ON FAMILIES OF 13-CONGRUENT ELLIPTIC CURVES
T.A. FISHER

ABSTRACT. We compute twists of the modular curve X (13) that parametrise
the elliptic curves 13-congruent to a given elliptic curve. Searching for rational
points on these twists enables us to find non-trivial pairs of 13-congruent elliptic
curves over Q, i.e. pairs of non-isogenous elliptic curves over Q whose 13-torsion
subgroups are isomorphic as Galois modules. We also find equations for the
surfaces parametrising pairs of 13-congruent elliptic curves. There are two such
surfaces, corresponding to 13-congruences that do, or do not, respect the Weil
pairing. We write each as a double cover of the projective plane ramified over a
highly singular model for Baran’s modular curve of level 13. By finding suitable
rational curves on these surfaces, we show that there are infinitely many non-
trivial pairs of 13-congruent elliptic curves over Q.

1. INTRODUCTION

Elliptic curves E and E’ are n-congruent if their n-torsion subgroups are isomor-
phic as Galois modules. We say the n-congruence has power k if the isomorphism
raises the Weil pairing to the power k. Since multiplication-by-m, where m is an
integer coprime to n, is an automorphism of the n-torsion subgroup, we are only
interested in k € (Z/nZ)* up to multiplication by squares. Taking n = p an odd
prime, we say the congruence is direct if k is a quadratic residue, and skew if k is
a quadratic non-residue.

The elliptic curves n-congruent with power k£ to a given elliptic curve E are
parametrised by (the non-cuspidal points of) the curve Xg(n,k). The pairs of
elliptic curves that are n-congruent with power k, up to simultaneous quadratic
twist, are parametrised by (a Zariski open subset of) the surface Z(n, k).

If elliptic curves E and E’ are related by an isogeny of degree d, with d coprime
to n, then by standard properties of the Weil pairing, £ and E’ are n-congruent
with power d. Congruences of this form are said to be trivial. We are interested
in the following two basic questions.

(i) For which prime numbers p do there exist non-trivial pairs of p-congruent
elliptic curves over Q7

(ii) For which prime numbers p do there exist infinitely many non-trivial pairs
of p-congruent elliptic curves over Q7
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To be more precise, in (ii) we ask for infinitely many pairs of j-invariants, otherwise
from any non-trivial pair of p-congruent elliptic curves we could construct infinitely
many by taking simultaneous quadratic twists.

For p = 3,5 we have Xg(p,k) = P! and so there are infinitely many elliptic
curves p-congruent to a given elliptic curve. Explicit formulae for these families of
elliptic curves are given in [RS] in the direct case, and in [F1, F2] in the skew case.
For p > 7 the curves Xg(p, k) have genus at least 3, and so by Faltings’ theorem
there are only finitely many elliptic curves p-congruent to a given elliptic curve.
Kraus and Oesterlé [KO] gave the example of the directly 7-congruent elliptic
curves 152al and 7448el. This was extended to infinitely many examples by Hal-
berstadt and Kraus [HK], who also gave an equation for Xz(7,1). A modification
of their method, due to Poonen, Schaefer and Stoll [PSS], gives an equation for
Xg(7,3), and from this we were able to exhibit in [F3] infinitely many non-trivial
pairs of skew 7-congruent elliptic curves.

Kani and Schanz [KS| described the geometry of the surfaces Z(n, k), in par-
ticular showing that Z(11,1) is an elliptic surface of Kodaira dimension 1. This
work was extended by Kani and Rizzo [KR], who showed there are infinitely many
non-trivial pairs of directly 11-congruent elliptic curves. We gave an alternative
more explicit proof of this fact in [F3], and determined a Weierstrass equation for
the elliptic surface Z(11,1) in [F4]. Kumar [K, Theorem 21| computed an equa-
tion for Z(11,2), and although not noted in his paper, the rational curve on this
surface given by rs —r + s> — s+ 1 = 0 gives rise to infinitely many non-trivial
pairs of skew 11-congruent elliptic curves.

