ing all pairs of elliptic curves that are p-congruent with power k, up to simultaneous
quadratic twist. This surface comes with an involution ι whose moduli interpreta-
tion is that we swap over the two elliptic curves. We write W (p, k) for the quotient
of Z(p, k) by ι. These surfaces only depend (up to isomorphism) on whether k is
a quadratic residue or a quadratic non-residue mod p. As above, we call these the
symplectic and anti-symplectic cases.

For p ≤ 13 it is known [F2, F3, Kum] that the surfaces W (p, k) are rational
(i.e., birational to P2) over Q.

Theorem 1.2. The surfaces W (17, 1) and W (17, 3) are birational over Q to the

elliptic K3-surface with Weierstrass equation

(1) y2 + (T + 1)(T − 2)xy + T 3y = x3 − x2.

The surfaces Z(17, 1) and Z(17, 3) are birational over Q to the double covers

z2 = F1(T, x, y) and z2 = F3(T, x, y) where F1 and F3 are recorded in Appendix A.

Let j1 and j2 be the rational functions on Z(p, k) giving the j-invariants of the
two elliptic curves. Then j1 + j2 and j1j2 are rational functions on W (p, k). In the
cases (p, k) = (17, 1) and (17, 3) we have also computed these rational functions.
The formulae are too complicated to record here, but are available electronically
from [F4].

We used these formulae to find the pairs of elliptic curves (E1, E2) and (E ′1, E
′
2)

specified above. In each case the curves are not isogenous, since for example
they do not have the same conductor. The only previous method for finding such
examples was to search in tables of elliptic curves with small conductor. (See for
example [CF, Section 3] or [BM, Section 4.3].) Accordingly only the second pair
was previously known.
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Our evidence for Conjecture 1.1 when p = 17 is that we searched for further
rational points on Z(17, 1) and Z(17, 3), but none of the points we found give rise
to new pairs of 17-congruent elliptic curves. Conjecture 1.1 has also been verified
by Cremona and Freitas [CF, Theorem 1.3 and Section 3.7] for all pairs of elliptic
curves with conductor less than 500 000.

We have no theoretical explanation for our observation that the surfacesW (17, 1)
and W (17, 3) are birational. It would of course be interesting to find one. We note
that a wealth of information about the complex geometry of the surfaces Z(n, k)
was computed by Kani and Schanz [KS]. In particular the surfaces Z(17, 1) and
Z(17, 3) are surfaces of general type with geometric genus 10. We do not expect
that these surfaces are birational.

In Section 2 we verify the 17-congruences claimed above by comparing traces
of Frobenius mod 17. In Section 3 we compute a genus 2 curve whose Jacobian
is isogenous to E1 × E2, and note that this gives another proof that E1 and E2

are 17-congruent. We construct our birational models for Z(17, 1) and Z(17, 3)
as quotients of X(17)×X(17). In Section 4 we give explicit equations for X(17),
and in Sections 5 and 6 we compute the quotients in the symplectic and anti-
symplectic cases. In the final two sections we describe some of the interesting
curves and points that we have so far found on these surfaces.

2. Verification via modularity

In [Ma, p.133] Mazur asked whether there are any non-trivial symplectic n-
congruences for any integer n ≥ 7. The question was answered by Kraus and
Oesterlé [KO] who gave the example of the pair of symplectically 7-congruent
elliptic curves 152a1 and 7448e1. (We use the subsequent labelling of these curves
in Cremona’s tables.) They also established the following results.

Lemma 2.1. [KO, Proposition 2] Let p be a prime number. Let E and E ′ by p-

congruent elliptic curves over Q, with minimal discriminants ∆ and ∆′. Suppose

that E and E ′ have multiplicative reduction at a prime ` 6= p and that the exponent

v`(∆) is coprime to p. Then v`(∆
′) is coprime to p, and the p-congruence is

symplectic if and only if the ratio v`(∆)/v`(∆
′) is a square mod p.

Lemma 2.2. [KO, Proposition 4] Let E and E ′ be modular elliptic curves over

Q with conductors N and N ′. Let S be the set of primes for which one of the

curves has split multiplicative reduction, and the other has non-split multiplicative

reduction. Let M = lcm(N,N ′)
∏

`∈S ` and

µ(M) = [SL2(Z) : Γ0(M)] = #P1(Z/MZ) = M
∏
`|M

(1 + `−1).

Then the following conditions are equivalent.
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(i) The Galois modules E[p] and E ′[p] have isomorphic semi-simplifications.

(ii) a`(E) ≡ a`(E
′) (mod p) for all primes ` < µ(M)/6 with v`(NN

′) = 0; and

a`(E)a`(E
′) ≡ `+1 (mod p) for all primes ` < µ(M)/6 with v`(NN

′) = 1.

Since X0(17) is a rank 0 elliptic curve, there are only finitely many j-invariants of
elliptic curves over Q admitting a rational 17-isogeny. As noted in [C, Section 3.8],
the exceptional j-invariants are −172 · 1013/2 and −17 · 3733/217. Ignoring these
two j-invariants, the conclusion of Lemma 2.2(i), when p = 17, is that E and E ′

are 17-congruent.

Example 2.3. Let E1 and E2 be the elliptic curves defined in the introduction.

For the primes ` < 50 the traces of Frobenius are as follows.

` 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

a`(E1) −1 0 1 −1 −5 1 2 4 −1 −3 −2 −11 5 −4 −9

a`(E2) −1 0 1 −1 1 1 2 4 −1 −3 −2 6 −12 −4 −9

In the notation of Lemma 2.2 we have S = ∅ and M = N(E2). It takes about

three hours1 to verify that a`(E1) ≡ a`(E2) (mod 17) for all primes ` < µ(M)/6 ≈
1.033× 230 with ` 6= 11. This shows that E1 and E2 are 17-congruent. Since

∆(E1) = 23 · 53 · 13 · 592 · 1913,

∆(E2) = −214 · 511 · 1117 · 13 · 59 · 1919,

it follows by Lemma 2.1 (with ` = 2, 5, 13 or 59) that the congruence is symplectic.

Example 2.4. Let E ′1 and E ′2 be the elliptic curves defined in the introduction.

For the primes ` < 50 the traces of Frobenius are as follows.

` 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

a`(E
′
1) −1 1 0 0 0 −3 2 −1 −2 −8 8 −7 0 8 −10

a`(E
′
2) −1 1 0 0 0 1 2 −1 −2 9 −9 10 0 8 7

In the notation of Lemma 2.2 we have S = ∅ and M = N(E ′2). It takes a fraction

of a second to verify that a`(E1) ≡ a`(E2) (mod 17) for all primes ` < µ(M)/6 =

15680 with ` 6= 13. This shows that E ′1 and E ′2 are 17-congruent. Since

∆(E ′1) = −35 · 52 · 72,

∆(E ′2) = −32 · 52 · 72 · 1317,

it follows by Lemma 2.1 (with ` = 3) that the congruence is anti-symplectic.

1Running Magma on a single core of the author’s desktop.
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Remark 2.5. (i) It may be possible to reduce the Sturm bound, and hence the

runtime, in Example 2.3 by using a result similar to [St, Theorem 9.21] or by using

level lowering. We did not pursue this.

(ii) Methods for determining the symplectic type in situations where Lemma 2.1

does not apply have recently been studied in [CF, FKr].

