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Abstract. We compute twists of the modular curve X(13) that parametrise

the elliptic curves 13-congruent to a given elliptic curve. Searching for rational

points on these twists enables us to find non-trivial pairs of 13-congruent elliptic

curves over Q, i.e. pairs of non-isogenous elliptic curves over Q whose 13-torsion

subgroups are isomorphic as Galois modules. We also find equations for the

surfaces parametrising pairs of 13-congruent elliptic curves. There are two such

surfaces, corresponding to 13-congruences that do, or do not, respect the Weil

pairing. We write each as a double cover of the projective plane ramified over a

highly singular model for Baran’s modular curve of level 13. By finding suitable

rational curves on these surfaces, we show that there are infinitely many non-

trivial pairs of 13-congruent elliptic curves over Q.

1. Introduction

Elliptic curves E and E ′ are n-congruent if their n-torsion subgroups are isomor-
phic as Galois modules. We say the n-congruence has power k if the isomorphism
raises the Weil pairing to the power k. Since multiplication-by-m, where m is an
integer coprime to n, is an automorphism of the n-torsion subgroup, we are only
interested in k ∈ (Z/nZ)× up to multiplication by squares. Taking n = p an odd
prime, we say the congruence is direct if k is a quadratic residue, and skew if k is
a quadratic non-residue.

The elliptic curves n-congruent with power k to a given elliptic curve E are
parametrised by (the non-cuspidal points of) the curve XE(n, k). The pairs of
elliptic curves that are n-congruent with power k, up to simultaneous quadratic
twist, are parametrised by (a Zariski open subset of) the surface Z(n, k).

If elliptic curves E and E ′ are related by an isogeny of degree d, with d coprime
to n, then by standard properties of the Weil pairing, E and E ′ are n-congruent
with power d. Congruences of this form are said to be trivial. We are interested
in the following two basic questions.

(i) For which prime numbers p do there exist non-trivial pairs of p-congruent
elliptic curves over Q?

(ii) For which prime numbers p do there exist infinitely many non-trivial pairs
of p-congruent elliptic curves over Q?
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To be more precise, in (ii) we ask for infinitely many pairs of j-invariants, otherwise
from any non-trivial pair of p-congruent elliptic curves we could construct infinitely
many by taking simultaneous quadratic twists.

For p = 3, 5 we have XE(p, k) ∼= P1 and so there are infinitely many elliptic
curves p-congruent to a given elliptic curve. Explicit formulae for these families of
elliptic curves are given in [RS] in the direct case, and in [F1, F2] in the skew case.
For p ≥ 7 the curves XE(p, k) have genus at least 3, and so by Faltings’ theorem
there are only finitely many elliptic curves p-congruent to a given elliptic curve.
Kraus and Oesterlé [KO] gave the example of the directly 7-congruent elliptic
curves 152a1 and 7448e1. This was extended to infinitely many examples by Hal-
berstadt and Kraus [HK], who also gave an equation for XE(7, 1). A modification
of their method, due to Poonen, Schaefer and Stoll [PSS], gives an equation for
XE(7, 3), and from this we were able to exhibit in [F3] infinitely many non-trivial
pairs of skew 7-congruent elliptic curves.

Kani and Schanz [KS] described the geometry of the surfaces Z(n, k), in par-
ticular showing that Z(11, 1) is an elliptic surface of Kodaira dimension 1. This
work was extended by Kani and Rizzo [KR], who showed there are infinitely many
non-trivial pairs of directly 11-congruent elliptic curves. We gave an alternative
more explicit proof of this fact in [F3], and determined a Weierstrass equation for
the elliptic surface Z(11, 1) in [F4]. Kumar [K, Theorem 21] computed an equa-
tion for Z(11, 2), and although not noted in his paper, the rational curve on this
surface given by rs − r + s2 − s + 1 = 0 gives rise to infinitely many non-trivial
pairs of skew 11-congruent elliptic curves.

Examples of non-trivial 13-congruent elliptic curves have been known for some
time. For example, the pair 52a1 and 988b1 appears in [FM, Table 5.3]. Since
the first of these curves admits a rational 2-isogeny, this gives an example of both
a direct and a skew 13-congruence. Prior to our work the only known examples
of non-trivial 13-congruences were for pairs of elliptic curves that are both in the
range of Cremona’s tables (or simultaneous quadratic twists of such examples). In
this paper, we show that there are infinitely many non-trivial pairs of 13-congruent
elliptic curves, both in the direct and skew cases.

The only known example of a p-congruence for p > 13 is the pair of skew
17-congruent elliptic curves 3675b1 and 47775b1. This example was originally
found by Cremona, and is explicitly recorded in [Bi, CF, F3, FK]. The fact the
congruence is skew follows from [KO, Proposition 2]. It is a conjecture of Frey
and Mazur that there are no non-trivial pairs of p-congruent elliptic curves for
p sufficiently large. On the basis of our work, and that in [CF], we might refine
this conjecture by suggesting that the answer to question (i) is the set of primes
p ≤ 17, and the answer to question (ii) is the set of primes p ≤ 13.

Another reason why the case n = 13 is interesting, is that according to Kani
and Schanz [KS, Theorem 4] it is the smallest value of n for which all the surfaces
Z(n, k) are of general type.
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In Section 2 we state our main results by giving equations for XE(13, k) and
Z(13, k) for k = 1, 2. We also describe some of the curves of small genus we found
on the surfaces Z(13, k), including the ones giving rise to our infinite families of
non-trivial pairs of 13-congruent elliptic curves.

To compute equations for XE(13, k) we follow the invariant-theoretic method
developed in [F3]. However we do more to explain the generality in which we can
expect these methods to work. To compute the necessary twists we need to start
with an embedding of X(p) in projective space such that the group PSL2(Z/pZ)
acts linearly. In Section 4 we explain the reasons behind our choice of embedding
(Klein’s A-curve) in the case p = 13. In Section 5 we start on the invariant theory
proper, deriving equations first for X(13), and then for its twists XE(13, 1) and
XE(13, 2). One basic difficulty is that the invariant of smallest degree has degree 2,
but since a quadratic form has infinite automorphism group, it cannot carry the
information needed to specify our curve. This forced us to work with an invariant
of degree 4. The twisted forms of this invariant are too large to sensibly include
in the paper, but are available from [F5].

Having equations for XE(13, k) in principle gives us equations for Z(13, k).
However the equations obtained in this way are very complicated, and not useful
for finding rational points or curves of small genus on the surfaces. For several
smaller values of n, as described in [F4], we were able to find substitutions to
simplify these equations. However this step defeated us in the case n = 13. In
Section 6 we instead develop a new approach for computing equations for Z(n, k),
not going via the equations for XE(n, k), but still using the invariant theory.

Since the surface Z(n, k) parametrises pairs of elliptic curves, it comes with
a standard involution that corresponds to swapping over the two elliptic curves.
The method in Section 6 gives us equations for Z(13, k) as a double cover of the
plane, where the map to the plane quotients out by the standard involution. This
is the same format as used by Kumar [K] when giving his equations for Z(n,−1)
for n ≤ 11. In using this format we are relying on the fact that the quotient of
Z(n, k) by the standard involution is a rational surface. It would be interesting
to determine how large n must become before this property fails.

In Section 8 we give some examples of pairs of non-trivial 13-congruent elliptic
curves over Q and over Q(t). The examples over Q may be verified, independently
of our work, by checking that the traces of Frobenius are congruent mod 13 for suf-
ficiently many good primes p. The examples over Q(t) give rise, by specialising t,
to the infinitely many examples over Q that are our main result.

All computer calculations in support of this work was carried out using Magma
[BCP]. Some Magma files containing some details of the calculations are available
from [F5]. We refer to elliptic curves by their labels in Cremona’s tables [C]. We
write K for a field of characteristic 0 and K for its algebraic closure.
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2. Statement of results

2.1. The curves XE(13, 1) and XE(13, 2). The elliptic curves n-congruent with
power k to a given elliptic curve E are parametrised by (the non-cuspidal points
of) the smooth projective curve XE(n, k). We have computed equations for these
curves in the case n = 13. In this section we give formulae first for X(13), and
then for XE(13, 1) and XE(13, 2), each as a curve of degree 42 in P6. Since the
equations themselves would (in the latter two cases) take several pages to write
out, we instead describe how they may be recovered from a set of 14 hyperplanes,
equivalently a set of 14 points in the dual projective space (P6)∨. This description
(which only uses linear algebra) does not however correspond to how we originally
computed the equations.

In the case of X(13) the 14 points are

(1) (1 : 0 : . . . : 0) and (1 : ζk : ζ3k : ζ4k : ζ9k : ζ10k : ζ12k)

where ζ = e2πi/13 and 0 ≤ k ≤ 12.

Theorem 2.1. Let U be the 14-dimensional space of quadratic forms vanishing at

the 14 points (1). Let U⊥ be the 14-dimensional space of quadratic forms annihi-

lated by {
f

(
∂

∂x1

, . . . ,
∂

∂x7

)
: f ∈ U

}
.

Let V ⊂ U⊥ be the 13-dimensional subspace spanned by the support of all linear

syzygies, i.e. the span of the set{
7∑
i=1

λifi

∣∣∣∣ λi ∈ {0, 1}, fi ∈ U⊥ and
7∑
i=1

xifi = 0

}
.

Let W be the 7-dimensional space of cubic forms whose partial derivatives belong

to V . Then W defines the union of X(13) ⊂ P6 and 42 lines.

Our equations for XE(13, 1) and XE(13, 2) are obtained from those for X(13)
by twisting, that is, by making a change of coordinates on P6 defined over K.
To describe the points that take the place of (1), we let t be a coordinate on
X0(13) ∼= P1 chosen (following Fricke) so that the j-map is given by

j = (t2 + 5t+ 13)(t4 + 7t3 + 20t2 + 19t+ 1)3/t.

It is easy to write down an elliptic curve with this j-invariant. For example, we
may take the elliptic curve y2 = x3 − 27c4(t)x− 54c6(t) where

c4(t) = (t2 + 5t+ 13)(t2 + 6t+ 13)(t4 + 7t3 + 20t2 + 19t+ 1),

c6(t) = (t2 + 5t+ 13)(t2 + 6t+ 13)2(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1).
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We define polynomials f1, . . . , f7 and g1, . . . , g7 by

f1(s, t) = 1,

f2(s, t) = −(t+ 1),

f3(s, t) = 3s(t+ 2)(t2 + 5t+ 13)(t2 + 6t+ 13),

f4(s, t) = −9s(t+ 1)(t2 + 5t+ 13)(t2 + 6t+ 13),

f5(s, t) = 108s2(t2 + 5t+ 13)(t2 + 6t+ 13)(t3 + 5t2 + 10t+ 2) + 27s2(t+ 3)c4(t),

f6(s, t) = 162s2(t2 + 5t+ 13)(t2 + 6t+ 13)(t3 + 6t2 + 14t+ 7) + 27s2(t+ 4)c4(t),

f7(s, t) = 11664s3(t+ 1)(t2 + 5t+ 13)(t2 + 6t+ 13)2 + 54s2c4(t)f4(s, t),

and
g1(s, t) = 2,

g2(s, t) = 2(t+ 1),

g3(s, t) = 3s(t2 + 6t+ 13)(t3 + 4t2 + 8t− 1),

g4(s, t) = 12s(t2 + 6t+ 13)(t2 + 3t+ 5),

g5(s, t) = 6s(t2 + 6t+ 13)(t3 + 8t2 + 20t+ 7),

g6(s, t) = 108s2(t+ 1)2(t2 + 5t+ 13)(t2 + 6t+ 13)− 9s2(t+ 3)c4(t),

g7(s, t) = −216s2(t− 1)(t2 + 5t+ 13)(t2 + 6t+ 13)− 18s2(t+ 2)c4(t).

Theorem 2.2. Let E/K be the elliptic curve y2 = x3 +ax+b. Let U1, respectively

U2, be the space of quadratic forms vanishing at

(f1(s, t) : . . . : f7(s, t)), respectively (g1(s, t) : . . . : g7(s, t)),

for all s, t ∈ K satisfying a = −27s2c4(t) and b = −54s3c6(t). Let Wk be the

space of cubic forms constructed from Uk by the procedure in Theorem 2.1. Then

Wk defines the union of XE(13, k) ⊂ P6 and 42 lines, where the latter are not in

general defined over K.

The cubic forms in Theorem 2.2, as polynomials with coefficients in Z[a, b],
are available from [F5]. As described in Sections 5.2 and 5.3, we have also
found equations that define the curve XE(13, k) exactly, and define the j-map
XE(13, k)→ P1. It would be possible to simplify the fi(s, t) and gi(s, t) by mak-
ing a change of coordinates on P6. However, we made our choice of co-ordinates
with the aim of simplifying the cubic forms.

Remark 2.3. If a and b have weights 2 and 3, and x1, . . . , x7 have weights

3, 3, 2, 2, 1, 1, 0, then the cubic forms in the case k = 1 are homogeneous with

weights 6, 7, 7, 8, 8, 9, 9. Likewise, if x1, . . . , x7 have weights 2, 2, 1, 1, 1, 0, 0, then

the cubic forms in the case k = 2 have weights 4, 5, 5, 6, 6, 6, 7. These gradings

reflect the fact that XE(13, k) only depends on E up to quadratic twist.
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2.2. The surfaces Z(13, 1) and Z(13, 2). The surface Z(n, k) parametrises pairs
of elliptic curves E and E ′ that are n-congruent with power k, up to simultaneous
quadratic twist. We have computed equations for these surfaces in the case n = 13.

Theorem 2.4. (i) The surface Z(13, 1) is birational over Q to the surface with

affine equation y2 + h1(r, s)y = g1(r, s) where

h1(r, s) = s4 + (2r2 − 5r + 7)s3 + (r4 − 3r3 − 14r2 + r + 16)s2

+ r2(2r3 − 5r2 + 15r + 27)s+ r4(r2 − 1),

g1(r, s) = 4(7r − 8)s6 + 22(r − 2)s5 − (28r5 + 24r4 − 2r3 − 39r2 + 2r + 68)s4

+ r2(84r3 + 233r2 − 116r − 223)s3 − r4(20r2 + 181r + 181)s2

− 4r6(r − 1)(7r + 3)s.