Examples of non-trivial 13-congruent elliptic curves have been known for some
time. For example, the pair 52al and 988b1 appears in [FM, Table 5.3]. Since
the first of these curves admits a rational 2-isogeny, this gives an example of both
a direct and a skew 13-congruence. Prior to our work the only known examples
of non-trivial 13-congruences were for pairs of elliptic curves that are both in the
range of Cremona’s tables (or simultaneous quadratic twists of such examples). In
this paper, we show that there are infinitely many non-trivial pairs of 13-congruent
elliptic curves, both in the direct and skew cases.

The only known example of a p-congruence for p > 13 is the pair of skew
17-congruent elliptic curves 367501 and 4777501. This example was originally
found by Cremona, and is explicitly recorded in [Bi, CF, F3, FK|. The fact the
congruence is skew follows from [KO, Proposition 2]. It is a conjecture of Frey
and Mazur that there are no non-trivial pairs of p-congruent elliptic curves for
p sufficiently large. On the basis of our work, and that in [CF|, we might refine
this conjecture by suggesting that the answer to question (i) is the set of primes
p < 17, and the answer to question (ii) is the set of primes p < 13.

Another reason why the case n = 13 is interesting, is that according to Kani
and Schanz [KS, Theorem 4] it is the smallest value of n for which all the surfaces
Z(n, k) are of general type.
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In Section 2 we state our main results by giving equations for Xg(13,%) and
Z(13,k) for k = 1,2. We also describe some of the curves of small genus we found
on the surfaces Z(13, k), including the ones giving rise to our infinite families of
non-trivial pairs of 13-congruent elliptic curves.

To compute equations for Xg(13,k) we follow the invariant-theoretic method
developed in [F3]. However we do more to explain the generality in which we can
expect these methods to work. To compute the necessary twists we need to start
with an embedding of X (p) in projective space such that the group PSLy(Z/pZ)
acts linearly. In Section 4 we explain the reasons behind our choice of embedding
(Klein’s A-curve) in the case p = 13. In Section 5 we start on the invariant theory
proper, deriving equations first for X (13), and then for its twists Xg(13,1) and
Xg(13,2). One basic difficulty is that the invariant of smallest degree has degree 2,
but since a quadratic form has infinite automorphism group, it cannot carry the
information needed to specify our curve. This forced us to work with an invariant
of degree 4. The twisted forms of this invariant are too large to sensibly include
in the paper, but are available from [F5].

Having equations for Xg(13,%) in principle gives us equations for Z(13,k).
However the equations obtained in this way are very complicated, and not useful
for finding rational points or curves of small genus on the surfaces. For several
smaller values of n, as described in [F4], we were able to find substitutions to
simplify these equations. However this step defeated us in the case n = 13. In
Section 6 we instead develop a new approach for computing equations for Z(n, k),
not going via the equations for Xg(n, k), but still using the invariant theory.

Since the surface Z(n, k) parametrises pairs of elliptic curves, it comes with
a standard involution that corresponds to swapping over the two elliptic curves.
The method in Section 6 gives us equations for Z(13, k) as a double cover of the
plane, where the map to the plane quotients out by the standard involution. This
is the same format as used by Kumar [K] when giving his equations for Z(n, —1)
for n < 11. In using this format we are relying on the fact that the quotient of
Z(n, k) by the standard involution is a rational surface. It would be interesting
to determine how large n must become before this property fails.

In Section 8 we give some examples of pairs of non-trivial 13-congruent elliptic
curves over Q and over Q(t). The examples over Q may be verified, independently
of our work, by checking that the traces of Frobenius are congruent mod 13 for suf-
ficiently many good primes p. The examples over Q() give rise, by specialising ,
to the infinitely many examples over Q that are our main result.