(iii) The existence of a prime ` for which Lemma 2.1 applies, together with the

Weil pairing and the fact our elliptic curves do not admit a rational 17-isogeny, is

already enough (see [Se, Chapter IV, Section 3.2]) to show that in each case the

mod 17 Galois representation is surjective.

3. Verification via genus 2 Jacobians

Let E1 and E2 be n-congruent elliptic curves over Q, where the congruence ψ
reverses the sign of the Weil pairing. Then the quotient J of E1×E2 by the graph
of ψ is a principally polarised abelian surface. It is shown in [FKa, Section 1] that
if n is odd and E1 and E2 are not isogenous, then J is the Jacobian of a genus 2
curve C defined over Q, and there are degree n morphisms C → E1 and C → E2,
also defined over Q. For further details of this construction of reducible genus 2
Jacobians, see for example [BHLS, BD, FKa, Kum, Kuh, Sh].

Since −1 is a quadratic residue mod 17, the elliptic curves E1 and E2 defined in
the introduction are of the form considered in the last paragraph. In this section
we compute the corresponding genus 2 curve, and note that this gives another
proof that E1 and E2 are 17-congruent.

Lemma 3.1. Let E1 = C/(Z+τ1Z) and E2 = C/(Z+τ2Z) with Im(τ1), Im(τ2) > 0.

Let ψ : E1[n] → E2[n] be the isomorphism given by 1
n
(r + sτ1) 7→ 1

n
(r − sτ2) for

r, s = 0, 1, . . . , n − 1. (Note the minus sign!) Then the quotient J of E1 × E2 by

the graph of ψ is represented in the Siegel upper half-space by

τ =

nτ1 τ1

τ1 (τ1 + τ2)/n

 .

Proof. We have J ∼= C2/Λ where Λ is the lattice spanned by the columns b1, . . . , b4
of the matrix τ1 τ1/n 1/n 0

0 −τ2/n 1/n −1

 .

The principal polarisation on J is given by the Hermitian Riemann form

H((z1, z2), (w1, w2)) = n

(
z1w1

Im(τ1)
+

z2w2

Im(τ2)

)
,



6 T.A. FISHER

whose imaginary part is given with respect to the basis b1, . . . , b4 for Λ by 0 I2

−I2 0

 .

We therefore take

τ = (b3|b4)−1(b1|b2) =

n 0

1 −1

τ1 τ1/n

0 −τ2/n

 =

nτ1 τ1

τ1 (τ1 + τ2)/n

 . �

The elliptic curves E1 and E2 defined in the introduction are represented in the
upper half-plane by τ1 ≈ 0.1142862335i and τ2 ≈ 0.5000000000+1.415897663i. We
computed τ in the Siegel upper half-space corresponding to our genus 2 Jacobian
by applying Lemma 3.1 (with n = 17) to τ1 and τ ′2 = (64τ2−15)/(−17τ2 +4). The
formula for τ ′2 had to be guessed, but since the congruence must respect complex
conjugation there were only 8 possibilities to try. We then used the methods
described by van Wamelen [W] to compute the Igusa-Clebsch invariants of our
genus 2 curve to 300 decimal digits of precision. Recognising these as rational
numbers, we next used the method of Mestre [Me] to find a genus 2 curve over Q
with these invariants. Up to quadratic twist, this gave the genus 2 curve C with
equation y2 = f1(x)f2(x) where

f1(x) = 196081931x3 + 1143338037x2 − 801791940x+ 135616700,

f2(x) = −25996x3 + 1698260x2 − 6845267x+ 3822078.

We chose this particular quadratic twist since it satisfies # Jac(C)(Fp) = #E1(Fp)·
#E2(Fp) for many primes p of good reduction.

To prove that our equation for C is correct (without relying on the numerical
approximations in the last paragraph) we also computed the degree 17 morphisms
φ1 : C → E1 and φ2 : C → E2. The x-coordinate of φi is given by ξi(x) =
hi(x)/(fi(x)gi(x)2) where gi and hi are certain polynomials of degrees 7 and 17.
Working mod p = 101 we find

g1(x) = 25x7 + 56x6 + 31x5 + 99x4 + 100x3 + 42x2 + 79x+ 5,

g2(x) = 3x7 + 76x6 + 44x5 + 97x4 + 52x3 + 38x2 + 75x+ 2,

h1(x) = 16x17 + 6x16 + 57x15 + 54x14 + 94x13 + 79x12 + 77x11 + 55x10

+ 74x9 + 78x8 + 97x7 + 79x6 + 25x5 + 96x4 + 98x3 + 46x2 + 4x+ 99,

h2(x) = 67x17 + 25x16 + x15 + 22x14 + 84x13 + 94x12 + 93x11 + 95x10

+ 34x9 + 40x8 + 99x7 + 84x6 + 43x5 + 12x4 + 59x3 + 13x2 + 26x+ 98.

The full expressions for g1, g2, h1, h2 ∈ Z[x] may be found in [F4]. We do not
record these here, since some of the coefficients have nearly 100 decimal digits.
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Our method to compute these polynomials was to compute them mod p for
many primes p and then use the Chinese remainder theorem. To compute them
mod p we looped over all possibilities for the map C(Fp) → Ei(Fp), compatible
with the group laws on the Jacobians, and then solved for the rational function ξi
(with numerator and denominator of degree at most 17) by interpolation.

The y-coordinates of the maps φi : C → Ei are of course even more complicated
to write down. However, a convenient alternative to recording these directly is
to note that the invariant differentials on E1 and E2 pull back to the following
“elliptic differentials” on C:

φ∗1

(
dx

2y + x

)
=

(273857x− 336364)dx

y
,

φ∗2

(
dx

2y + x

)
=

(2758x+ 1630)dx

y
.

Our second proof that E1 and E2 are 17-congruent is completed by the next
lemma, which we record for convenience, but is essentially well known. Compared
to the proof in Section 2, this proof takes a fraction of the computer time, since
we only have to check that our formulae for φ1 and φ2 do indeed define morphisms
C → E1 and C → E2.

Lemma 3.2. Let C be a genus 2 curve and let p be a prime. Let φ1 : C → E1

and φ2 : C → E2 be morphisms of degree p, where E1 and E2 are non-isogenous

elliptic curves. Then E1 and E2 are p-congruent.

Proof. Since E1, E2 and J = JacC are principally polarised abelian varieties, we

identify them with their duals without further comment.

The map φ1 : C → E1 induces by pull back a map E1 → J . This map is

injective since otherwise, by [BL, Proposition 11.4.3], φ1 would have to factor via

a non-trivial isogeny of elliptic curves, which is not possible by our assumption

that φ1 has prime degree. Since E1 and E2 are not isogenous, the composite of

the maps E1 → J and J → E2 induced by φ1 and φ2 must be the zero map. The

same observations apply with the roles of E1 and E2 swapped over. The pull back

and push forward maps associated to φ1 and φ2 therefore define dual isogenies

E1 × E2
φ̂−→ J

φ−→ E1 × E2

whose composite is multiplication-by-p. In particular deg φ = deg φ̂ = p2 and

there are isomorphisms of Galois modules E1[p] ∼= J [φ] ∼= E2[p]. �
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4. The modular curve X(17)

Let ζ = e2πi/17 and ξk = ζk + ζ−k. Let G ∼= PSL2(Z/17Z) be the subgroup of
SL9(C) generated by M2 and M17 where

M2 =
−1√

17



1 1 1 1 1 1 1 1 1

2 ξ3 ξ8 ξ7 ξ4 ξ5 ξ2 ξ6 ξ1

2 ξ8 ξ7 ξ4 ξ5 ξ2 ξ6 ξ1 ξ3

2 ξ7 ξ4 ξ5 ξ2 ξ6 ξ1 ξ3 ξ8

2 ξ4 ξ5 ξ2 ξ6 ξ1 ξ3 ξ8 ξ7

2 ξ5 ξ2 ξ6 ξ1 ξ3 ξ8 ξ7 ξ4

2 ξ2 ξ6 ξ1 ξ3 ξ8 ξ7 ξ4 ξ5

2 ξ6 ξ1 ξ3 ξ8 ξ7 ξ4 ξ5 ξ2

2 ξ1 ξ3 ξ8 ξ7 ξ4 ξ5 ξ2 ξ6


and M17 = Diag(1, ζ, ζ9, ζ13, ζ15, ζ16, ζ8, ζ4, ζ2). The pattern of subscripts in the
definition of M2 is the sequence of powers of 3 in (Z/17Z)/{±1}.