(ii) The surface Z(13, 2) is birational over Q to the surface with affine equation

y2 + h2(r, s)y = g2(r, s) where

h2(r, s) = r3s4 + r(2r3 + 7r2 + 1)s3 + (r5 + 7r4 + 9r3 + r2 + 1)s2

+ 2(r3 + 2r + 1)s+ r + 1,

g2(r, s) = 2r4(5r + 4)s7 + r3(19r3 + 48r2 + 33r + 22)s6

+ r2(8r5 + 40r4 + 79r3 + 82r2 + 47r + 21)s5

− r(r7 − 29r5 − 91r4 − 75r3 − 53r2 − 34r − 7)s4

+ r(6r6 + 35r5 + 50r4 + 37r3 + 42r2 + 22r + 10)s3

+ r(14r4 + 33r3 + 30r2 + 14r + 1)s2 + r2(10r + 13)s+ 2r.

(iii) Let k = 1 or 2. Let j, j′ : Z(13, k)→ P1 be the maps giving the j-invariants of

the elliptic curves E and E ′. We have computed polynomials Ak, Bk, Dk ∈ Z[r, s]

such that jj′ = A3
k/Dk and (j − 1728)(j′ − 1728) = B2

k/Dk. The polynomials Ak
and Bk are available from [F5]. The Dk are given by

D1(r, s) = s5(r + s− 1)4(r2 + s− 1)2(r4 + r3s− r3 + rs2 − rs− s2 + s)13,

D2(r, s) = −r6(r2 + rs+ r + 1)3(r3s+ r2s2 + 2r2s+ rs2 + rs+ r + s)13.

Remark 2.5. Let k = 1 or 2. By completing the square, the first two parts of

Theorem 2.4 are equivalent to the statement that Z(13, k) is birational to the

surface y2 = Fk(r, s, 1) where Fk is the homogeneous polynomial of degree 10 + 2k

satisfying Fk(r, s, 1) = hk(r, s)
2 + 4gk(r, s).

According to Kani and Schanz [KS], the surfaces Z(13, k) are of general type,
and so by the Bombieri-Lang conjecture (see for example [HS]) are expected to
contain only finitely many curves of genus 0 or 1.
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On Z(13, 1) there are genus 0 curves given by the vanishing of s, r + s − 1,
r2 + s − 1, r and r + s. The first three of these are factors of D1, and so do
not correspond to any families of elliptic curves. The last two define copies of
the modular curves X0(10) and X0(25). Remarkably we found a further pair of
genus 0 curves given by

r5 + r4s− 3r4 − r3s+ 2r2s2 − 4r2s− 2rs2 + s3 − 4s2 = 0.

From this we obtain the infinite family of directly 13-congruent elliptic curves
presented in Example 8.5. There are also genus 1 curves given by the vanishing of
r2 +s, r2 +rs−r−s+1 and r2 +rs−s. These are copies of X0(m) for m = 27, 36
and 49.

On Z(13, 2) there are genus 0 curves given by the vanishing of r, r2 +rs+r+1, s
and r2s+rs2 +rs+2s2−2s+1. The first two are factors of D2, the third is a copy
of X0(18), and from the fourth we obtain the infinite family of skew 13-congruent
elliptic curves presented in Example 8.6. There are also genus 1 curves given by
the vanishing of r + 1, s − 1, rs + 1, r2s + 2rs + 1 and r2s + rs + 1. These are
copies of X0(m) for m = 19, 20, 21, 24 and 32. A further genus 1 curve is given by

r3s+ r2s2 + 3r2s+ 4rs+ r + 2 = 0.

This is an elliptic curve of rank 2 with Cremona label 267632f1 and Weierstrass
equation y2 = x3 − 515x − 4494. It parametrises another infinite family of non-
trivial pairs of skew 13-congruent elliptic curves.

It would be interesting to determine whether there are any more curves of genus
0 or 1 on the surfaces y2 = Fk(r, s, 1).

2.3. Baran’s modular curve. For k = 1, 2 we have written Z(13, k) as a double
cover of P2 ramified over the curve Ck = {Fk = 0}. A rational point on Ck
corresponds to an elliptic curve that is 13-congruent to itself in a non-trivial way.
Such a congruence is only possible if the mod 13 Galois representation of the
elliptic curve is not surjective. More specifically, arguing as in [Ha], we see that
C1 and C2 are copies of the modular curves X+

s (13) and X+
ns(13) associated to the

normaliser of a split or non-split Cartan subgroup of level 13.
These curves were first computed by Baran [Ba], who also discovered the sur-

prising fact, specific to level 13, that the two curves are isomorphic. We were able
to verify using Magma that our singular curves C1 and C2 (of degrees 12 and 14)
are both birational to the smooth plane quartic

C = {(y+z)x3− (2y2 +yz)x2 +(y3−y2z+2yz2−z3)x− (2y2z2−3yz3) = 0} ⊂ P2

found by Baran. Using Theorem 2.4(iii) we were also able to recover the two
different moduli interpretations of this curve, as given in [Ba, Appendix A]. We
remark that the determination of all Q-rational points on C (and hence also on
C1 and C2) was recently completed in [B+].

We describe further modular curves on the surfaces Z(13, k) in Section 7.
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3. Twists and quotients

In this section we recall the definition of X(n) over a non-algebraically closed
field, and explain how in principle XE(n, k) may be described as a twist of X(n).
We also describe Z(n, k) as a quotient of X(n)×X(n). We write ζn for a primitive
nth root of unity, and µn for the group of all nth roots unity.

Let n ≥ 3 be an integer. The modular curve X(n) is the smooth projective
curve birational to Y (n), where Y (n) is the modular curve parametrising the
pairs (E, φ) where E is an elliptic curve and φ : E[n]→ µn×Z/nZ is a symplectic
isomorphism. By symplectic we mean that the Weil pairing on E[n] agrees with
the standard pairing ((ζ, c), (ξ, d)) 7→ ζdξ−c on µn × Z/nZ. We note that, with
this definition, X(n) is both defined over Q and geometrically irreducible.

Let Γ be the group of symplectic automorphisms of µn×Z/nZ. As a group this
is a copy of SL2(Z/nZ), but with Galois action given by

(2) σ(γ) =

(
χ(σ) 0

0 1

)
γ

(
χ(σ)−1 0

0 1

)
where χ is the mod n cyclotomic character. There is an action of Γ on X(n) given
by γ : (E, φ) 7→ (E, γφ). We suppose that

(i) we have embedded X(n) ⊂ PN−1, and
(ii) the action of Γ is given by a Galois equivariant group homomorphism

ρ : Γ→ GLN(Q(ζn)).

The following is a variant of [F3, Lemma 3.2]. We write σk for the automorphism
of Q(ζn) given by ζn 7→ ζkn. We also write ∝ for equality in PGLN .

Lemma 3.1. Let E/K be an elliptic curve and φ : E[n]→ µn×Z/nZ a symplectic

isomorphism defined over K. Suppose h ∈ GLN(K) satisfies

(3) σ(h)h−1 ∝ σkρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K). Then XE(n, k) ⊂ PN−1 is the twist of X(n) ⊂ PN−1 given

by XE(n, k) ∼= X(n); x 7→ hx.

Proof. Let εk : µn×Z/nZ→ µn×Z/nZ be the map sending (ζ, b) 7→ (ζk, b). The

non-cuspidal points of XE(n, k) correspond to pairs (F, ψ) where F is an elliptic

curve and ψ : F [n] → E[n] is an isomorphism that raises the Weil pairing to the

power k−1. (In fact we could take the power to be km2 for any m ∈ (Z/nZ)×, but

the choice here is convenient for the definition of α.) Let α : XE(n, k)→ X(n) be

given by (F, ψ) 7→ (F, εkφψ). Then

(4) σ(α)α−1 ∝ ρ(σ(εkφ)(εkφ)−1) = ρ(εkσ(φ)φ−1ε−1
k ) = σkρ(σ(φ)φ−1),
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where for the last two equalities we have used (2) and the fact that both εk and

ρ are Galois equivariant.

Now let X ′ = {x ∈ PN−1 : hx ∈ X(n)}. Since σ(h)h−1 is an automorphism of

X(n) we see that X ′ is defined over K. By (3) and (4) the curves XE(n, k) and X ′

are twists of X(n) by the same cocycle, and are therefore isomorphic over K. �

The following description of Z(n, k) as a quotient of X(n)×X(n) is the starting
point of [KS]. We revisit this result since we wish to be sure that it works over a
non-algebraically closed field.

Lemma 3.2. The surface Z(n, k) is birational to the quotient of X(n)×X(n) by

the action of Γ given by γ 7→ (ρ(γ), σkρ(γ)).

Proof. There is a Galois equivariant map X(n)×X(n)→ Z(n, k) given by

((E1, φ1), (E2, φ2)) 7→ (E1, E2, φ
−1
2 εkφ1).

where εk is as in the proof of Lemma 3.1. If we act by γ ∈ Γ then φ1 and φ2 become

γφ1 and εkγε
−1
k φ2. This leaves φ−1

2 εkφ1 unchanged. Conversely, any pair of points

in Y (n)× Y (n) with the same image in Z(n, k) are related in this way. �

4. The modular curve X(p)

In this section we explain how (in the case n = p is a prime) we may arrange
that the assumptions (i) and (ii) in Section 3 are satisfied. We also describe the
ring of invariants that arises in this context.

4.1. Group actions on curves. Let X be a smooth projective curve over C,
and let G be a finite group of automorphisms of X. Let G act trivially on C× and
on C(X)× by σ : f 7→ f ◦ σ−1. Splitting the exact sequence of G-modules

0→ C× → C(X)× → DivX → PicX → 0

into short exact sequences, and taking group cohomology gives a diagram

H1(G,C(X)×)

��
(DivX)G // (PicX)G

δ // H1(G,C(X)×/C×)

∆
��

H2(G,C×)

Let Υ : (PicX)G → H2(G,C×) be the composite of the connecting maps δ and ∆.
Since G acts faithfully on X, we have H1(G,C(X)×) = 0 by Hilbert’s theorem 90.
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We thus obtain an exact sequence

(5) 0 −→ (DivX)G

∼
−→ (PicX)G

Υ−→ H2(G,C×).

There is an alternative description of Υ in terms of theta groups. For D ∈ DivX
representing an element of (PicX)G we define the theta group

ΘD = {(f, σ) : f ∈ C(X)×, σ ∈ G such that div(f) = σD −D}

with group law

(6) (f, σ) ◦ (g, τ) = (f · σ(g), στ).

This group sits naturally in an exact sequence 0→ C× → ΘD → G→ 0. In other
words, ΘD is an extension of G by C×.

Lemma 4.1. If [D] ∈ (PicX)G then Υ(D) is the class of ΘD in H2(G,C×).

Proof. For each σ ∈ G we pick fσ ∈ C(X)× with div(fσ) = σD −D. The class of

ΘD in H2(G,C×) is represented by the 2-cocycle φ satisfying

(7) (fσ, σ) ◦ (fτ , τ) = φ(σ, τ)(fστ , στ).

Comparing (6) and (7) we find that φ(σ, τ) = fσ · σ(fτ ) · f−1
στ . By the formulae for

the connecting maps in group cohomology, we see that the image of [D] under δ

is represented by σ 7→ fσ, and its image under ∆ is represented by φ. �

Lemma 4.2. If [D] ∈ (PicX)G and H0(X,O(D)) has dimension n ≥ 1, then there

is a natural action of G on the 1-dimensional subspaces of H0(X,O(D)) giving

rise to a projective representation ρ : G→ PGLn(C). This lifts to a representation

ρ : G→ GLn(C) if and only if Υ(D) = 0.

Proof. There is a linear action of ΘD on H0(X,O(D)) via (f, σ) : g 7→ f · σ(g).

Picking a basis for H0(X,O(D)), this defines a representation π : ΘD → GLn(C).

There is a commutative diagram with exact rows

0 // C× // ΘD

π

��

// G

xx
ρ
��

// 0

0 // C× // GLn(C) // PGLn(C) // 0

By Lemma 4.1 we have Υ(D) = 0 if and only if the top row splits. If the top

row splits then it is clear that ρ lifts to ρ (as indicated by the dotted arrow).

Conversely if ρ lifts to ρ, then by a diagram chase each σ ∈ G lifts uniquely to

x ∈ ΘD with π(x) = ρ(σ), and the map σ 7→ x is a splitting of the top row. �
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4.2. The action of PSL2(Z/pZ) on X(p). We shall need the following standard
group-theoretic facts.

Lemma 4.3. Let G = SL2(Z/pZ) where p ≥ 5 is a prime. Then

(i) The groups H i(G,C×) are trivial for i = 1, 2.

(ii) Every projective representation of G lifts uniquely to a representation.

Proof. (i) The group G is generated by elements S = ( 0 1
−1 0 ) and T = ( 1 1

0 1 ) with

S4 = T p = (ST )3 = I2. Therefore H1(G,C×) = Hom(G,C×) = 0. The vanishing

of H2(G,C×) was proved by Schur, using the fact that every Sylow subgroup of G
is either cyclic or a generalised quaternion group. See [G, Theorem 4.232] or [Hu,

Chapter V, Satz 25.7].

(ii) If ρ : G → PGLn(C) is a projective representation then

{(g,M) ∈ G ×GLn(C) : ρ(g) ∝M}

is an extension of G by C×, and so corresponds to an element of H2(G,C×). Thus

the vanishing of H2(G,C×) proves the existence of a lift, and the vanishing of

Hom(G,C×) shows it is unique. �

Now let X = X(p) where p ≥ 5 is a prime. As a Riemann surface, it is
the quotient of the extended upper half plane H∗ = H ∪ P1(Q) by the action of
Γ(p) = ker(SL2(Z) → SL2(Z/pZ)). There is an action of G = PSL2(Z/pZ) on
X with quotient the j-line. The quotient map is ramified over j = 0, 1728,∞
with ramification indices 3, 2 and p. Thus, writing ν = (p2 − 1)/24, all but three
G-orbits of points on X have size |G| = 12pν, and the remaining orbits have
sizes 12ν, 4pν and 6pν. It may be proved using the Hurwitz bound (see [AR,
Theorem 20.40]) that G is the full automorphism group of X when p ≥ 7.

The character table of G = SL2(Z/pZ) is described for example in [FH, §5.2].
The non-trivial representations of smallest degree are conjugate representations φ
and φ′ each of degree m = (p− 1)/2, and conjugate representations ψ and ψ′ each
of degree m+ 1. Klein gave equations for X(p) both as a curve of degree (m−1)ν
in Pm−1 with G acting via φ, and as a curve of degree mν in Pm with G acting via
ψ. Following the terminology in [AR], we call these the z-curve and the A-curve.
For example, when p = 7 the z-curve is the Klein quartic.

Theorem 4.4 (Adler, Ramanan). The group (PicX)G is infinite cyclic, generated

by a divisor class λ of degree ν = (p2 − 1)/24.