We write C[x0, . . . , x8]d for the space of homogeneous polynomials of degree d.
An invariant of degree d is a polynomial I ∈ C[x0, . . . , x8]d satisfying I ◦ g = I for
all g ∈ G. In degrees 2 and 3 the only invariants are

Q = x20 + x1x5 + x2x6 + x3x7 + x4x8,

D = 2x0(x1x5 − x2x6 + x3x7 − x4x8)
− x21x4 + x22x5 − x23x6 + x24x7 − x25x8 + x26x1 − x27x2 + x28x3.

In degree 4 we have the invariants Q2 and

F = x40 + x0(x
2
1x4 + x22x5 + x23x6 + x24x7 + x25x8 + x1x

2
6 + x2x

2
7 + x3x

2
8)

+ x1x3x5x7 + x2x4x6x8 + x1x2x5x6 + x2x3x6x7 + x3x4x7x8 + x1x4x5x8

+ x21x3x8 + x1x
2
2x4 + x2x

2
3x5 + x3x

2
4x6 + x4x

2
5x7 + x5x

2
6x8 + x1x6x

2
7 + x2x7x

2
8.

Proposition 4.1. Let C ⊂ P8 be the curve defined by the vanishing of Q and all

partial derivatives of F . Then C = C1∪C2 where C1 and C2 are curves of degrees

96 and 168, each isomorphic to the modular curve X(17). The 144 cusps on C1

are cut out (each with multiplicity 2) by the cubic form D. Moreover D vanishes

identically on C2.

Proof. Let p ≥ 5 be a prime. The group PSL2(Z/pZ) acts on X(p) with quotient

the j-line, and the group of divisor classes fixed by this group action is an infinite

cyclic group, generated by λ of degree (p2− 1)/24. Let m = (p− 1)/2. Klein gave

equations for X(p) embedded in Pm−1 and Pm with hyperplane sections (m− 1)λ
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and mλ. Following [AR] we call these models the z-curve and the A-curve. See

[AR, Section 24] or [F3, Section 4] for further details.

We take p = 17. Let z1, . . . , z8 be coordinates on P7. We write z0 = 0, z−i = −zi
and agree to read all subscripts mod 17. According to [F1, Section 2] the z-curve

for X(17) is the curve in P7 defined by the 4 by 4 Pfaffians of the 17 by 17 skew

symmetric matrix (zi−jzi+j). We define maps φi : X(17)→ P8 for i = 1, 2 by

φ1 =

(
1 :

z2
z1

:
z6
z3

:
−z1
z8

:
−z3
z7

:
z8
z4

:
−z7
z5

:
z4
z2

:
−z5
z6

)
and

φ2 =

(
z1z4 + z2z8 + z3z5 − z6z7 −

2z4z7z2
z1

: −z28 −
2z5z7z2
z1

: z27 −
2z2z4z6
z3

: −z24 +
2z5z6z1
z8

: z25 +
2z1z2z3
z7

: −z22 +
2z3z6z8
z4

: z26 −
2z1z8z7
z5

: −z21 −
2z3z7z4
z2

: z23 +
2z4z8z5
z6

)
.

Let C1 and C2 be the images of φ1 and φ2. We find using Magma [BCP] that

Q, the partial derivatives of F , and the quartics x40 + x1x3x5x7 and x40 + x2x4x6x8
vanish on C1. Likewise, Q, D, and the partial derivatives of F vanish on C2.

These equations are sufficient to define each curve set-theoretically. In fact, the

homogeneous ideal of C1 is generated by one quadratic form, 9 cubic forms and

117 quartic forms, and the homogeneous ideal of C2 is generated by one quadratic

form and 28 cubic forms. To prove the decomposition C = C1 ∪ C2 we checked

that (x40 + x1x3x5x7)D
2 and (x40 + x2x4x6x8)D

2 belong to the ideal generated by

Q and the partial derivatives of F .

Since Q and F are invariants, the group G acts on C, and hence on C1 and

C2. It is shown in [AR, Lemma 20.40] that for p ≥ 7 a prime, the curve X(p)

has automorphism group PSL2(Z/pZ). So up to an automorphism of G, the G-

actions on C1 and C2 correspond to the usual action of PSL2(Z/17Z) on X(17).

The points on X(17) above j = 0, 1728,∞ form G-orbits of sizes 816, 1224, 144.

All other G-orbits have size |G| = 2448. The intersection of C1 with {D = 0} has

3 × 96 = 288 points counted with multiplicity. Being preserved by the G-action,

it must therefore be the set of cusps, each counted with multiplicity 2. �

Remark 4.2. The formula for φ1 (up to signs and ordering) is that given in [AR,

Section 51], and accordingly C1 is the A-curve. The formula for φ2 was found by

using the G-actions to compute a complement to the image of S2L(ζ) in L(2ζ),

where L(δ) denotes the Riemann Roch space of a divisor δ, and ζ ∼ 7λ is the

hyperplane section for the z-curve.
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Definition 4.3. A covariant of degree d is a column vector v of polynomials in

C[x0, . . . , x8]d satisfying v ◦ g = gv for all g ∈ G.

Starting from an invariant I of degree d we may construct a covariant of degree
d− 1 as

(2) ∇QI = H(Q)−1


∂I/∂x0

...

∂I/∂x8


where H(Q) is the 9 by 9 matrix of second partial derivatives of Q. Going in the
other direction, if v and w are covariants of degrees d and e then

(3) v ·w := vTH(Q)w = coeff(Q(v + tw), t)

is an invariant of degree d + e. If we think of a covariant as a G-equivariant
polynomial map C9 → C9 then the composition of covariants v and w of degrees
d and e is a covariant v ◦w of degree de.

We put v1 = (x0, . . . , x8)
T , v2 = ∇QD, v3 = ∇QF , v4 = v2◦v2 and v6 = v3◦v2.

Then c4 = v4 · v6 is an invariant of degree 10.

Lemma 4.4. Let X = X(17) be the curve denoted C1 in Proposition 4.1. Then

the j-map X → P1 is given by j = −27c34/D
10.

Proof. The calculation at the end of this proof shows that c4 does not vanish

identically on X. So the intersection of X with {c4 = 0} is a set of 10 × 96 =

816 + 144 points. Arguing as in the proof of Proposition 4.1, this set is the union

of the points above j = 0 and j = ∞. Our formula for the j-invariant therefore

has the correct divisor, and so is correct up to scaling.