Proof. This is [AR, Theorem 24.1]. The proof works by analysing the exact se-

quence (5). The authors first show that (DivX)G/ ∼ is infinite cyclic, generated

by a divisor class of degree gcd(12ν, 4pν, 6pν) = 2ν. By Lemma 4.3(i) and the
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Hochschild-Serre exact sequence

Hom(G,C×)
res−→ Hom({±1},C×) −→ H2(G,C×)

inf−→ H2(G,C×).

we have H2(G,C×) ∼= Z/2Z. The proof is completed by constructing λ as the

difference of the hyperplane sections for the z-curve and the A-curve. �

Applying the Riemann Hurwitz theorem to the j-map X(p) → P1 shows that
X(p) has genus (p− 6)ν + 1. The canonical divisor is therefore 2(p− 6)λ.

4.3. An abstract ring of invariants. We introduce a ring that plays a central
role in our calculations.

Theorem 4.5. Let R = ⊕d≥0Rd = ⊕d≥0H
0(X,O(dλ)) and G = SL2(Z/pZ).

(i) There is a natural action of G on R where −I2 acts as (−1)d on Rd.

(ii) The G-invariant subring of R is generated by elements c4, c6 and D of

degrees 4p, 6p and 12.

(iii) We may scale c4, c6 and D so that c3
4−c2

6 = 1728Dp and the j-map X → P1

is given by j = c3
4/D

p.

Proof. (i) Suppose that Rd = H0(X,O(dλ)) has dimension n ≥ 1. Since λ is

G-invariant, we obtain a projective representation ρ : G → PGLn(C), and by

Lemma 4.3(ii) this lifts uniquely to a representation ρ : G → GLn(C). This gives

the required action of G on Rd. It is clear that ρ(−I2) = ±In. Lemma 4.2 shows

that the sign is + (i.e., the action factors via G) precisely when Υ(dλ) = 0.

However we saw in the proof of Theorem 4.4 that Υ(λ) is the non-trivial element

of H2(G,C×) ∼= Z/2Z. The action of G on Rd therefore factors via G precisely

when d is even.

(ii) The fibres of the j-map above 0, 1728 and∞ are effective divisors in the classes

of 4pλ, 6pλ and 12λ. We let c4, c6 and D be the corresponding elements of R. Let

f ∈ Rd be a G-invariant element. We show by induction on d that f belongs to

the subring generated by c4, c6 and D. If d ≥ 1 then f vanishes on the G-orbit of

some point P ∈ X. If the orbit has size 4pν, 6pν or 12ν then we divide through

by c4, c6 or D, and apply the induction hypothesis. Otherwise the orbit has size

|G| = 12pν. In this case we divide through by a linear combination of c3
4 and c2

6

chosen so that it vanishes at P .

(iii) Let P ∈ X be a cusp, i.e., a point above j =∞. Let f be a linear combination

of c3
4 and c2

6 that vanishes at P . Since f vanishes at exactly |G| points (counted

with multiplicity) it cannot vanish on any orbits of size |G|. Therefore f vanishes

only at the cusps, and so must be a scalar multiple of Dp. Scaling the invariants

appropriately gives the relation as claimed. Finally, the formula offered for the

j-map quotients out by the action of G, and has degree |G|. It must therefore
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agree with the j-map up to composition with a Mobius map. However, since both

maps send the zeros of c4, c6 and D to j = 0, 1728 and ∞, this Mobius map fixes

three points, and is therefore the identity. �

In our earlier work [F3] on twists of X(p) for p = 7 and 11, we mainly worked
with the z-curve. In the case p = 13 the z-curve has degree 35 in P5 and the
A-curve has degree 42 in P6. By Theorem 4.5 we have

⊕d≥0H
0(X,O(5dλ))G = C[D5, Dc6, D

4c4, c4c6, D
3c2

4],

⊕d≥0H
0(X,O(6dλ))G = C[D, c6].(8)

The ring of invariants is much simpler in the second of these two cases. We
therefore decided to work with the A-curve in the case p = 13.

5. Equations for X(13) and its twists

5.1. Equations for the A-curve. Let ζ = e2πi/13 and ξk = ζk + ζ−k. Let G ∼=
PSL2(Z/13Z) be the subgroup of SL7(C) generated by M2, M6 and M13 where

M2 =
1√
13



1 1 1 1 1 1 1

2 ξ2 ξ4 ξ8 ξ3 ξ6 ξ1

2 ξ4 ξ8 ξ3 ξ6 ξ1 ξ2

2 ξ8 ξ3 ξ6 ξ1 ξ2 ξ4

2 ξ3 ξ6 ξ1 ξ2 ξ4 ξ8

2 ξ6 ξ1 ξ2 ξ4 ξ8 ξ3

2 ξ1 ξ2 ξ4 ξ8 ξ3 ξ6


, M6 = −



1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0


,

and M13 = Diag(1, ζ, ζ4, ζ3, ζ12, ζ9, ζ10). We write C[x0, . . . , x6]d for the space of
homogeneous polynomials of degree d.

Definition 5.1. An invariant of degree d is a polynomial I ∈ C[x0, . . . , x6]d sat-

isfying I ◦ g = I for all g ∈ G.

The invariants of smallest degree are Q and F given by

Q = x2
0 + x1x4 + x2x5 + x3x6,

F = 2x4
0 + 6x0(x1x3x5 + x2x4x6) + 3(x1x2x4x5 + x1x3x4x6 + x2x3x5x6)

+ x1x
3
2 + x2x

3
3 + x3x

3
4 + x4x

3
5 + x5x

3
6 + x6x

3
1.

We use these invariants to give equations for X(13) as a curve of degree 42 in P6,
defined over Q. For f and g homogeneous forms in x0, . . . , x6 we put

(9) 〈f, g〉 = trace(H(f)H(Q)−1H(g)H(Q)−1)
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where H denotes the Hessian matrix, that is, the 7 × 7 matrix of second partial
derivatives. We prove the following refinement of Theorem 2.1.

Theorem 5.2. Let Q and F be the invariants defined above.

(i) The vector space W of cubic forms f satisfying 〈f, F − 3Q2〉 = 0 has

dimension 7. Moreover F − 3Q2 is, up to scalars, the unique quartic form

satisfying 〈f, F − 3Q2〉 = 0 for all f ∈ W .

(ii) Let U be the vector space of quadratic forms vanishing on the G-orbit of

{x0 = 0} in (P6)∨. Then W is the space of cubic forms constructed from

U by the procedure in Theorem 2.1.

(iii) If W has basis f0, . . . , f6 then

X(13) ∼= {f0 = . . . = f6 = F +Q2 = 0} ⊂ P6.

This is a curve of degree 42, and the 84 cusps are cut out by the quadratic

form Q. The cubic forms f0, . . . , f6 are not sufficient to define the curve,

but rather define the union of the curve and 42 lines. The 42 lines each

pass through two cusps, and may be divided into 14 sets of 3, where each

set of 3 lines spans one of the hyperplanes in (ii).

Proof. The first two parts are checked by linear algebra. The space of cubic forms

W has basis f0, . . . , f6 where

f0 = −2x3
0 + x0(x1x4 + x2x5 + x3x6) + x1x3x5 + x2x4x6,

f1 = x0x
2
1 + 2x0x3x4 + 2x1x2x6 + x2x

2
4 + x5x

2
3 + x6x

2
5,

and the remaining fi are obtained from f1 by the action of M6, i.e., by cyclically

permuting the subscripts 1, 2, . . . , 6.

Let a1, . . . , a6 be coordinates on P5. We write a0 = 0, a−i = −ai and agree to

read all subscripts mod 13. According to [F3, Section 2], the z-curve for X(13) is

defined by the 4 by 4 Pfaffians of the 13 by 13 skew symmetric matrix (ai−jai+j).

According to [AR, §51], the A-curve is the image of the z-curve via the map

(x0 : x1 : . . . : x6) =

(
1 :

a2

a1

:
a4

a2

:
a8

a4

:
a3

a8

:
a6

a3

:
a12

a6

)
.

A calculation, performed using Magma [BCP], shows that the A-curve is defined

by the vanishing of f0, . . . , f6 and F + Q2. As we remark in the proof of the

next lemma, further equations are needed to generate the homogeneous ideal. We

also checked using Magma that this curve has degree 42, and that it meets the

hypersurface defined by Q in 84 distinct points. This set of points is preserved by

the action of G ∼= PSL2(Z/13Z), and so must be the set of cusps on X(13).
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If we write P0 = (1 : 0 . . . : 0), P1 = (0 : 1 : 0 : . . . : 0), etc, then P1, P2, . . . , P6

are cusps, and the cubics vanish on the lines P1P4, P2P5 and P3P6. These lines

belong to a single G-orbit of size 42. Another calculation using Magma shows that

the cubics define a curve of degree 84, which must therefore be the union of X(13)

and the 42 lines. �

Some care must be taken in working with the above model for X(13), since it
is not projectively normal. In other words, the rings S and S ′ in the following
lemma are not the same.

Lemma 5.3. Let X = X(13) ⊂ P6 be as in Theorem 5.2. Let S = ⊕d≥0Sd be its

homogeneous coordinate ring, and let S ′ = ⊕d≥0H
0(X,OX(d)). Then∑

d≥0

(dimSd)t
d = 1 + 7t+ 28t2 + 77t3 + 119t4 + . . .

∑
d≥0

(dimS ′d)t
d = 1 + 7t+ 35t2 + 77t3 + 119t4 + . . .

and dimSd = dimS ′d = 42d− 49 for all d ≥ 3.

Proof. Using the Gröbner basis machinery in Magma [BCP] we were able to com-

pute 42 quartic forms that together with the 7 cubic forms generate the homo-

geneous ideal of X. From this it is easy to compute dimSd for any given d. In

particular we verified the values recorded in the statement of the lemma for each

d ≤ 4. On the other hand, since X has degree 42 and genus 50 it follows by

Riemann-Roch that dimS ′d = 42d− 49 for all d ≥ 3.

Let T = ⊕dTd be the homogeneous coordinate ring of the set of 84 cusps. Again

by computer algebra we find∑
d≥0

(dimTd)t
d = 1 + 7t+ 27t2 + 70t3 + 84t4 + . . .

Therefore dimTd = 84 for all d ≥ 4. We show by induction on d that the inclusion

Sd ⊂ S ′d is an equality for all d ≥ 3. We have already checked this for d = 3, 4.

So let f ∈ S ′d with d ≥ 5. Since dimTd = 84 we may reduce to the case where f

vanishes at the cusps. But then applying the induction hypothesis to f/Q ∈ S ′d−2

gives the result. Finally, by identifying S ′d with the subspace of S ′d+2 vanishing at

the cusps, we compute

dimS ′1 = dimS3 − dimT3 = 7,

dimS ′2 = dimS4 − dimT4 = 35. �



16 T.A. FISHER

Remark 5.4. We have shown that dimS ′1 = 7 and therefore X(13) ⊂ P6 is

embedded by a complete linear system. This is a special case of the “WYSIWYG

hypothesis” in [AR].

Definition 5.5. A covariant of degree d is a column vector v of polynomials in

C[x0, . . . , x6]d satisfying v ◦ g = gv for all g ∈ G.

Starting from an invariant I of degree d we may construct a covariant of degree
d− 1 as

∇QI = H(Q)−1


∂I/∂x0

...

∂I/∂x6

 .

On the other hand if v and w are covariants of degrees d and e then

v ·w := vTH(Q)w = coeff(Q(v + tw), t)

is an invariant of degree d + e. We may also think of covariants as G-equivariant
polynomial maps C7 → C7. Thus the composition of covariants v and w of degrees
d and e is a covariant v ◦w of degree de.

It is easy to compute the dimensions of the spaces of invariants and covariants
of any given degree d from the character table of G. We may also solve for the
invariants and covariants of degree d by linear algebra over Q(ζ), at least if d is
not too large.

Remark 5.6. A standard trick for computing invariants is to start with an ar-

bitrary polynomial f and apply the operator f 7→ 1
|G|
∑

g∈G f ◦ g. An efficient

way to organise this calculation, which will become important in Section 6, is

the following. Let π : f 7→ 1
13

∑12
i=0 f ◦M i

13 be the projection map that sends a

monomial fixed by M13 to itself, and all other monomials to zero. Then starting

with a monomial in the image of π we apply the operators f 7→
∑5

i=0 f ◦M i
6 and

f 7→ f + 13π(f ◦M2).

For our work in Sections 5.2 and 5.3, it is important that we find ways of
constructing invariants and covariants from previously known examples in a basis-
free way. Another consideration is that it would be overkill for us to completely
classify the invariants and covariants, as we are only interested in them modulo
the equations defining the curve X = X(13).

Writing ψ for the standard representation of G ⊂ SL7(C), we find that ∧3ψ
contains a copy of the trivial representation. The corresponding G-invariant al-
ternating form is

(10) Φ = (x0∧x1∧x4)−(x0∧x2∧x5)+(x0∧x3∧x6)+(x1∧x3∧x5)−(x2∧x4∧x6).

Again let 〈 , 〉 be as defined in (9).
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Lemma 5.7. There is a 7×7 alternating matrix N of linear forms in C[x0, . . . , x6],

unique up to an overall scaling, such that〈
(N∇QF )i,

∂F

∂xi

〉
= 0

for all 0 ≤ i ≤ 6.

Proof. This is checked by linear algebra. We find that

(11) N =



0 x4 −x5 x6 −x1 x2 −x3

−x4 0 0 x5 x0 −x3 0

x5 0 0 0 −x6 −x0 x4

−x6 −x5 0 0 0 x1 x0

x1 −x0 x6 0 0 0 −x2

−x2 x3 x0 −x1 0 0 0

x3 0 −x4 −x0 x2 0 0


.

In a more succinct notation, we have N = (Nij) where Nij = ( ∂
∂xi
∧ ∂

∂xj
)Φ. �

We define covariants v3 = ∇QF and v4 = H(Q)−1Nv3, where N is given
by (11). Then v9 = v3 ◦ v3 is a covariant of degree 9, and c6 = v4 · v9 is an
invariant of degree 13. Our next theorem shows that although the rings S and S ′

in Lemma 5.3 are different, their G-invariant subrings are the same.

Theorem 5.8. Let S be the coordinate ring of X ⊂ P6. Then SG = C[Q, c6] and

the j-map X → P1 is given by j = 1728− c2
6/Q

13.

Proof. We find that c6(0, 1, 0, 0, 0, 0, 0) = −1, and so c6 does not vanish identically

on X. Since X ⊂ P6 is the A-curve, it has hyperplane section 6λ. Therefore SG

is a subring of

⊕d≥0H
0(X,O(6dλ))G.

By Theorem 4.5, or more specifically (8), the latter is a polynomial ring in two

variables, generated in degrees 2 and 13. Since we have constructed invariants Q

and c6 of these degrees, and these invariants do not vanish on X, this proves the

first part of the theorem.

By Theorem 4.5(iii) we have j − 1728 = ξc2
6/Q

13 for some constant ξ. Let ω be

a primitive cube root of unity, and put α =
√
−1 + 3ω. The point

(−2 : ω + α : ω − α : ω + α : ω − α : ω + α : ω − α) ∈ X
is fixed by M2

6 ∈ G of order 3, and so lies above j = 0. The function c2
6/Q

13 takes

the value 1728 at this point. Therefore ξ = −1. �



18 T.A. FISHER

For later use (when applying Lemma 6.2) we also record a point on X above
j = 1728. Let i =

√
−1 and let β be a root of x3 − (i + 1)x2 − x + i = 0. Let σ

be the automorphism of Q(β) given by β 7→ β2 − β. Then the point

(1 : β : σ(β) : σ2(β) : β : σ(β) : σ2(β)) ∈ X

is fixed by M3
6 ∈ G of order 2, and so lies above j = 1728.

5.2. Equations for XE(13, 1). We compute equations for XE(13, 1) from those
for X = X(13) in Theorem 5.2 by making a change of coordinates. For this we use
the 7× 7 matrix formed from the following 7 covariants. As before, the subscripts
indicate the degrees of the covariants.

v1 = (x0, x1, . . . , x6)T v10 = coeff(v4 ◦ (v1 + tv3), t3)

v3 = ∇QF v12 = v3 ◦ v4

v4 = H(Q)−1Nv3 v13 = coeff(v4 ◦ (v1 + tv4), t3)

v9 = v3 ◦ v3

Lemma 5.9. We have

det(v1,v3,v4,v9,v10,v12,v13) = (c2
6 − 1728Q13)2 mod I(X).

Proof. The left hand side is an invariant of degree 52, and so by Theorem 5.8 is

a linear combination of Q26, Q13c2
6 and c4

6. We may determine the correct linear

combination by evaluating each side at some random points on X. We initially did

this by working mod p for some moderately sized prime p. To verify the answer

in characteristic 0, we used the point on X defined over a degree 20 number field

given by (1 : 1 : γ : . . .) where γ is a root of

x20 + 5x17 − 7x16 + 2x15 + 10x14 + x13 + 5x12 + 4x11 − 21x10

+ 19x9 + 10x8 + 3x7 + 8x6 − 17x5 + 5x3 + 2x2 + 1 = 0. �

We now twist the invariants Q and F . Specifically we put

Q(y1, . . . , y7) = Q(y1v1 + y2v3 + y3v4 + y4v9 + y5v10 + y6v12 + y7v13)

F(y1, . . . , y7) = F (y1v1 + y2v3 + y3v4 + y4v9 + y5v10 + y6v12 + y7v13)

Each of the coefficients of these forms is an invariant, and so working modulo I(X)
may be written as a polynomial in Q and c6. By a series of computations similar
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to the proof of Lemma 5.9 we find that

Q(y1, . . . , y7) = Qy2
1 − 4Q2y1y2 + 44Q5y1y4 + c6y1y6 − 36Q7y1y7 − 2Q3y2

2

− 124Q6y2y4 − c6y2y5 + 300Q8y2y7 + 6Q4y2
3 + c6y3y4 + 324Q7y3y5

− 12Q8y3y6 − 2Q2c6y3y7 + 502Q9y2
4 + 24Q3c6y4y5 + 27Q4c6y4y6

− 396Q11y4y7 + 4302Q10y2
5 − 36Q11y5y6 − 35Q5c6y5y7 + 150Q12y2

6

− 54Q6c6y6y7 − (3282Q13 − c2
6)y2

7.

The coefficient of y2
1 is v1 ·v1 = Q, and the coefficient of y3y4 is v4 ·v9 = c6, which

is how we defined c6 in the last section. We note that several of the coefficients
were forced to be zero by the fact there are no monomials in Q and c6 of the
appropriate degree. In a similar way we compute

F(y1, . . . , y7) = −Q2y4
1 − 4Q3y3

1y2 − 124Q6y3
1y4 − c6y

3
1y5 + 300Q8y3

1y7

− 6Q4y2
1y

2
2 − 372Q7y2

1y2y4 − 3Qc6y
2
1y2y5 + 900Q9y2

1y2y7 + 18Q5y2
1y

2
3

+ . . .+ (307161Q19c6 − 32Q6c3
6)y6y

3
7 − (24003375Q26 + 408Q13c2

6 − 2c4
6)y4

7.

We now make a change of coordinates to simplify Q and F , and so that we
obtain correct formulae in the case j(E) = 0. We put c6 = −864b and substitute

y1 = 16Q6(12a2(x1 + 2x2) + 18abx3 + 14(4a3 + 27b2)x5 + 81b2x6),

y2 = 2Q5(96a2x2 − 144ab(x3 − 3x4) + (48a3 − 324b2)x5

+ (52a3 − 297b2)x6 − 864a2bx7),

y3 = Q11(2a(x3 − 56x4) + 3b(44x5 + 3x6) + 176a2x7),

y4 = −4Q2(4a3 + 27b2)(2x5 − x6),

y5 = 2Q8(2ax4 − 3bx5 − 4a2x7),

y6 = Q7(2a(x3 − 2x4) + 3b(2x5 + 3x6) + 8a2x7),

y7 = 2(4a3 + 27b2)x6.

This transformation has determinant −22333a8Q39(4a3 + 27b2)2. Dividing Q and
F by 21632a4(4a3 + 27b2) and 23234a8(4a3 + 27b2)2, and eliminating Q by the rule
Q13 = 16(4a3 + 27b2), we obtain

Q(x1, . . . , x7) = x2
1 − 6x2

2 + ax2
3 + 9bx3x6 − 6ax2

4 + 18bx4x5 + 24a2x4x7

+ 2a2x2
5 − 36abx5x7 − 3a2x2

6 + 162b2x2
7,

and

F(x1, . . . , x7) = −x4
1 − 12x3

1x2 − 54x2
1x

2
2 − 18ax2

1x
2
4 + 54bx2

1x4x5

+ 72a2x2
1x4x7 + 6a2x2

1x
2
5 − 108abx2

1x5x7 + 486b2x2
1x

2
7 − 60x1x

3
2

+ . . .− 432ab(4a3 − 27b2)x6x
3
7 − 3(8a3 − 27b2)(40a3 − 27b2)x4

7.
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These polynomials Q and F have weights 6 and 12 with respect to the grading in
Remark 2.3.

For f and g homogeneous polynomials in x1, . . . , x7 we define

〈f, g〉 = trace(H(f)H(Q)−1H(g)H(Q)−1).

The proof of the next theorem is similar to that of [F3, Lemmas 3.7 and 3.12].

Theorem 5.10. Let E/K be the elliptic curve y2 = x3 + ax+ b. Let f1, . . . , f7 be

a basis for the space of cubic forms f satisfying 〈f,F − 3Q2〉 = 0. Then

XE(13, 1) ∼= {f1 = . . . = f7 = F +Q2 = 0} ⊂ P6.

Proof. We assume that j(E) 6= 0, 1728, equivalently ab 6= 0, leaving the remaining

cases to Section 5.4. Let (x0 : . . . : x6) be a K-point on X(13) corresponding

to (E, φ) for some choice of symplectic isomorphism φ : E[13] → µ13 × Z/13Z.

By Theorem 5.8, and the formula j(E) = 1728(4a3)/(4a3 + 27b2), we may scale

(x0, . . . , x6) to satisfy Q(x0, . . . , x6)13 = 16(4a3 + 27b2) and

(12) c6(x0, . . . , x6) = −864b.

Let h be the 7× 7 matrix formed by evaluating the covariants

(13) Q6v1, Q
5v3, Q

11v4, Q
2v9, Q

8v10, Q
7v12, v13

at (x0, . . . , x6). By Lemma 5.9 and our assumption a 6= 0 this matrix is non-

singular. Let ρ : SL2(Z/13Z) → GL7(K) describe the action of PSL2(Z/13Z) on

X(13). We claim that

(14) σ(h)h−1 ∝ ρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K). Let ξσ = σ(φ)φ−1 ∈ SL2(Z/13Z). Since (σ(x0) : . . . : σ(x6))

corresponds to (E, σ(φ)) we have

(15)


σ(x0)

...

σ(x6)

 = λσρ(ξσ)


x0

...

x6


for some λσ ∈ K

×
. Then since c6 is an invariant of degree 13 we have

σ(c6(x0, . . . , x6)) = λ13
σ c6(x0, . . . , x6).

By (12) and our assumption b 6= 0, it follows that λσ is a 13th root of unity. Since

the covariants (13) all have degree a multiple of 13, our claim (14) now follows

from (15) and the definition of a covariant (see Definition 5.5).
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Finally, Lemma 3.1 shows that XE(13, 1) ⊂ P6 is obtained from X(13) ⊂ P6

by making the change of coordinates given by h, and Theorem 5.2 shows how we

may recover equations for the curve from Q and F . �

The cubic forms f1, . . . , f7, as polynomials with coefficients in Z[a, b], are avail-
able from [F5]. Alternatively, they may be computed from the description given
in Section 2.1.

Next we compute the j-map XE(13, 1) → P1. Revisiting Lemma 5.7 with Q
and F in place of Q and F we obtain a skew symmetric matrix N given by
Nij = ( ∂

∂xi
∧ ∂

∂xj
)Φ where

Φ = 12(x1 ∧ x2 ∧ x7)− 2(x1 ∧ x3 ∧ x5)− 3(x1 ∧ x3 ∧ x6) + 6(x1 ∧ x4 ∧ x5)

+ 6(x1 ∧ x4 ∧ x6) + 12a(x1 ∧ x5 ∧ x7) + 12a(x1 ∧ x6 ∧ x7)− 6(x2 ∧ x3 ∧ x5)

− 6(x2 ∧ x3 ∧ x6) + 12(x2 ∧ x4 ∧ x5) + 18(x2 ∧ x4 ∧ x6) + 24a(x2 ∧ x5 ∧ x7)

+ 36a(x2 ∧ x6 ∧ x7)− 12a(x3 ∧ x4 ∧ x7) + 18b(x3 ∧ x5 ∧ x7) + 54b(x4 ∧ x6 ∧ x7)

+ 12a2(x5 ∧ x6 ∧ x7).

We put v3 = ∇QF , v4 = H(Q)−1Nv3, v9 = v3 ◦ v3 and c6 = coeff(Q(v4 + tv9), t).
The map j : XE(13, 1) → P1 satisfies j − 1728 = ξc2

6/Q13 for some constant ξ.
Evaluating at the tautological point (1 : 0 : . . . : 0) ∈ XE(13, 1) we find

Q(1, 0, . . . , 0) = 1 and c6(1, 0, . . . , 0) = −216b/(4a3 + 27b2).

Since j(E) = 1728(4a3)/(4a3 + 27b2) it follows that ξ = −(4a3 + 27b2) and so

j = 1728− (4a3 + 27b2)c2
6

Q13
.

Remark 5.11. (i) The quadratic form Q may be recovered from Φ as the GCD

of the 6× 6 Pfaffians of N where Nij = ( ∂
∂xi
∧ ∂

∂xj
)Φ.

(ii) We may simplify Q and Φ by making the further change of coordinates

x1 = −au1 − a2u2 + 9bu3 + 9bu4 − (3/2)bu5 − 3au6 + 2a2u7,

x2 = (1/2)au1 + (1/3)a2u2 − (9/2)bu3 − 3bu4 + (3/4)bu5 + au6 − a2u7,

x3 = 3bu2 + 2au4, x4 = 2au3 − 3bu7, x5 = −(1/2)u1 − au7, x6 = −(1/3)au2 + u6,

x7 = (1/2)u3 + (1/12)u5. Then Q = u1u7 + u2u6 + u3u5 + u2
4 and

(16) Φ = (u1∧u2∧u3)+(u1∧u4∧u7)+(u2∧u4∧u6)+(u3∧u4∧u5)+(u5∧u6∧u7).

In particular these expressions do not depend on a and b. Unfortunately, this

change of coordinates makes F more complicated.

(iii) The alternating forms (10) and (16) differ by a relabelling of the variables.



22 T.A. FISHER

In computing our equations for XE(13, 1) from those for X(13) we have there-

fore twisted by a cocycle taking values in the stabiliser of Φ. According to [FH,

Proposition 22.12] this stabiliser is the 14-dimensional exceptional Lie group G2.

5.3. Equations for XE(13, 2). Let G ∼= PSL2(Z/13Z) be the subgroup of SL7(C)
defined in Section 5.1. We write g 7→ g̃ for the automorphism of G induced by
ζ 7→ ζ2.

Definition 5.12. A skew covariant of degree d is a column vector w of polynomials

in C[x0, . . . , x6]d satisfying w ◦ g = g̃w for all g ∈ G.

Our first example of a skew covariant is w3 = (f0, f1, . . . , f6)T where the fi are
the cubic polynomials vanishing on X(13), as defined in the proof of Theorem 5.2.
Let w4 = (g0, g1, . . . , g6)T be the skew covariant of degree 4 where

g0 = 4x0(x1x3x5 − x2x4x6) + x1x
3
2 − x2x

3
3 + x3x

3
4 − x4x

3
5 + x5x

3
6 − x6x

3
1,

g1 = 4x2
0x

2
1 − 4x2

0x3x4 + 4x0x1x2x6 − 2x0x
2
3x5 − 2x0x

2
5x6 − x3

1x4 + x2
1x2x5

− 2x1x3x
2
4 − x1x

3
5 − x3

2x3 − 2x2
2x

2
6 + 4x2x3x4x5 + x2

3x4x6 + x4x5x
2
6,

and the remaining gi are obtained from g1 by the action of M6, i.e. by cyclically
permuting the subscripts 1, 2, . . . , 6 and alternating the signs. We note that the
polynomials g0, g1, . . . , g6 vanish at the cusps of X(13), but do not vanish iden-
tically on X(13), and are not divisible by Q. They therefore account for the
discrepancy (in degree 2) between the rings S and S ′ in Lemma 5.3.