Let u = (θ3− θ2− θ+ 2i− 1)/4 where θ = 4
√

1− 4i and i =
√
−1. Let σ be the

generator for Gal(Q(θ)/Q(i)) given by σ(θ) = iθ. The point

(1 : u : σ(u) : σ2(u) : σ3(u) : u : σ(u) : σ2(u) : σ3(u)) ∈ X

is fixed by a permutation matrix of order 2 in G, and so lies above j = 1728. The

function c34/D
10 takes the value −1728/27 at this point. �

5. Computations in the symplectic case

Let X = X(17) ⊂ P8 be the curve denoted C1 in Proposition 4.1. By [F3,
Lemma 3.2] the surface Z(17, 1) is birational to the quotient of X ×X ⊂ P8 × P8

by the diagonal action of G ∼= PSL2(Z/17Z). We write x0, . . . , x8 and y0, . . . , y8
for our coordinates on the first and second copies of P8.
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Definition 5.1. A bi-invariant of degree (m,n) is a polynomial in x0, . . . , x8 and

y0, . . . , y8, that is homogeneous of degrees m and n in the two sets of variables,

and is invariant under the diagonal action of G.

In principle we may find equations for Z(17, 1) by computing generators and
relations for the ring of bi-invariants mod I(X × X). In practice we find it is
sufficient to compute only some of the generators and some of the relations.

The calculations that follow rely on showing that certain bi-invariants vanish
identically on X×X. Initially we only checked that they vanish at many Fp-points
for some moderately large prime p. For a full proof in characteristic 0 we used the
G-action and numerical approximations to verify the conditions in the following
lemma. This is sufficient since if the absolute value of the norm of an algebraic
integer is less than one, then it must be zero.

Lemma 5.2. Let I be a bihomogeneous form of degree (m,n) with m,n ≤ 22. If

I vanishes at all points (P,Q) ∈ X × X with j(P ), j(Q) ∈ {0, 1728,∞} then I

vanishes on X ×X.

Proof. This follows from Bezout’s theorem, using that 144+816+1224 > 22×96.

The argument is then identical to that used in the proof of [F3, Lemma 6.2]. �

It is easy to compute the dimension of the space of bi-invariants of any given
degree from the character table of G. However we need to work with explicit bases
for these spaces. Let Q, D and F be the invariants of degrees 2, 3 and 4 defined
in Section 4. We define bi-invariants Qij, Dij and Fij by the rules

Q(λx0 + µy0, . . . , λx8 + µy8) = λ2Q20 + λµQ11 + µ2Q02,

D(λx0 + µy0, . . . , λx8 + µy8) = λ3D30 + λ2µD21 + . . .+ µ3D03,

F (λx0 + µy0, . . . , λx8 + µy8) = λ4F40 + λ3µF31 + . . .+ µ4F04.

Then, writing H for the 9 by 9 matrix of second partial derivatives with respect
to x0, . . . , x8, we put

Dx = H(Q)−1H(D30), Dy = H(Q)−1H(D21), Fxy = H(Q)−1H(F31).

The space of bi-invariants of degree (2, 2) has dimension 4, with basis A1, . . . , A4

where A1 = Q20Q02, A2 = Q2
11, A3 = F22, and

tr(DxDyFxy) = −16A1 + 8A2 − 8A4.

Each of these bi-invariants is symmetric (under interchanging the x’s and y’s), but
only the first vanishes identically on X ×X.

The space of bi-invariants of degree (3, 3) has dimensional 16. Under inter-
changing the x’s and y’s, this breaks up as the direct sum of symmetric and
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skew-symmetric subspaces of dimensions 14 and 2. The subspace of symmetric
bi-invariants has basis B′1, . . . , B

′
14 given by

Q11A2, Q11A3, Q11A4, D30D03, D21D12, tr(D3
xD

3
y), tr(D2

xDyDxD
2
y),

tr(D2
xD

2
yFxy), tr(DxDyDxDyFxy), tr(DxDyF

2
xy), tr(F 3

xy),

Q11A1, Q20F13 +Q02F31, 2∇QF (x0, . . . , x8) · ∇QF (y0, . . . , y8),

where in the final expression (for B′14) we use the notation (2) and (3).
We changed our choice of basis for this space of bi-invariants first so that the

bi-invariants themselves have small integer coefficients, then so that the relations
considered below have small integer coefficients, and finally to facilitate writing
down an elliptic fibration. To simplify the calculations that follow, we therefore
(with the benefit of hindsight) switch to the basis B1, . . . , B14 that is related to
the basis B′1, . . . , B

′
14 (as specified in the last paragraph) by the first change of

basis matrix recorded in Appendix A. In fact we keep the first and last three basis
elements the same, i.e. Bi = B′i for i = 1, 2, 3, 12, 13, 14.

The subspace of bi-invariants vanishing on X ×X is spanned by B12, B13, B14.
We write I1 ⊂ Q[z1, . . . , z11] for the ideal generated by all quadratic and cubic
forms vanishing on the image of the map

X ×X → P10 ; (x0, . . . , x8; y0, . . . , y8) 7→ (B1 : . . . : B11).

We find that I1 is minimally generated by 13 quadratic forms and 21 cubic forms.
Moreover the subvariety Σ1 ⊂ P10 defined by I1 is a surface of degree 29.

Proposition 5.3. The surface Σ1 is birational over Q to the elliptic surface Σ

defined by the Weierstrass equation (1) in the statement of Theorem 1.2.

Proof. The rational map Σ1 → P3 × A1 given by

(z1 : . . . : z11) 7→ ((z1 : z2 : z3 : z4), T ) = ((z1 : z2 : z3 : z4), z5/z6)

has image satisfying

2Tz21 + 3Tz1z2 − (5T − 2)z1z3 − 3T 2z1z4 + Tz22 − 4Tz2z3 − 2T 2z2z4

+ 2(2T − 1)z23 + T (4T − 1)z3z4 + T 3z24 = 0,

(T + 1)2z21 + T (2T + 1)z1z2 − (T + 1)2z1z3 − T (T + 1)2z1z4 + T 2z22

− 2T 2z2z3 − T 3z2z4 = 0.

These same equations define a genus one curve in P3 over the function field Q(T ).

Making the linear change of coordinates

u1 = T (T + 1)z1, u3 = (T + 1)z3,

u2 = T (z1 + z2 − 2z3 − Tz4), u4 = T (−z1 + 2z3 + Tz4),
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gives the simplified quadric intersection

u1u2 + u1u3 + (T + 1)u22 − u3u4 = 0,

u1u4 + Tu22 − T 2u2u4 − Tu3u4 = 0,

which in turn is isomorphic to the elliptic curve (1) via

x =
−Tu1
u4

, y =
Tu1(u1 − u2 − u4)

u2u4
.

Composing these maps gives a birational map Σ1 → Σ. The inverse map, rep-

resented as an explicit 11-tuple of elements in the function field Q(Σ), is recorded

in the accompanying computer file [F4]. �

Since the rational map X × X → Σ is defined by symmetric bi-invariants, it
factors via a rational map π : W (17, 1)→ Σ. We will see below that π is birational,
thereby proving the first part of Theorem 1.2.

One way to compute equations for the double cover Z(17, 1) → W (17, 1) is to
find a skew-symmetric bi-invariant of degree (3, 3) that does not vanish identically
on X × X, and then write its square, modulo I(X × X), as a quadratic form
in B1, . . . , B11. We omit the details, since this calculation is superceded by the
calculation of the j-maps, which we do next.