We construct further skew covariants by precomposing with a covariant.

w5 = coeff(w3 ◦ (v1 + tv3), t) w8 = coeff(w4 ◦ (v1 + tv3), t2)

w6 = coeff(w4 ◦ (v1 + tv3), t) w11 = coeff(w5 ◦ (v1 + tv3), t3)

w7 = coeff(w3 ◦ (v1 + tv3), t2) w13 = coeff(w5 ◦ (v1 + tv3), t4)

Lemma 5.13. We have

det(w4,w5,w6,w7,w8,w11,w13) = 2Q(c2
6 − 1728Q13)2 mod I(X).

Proof. The proof is similar to that of Lemma 5.9. The factor Q on the right hand

side arises since the entries of w4 vanish at the cusps. �

We now twist the invariants Q and F . Specifically we put

Q(y1, . . . , y7) = Q(y1w4 + y2w5 + y3w6 + y4w7 + y5w8 + y6w11 + y7w13)

F(y1, . . . , y7) = F (y1w4 + y2w5 + y3w6 + y4w7 + y5w8 + y6w11 + y7w13)

Each of the coefficients of these forms is an invariant, and so working modulo I(X)
may be written as a polynomial in Q and c6. By a series of computations similar
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to the proof of Lemma 5.9 we find that

Q(y1, . . . , y7) = 2Q4y2
1 + 16Q5y1y3 − 72Q6y1y5 +Qc6y1y6 + 6Q5y2

2

− 2c6y2y5 − 864Q8y2y6 + 1932Q9y2y7 − 4Q6y2
3 + c6y3y4 − 72Q7y3y5

− 20Q2c6y3y6 − 42Q3c6y3y7 − 12Q7y2
4 − 3Qc6y4y5 + 576Q9y4y6

+ 1008Q10y4y7 + 612Q8y2
5 + 198Q3c6y5y6 − 196Q4c6y5y7

+ 24408Q11y2
6 − 163296Q12y6y7 + (132630Q13 + c2

6)y2
7,

and

F(y1, . . . , y7) = 5Q8y4
1 + 8Q9y3

1y3 +Q3c6y
3
1y4 − 144Q10y3

1y5 − 19Q5c6y
3
1y6

− 42Q6c6y
3
1y7 + 54Q9y2

1y
2
2 − 6Q3c6y

2
1y2y3 + 144Q10y2

1y2y4

+ . . .+ (8864253225Q26 − 1969502Q13c2
6 + 2c4

6)y4
7.

We put c6 = −864b and substitute

y1 = 6Q11(36bx1 + 90bx2 − 2a2(5x3 + 8x4 + 2x5)− 9abx6 + 42abx7),

y2 = 4Q4(4a3 + 27b2)(1347x1 − 936x2 − 317ax6 − 185ax7),

y3 = 3Q10(36bx1 − 18bx2 + 2a2(x3 − 8x4 − 14x5) + 9abx6 + 6abx7),

y4 = 24Q3(4a3 + 27b2)(21x1 − 36x2 − ax6 + 9ax7),

y5 = 3Q9(18bx2 − 2a2(x3 + 2x5) + 3abx6 + 6abx7),

y6 = 8Q(4a3 + 27b2)(6x1 − 6x2 − ax6),

y7 = −4(4a3 + 27b2)(3x1 − ax6 − ax7).

This transformation has determinant 22638a8Q38(4a3 + 27b2)4. Dividing Q and F
by 21834a4(4a3 + 27b2)2 and 23238a8(4a3 + 27b2)3, and eliminating Q by the rule
Q13 = 16(4a3 + 27b2), we obtain

Q(x1, . . . , x7) = x1x7 + x2x6 + x3x5 + x2
4,

and

F(x1, . . . , x7) = 48ax3
1x2 + 36bx3

1x3 + 72bx3
1x5 + 8a2x3

1x6 + 16a2x3
1x7

− 144ax2
1x

2
2 − 216bx2

1x2x3 + 432bx2
1x2x4 + 432bx2

1x2x5 − 48a2x2
1x2x7

+ . . .+ 12a2(a3 + 9b2)x2
6x

2
7 + 56a2(a3 + 7b2)x6x

3
7 + 16a2(3a3 + 20b2)x4

7.

These polynomials Q and F have weights 2 and 10 with respect to the grading in
Remark 2.3.

For f and g homogeneous polynomials in x1, . . . , x7 we define

〈f, g〉 = trace(H(f)H(Q)−1H(g)H(Q)−1).
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Theorem 5.14. Let E/K be the elliptic curve y2 = x3 + ax + b. Let f1, . . . , f7

be a basis for the space of cubic forms f satisfying 〈f,F − 48(4a3 + 27b2)Q2〉 = 0.

Then

XE(13, 2) ∼= {f1 = . . . = f7 = F + 16(4a3 + 27b2)Q2 = 0} ⊂ P6.

Proof. The proof is similar to that of Theorem 5.10, except that we now form the

matrix h by evaluating the skew covariants

Q11w4, Q
4w5, Q

10w6, Q
3w7, Q

9w8, Qw11, w13

and show using the definition of a skew covariant (see Definition 5.12) that

σ(h)h−1 ∝ ˜ρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K). �

Again the cubic forms f1, . . . , f7, as polynomials with coefficients in Z[a, b], are
available from [F5]. Alternatively, they may be computed from the description
given in Section 2.1.

Next we compute the j-map XE(13, 2) → P1. Revisiting Lemma 5.7 with Q
and F in place of Q and F we obtain a skew symmetric matrix N given by
Nij = ( ∂

∂xi
∧ ∂

∂xj
)Φ where

Φ = (x1 ∧x4 ∧x7)− (x1 ∧x5 ∧x6)− (x2 ∧x3 ∧x7)− (x2 ∧x4 ∧x6)− (x3 ∧x4 ∧x5).

We put v3 = ∇QF , v4 = H(Q)−1Nv3, v9 = v3 ◦ v3 and c6 = coeff(Q(v4 + tv9), t).
The map j : XE(13, 2) → P1 satisfies j − 1728 = ξc2

6/Q13 for some constant ξ.
In principle we could compute ξ by carefully keeping track of all the changes of
coordinates and rescalings described above, but in practice it is simpler to look at
some numerical examples. We find that

j = 1728− c2
6

240(4a3 + 27b2)10Q13
.

Remark 5.15. We have arranged that the forms Q and Φ do not depend on a and

b, and indeed, up to a relabelling of the variables, are the same as the forms we

started with. Therefore, exactly as in Remark 5.11, we have twisted by a cocycle

taking values in G2.

5.4. The cases j(E) = 0, 1728. We have shown that the equations for XE(13, 1)
and XE(13, 2) in Theorems 5.10 and 5.14 are correct for all elliptic curves E with
j(E) 6= 0, 1728. We now remove this restriction. The first step is to show that if
the theorems are correct for some elliptic curve E then they are correct for any
2-isogenous elliptic curve F .

Let E be the elliptic curve y2 = x3 + ax + b, and let F be the elliptic curve
y2 = x3 + Ax + B where A = −15θ2 − 4a, B = 14aθ + 22b and θ is a root of
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x3 + ax + b = 0. If we put c = 3θ and d = 3θ2 + a then E is isomorphic to
y2 = x(x2 + cx+ d) and F is isomorphic to y2 = x((x− c)2− 4d). In particular E
and F are 2-isogenous.

Starting from the equations in Theorems 5.10 and 5.14, we find there is an
isomorphism XE(13, 1) ∼= XF (13, 2) given by (x1 : . . . : x7) 7→ (x′1 : . . . : x′7) where

x′1 = (14θ2 + 8a)x1 + 32θ2x2 − (3aθ − 25b)x3 + (38aθ − 18b)x4 − (18aθ2

+ 30bθ + 16a2)x5 − (11aθ2 − 3bθ + 24a2)x6 + (144bθ2 − 44a2θ + 132ab)x7,

x′2 = (14θ2 + 8a)x2 + (3aθ + 7b)x3 + (11aθ + 15b)x4 − (17aθ2 − 9bθ + 8a2)x5

− (5aθ2 − 21bθ + 8a2)x6 + (144bθ2 + 10a2θ + 66ab)x7,

x′3 = 8θx1 + 8θx2 + 8θ2x3 + (30θ2 + 24a)x4 + (10aθ − 6b)x5 − (8aθ + 24b)x6

+ (12aθ2 − 108bθ)x7,

x′4 = 4θx1 + 8θx2 + (5θ2 + 4a)x3 − (5aθ − 3b)x6,

x′5 = −4θx1 − 12θx2 + (3θ2 − 4a)x4 + (aθ + 9b)x5 + (6aθ2 − 18bθ + 16a2)x7,

x′6 = −4x1 − 12x2 + 6θx4 − (6θ2 + 4a)x5 − 12aθx7,

x′7 = 2x1 + 4x2 + θx3 + (3θ2 + 2a)x6.

The determinant of this transformation is −21032d3(c2− 4d)5, and so in particular
is non-zero.

Let Ea,b be the elliptic curve y2 = x3 + ax + b. Since E1,0 is 2-power isogenous
to y2 = x3−44x+112 and E0,1 is 2-isogenous to y2 = x3−15x+22, it follows that
Theorems 5.10 and 5.14 hold for the elliptic curves E1,0 and E0,1. It remains to
show that if these results hold for some elliptic curve with j = 0, 1728 then they
hold for all such curves.

The non-cuspidal points of XE(p, k) correspond to pairs (F, ψ), where F is an
elliptic curve and ψ : F [p] → E[p] is a isomorphism that raises the Weil pairing
to the power k. We write SL(E[p]) for the group of automorphisms of E[p] that
respect the Weil pairing. Then SL(E[p]) acts on XE(p, k) via γ : (F, ψ) 7→ (F, γψ).
There is therefore a group homomorphism

(17) πE : Aut(E)/{±1} → SL(E[p])/{±1} → Aut(XE(p, k)).

Lemma 5.16. Let E and E ′ be elliptic curves defined over K and α : E ′ → E

an isomorphism defined over K. Then there is an isomorphism β : XE′(p, k) →
XE(p, k) defined over K satisfying

σ(β)β−1 = πE(σ(α)α−1)

for all σ ∈ Gal(K/K).
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Proof. Let β : XE′(p, k) → XE(p, k) be the isomorphism given on non-cuspidal

points by (F, ψ) 7→ (F, αψ). Then σ(β)β−1 maps (F, ψ) 7→ (F, σ(α)α−1ψ), and is

therefore equal to πE(σ(α)α−1). �

Proof of Theorem 5.10 for j = 1728. We have already shown that the theorem
holds for E = E1,0. We now prove it for E ′ = Ea,0. We identify Aut(E) = µ4

via ζ : (x, y) 7→ (ζ−2x, ζ−3y). Let α : E ′ → E be the isomorphism given by
(x, y) 7→ (a−1/2x, a−3/4y). Then

(18) σ(α)α−1 =
σ(a1/4)

a1/4
.

Let X,Xa ⊂ P6 be the models claimed for XE(13, 1) and XE′(13, 1) in Theo-
rem 5.10. We have already shown that X ∼= XE(13, 1). From the grading in
Remark 2.3 we construct an isomorphism β : Xa → X given by

(x1 : . . . : x7) 7→ (x1 : x2 : a1/2x3 : a1/2x4 : ax5 : ax6 : a3/2x7).

Then

(19) σ(β)β−1 =

{
1 if σ(a1/2) = a1/2

ι if σ(a1/2) = −a1/2

where

ι : (x1 : . . . : x7) 7→ (x1 : x2 : −x3 : −x4 : x5 : x6 : −x7).

If σ(β)β−1 = πE(σ(α)α−1) for all σ ∈ Gal(K/K) then we see by Lemma 5.16
that Xa and XE′(13, 1) are twists of X = XE(13, 1) by the same cocycle, and
are therefore isomorphic over K. Comparing (18) and (19), it remains to show
that πE sends ζ4 7→ ι. More generally, we claim that ι is the unique involution of
XE(13, 1) defined over Q(i). By [AR, Theorem 20.40] the second map in (17) is
an isomorphism. This reduces our claim to one about SL(E[13])/{±1}. It may
be checked, for example by consulting the LMFDB [L], that the mod 13 Galois
representation attached to E/Q(i) has image a split Cartan subgroup, i.e., the
subgroup C of diagonal matrices in GL2(Z/13Z). But then the group

{h ∈ SL2(Z/13Z) : ghg−1 = ±h for all g ∈ C}/{±1}

is cyclic of order 6, and so contains a unique element of order 2. �

Proof of Theorem 5.10 for j = 0. We have already shown that the theorem
holds for E = E0,1. We now prove it for E ′ = E0,b. We identify Aut(E) = µ6

via ζ : (x, y) 7→ (ζ−2x, ζ−3y). Let α : E ′ → E be the isomorphism given by
(x, y) 7→ (b−1/3x, b−2/3y). Then

σ(α)α−1 =
σ(b1/6)

b1/6
.



ON FAMILIES OF 13-CONGRUENT ELLIPTIC CURVES 27

Let X,Xb ⊂ P6 be the models claimed for XE(13, 1) and XE′(13, 1) in Theo-
rem 5.10. We have already shown that X ∼= XE(13, 1). From the grading in
Remark 2.3 we construct an isomorphism β : Xb → X given by

(x1 : . . . : x7) 7→ (x1 : x2 : b1/3x3 : b1/3x4 : b2/3x5 : b2/3x6 : bx7).

Then

σ(β)β−1 =


1 if σ(b1/3) = b1/3

ε if σ(b1/3) = ζ3b
1/3

ε2 if σ(b1/3) = ζ2
3b

1/3

where
ε : (x1 : . . . : x7) 7→ (x1 : x2 : ζ3x3 : ζ3x4 : ζ2

3x5 : ζ2
3x6 : x7).

Arguing as in the proof with j = 1728, it remains to show that the map πE
sends ζ6 7→ ε. We find that ε and ε2 are the only order 3 automorphisms of
XE(13, 1) defined over Q(ζ3). Therefore XE′(13, 1) is isomorphic to Xb or X1/b.
To rule out the latter we take b = 2 and consider the 3-isogenous elliptic curves
E ′ : y2 = x3 + 2 and F : y2 = x3 − 120x + 506. Since 3 is a quadratic residue
mod 13 we have XE′(13, 1) ∼= XF (13, 1). However the curves X1/2 and XF (13, 1)
are not isomorphic, since they have a different number of points mod 19. �

The proof of Theorem 5.14 in the cases j = 0, 1728 is similar.

6. Modular diagonal quotient surfaces

In this section we prove Theorem 2.4.

6.1. Equations for Z(13, 1). Let X = X(13) ⊂ P6 be the A-curve as defined in
Section 5.1. By Lemma 3.2 the surface Z(13, 1) is birational to the quotient of
X×X ⊂ P6×P6 by the diagonal action of G ∼= PSL2(Z/13Z). We write x0, . . . , x6

and y0, . . . , y6 for our coordinates on the first and second copies of P6.