We consider the symmetric bi-invariants α1 = D30D03, α2 = D12D21, α3 =
D3

21D03 +D3
12D30, α4 = c4(x0, . . . , x8)c4(y0, . . . , y8) and

α5 = c4(x0, . . . , x8)D
3
03D12 + c4(y0, . . . , y8)D

3
30D21,

of degrees (m,m) for m = 3, 3, 6, 10, 11. Let S = Q[u, v, w, z4, . . . , z11] be the
graded polynomial ring where the variables have weights 1, 2, 2, 3, . . . , 3. In the
accompanying Magma file [F4] we record g1, . . . , g5 ∈ S of weighted degrees
3, 3, 9, 15, 15 and h1, . . . , h5 ∈ S of weighted degrees 0, 0, 3, 5, 4, such that each
of the bi-invariants

gi(Q11, A3, A4, B4, . . . , B11)− hi(Q11, A3, A4, B4, . . . , B11)αi

vanishes on X × X. We use these expressions to solve for the αi as elements of
the function field Q(Σ). Then the polynomials f1(Y ) = Y 2 − α3Y + α1α

3
2 and

f2(Y ) = Y 2−α5Y +α3
1α2α4 have roots defined over the same quadratic extension

of Q(Σ). Let these roots be r1, s1 and r2, s2. If we order these roots appropriately
then by Lemma 4.4, and the definition of the αi, we have

j1 + j2 =
−27

α9
1

(
r32
r1

+
s32
s1

)
and j1j2 =

214α3
4

α10
1

.

Let Σ̃→ Σ be the double cover defined by the requirement that disc f1, disc f2,
or (j1 + j2)

2 − 4j1j2 is a square. Then the product of j-maps X → P1 factors as

(4) X ×X −→ Z(17, 1) −→ Σ̃ −→ P1 × P1.
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The composite corresponds to a Galois extension of function fields, with Galois
group G × G. Since G ∼= PSL2(Z/17Z) is a simple group, the diagonal subgroup
∆G ⊂ G × G is a maximal subgroup. Therefore one of the last two maps in (4)
is birational. However if the last map were birational, then this would mean that
in attempting to quotient out by ∆G, we had in fact quotiented out by G × G.
To exclude this possibility we may check, for example, that the rational function
F22/Q

2
11 on X ×X is not G×G-invariant.

In conclusion, Z(17, 1) is birational to Σ̃, and W (17, 1) is birational to Σ. This
completes the proof of Theorem 1.2 in the symplectic case.

Remark 5.4. We initially hoped that we might compute W (17, 1) using the bi-

invariants of degree (2, 2), without needing those of degree (3, 3). In hindsight we

see that this is not possible, since the map W (17, 1)→ P2 given by (A2 : A3 : A4)

is generically 5-to-1. This may be seen by eliminating z4 from the first quadric

intersection in the proof of Proposition 5.3, and noting that the resulting quartic

in z1, z2, z3 has degree 5 in T .

6. Computations in the anti-symplectic case

In Section 4 we defined G as the subgroup of SL9(C) generated by certain
matrices with entries in Q(ζ), where ζ is a primitive 17th root of unity. Replacing
each matrix entry by its image under the automorphism ζ 7→ ζ3 of Q(ζ) defines
an outer automorphism g 7→ g̃ of G.

Definition 6.1. A skew bi-invariant of degree (m,n) is a polynomial in x0, . . . , x8
and y0, . . . , y8, that is homogeneous of degrees m and n in the two sets of variables,

and is invariant under the action of G via g : (x, y) 7→ (gx, g̃y).

Since the map g 7→ ˜̃g is an inner automorphism of G we see that if f is a skew
bi-invariant, then so too is

f †(x0, . . . , x8; y0, . . . , y8) := f(y0, . . . , y8;−x0,−x2,−x3, . . . ,−x8,−x1).
We have f †† = f .

The space of skew bi-invariants of degree (2, 2) has basis A1, A2, A3 where A1 =
Q20Q02 and

A2 = 4x20y
2
0 +

∑
(2x0x1y3y4 + 2x4x5y0y1 + x21y1y7 + x2x8y

2
1 + x1x2y2y5

+ x3x6y1y2 + x1x3y5y8 + x1x6y1y3 + 1
2
(x1x5y2y6 + x3x7y1y5)),

A3 = 4x20y
2
0 +

∑
(2x0x1y2y8 + 2x1x3y0y1 + x21y2y3 + x3x4y

2
1 + x1x2y2y5

+ x3x6y1y2 + x1x3y5y8 + x1x6y1y3 + 1
2
(x1x5y1y5 + x2x6y1y5)).

Here
∑

denotes the sum over all simultaneous cyclic permutations of x1, . . . , x8
and y1, . . . , y8 (fixing x0 and y0). We have A†i = Ai for i = 1, 2, 3.
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The space of skew bi-invariants of degree (3, 1) is 1-dimensional, spanned by

S31 = −16x30y0 +
∑

((3x0x1x5 + 3x21x4)y0 + (6x0x1x3 + 6x0x4x5 + 3x22x3

+ 3x1x
2
4 + x35 + 3x4x

2
6 + 6x1x2x7 + 6x3x5x8 + 6x6x7x8)y1).

We write S13 = S†31 for the corresponding skew bi-invariant of degree (1, 3).
Earlier we wrote H(f) for the 9 by 9 matrix of second partial derivatives of

f with respect to x0, . . . , x8. We now write H = Hxx and define Hxy, Hyx, Hyy

in the analogous way. We further put Hxx(f) = H(Q)−1Hxx(f), Hxy(f) =
H(Q)−1Hxy(f) and so on. The following are skew bi-invariants of degree (3, 3).

P = 2(Q20S13 +Q02S31),

Θij = tr(Hxx(D30)Hxy(Ai)Hyy(D03)Hyx(Aj)),

Ψij = tr(Hxx(S31)Hxy(Ai)Hyx(Aj)),

Ui = tr(Hxy(P )Hyx(Ai)),

V = tr(Hxy(Θ12)Hyx(A3)).

The space of skew bi-invariants of degree (3, 3) has dimension 15. The subspace
fixed by the involution f 7→ f † has basis B′1, . . . , B

′
12 given by

D30D03, P, Θ12, Θ13, Θ22, Θ23, Θ33, U2, U3, Ψ22 + Ψ†22,Ψ23 + Ψ†23, V.

For the calculations that follow we switch (with the benefit of hindsight) to the
basis B1, . . . , B12 that is related to the basis B′1, . . . , B

′
12 by the second change of

basis matrix recorded in Appendix A.
The subspace of bi-invariants vanishing on X ×X has basis B11, B12. We write
I3 ⊂ Q[z1, . . . , z10] for the ideal generated by all quadratic and cubic forms van-
ishing on the image of the map

X ×X → P9 ; (x0, . . . , x8; y0, . . . , y8) 7→ (B1 : . . . : B10).

We find that I3 is minimally generated by 14 quadratic forms and 2 cubic forms.
Moreover the variety Σ3 ⊂ P9 defined by I3 is a surface of degree 24.

Proposition 6.2. The surface Σ3 is birational over Q to the elliptic surface Σ

defined by the Weierstrass equation (1) in the statement of Theorem 1.2.

Proof. The rational map Σ3 → P3 × A1 given by

(z1 : . . . : z10) 7→ ((z1 : z2 : z3 : z4), T ) = ((z1 : z2 : z3 : z4), z5/z6)

has image satisfying

z21 − Tz1z2 + Tz1z3 + Tz2z3 − Tz23 + Tz3z4 = 0,

z1z3 − Tz2z3 + 2(T + 1)z1z4 − (T 2 − 1)z2z4 + (T + 1)z24 = 0.
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These same equations define a genus one curve in P3 over Q(T ). Making the linear

change of coordinates

u1 = z1 − Tz2, u3 = (T + 1)z3,

u2 = (T + 2)z1 + z2 − (T + 1)(z3 − z4), u4 = (T + 1)z4

gives the simplified quadric intersection

u21 + Tu1u2 + Tu2u3 − Tu1u4 = 0,

u1u3 + Tu1u4 + u2u4 + u3u4 = 0,

which in turn is isomorphic to the elliptic curve (1) via

x =
T (u1 + Tu2)

u4
, y =

T (u1 + Tu2)
2

u1u4
.

Composing these maps gives a birational map Σ3 → Σ. The inverse map, rep-

resented as an explicit 10-tuple of elements in the function field Q(Σ), is recorded

in the accompanying computer file [F4]. �

Since the Bi are skew bi-invariants satisfying B†i = Bi, the rational map X ×
X → Σ factors via a rational map π : W (17, 3)→ Σ. We will see below that π is
birational, thereby proving the first part of Theorem 1.2.

For the purpose of computing the j-maps we decided to work with the skew
bi-invariants of degree (2, 2), alongside those of degree (3, 3). We consider the
map from X ×X to the weighted projective space P(2, 2, 3, . . . , 3) given by

(v, w, z1, . . . , z10) = (A2, A3, B1, . . . , B10).

Among the equations defining the image of this map we found the relations

vz5z10 − w(z1z5 − z3z5 + z1z6 − z5z8 + z5z9) = 0,

vw2z7 − (z2 − z3 − z5)(z6 − z7)z10 + z5z8z10 = 0.

We used these relations to extend our map Σ→ P9 to a map Σ→ P(2, 2, 3, . . . , 3).
The space of skew bi-invariants of degree (3, 2) has dimension 5. We picked one

of these skew bi-invariants, not vanishing on X×X, and called it T32. We also put
T23 = T †32. We define skew bi-invariants α1 = D30D03, α2 = S31S13, α3 = T32T23,
α4 = D03S31T32 +D30S13T23, α5 = S31T

2
23 + S13T

2
32,

α6 = c4(x0, . . . , x8)c4(y0, . . . , y8),

α7 = D3
03T23c4(x0, . . . , x8) +D3

30T32c4(y0, . . . , y8),

of degrees (m,m) for m = 3, 4, 5, 6, 7, 10, 12. Let S = Q[v, w, z1, . . . , z10] be the
coordinate ring of P(2, 2, 3, . . . , 3), i.e., the graded polynomial ring where the
variables have these weights. In the accompanying Magma file [F4], we record
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g1, . . . , g7 ∈ S of weighted degrees 3, 6, 8, 8, 12, 18, 18, and h1, . . . , h7 ∈ S of
weighted degrees 0, 2, 3, 2, 5, 8, 6, such that each of the skew bi-invariants

gi(A2, A3, B1, . . . , B10)− hi(A2, A3, B1, . . . , B10)αi

vanishes on X × X. We use these expressions to solve for the αi as elements of
the function field Q(Σ). Then the polynomials

f1(Y ) = Y 2 − α4Y + α1α2α3,

f2(Y ) = Y 2 − α5Y + α2α
2
3,

f3(Y ) = Y 2 − α7Y + α3
1α3α6,

have roots defined over the same quadratic extension of Q(Σ). Let fi have roots
ri, si. If we order these roots appropriately then by Lemma 4.4, and the definition
of the αi, we have

j1 + j2 =
−27α2

α9
1

(
r33
r1r2

+
s33
s1s2

)
and j1j2 =

214α3
6

α10
1

.

Let Σ̃→ Σ be the double cover defined by the requirement that disc f1, disc f2,
disc f3 or (j1 + j2)

2 − 4j1j2 is a square. Then the product of j-maps X → P1

factors as
X ×X −→ Z(17, 3) −→ Σ̃ −→ P1 × P1.

Exactly as in Section 5 it follows that Z(17, 3) is birational to Σ̃ and W (17, 3) is
birational to Σ. This completes the proof of Theorem 1.2 in the anti-symplectic
case.

Remark 6.3. The elliptic K3-surface (1) admits many different elliptic fibrations.

The fibrations we initially found on W (17, 1) and W (17, 3) were different, and it

was only after we discovered that these surfaces are birational that we adjusted

the calculations in this section so as to find the same elliptic fibration.

7. Some modular curves

Let m ≥ 2 be an integer coprime to 17. Then any pair of m-isogenous elliptic
curves are 17-congruent with power k, where k = 1 if m is a quadratic residue mod
17, and k = 3 otherwise. There is therefore a copy of the modular curve X0(m)
on the surface Z(17, k). In Table 1 we explicitly identify these curves in all cases
where X0(m) has genus 0 or 1. The polynomials F1 and F3 are those appearing
in the statement of Theorem 1.2, and explicitly recorded in Appendix A.
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Table 1. Copies of X0(m) on Z(17, 1) and Z(17, 3)

m Formula specifying a curve on (a blow up of) z2 = Fk(T, x, y)

2 F1(−2 + ε,−4 + 8ε− 5ε2 + ε3 + tε4, 4 +O(ε)) = 218(8t+ 1)ε4 +O(ε5)

3 F3(−1/2 + ε, 1/2− ε+ tε3, 1/4 +O(ε2)) = −2−20(27t− 16)ε4 +O(ε5)

4 F1(1 + ε,−tε2,−1 +O(ε)) = 24(32t+ 1)ε2 +O(ε3)

5 F3(−2 + ε, 2− ε+ tε2, 2 +O(ε)) = −21234(t2 − 11t− 1)ε4 +O(ε5)

6 F3(−1 + ε, 1− 2ε+ tε2, 2ε+O(ε2)) = (t2 − 36t+ 36)ε10 +O(ε11)

7 F3(tε
−2, tε−3, ε−2 +O(ε−1)) = t22(t+ 1)(t− 27)ε−48 +O(ε−47)

8 F1(ε, ε
2 + ε3 + 8tε4, ε2 + 2ε3 +O(ε4)) = 24(t2 + 6t+ 1)ε18 +O(ε19)

9 F1(ε
−1, ε−3 + tε−1, O(ε−4)) = (t2 + 20t− 8)ε−24 +O(ε−23)

10 F3((t+ 1)ε2, t−1(t+ 1)3ε4, t−1(t+ 1)3(ε4 + ε5) +O(ε6))

= t−4(t+ 1)16(t2 + 18t+ 1)ε32 +O(ε33)

11 F3(ε
2 − ε3, ε3 + ε4 + (t− 1)ε5, ε3 + 2ε4 +O(ε5))

= t(t3 + 20t2 + 56t+ 44)ε36 +O(ε37)