Definition 6.1. A bi-invariant of degree (m,n) is a polynomial in x0, . . . , x6 and

y0, . . . , y6, that is homogeneous of degrees m and n in the two sets of variables,

and is invariant under the diagonal action of G.

In principle, we may obtain equations for Z(13, 1) by computing generators and
relations for the ring of bi-invariants mod I(X×X). In practice we only compute
some of the generators and some of the relations, and then explain why these are
sufficient.

At the start of Section 5.1 we defined invariants Q and F of degrees 2 and 4. We
write Q20 and F40 for these same polynomials viewed as bi-invariants of degrees
(2, 0) and (4, 0). More generally we define bi-invariants Qij and Fij by the rules

Q(λx0 + µy0, . . . , λx6 + µy6) = λ2Q20 + λµQ11 + µ2Q02

F (λx0 + µy0, . . . , λx6 + µy6) = λ4F40 + λ3µF31 + . . .+ µ4F04
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where the subscripts indicate the degree.
The dimension of the space of bi-invariants of degree (m,n) may be computed

from the character table for G. For some small values of m and n these dimensions
are as follows.

0 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 2 0 4 1 7 3 14

1 0 1 0 2 1 5 5 14 17 37 48

2 1 0 3 1 10 9 32 38 90 118 226

3 0 2 1 10 14 41 67 142 222 402 602

4 2 1 10 14 51 82 198 316 610 938 1592

5 0 5 9 41 82 206 377 746 1244 2152 3346

To compute the bi-invariants of a given degree we use the efficient averaging
method described in Remark 5.6.

To find relations between the bi-invariants modulo I(X×X) we initially worked
mod p for some moderately sized prime p, employing the heuristic that a poly-
nomial vanishing at many Fp-points on X × X is likely to vanish on the whole
surface. One way to establish these relations rigorously would be to employ the
Gröbner basis machinery in Magma. However this proved too slow in all but the
simplest cases. We instead used the following lemma, which is an easy consequence
of Bezout’s theorem.

Lemma 6.2. Let I be a bihomogeneous form of degree (m,n) with m,n ≤ 23. If

I vanishes at all points (P,Q) ∈ X × X with j(P ), j(Q) ∈ {0, 1728,∞} then I

vanishes on X ×X.

Proof. We fix P0 ∈ X with j(P0) ∈ {0, 1728,∞}, and let f(Q) = I(P0, Q). The

hypersurface {f = 0} ⊂ P6 meets X in at least 84 + 364 + 546 > 42× 23 points.

Since X has degree 42 and f has degree n ≤ 23 it follows by Bezout’s theorem

that f vanishes identically on X. Therefore I vanishes on {P0} ×X. We now fix

any Q0 ∈ X. Applying the same argument to g(P ) = I(P,Q0), and using that

m ≤ 23, shows that I vanishes on X ×X. �

We note that if the bihomogeneous form in Lemma 6.2 is a bi-invariant (or a
skew bi-invariant, as defined in the next section) then this significantly reduces
the amount of work needed to check the hypotheses of the lemma.

If I is a bi-invariant of degree (m,n) then we write I ′ for the bi-invariant of
degree (n,m) obtained by switching the x’s and y’s. A bi-invariant of degree
(m,m) is symmetric if I ′ = I, and anti-symmetric if I ′ = −I.

The vector space of bi-invariants of degree (3, 3) has dimension 10, and the
subspace of symmetric bi-invariants has dimension 9. Making a good choice of
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basis for this space significantly simplifies the calculations that follow. To specify
our choice of basis z1, . . . , z9, we let m1, . . . ,m10 be the monomials

x3
2y

2
0y1, x1x

2
4y

2
0y1, x

2
2x3y0y

2
1, x3x4x5y0y

2
1, x2x

2
3y

3
1,

x3
4y

3
1, x

2
0x6y

3
1, x1x4x6y

3
1, x2x5x6y

3
1, x3x

2
6y

3
1,

and then record the coefficients of these monomials in a table.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

z1 1 −2 −2 4 0 1 1 1 −1 0

z2 −2 0 4 −2 −1 −1 −2 −1 1 0

z3 0 −3 0 1 −1 0 0 0 0 0

z4 0 0 −2 0 0 0 0 0 −1 0

z5 1 0 −3 0 0 0 1 0 −1 0

z6 1 −1 −3 0 0 0 1 0 −1 0

z7 1 −1 −2 4 0 0 1 1 −1 0

z8 0 −4 2 0 −1 0 0 0 1 −1

z9 0 0 1 2 0 0 0 0 0 0

Some of these bi-invariants may also be described in terms of the Qij and Fij.
Specifically we have

Q3
11 = z1 + z5 − z6 − z7,(20)

Q11Q20Q02 = z5 − z6,(21)

Q11F22 = −3(z6 − z7 + z9),

Q20F13 +Q02F31 = z1 + z2 − 4z4 + z6 + z7 − z8 − 3z9.

We find using Lemma 6.2 that z9 and the following 9 quadratic forms in z1, . . . , z8

vanish identically on X ×X.

z1z4 − z3z5, z1z7 − z1z8 + z2z7 − z4z6 + z5z7,

z1z6 − z3z7, z1(z1 + z2 − z3 − z4 + z5 − z7)− z2z6 + z3z6,

z4z7 − z5z6, z4(z1 + z2 − z3 − z4 + z5)− z3z8,

z2
1 + z1z2 − z2z4, z5(z1 + z2 − z3 − z4 + z5)− z1z8,

z8(z1 + z5 − z6 − z7)− z5z7.

These quadratic forms define a rational surface Σ ⊂ P7. Indeed, the map Σ→ P2

given by projection onto the first 3 coordinates, is a birational map with inverse

(22)
(z1, . . . , z8) = (r, s, 1, r(r + s)/s, r2(r + s)/s, rf(r, s)/(s(r2 + s− 1)),

r2f(r, s)/(s(r2 + s− 1)), r(r + s)f(r, s)/s2)
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where f(r, s) = r3 + r2s− r2 + s2 − s.
The space of anti-symmetric bi-invariants of degree (3, 3) is 1-dimensional,

spanned by w = Q20F13 − Q02F31. We write Z(13, 1) as a double cover of Σ
by finding an expression for w2 in terms of z1, . . . , z8. Specifically, working mod
I(X ×X), we find the relation w2 + 64(Q20Q02)3 = g(z1, . . . , z8) where

g(z1, . . . , z8) = z1z2 + z2
2 − 48z2z3 + 48z2z5 + 126z2z6 − 48z2z7 − 2z2z8

+ 48z2
3 − 7z3z4 − 57z3z5 − 108z3z6 + 126z3z7 + 21z3z8 + z2

4 − 41z4z5

− 26z4z6 + 8z4z8 + 104z2
5 − 60z5z6 − 106z5z7 + 120z5z8 + 37z2

6 − 10z6z7

− 158z6z8 + z2
7 − 70z7z8 + z2

8 .

It follows by (20), (21) and (22) that

w2 = ((r − 1)/(s2(r2 + s− 1)))2F1(r, s, 1)

where F1 is the polynomial defined in Remark 2.5. The bi-invariants therefore
define a rational map from Z(13, 1) to the surface y2 = F1(r, s, 1). We show in
Remark 6.3 below that this map has degree 1.

We now compute the maps j and j′ giving the moduli interpretation of Z(13, 1).
To do this we need some more bi-invariants, and some more relations. If v is a
covariant of degree m (see Definition 5.5) and y = (y0, . . . , y6)T then yTH(Q)v
is a bi-invariant of degree (m, 1). Applying this construction to v4 as defined in
Section 5.2 gives a bi-invariant I41. We put I32 = (

∑
yi

∂
∂xi

)I41 and I23 = I ′32. Let
c6 be the invariant of degree 13 defined at the end of Section 5.1, now viewed
as a bi-invariant of degree (13, 0). Then c′6 has degree (0, 13). Let α = Q20I

2
23,

α′ = Q02I
2
32, β = Q6

02I23c6, β′ = Q6
20I32c

′
6 and γ = (Q20Q02)3. Working mod

I(X ×X) we find some relations

f1(α + α′) = f3, Q11I32I23 = g2,

f2(β + β′) = f7, h2c6c
′
6 = Q11(`6 + `4γ + `2γ

2 − 64γ3),

where each fi, gi, hi, `i is a homogeneous polynomial of degree i in z1, . . . , z8. These
polynomials are available from [F5]. The relations were checked using Lemma 6.2.
Using (20), (21) and (22) we may then write the coefficients of the quadratics
(Y − α)(Y − α′) and (Y − β)(Y − β′) as rational functions in r and s. The
discriminant of each quadratic is equal to F1(r, s, 1) times a square. Moreover, by
Theorem 5.8 we have j = 1728−β2/(αγ4), which we may then write as an element

of Q(r, s,
√
F1(r, s, 1)). The final expressions for j and j′ are too complicated to

record here, but take the form specified in Theorem 2.4, and are available from [F5].

Remark 6.3. We have constructed rational maps

(23) X ×X −→ Z(13, 1) −→ {y2 = F1(r, s, 1)} (j,j′)−−→ P1 × P1.
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The composite corresponds to a Galois extension of function fields, with Galois

group G × G. Since G ∼= PSL2(Z/13Z) is a simple group, the diagonal subgroup

∆G ⊂ G× G is a maximal subgroup. Therefore one of the last two maps in (23)

is birational. However if the last map were birational, then this would mean that

in attempting to quotient out by ∆G, we had in fact quotiented out by G × G.

To exclude this possibility we may check, for example, that the rational function

Q2
11/(Q20Q02) on X×X is not G×G-invariant. In fact, it is not even 〈M6〉×〈M6〉-

invariant. Therefore Z(13, 1) is birational to {y2 = F1(r, s, 1)}, and this completes

the proof of Theorem 2.4 in the case k = 1.

6.2. Equations for Z(13, 2). The calculations here are similar to those in the
last section. The main difference is that we modify the definition of a bi-invariant.
As in Section 5.3 we write g 7→ g̃ for the automorphism of G induced by ζ 7→ ζ2.

Definition 6.4. A skew bi-invariant of degree (m,n) is a polynomial in x0, . . . , x6

and y0, . . . , y6, that is homogeneous of degrees m and n in the two sets of variables,

and is invariant under the action of G via g : (x, y) 7→ (gx, g̃y).

The polynomials Q20 and Q02 defined in Section 6.1 are skew bi-invariants, but
Q11 is not. The dimension of the space of skew bi-invariants of degree (m,n) may
again be computed from the character table for G. For some small values of m
and n these dimensions are as follows.

0 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 2 0 4 1 7 3 14

1 0 0 0 1 1 4 5 14 17 37 48

2 1 0 3 1 10 9 32 38 90 118 226

3 0 1 1 9 14 40 67 142 222 402 602

4 2 1 10 14 51 82 198 316 610 938 1592

5 0 4 9 40 82 205 377 746 1244 2152 3346

In particular the spaces of skew bi-invariants of degrees (2, 2) and (3, 3) have
dimensions 3 and 9. The first of these spaces has basis t1, t2, t3 where

t1 = 2x2
0y

2
0 + x2

4y0y1 + . . .

t2 = (x2
0 − x1x4 − x2x5 − x3x6)y2

0 + x2
4y0y1 + . . .

t3 = (−5x2
0 + x1x4 + x2x5 + x3x6)y2

0 − (x2
4 + 2x1x6)y0y1 + . . . .

To specify the first 5 polynomials in the basis u1, . . . , u9 we chose for the space of
skew bi-invariants of degree (3, 3), we let m1, . . . ,m9 be the monomials

x2
2x3y

2
0y1, x1x

2
2y0y

2
1, x

3
3y0y

2
1, x

2
0x5y0y

2
1, x1x

2
3y

3
1, x

2
2x4y

3
1, x

2
4x5y

3
1, x1x5x6y

3
1, x0x

2
6y

3
1,
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and then record the coefficients of these monomials in a table

m1 m2 m3 m4 m5 m6 m7 m8 m9

u1 0 −2 0 0 −1 0 0 −1 0

u2 −3 1 0 −1 0 0 0 1 0

u3 0 2 0 0 1 0 1 2 0

u4 −1 1 0 1 0 0 0 0 0

u5 −1 −2 −1 −3 0 0 0 0 1

Amongst other relations, we found that u6, . . . , u9 and the following polynomials
vanish identically on X ×X.

u3u4 − u1u5, u3
2 − u1u2u3 − 2u2

2u3 − u2
2u4 + u1u3u4 + u2u3u4 − u2u3u5,

t2u4 − t3u1, t1u1(u2 − u3)− t2(u1u2 − u1u4 + u2u3 + u2u5),

t1t
2
2 − u1u3.

The first two relations define a rational surface Σ ⊂ P4, parametrised by

(u1, . . . , u5) = (r, 1,−rs, f(r, s),−sf(r, s))

where f(r, s) = (r2s+ 2rs+ 1)/(r2s+ rs2 + rs+ 1). The other three show that

(t1, t2, t3) = (−s(r2 + rs+ r + 1)/τ, r(r2s+ rs2 + rs+ 1)/τ, (r2s+ 2rs+ 1)/τ)

where τ 3 = (r2 + rs+ r + 1)(r2s+ rs2 + rs+ 1)2.
For I a skew bi-invariant we write I ′ for the skew bi-invariant obtained as

I ′(x; y) = I(y;−x0,−x2,−x3,−x4,−x5,−x6,−x1).