12 F3(ε
−1,−ε−1 − (t+ 1), tε−2 +O(ε−1)) = (t2 − 14t+ 1)ε−24 +O(ε−23)

13 F1(−tε−1, (t+ 1)ε−1, t−2(t+ 1)3 +O(ε)) = t16(t2 + 12t− 16)ε−20 +O(ε−19)

14 F3(ε
−1,−tε−3, tε−5 +O(ε−4)) = t2(t+ 1)4(t4 − 14t3 + 19t2 − 14t+ 1)ε−30 +O(ε−29)

15 F1(ε
−1, tε−2,−tε−4 +O(ε−3)) = t2(t− 1)2(t2 − t− 1)(t2 + 11t− 1)ε−24 +O(ε−23)

16 F1(−1 + ε, tε, 1 +O(ε)) = (t2 − 12t+ 4)ε4 +O(ε5)

18 F1(t,−t,−t(t+ 1)) = t16(t+ 1)2(t2 + 10t+ 1)

19 F1(−1 + 2ε, (t+ 4)ε, (t+ 4)2ε2 +O(ε3)) = −8(t+ 3)(t3 − 2t+ 2)ε4 +O(ε5)

20 F3(−ε+ t2ε2, ε− tε2, ε− ε2 +O(ε3)) = (t4 + 8t3 − 2t2 + 8t+ 1)ε12 +O(ε13)

21 F1(−ε, t(t+ 1)ε3, (t+ 1)2ε3 +O(ε4)) = (t4 + 6t3 − 17t2 + 6t+ 1)ε16 +O(ε17)

24 F3(t, 1, 0) = (t+ 1)8(t3 + t2 − 1)4(t4 − 8t3 + 2t2 + 8t+ 1)

25 F1(t, t
2, t2) = −t18(t+ 1)4(16t2 + 4t− 1)

27 F3(t, t
2(t+ 1), t2(t+ 1)2) = −t18(t2 + 2t+ 2)4(t− 1)(11t3 + 15t2 + 9t+ 1)

32 F1(t, t
2(t+ 1),−t2(t3 + t2 − 1))

= t16(t+ 1)4(t2 + t+ 1)4(t4 + 8t3 + 12t2 + 16t+ 4)

36 F1(t, (t+ 1)(t2 + t+ 1), (t+ 1)2(t2 + 2t+ 2))

= (t+ 1)4(t3 + t2 + 2t+ 1)2(t3 + 2t2 + 3t+ 1)4(4t4 + 8t3 + 12t2 + 8t+ 1)

49 F1(t, t(t
2 − 1),−t(t2 − 1)2) = t20(t+ 1)4(t2 − t− 1)2(t4 + 6t3 + 3t2 − 18t− 19)
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In compiling Table 1 we used the SmallModularCurve database in Magma
[BCP] to check the moduli interpretations. For example, the entry with m = 18
shows that Z(17, 1) contains a curve isomorphic to y2 = t2 + 10t + 1. We
parametrise this curve by putting t = −T/((T + 2)(T + 3)), and find, using our
expressions for j1 + j2 and j1j2 as rational functions on W (17, 1), that

X2 − (j1 + j2)X + j1j2 =
(
X − j18(T )

)(
X − j18(6/T )

)
where

j18(T ) =
((T + 2)12 − 8(T + 2)9 + 16(T + 2)3 + 16)3

(T + 2)9((T + 2)3 − 8)((T + 2)3 + 1)2

is the j-map on X0(18).
To find most of these curves it was necessary to blow up the surfaces in The-

orem 1.2. In such cases we specify the arguments T, x, y of Fk as power series in
ε, given to sufficient precision to determine a unique solution of (1). For exam-
ple, the entry with m = 20 shows that blowing up our model for Z(17, 3) above
(T, x, y) = (0, 0, 0) we found a curve isomorphic to y2 = t4 + 8t3 − 2t2 + 8t + 1.
Putting this elliptic curve in Weierstrass form we find it has Cremona label 20a1,
and in particular is isomorphic to X0(20).

8. Examples and further questions

We restate Conjecture 1.1 in the case p = 17. As usual we say a p-congruence
is trivial if it is explained by an isogeny of degree coprime to p.

Conjecture 8.1. (i) The only non-trivial pairs of symplectically 17-congruent

elliptic curves over Q are the simultaneous quadratic twists of the elliptic

curves E1 and E2 (with conductors 279809270 and 3077901970) as defined

in the introduction.

(ii) The only non-trivial pairs of anti-symplectically 17-congruent elliptic curves

over Q are the simultaneous quadratic twists of the elliptic curves E ′1 and

E ′2 (with conductors 3675 and 47775) as defined in the introduction.

We make a related conjecture.

Conjecture 8.2. Let Z̃(17, k) be the surface in A4 with equations

y2 + (T + 1)(T − 2)xy + T 3y = x3 − x2

and z2 = Fk(T, x, y) where Fk is as recorded in Appendix A.

(i) The only Q-points on Z̃(17, 1) lie above one of the curves

(x, y) = (0,−T 3), (−T,−T 2 − T ), (−T,−T ), (T 2, T 2), (T 2,−T 4 + T 2),

(T 3 + T 2, T 4 + 2T 3 + T 2), (T 3 − T, T 4 − T 2 − T ),

or the curve T = 0, or one of the points in Table 2.
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(ii) The only Q-points on Z̃(17, 3) lie above one of the curves

(x, y) = (−T,−T ), (−T,−T 2 − T ), (T 2,−T 4 + T 2),

(T 3 + T 2,−T 5 − T 4 + T 2),

or the curve T = 0, or one of the points in Table 2.

The points on Z̃(17, k) lying above one of the curves listed in Conjecture 8.2 do
not correspond to non-trivial pairs of 17-congruent elliptic curves, either because
there is an m-isogeny (with m = 18 or 25), or the j-maps have a pole, or the point
is spurious since Fk vanishes to even multiplicity.

It should be possible to prove that Conjectures 8.1 and 8.2 are equivalent by
computing biregular (not just birational) models for Z(17, 1) and Z(17, 3). This
belief is based on the fact that in compiling Table 1 we carried out some of the nec-
essary blow ups, but did not find any new examples of 17-congruences. Nonetheless
we leave the full verification to future work.

The height of a rational number x = a/b (where a, b are coprime integers) is
H(x) = max(|a|, |b|). Our evidence for Conjecture 8.2 is that we found no further
points with H(T ) ≤ 3000 and H(x) ≤ 10000. We see little hope of proving this
conjecture using existing methods. A possibly more tractable problem, the answer
to which would still be interesting, would be to determine all curves of genus 0 or
1 on these surfaces (either over Q or over Q).

In Table 2 we list elliptic curves via their Cremona labels [C], writing instead
the conductor followed by a star for curves beyond the range of Cremona’s tables.
The latter convention is only needed for the first entry, where the relevant elliptic
curves are the ones defined in the introduction. The first column records whether
the congruence is symplectic (k = 1) or anti-symplectic (k = 3). The final column
records the degree of the isogeny when the curves are isogenous. Each pair of
elliptic curves we list is only determined up to simultaneous quadratic twist.

Table 2. Some rational points on Z(17, 1) and Z(17, 3)

k T x y 17-congruent ell. curves degree

1 1/3 −2/75 −11/125 279809270∗, 3077901970∗ −
1 −3 −27 108 1849a1, 1849a2 43

1 −5/6 −5/24 5/16 4489a1, 4489a2 67

3 1 2 4 27a2, 27a4 27

3 9/7 27/49 −54/49 3675b1, 47775b1 −
3 −5/14 125/392 375/1568 1225h1, 1225h2 37

3 11/39 1771/6591 116380/257049 26569a1, 26569a2 163
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Appendix A. Formulae

We record the polynomials F1(T, x, y) and F3(T, x, y) in Theorem 1.2. These
define the double covers Z(17, 1)→ W (17, 1) and Z(17, 3)→ W (17, 3).

F1(T, x, y) = x10 − 2T (T − 1)x8y + T (T 3 − 2T 2 − 11T + 4)x9

− T 2(T 4 − 3T 3 − 3T 2 + 3T − 10)x7y + T 2(8T 4 + 58T 3 + 15T 2 − 64T + 5)x8

− T 3(8T 5 + 51T 4 + 80T 3 + 51T 2 − 2T − 20)x6y − 2T 4(16T 4 − 41T 3 − 205T 2

− 97T + 71)x7 + 2T 4(16T 6 + 49T 5 − 13T 4 − 142T 3 − 113T 2 − T + 10)x5y

− T 4(149T 6 + 576T 5 + 180T 4 − 956T 3 − 579T 2 + 148T + 5)x6 − 2T 5(13T 7

− 39T 6 − 229T 5 − 202T 4 + 126T 3 + 169T 2 + 9T − 5)x4y + T 5(80T 8 + 318T 7

− 192T 6 − 1800T 5 − 1376T 4 + 819T 3 + 750T 2 − 67T − 4)x5 − T 6(T + 1)(24T 7

+ 156T 6 − 24T 5 − 558T 4 − 285T 3 + 192T 2 + 21T − 2)x3y − T 6(16T 10 + 72T 9

− 239T 8 − 1300T 7 − 870T 6 + 1952T 5 + 2295T 4 + 18T 3 − 449T 2 + 4T + 1)x4

+ T 8(T + 1)2(12T 6 − 50T 5 − 226T 4 + 36T 3 + 292T 2 − 31T − 6)x2y

− T 8(T + 1)(76T 8 + 273T 7 − 275T 6 − 1505T 5 − 631T 4 + 1016T 3 + 472T 2

− 94T − 4)x3 − T 10(T + 1)3(T 5 − 14T 4 + 55T 3 + 118T 2 − 68T − 4)xy

− T 10(T + 1)2(131T 6 + 328T 5 − 234T 4 − 700T 3 − 18T 2 + 138T + 3)x2

− T 13(T + 1)4(T 2 − 2T + 28)y − 2T 13(T + 1)3(49T 3 + 63T 2 − 63T − 27)x

− 27T 16(T + 1)4.

F3(T, x, y) = x10 − 14Tx8y − T (4T 2 − 71T − 16)x9 + T 2(17T 2 − 89T − 18)x7y

− T 2(14T 4 + 288T 3 + 165T 2 − 220T − 19)x8 + T 3(76T 4 + 480T 3 + 545T 2

− 176T − 4)x6y + T 3(94T 6 + 513T 5 + 234T 4 − 1412T 3 − 732T 2 + 242T + 4)x7

− T 5(163T 5 + 837T 4 + 1320T 3 − 72T 2 − 898T + 106)x5y − T 5(159T 7 + 590T 6

− 103T 5 − 3276T 4 − 3150T 3 + 1326T 2 + 820T − 112)x6 + T 6(80T 7 + 418T 6

+ 501T 5 − 936T 4 − 2496T 3 − 948T 2 + 390T − 4)x4y + T 6(98T 9 + 386T 8

− 350T 7 − 3439T 6 − 3894T 5 + 3010T 4 + 4872T 3 − 306T 2 − 284T + 4)x5

+ T 8(4T 8 + 130T 7 + 917T 6 + 2787T 5 + 4078T 4 + 2292T 3 − 482T 2 − 480T

− 60)x3y − T 8(27T 10 + 122T 9 − 177T 8 − 1496T 7 − 987T 6 + 5032T 5 + 8446T 4

+ 1124T 3 − 2621T 2 + 54T − 61)x4 − T 10(10T 9 + 132T 8 + 738T 7 + 2126T 6

+ 3179T 5 + 1902T 4 − 718T 3 − 1376T 2 − 482T − 256)x2y + T 10(T 10 − 48T 9
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− 122T 8 + 882T 7 + 4304T 6 + 6244T 5 + 973T 4 − 4506T 3 − 1714T 2 + 428T

− 242)x3 − T 12(T 10 − T 9 − 70T 8 − 368T 7 − 814T 6 − 714T 5 + 237T 4 + 963T 3

+ 800T 2 + 522T + 312)xy − T 12(26T 9 + 283T 8 + 1018T 7 + 1256T 6 − 810T 5

− 3237T 4 − 1848T 3 + 648T 2 + 108T − 265)x2 − T 14(T + 2)(T 8 + 12T 7 + 44T 6

+ 74T 5 + 64T 4 + 20T 3 − 43T 2 − 92T − 60)y − 2T 14(10T 8 + 94T 7 + 323T 6

+ 471T 5 + 129T 4 − 367T 3 − 263T 2 + 69T + 36)x + T 16(T 8 + 4T 7 − 8T 6

− 66T 5 − 120T 4 − 56T 3 + 53T 2 + 36T − 16).

We also record the change of basis matrices we used in Sections 5 and 6. In

each case the rows of the matrix give the B′i in terms of the Bi.



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

−24 −12 28 8 −4 0 4 4 0 −4 4 0 0 0

−34 −15 34 7 −8 −3 0 5 −2 −9 7 0 −1 0

−480 −288 320 160 −64 −32 192 160 0 −96 96 512 −96 0

248 144 −96 −144 0 −16 −192 −144 −32 48 16 448 −48 16

−24 −56 −128 −40 0 −24 32 56 −16 −24 −8 −32 −40 8

−384 −144 688 96 −64 0 32 −48 −16 0 128 −64 0 8

328 204 −240 −76 32 4 −144 −92 8 36 −20 24 20 −12

−366 −180 96 72 −48 12 192 168 −12 −48 −84 36 0 36

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1




−4 −12 8 −4 −8 −8 0 −4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0

−56 −176 148 −68 −160 −140 36 −52 24 24 −8 4

−104 −240 156 −76 −128 −164 12 −92 8 8 8 4

−16 −128 124 −36 −144 −92 12 −36 8 8 8 12

−40 −48 48 −24 −32 −40 48 −24 32 32 0 16

−64 −176 132 −60 −128 −148 4 −76 −8 −8 24 −12

−36 −72 96 −96 12 24 −36 −12 0 24 24 −12

−60 −48 48 −24 −12 −48 60 −60 48 48 72 24

36 72 −72 24 60 24 −60 12 −72 −72 24 −48

−72 −84 108 −48 0 24 −12 −24 12 24 0 12

−208 204 −72 28 364 116 288 −44 208 224 32 104





ON PAIRS OF 17-CONGRUENT ELLIPTIC CURVES 23

References

[AR] A. Adler and S. Ramanan, Moduli of abelian varieties, Lecture Notes in Mathematics,

1644, Springer-Verlag, Berlin, 1996.

[BM] A.J. Best, B. Matschke, Elliptic curves with good reduction outside of the first six primes,

preprint, 2020, arXiv:2007.10535[math.NT]

[B] N. Billerey, On some remarkable congruences between two elliptic curves, preprint, 2016,

arXiv:1605.09205[math.NT]

[BL] C. Birkenhake and H. Lange, Complex abelian varieties, Second edition, Springer-Verlag,

Berlin, 2004.

[BCP] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,

J. Symb. Comb. 24, 235-265 (1997), http://magma.maths.usyd.edu.au/magma/
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