It may be checked that I ′′ = I. The space of skew bi-invariants of degree (3, 2) is
spanned by I32 = 12(x1x3x5−x2x4x6)y2

0 +. . . and the space of skew bi-invariants of
degree (4, 1) is spanned by I41 = yTH(Q)w4 where w4 is the skew covariant defined
in Section 5.3. We put I23 = I ′32 and I14 = I ′41. Let α = Q3

20I
2
14, α′ = Q3

02I
2
41,

β = Q5
02I14c6, β′ = Q5

20I41c
′
6 and γ = I32I23. Working mod I(X×X) we find some

relations

Q20Q02 = t1 − t2,
I41I14 = (t1 − t2)(u1 + u2 − 3u3 − u4),

u1(u1 + u3)γ = f11,

t3(t1 + t3)(α + α′) = f12,

4(t21t3 + u4u5)(β + β′) = f20 + f15γ + f10γ
2 + f5γ

3,

g10c6c
′
6 = f23 + f18γ + f13γ

2 + f8γ
3,

where each fi, gi is a polynomial of weighted degree i in t1, t2, t3, u1, . . . , u5, where
the t’s have weight 2 and the u’s have weight 3. These polynomials are available
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from [F5]. The relations were checked using Lemma 6.2. Using these relations,
and the above parametrisation of Σ, we may write the coefficients of the quadrat-
ics (Y − ατ)(Y − α′τ) and (Y − βτ)(Y − β′τ) as rational functions in r and s.
The discriminant of each quadratic is equal to F2(r, s, 1) times a square, where F2

is the polynomial defined in Remark 2.5. The skew bi-invariants therefore define
a rational map from Z(13, 2) to the surface {y2 = F2(r, s, 1)}. Adapting the argu-
ment in Remark 6.3 shows that this map has degree 1. Moreover by Theorem 5.8
we have j = 1728 − β2/(α(Q20Q02)10), which we may then rewrite as an element

of Q(r, s,
√
F2(r, s, 1)). This gives the moduli interpretation, and so completes the

proof of Theorem 2.4 in the case k = 2.

7. Modular curves on Z(13, 1) and Z(13, 2)

Following on from Sections 2.2 and 2.3 we describe some more modular curves
on the surfaces Z(13, 1) and Z(13, 2).

Let m ≥ 2 be an integer coprime to 13. Then any pair of m-isogenous elliptic
curves are 13-congruent with power k, where k = 1 if m is a quadratic residue
mod 13, and k = 2 otherwise. There is therefore a copy of the modular curve
X0(m) on the surface Z(13, k). In Table 1 we explicitly identify these curves in
all cases where the genus g of X0(m) is 0 or 1. The polynomials F1 and F2 were
defined in Remark 2.5.

In compiling Table 1 we used the SmallModularCurve database in Magma to
check the moduli interpretations. For example, the entry with m = 10 shows that
Z(13, 1) contains a curve isomorphic to y2 = t2 + 16t − 16. We parametrise this
curve by putting t = −(T 2 + 8T + 20)/T , and find by Theorem 2.4(iii) that

X2 − (j + j′)X + jj′ =
(
X − j10(T )

)(
X − j10(20/T )

)
where

j10(T ) =
(T (T + 4)5 + 16T + 80)3

T (T + 4)5(T + 5)2

is the j-map on X0(10).
To find many of these curves it was necessary to blow up the surfaces in The-

orem 2.4. For example, the entry with m = 15 shows that when we blow up our
model for Z(13, 2) at (r : s : 1) = (1 : −1 : 0) we obtain a curve isomorphic to
y2 = (t2 + t− 1)(t2 + 13t+ 11). Putting this elliptic curve in Weierstrass form we
find it has Cremona label 15a1, and is therefore isomorphic to X0(15).

The surfaces Z(13, 1) and Z(13, 2) also contain modular curves of level 13. For
example, the factors of D1 and D2 (as defined in Theorem 2.4(iii)) appearing with
multiplicity 13, say δ1 and δ2, each define a copy of the genus 2 curve X1(13). In
fact it is a general phenomenon, exploited in [KS], that Z(n, k) contains copies of
X1(n) above j =∞ and j′ =∞.
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Table 1. Copies of X0(m) on Z(13, 1) or Z(13, 2)

m g Formula specifying a curve on (a blow up of) y2 = Fk(r, s, 1)

2 0 F2(4,−3− ε2 + tε4,−2 + 2ε) = 218(4t+ 1)ε4 +O(ε5)

3 0 F1(1, 1 + ε+ tε3, 2 + ε) = 16(54t+ 1)ε4 +O(ε5)

4 0 F1(1, tε2,−1 + ε) = 4(32t+ 1)ε2 +O(ε3)

5 0 F2(tε2, 1,−1 + ε) = −(16t2 + 44t− 1)ε4 +O(ε5)

6 0 F2(ε3, t, ε2) = t6(t2 + 34t+ 1)ε18 +O(ε19)

7 0 F2(1,−1 + tε2 + tε3,−1 + tε2) = t4(t+ 1)(t− 27)ε12 +O(ε13)

8 0 F2(ε2 − ε3 − tε4,−1,−ε) = (t2 + 28t+ 68)ε14 +O(ε15)

9 0 F1(ε, 1− ε2 + tε3, 1) = (t2 − 18t− 27)ε6 +O(ε7)

10 0 F1(0, t, 1) = t4(t− 1)2(t2 + 16t− 16)

11 1 F2(1,−ε3 + ε4 + tε5, ε) = (t+ 2)(t3 − 14t2 − 12t− 4)ε20 +O(ε21)

12 0 F1(1,−1 + tε, ε) = t2(t2 + 14t+ 1)ε4 +O(ε5)

14 1 F1(ε, 1,−ε2 + tε3) = (t4 + 14t3 + 19t2 + 14t+ 1)ε12 +O(ε13)

15 1 F2(1,−1 + tε, ε) = (t2 + t− 1)(t2 + 13t+ 11)ε4 +O(ε5)

16 0 F1(1, ε, 1 + tε) = (4t2 + 4t− 7)ε2 +O(ε3)

17 1 F1(tε, ε2, t) = t8(t4 − 6t3 − 27t2 − 28t− 16)ε8 +O(ε9)

18 0 F2(t, 0, 1) = t2 + 10t+ 1

19 1 F2(−1, t, 1) = (t− 1)4(t− 2)(t3 + 10t2 + 12t+ 4)

20 1 F2(t, 1, 1) = (t+ 1)6(t4 + 12t3 + 28t2 + 32t+ 16)

21 1 F2(1,−t2, t) = t8(t+ 1)4(t4 + 6t3 − 17t2 + 6t+ 1)

24 1 F2(t3 + 2t2,−1, t2 + 2t) = t10(t+ 1)6(t+ 2)6(t4 − 4t3 − 16t2 − 8t+ 4)

25 0 F1(t,−t, 1) = t4(t2 + 4t− 16)

27 1 F1(t, t2,−1) = t8(t+ 2)(t3 − 6t2 − 4)

32 1 F2(t+ 1,−t3, t2 + t) = t20(t+ 1)6(4t4 − 12t2 − 16t− 7)

36 1 F1(t+ 1,−t2 − t− 1,−t2 − t) = t12(t+ 1)4(4t4 + 8t3 + 12t2 + 8t+ 1)

49 1 F1(t,−t2, t− 1) = t8(t− 2)2(t− 1)4(t+ 1)2(t4 − 6t3 + 3t2 + 18t− 19)

Setting j = j′ in Theorem 2.4 give a curve whose irreducible components are
modular curves of level 13. This gives a convenient way of computing the double
covers Xs(13) → X+

s (13) and Xns(13) → X+
ns(13), as were recently computed by

another method in [DMS]. The details are as follows. Recall that in Theorem 2.4
we wrote Z(13, k) as a double cover of P2. We also wrote j + j′ and jj′ as
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rational functions in r and s. We now put r = x/z and s = y/z, and factor the
numerator and denominator of (j − j′)2 into irreducible polynomials in Q[x, y, z].
Let ∆k(x, y, z) = z4δk(x/z, y/z). In the cases k = 1 and k = 2 we obtain

(j − j′)2 =
F1(G1G2H1H2H3M)2

y8z8(x+ y − z)6(x2 + yz − z2)2∆26
1

and

(j − j′)2 =
F2(G3G4G5H4H5H6)2

x10z10(x2 + xy + xz + z2)4∆26
2

where

• F1 and F2 are as in Remark 2.5. As noted in Section 2.3, they define copies
of X+

s (13) and X+
ns(13).

• G1, . . . , G5 have degrees 8, 11, 9, 10, 11. Each defines a copy of X+
s (13) with

inverse image in Z(13, k) a copy of Xs(13).
• H1, . . . , H6 have degrees 8, 11, 13, 7, 10, 12. Each defines a copy of X+

ns(13)
with inverse image in Z(13, k) a copy of Xns(13).
• M has degree 8, but factors as the product of two quartics defined over
Q(ζ13). Each factor defines a curve whose inverse image in Z(13, 1) is a
copy of X1(13), but with a non-standard moduli interpretation.

There is a group-theoretic explanation for the factorisations of these numera-
tors. In the case k = 1 we let PSL2(Z/13Z) act on its non-trivial elements by
conjugation, and find that there are 8 orbits, with stabilisers conjugate to (in an
obvious notation)

C+
s , Cs, Cs, Cns, Cns, Cns, B,B.

In the case k = 2 we let PSL2(Z/13Z) acts by conjugation on the elements in
PGL2(Z/13Z) whose determinant is not a square, and find that there are 7 orbits,
with stabilisers conjugate to

C+
ns, Cs, Cs, Cs, Cns, Cns, Cns.

8. Examples

8.1. Examples over Q. We use our results, as presented in Section 2, to exhibit
some non-trivial pairs of 13-congruent elliptic curves over Q.

Example 8.1. Let E/Q be the elliptic curve y2 = x3 − 4x − 3, labelled 52a2 in

Cremona’s tables.1 Taking a = −4 and b = −3 we find on XE(13, 1) the point

(−30 : 23 : −72 : −16 : 0 : 16 : 1)

mapping to j = −28 ·33 ·1513 ·23993/(13·1913). This is the j-invariant of the elliptic

curve E ′/Q with Cremona label 988b1. Therefore E is directly 13-congruent to

1Confusingly, the numbering of the elliptic curves in the isogeny class 52a is different in

Cremona’s tables and in the LMFDB.
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the quadratic twist of E ′ by some square-free integer d. Comparing a few traces

of Frobenius shows that d = 1.

Example 8.2. Let E/Q be the elliptic curve y2 = x3 + x − 10, labelled 52a1 in

Cremona’s tables. Taking a = 1 and b = −10 we find on XE(13, 2) the points

(9 : 0 : 4 : 2 : −2 : 2 : −1), (134 : −45 : 134 : 44 : 5 : −18 : 4),

mapping to j = 214 · 33/13 and −28 · 33 · 1513 · 23993/(13 · 1913). These correspond

to the elliptic curves 52a2 and 988b1 that are each skew 13-congruent to E.

In Theorem 2.4 we gave equations for the surfaces Z(13, 1) and Z(13, 2), each
as a double cover of P2. We use these formulae to exhibit some non-trivial pairs
of 13-congruent elliptic curves over Q, where both curves are beyond the range of
Cremona’s tables.

Example 8.3. There is a Q-rational point on the surface Z(13, 1) above (r : s :

1) = (4 : 5 : 3). This maps to the pair of j-invariants

j =
−2573 · 8113

22 · 312 · 54 · 11
and j′ =

−4418513633

25 · 3 · 5 · 11 · 2313
.

These are the j-invariants of a pair of directly 13-congruent elliptic curves

E : y2 + xy + y = x3 − 464619x− 122105558

E ′ : y2 + xy + y = x3 − 11276810818409x+ 14959107699948354572

with conductors N = 3778170 = 2 · 3 · 5 · 11 · 1072 and N ′ = 86897910 = 23N .

Example 8.4. There is a Q-rational point on the surface Z(13, 2) above (r : s :

1) = (2 : −9 : 6). This maps to the pair of j-invariants

j =
293 · 613 · 103

219 · 37 · 17
and j′ =

133 · 1032 · 2705393

2 · 33 · 172 · 1913
.

These are the j-invariants of a pair of skew 13-congruent elliptic curves

E : y2 + xy = x3 + 3796x− 685680

E ′ : y2 + xy = x3 + 8246713256941x+ 11003401358367836019

with conductors N = 1082118 = 2 · 3 · 17 · 1032 and N ′ = 20560242 = 19N .

8.2. Examples over Q(t). The following pairs of 13-congruent elliptic curves
over Q(t) were found as described in Section 2.2. By specialising t they give rise
to infinitely many non-trivial pairs of 13-congruent elliptic curves over Q.
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Example 8.5. Let E/Q(t) be the elliptic curve

E : y2 = x3 − 3p2qf1x+ 2p2q2f2,

where p(t) = t2 − 3t− 1, q(t) = t3 − 2t2 − 3t− 8, and

f1(t) = t7 + 4t6 + 8t5 + 6t4 − 8t3 − 24t2 − 27t− 8,

f2(t) = t11 + 4t10 + 5t9 − 12t8 − 63t7 − 124t6 − 137t5 − 80t4 − 61t3 − 72t2

− 153t+ 8.

Taking a = −3p2qf1 and b = 2p2q2f2, we find on XE(13, 1) the point

(2592t(t+ 1)(t2 + 2t+ 3)p2qr2 : −432t2(2t2 + 3t+ 7)p2qr2

: −72(t3 + 2t2 + 4t− 1)p2qr : 72p2qr

: −6(t6 − 3t4 − 11t3 − 14t2 − 5t− 4)p : −24(t− 1)pr : t− 1)

where r(t) = t3 + t2 +2t−1. This point maps to j′ = pg3
1/(rd) = 1728+(qg2

2)/(rd)

where

g1(t) = t31 + 23t30 + 270t29 + 2379t28 + 17607t27 + 110676t26 + 586710t25

+ 2624262t24 + 9977316t23 + 32555542t22 + 92002244t21 + 226872066t20

+ 490871649t19 + 935166681t18 + 1571157252t17 + 2326844467t16

+ 3029704865t15 + 3450459162t14 + 3407984048t13 + 2880044002t12

+ 2037108963t11 + 1159162859t10 + 486247810t9 + 109783239t8

− 25731445t7 − 37205624t6 − 17036352t5 − 3782272t4 − 99968t3

+ 90624t2 + 50176t+ 8192,

g2(t) = t46 + 34t45 + 586t44 + . . .− 10680320t2 − 2752512t− 262144,

d(t) = t4(t+ 2)3(t4 + 4t3 + 9t2 + 11t+ 8)(t6 + 4t5 + 9t4 + 8t3 + 2t2 − 9t− 6)13.

This is the j-invariant of an elliptic curve directly 13-congruent to E. (Notice that

the full formula for g2 may be recovered from the equality of two expressions we

gave for j′.) Specialising t and comparing traces of Frobenius, we find that the

correct quadratic twist is

E ′ : y2 = x3 − 3p3q3g1x+ 2p4q5g2.

In Table 2 we record some pairs of 13-congruent elliptic curves over Q, obtained
by specialising the parameter t in Example 8.5. In each case we have taken simul-
taneous quadratic twists so that E has conductor as small as possible. Only the
first 2 pairs of elliptic curves in Table 2 are isogenous (via an isogeny of the degree
indicated). Example 8.5 therefore shows that there are infinitely many non-trivial
pairs of directly 13-congruent elliptic curves over Q.
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Table 2. Pairs of directly 13-congruent elliptic curves

t E E ′ deg t E E ′

1 11a3 11a2 25 1/4 7707798∗ 27925352154∗
−1 768h1 768h4 10 −3 15211515∗ 1566786045∗
4 13688b1 8363368∗ 8/5 46427580∗ 5448415795740∗
2 27930s1 27930r1 3 48963840∗ 42941287680∗
−4 80408l1 8282024∗ 5 147656145∗ 1624217595∗
−1/2 83030b1 913330∗ 7/2 192105606∗ 23030964786522∗
−1/3 271545f1 589524195∗ 5/2 774703710∗ 6034167197190∗
1/2 5429670∗ 320350530∗ 7 1040014080∗ 24181367374080∗

Example 8.6. Let E/Q(t) be the elliptic curve

E : y2 = x3 − 3pq2f1x+ 2pq2f2.

where p(t) = t2 + t+ 1, q(t) = 5t2 + 8t+ 11, and

f1(t) = t4 − 13t3 − 4t2 − 5t+ 1,

f2(t) = 59t9 + 183t8 + 477t7 + 315t6 + 54t5 − 570t4 − 499t3 − 429t2 − 123t− 43.

Taking a = −3pq2f1 and b = 2pq2f2, we find on XE(13, 2) the point

(−2pqr1 : pqr2 : 2r3 : −24(t+ 1)2(t2 + 1)2 : tr4 : 2t : 0)

where

r1(t) = 29t7 + 15t6 + 7t5 − 32t4 + 89t3 + 73t2 + 83t+ 24,

r2(t) = 55t7 + 117t6 + 269t5 + 356t4 + 211t3 + 179t2 + 25t+ 36,

r3(t) = t6 − 14t5 − 43t4 − 85t3 − 106t2 − 53t− 36,

r4(t) = 13t5 + 34t4 + 17t3 + 11t2 − 22t− 5.

This point maps to j′ = pqg3
1/d = 1728− g2

2/d where

g1(t) = 211t14 + 665t13 + 1079t12 + 414t11 − 1754t10 − 5658t9 − 9756t8 − 12536t7

− 12796t6 − 10606t5 − 7358t4 − 4030t3 − 1831t2 − 553t− 131,

g2(t) = 3107t23 + 45563t22 + 257591t21 + . . .+ 35789t+ 4973,

d(t) = (t+ 1)(t2 + 1)(2t2 + t+ 1)2(2t3 + 2t2 + 3t+ 1)13.
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This is the j-invariant of an elliptic curve skew 13-congruent to E. Specialising t

and comparing traces of Frobenius, we find that the correct quadratic twist is

E ′ : y2 = x3 + 3pq3g1x+ 2pq4g2.

In Table 3 we record some pairs of 13-congruent elliptic curves over Q, obtained
by specialising the parameter t in Example 8.6. In each case we have taken simul-
taneous quadratic twists so that E has conductor as small as possible. Only the
first 3 pairs of elliptic curves in Table 3 are isogenous (via an isogeny of the degree
indicated). Example 8.6 therefore shows that there are infinitely many non-trivial
pairs of skew 13-congruent elliptic curves over Q.

Table 3. Pairs of skew 13-congruent elliptic curves

T E1 E2 deg T E1 E2

0 121c1 121c2 11 3 185900a1 7621900∗
1 162c1 162c4 21 −7 255162e1 4848078∗
−1/3 1225h1 1225h2 37 1/2 1242150∗ 1242150∗
−3 1960i1 21560l1 1/7 1695978∗ 429082434∗
−2 14175k1 184275o1 −3/2 2141594∗ 49256662∗
1/3 23660f1 733460∗ −3/5 2147950∗ 2147950∗
−3/4 92950q1 2881450∗ −5 4746924∗ 507920868∗
−1/2 98010s1 98010t1 1/5 7495800∗ 397277400∗

8.3. Tables. In Tables 4 and 5 we list some Q-rational points on Z(13, 1) and
Z(13, 2) that do not lie on any of the curves of genus 0 or 1 in Section 2.2.
In Table 6 we list some pairs of 13-congruent elliptic curves over Q with small
conductor. We have 3 methods for finding such examples

• We sort Cremona’s tables by traces of Frobenius mod 13 and look for
matches. This method is described more fully in [CF].
• We loop over all elliptic curves E in Cremona’s tables (ignoring quadratic

twists of earlier curves) and search for rational points on XE(13, 1) and
XE(13, 2). In many cases the second elliptic curve is beyond the range of
Cremona’s tables.
• We search for rational points on Z(13, 1) and Z(13, 2). This can give

examples where both curves are beyond the range of Cremona’s tables.

Elliptic curves are specified either by their Cremona label, or by writing N∗
where N is the conductor of the elliptic curve. In the latter case Weierstrass
equations are available from [F5]. We do not list examples that could be deduced
from earlier entries by swapping over the curves, by using an isogeny of degree
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Table 4. Known rational points on Z(13, 1)

(2, 1,−3) (15,−63, 4) (104,−481, 64) (−5110, 5329, 1176)

(−3, 4, 3) (60,−65, 16) (680,−175, 289) (6552,−1352, 2835)

(−2, 5, 4) (30, 68, 63) (630, 685,−324) (−6920, 8477, 4800)

(4, 5, 3) (21,−1, 98) (440,−48, 1085) (2470, 9025, 7436)

(3, 1,−6) (−51, 136, 111) (495, 81,−1144) (−4389, 9386, 9702)

(−6, 11, 9) (−78, 172, 169) (442, 1224, 1183) (7259, 1525, 9996)

(−12, 16, 9) (39, 169, 180) (1430,−1469, 225) (3105, 13225, 994)

(14, 4,−21) (−56, 256, 245) (280,−1656, 49) (13340, 4205,−5819)

(−5, 23, 6) (−17, 289, 20) (−1326, 2312, 1521) (10540, 289,−26908)

(−15, 25, 18) (95,−7, 418) (3540,−3481, 144) (−34086, 34385, 3249)

(38, 7, 12) (455, 169, 294) (1309,−3757, 588) (8015, 58166,−833)

(15,−40, 9) (476, 289, 240) (4144,−999, 2695) (−220836, 913936, 859705)

Table 5. Known rational points on Z(13, 2)

(1, 6, 2) (−9, 40, 30) (−1176, 1331, 231) (7546, 1350,−735)

(−8, 5, 4) (−40, 27, 24) (1445,−216, 510) (−1682, 1331, 11484)

(1,−8, 6) (17,−56, 34) (−532, 2197, 1235) (4563, 12167, 13455)

(8,−1, 4) (15,−64, 20) (63, 2560, 120) (14175,−1331, 4389)

(2,−9, 6) (−49, 64, 140) (−1989, 2744, 2730) (1156,−15625, 5525)

(1,−7, 9) (175, 32, 140) (2975, 1,−255) (13248,−42875, 21840)

(11,−8, 22) (−64, 343, 280) (925,−2662, 4070) (−78352, 54925, 21580)

(5,−24, 14) (153, 343,−105) (175,−4608, 3080) (25205,−98304, 47712)

(27,−1, 12) (−363, 250, 165) (1007,−4913, 2584) (−159367, 109744, 81016)

(−8, 27, 12) (790,−343, 1106) (−845, 4968, 1482)

(−20, 27, 30) (−1107, 824, 246) (−5635, 6859, 1995)

coprime to 13, or by taking simultaneous quadratic twists. We specify whether the
13-congruence is direct (k = 1) or skew (k = 2). The entries in bold are examples
coming from the infinite families in Examples 8.5 and 8.6.

The examples where both E and E ′ are within the range of Cremona’s tables
were independently found by Cremona and Freitas. Indeed, there are 18 such pairs
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Table 6. Pairs of 13-congruent elliptic curves

k E E ′ k E E ′

2 52a1 988b1 1 271545f1 589524195∗
1 345b1 10005m1 2 314330i1 314330j1

2 735c1 9555h1 2 1082118∗ 20560242∗
1 1190a1 265370d1 2 1137150∗ 76189050∗
1 1274h1 21658t1 2 1242150∗ 1242150∗
1 1445b1 10115e1 1 1296924∗ 1437132∗
2 1960i1 21560l1 2 1425720∗ 1425720∗
1 3990ba1 43890cu1 2 1695978∗ 429082434∗
2 4719b1 33033k1 2 2141594∗ 49256662∗
2 5070j1 35490bg1 2 2147950∗ 2147950∗
1 11638o1 151294h1 2 2164218∗ 413365638∗
2 12274c1 135014s1 2 2228037∗ 69069147∗
1 13688b1 8363368∗ 1 2428110∗ 31565430∗
2 14175k1 184275o1 2 3647770∗ 69307630∗
1 20184i1 20184j1 1 3778170∗ 86897910∗
2 23660f1 733460∗ 1 3944850∗ 3944850∗
1 27930s1 27930r1 2 4083510∗ 730948290∗
2 29970f1 4705290∗ 2 4746924∗ 507920868∗
2 69230m1 761530∗ 1 5429670∗ 320350530∗
1 80408l1 8282024∗ 2 7495800∗ 397277400∗
1 83030b1 913330∗ 1 7707798∗ 27925352154∗
2 92950q1 2881450∗ 2 10052196∗ 3608738364∗
1 95370cl1 95370cm1 1 15211515∗ 1566786045∗
2 98010s1 98010t1 2 15893150∗ 842336950∗
2 162266e1 17686994∗ 2 16207776∗ 1183167648∗
2 177735a1 1955085∗ 2 17859765∗ 553652715∗
2 185900a1 7621900∗ 1 21140427∗ 264234197073∗
2 237538k1 23041186∗ 1 21219400∗ 233413400∗
2 255162e1 4848078∗ 2 21997290∗ 285964770∗
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in Table 6 which, together with the 3 elliptic curves (52a2, 735c2, 1190a2) isoge-
nous to those already in the table, gives the 39 examples in [CF, Section 3.7].
In addition the pair of curves with conductor 1242150 = 2 · 3 · 52 · 72 · 132 was
independently found by Best and Matschke [Be], in connection with their work
tabulating elliptic curves with good reduction outside {2, 3, 5, 7, 11, 13}.

Appendix A. Elliptic curves whose 13-torsion subgroups have

isomorphic semi-simplifications

If elliptic curves E1 and E2 over Q are 13-congruent then their traces of Frobe-
nius are congruent mod 13 at all primes of good reduction. The converse is also
true provided that the elliptic curves E1 and E2 do not admit a rational 13-isogeny.
Otherwise, the Chebotarev density theorem and Brauer Nesbitt theorem only give
that E1[13] and E2[13] have isomorphic semi-simplifications.

Theorem A.1. There are infinitely many pairs of elliptic curves E1 and E2 over

Q, each admitting a rational 13-isogeny, such that E1[13] and E2[13] have isomor-

phic semi-simplifications. Moreover these examples correspond to infinitely many

pairs of j-invariants.

We prove the theorem by finding pairs of 13-isogenies whose kernels are iso-
morphic as Galois modules. It then follows by properties of the Weil pairing that
the 13-torsion subgroups have isomorphic semi-simplifications. After we had com-
pleted the proof of Theorem A.1 we discovered that essentially the same proof was
given by N. Elkies in 2013 in response to a question asked by S. Keil at

https://mathoverflow.net/questions/129818/elliptic-curves-over-qq

-with-identical-13-isogeny

Our motivation for considering Theorem A.1 is the following question of N. Fre-
itas, to which we still do not know an answer.

Question A.2 (Freitas). Are there any pairs of 13-congruent elliptic curves over

Q where one (and hence both) of these curves admits a rational 13-isogeny?

Proof of Theorem A.1. Let t be the coordinate on X0(13) ∼= P1 specified in
Section 2.1, and let s = t+ 4. The modular curve X1(13) is the genus 2 curve

y2 = (x3 − 3x+ 1)2 − 2(x3 − 3x+ 1)x(x− 1) + 5x2(x− 1)2

with automorphism group G ∼= C6 generated by x 7→ 1/(1− x) and y 7→ −y. The
forgetful map π : X1(13)→ X0(13) quotients out by this action, and is given by

(x, y) 7→ s =
x3 − 3x+ 1

x(x− 1)
= x+

1

1− x
+
x− 1

x
.
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We claim that the quotient of X1(13) ×X1(13) by the diagonal action of G is
birational to the surface Σ = {Y 2 = f(T 3 − 3T + 1, T (T − 1);X)} ⊂ A3 where

f(λ, µ;X) = (X2 − 2X + 5)
(
(λ2 − 2λµ+ 5µ2)X2 − 2(λ2 + λµ+ 6µ2)X

+ (5λ2 − 12λµ+ 72µ2)
)
.

Indeed, G acts on the fibres of the map α : X1(13) × X1(13) → Σ given by
((x1, y1), (x2, y2)) 7→ (T,X, Y ) where

T =
x1x2 − x1 + 1

x2 − x1

, X =
x3

2 − 3x2 + 1

x2(x2 − 1)
, Y =

(X2 − 3X + 9)y1y2

(x1 − x2)3
.

Moreover, if we define β : Σ→ X0(13)×X0(13) by

(T,X, Y ) 7→ (s1, s2) =

(
(T 3 − 3T + 1)X − 9T (T − 1)

T (T − 1)X + (T 3 − 3T 2 + 1)
, X

)
.

then there is a commutative diagram

X1(13)×X1(13)
(π,π)

//

α
''

X0(13)×X0(13)

Σ
β

77

The surface Σ parametrises pairs of 13-isogenies together with a choice of iso-
morphism between their kernels. It has infinitely many rational points, since there
is a genus 1 fibration given by (T,X, Y ) 7→ T , and it easy to exhibit a fibre (e.g.
T = −2) that is an elliptic curve of positive rank. �

Example A.3. The rational point (T,X, Y ) = (17/33, 1, 126340/333) on Σ cor-

responds to the elliptic curves

E1 : y2 + y = x3 − x2 − 2x− 1,

E2 : y2 + y = x3 − x2 − 1424883795842044404862x

− 20702237422068075268318817670099,

with discriminants ∆(E1) = −3 · 72 and ∆(E2) = 3 · 72 · 1313 · 25113 · 17681. By

construction E1[13] and E2[13] have isomorphic semi-simplifications. However E1

and E2 are not 13-congruent, as may be seen from the fact that p = 17681 ramifies

in Q(E2[13])/Q but not in Q(E1[13])/Q.

Remark A.4. The surface Σ also has a genus 2 fibration given by (T,X, Y ) 7→ X.

The fibres are twists of X1(13) parametrising 13-isogenies with a given Galois

action on the kernel.
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