All computer calculations in support of this work was carried out using Magma
[BCP]. Some Magma files containing some details of the calculations are available
from [F5]. We refer to elliptic curves by their labels in Cremona’s tables [C]. We
write K for a field of characteristic 0 and K for its algebraic closure.
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2. STATEMENT OF RESULTS

2.1. The curves X(13,1) and Xg(13,2). The elliptic curves n-congruent with
power k to a given elliptic curve E are parametrised by (the non-cuspidal points
of) the smooth projective curve Xg(n, k). We have computed equations for these
curves in the case n = 13. In this section we give formulae first for X (13), and
then for Xp(13,1) and Xx(13,2), each as a curve of degree 42 in PY. Since the
equations themselves would (in the latter two cases) take several pages to write
out, we instead describe how they may be recovered from a set of 14 hyperplanes,
equivalently a set of 14 points in the dual projective space (P®)¥. This description
(which only uses linear algebra) does not however correspond to how we originally
computed the equations.
In the case of X (13) the 14 points are

(1) (1:0:...:0) and (1:¢F: ¢ 1% (%)
where ( = e2mi/13 and 0 < k < 12.

Theorem 2.1. Let U be the 14-dimensional space of quadratic forms vanishing at
the 14 points (1). Let UL be the 14-dimensional space of quadratic forms annihi-

lated by
0 0

Let V. C U* be the 13-dimensional subspace spanned by the support of all linear
syzygies, i.e. the span of the set

7
{Z Aifi

Let W be the T-dimensional space of cubic forms whose partial derivatives belong

to V. Then W defines the union of X (13) C P® and 42 lines.

7
i €{0,1}, f; € U+ and lefl = 0}.
i=1

Our equations for Xg(13,1) and Xg(13,2) are obtained from those for X (13)
by twisting, that is, by making a change of coordinates on PS defined over K.
To describe the points that take the place of (1), we let ¢t be a coordinate on
X0(13) = P! chosen (following Fricke) so that the j-map is given by

j = (£ +5t +13)(t" + 7t + 20> + 19t + 1) /¢.

It is easy to write down an elliptic curve with this j-invariant. For example, we
may take the elliptic curve y? = 23 — 27¢c4(t)z — 54cg(t) where

ca(t) = (£ + 5t + 13)(#* + 6t + 13)(¢* + 7t* + 20> + 19t + 1),
co(t) = (2 + 5t + 13)(#* + 6t + 13)*(t° + 10¢° + 46t* + 108> + 122* + 38t — 1).
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We define polynomials fi,--., frand g1,...,97 by

fils 1) =
fa(s,t) = (t +1),
fa(s,t) = 3s(t +2)(t* + 5t + 13)(+* + 6t + 13),
fa(s,t) = =9s(t + 1)(#* + 5t + 13)(#* + 6t + 13),
f5(s,t) = 108s%(¢? + 5t + 13)(t* + 6t + 13)(t* + 5t* + 10t + 2) + 27> (t + 3)ca(2),
fo(s,t) = 162*(t* + 5t + 13)(t* + 6t + 13)(t* + 61% + 14t + 7) + 275 (t + 4)cu(2),
fr(s,t) = 116645 (t + 1)(t* + 5t + 13)(t* + 6t + 13)? + 5ds?cy(t) fa(s, 1),
and
g1(s,t) = 2,
g2(s,t) =2(t+ 1),
g3(s,t) = 3s(t* 4+ 6t 4+ 13)(¢> + 4¢* + 8t — 1),
ga(s,t) = 12s(t* + 6t + 13)(t* + 3t + 5),
g5(s,t) = 6s(t* + 6t + 13)(¢* + 8> + 20t + 7),
g6(s,1) = 108s*(t + 1)*(t* + 5t + 13)(t* + 6t + 13) — 9s>(t + 3)ca(t),
gr(s,t) = —2165(t — 1)(t* + 5t + 13)(1* + 6t + 13) — 185> (¢ + 2)cy(t).

Theorem 2.2. Let E/K be the elliptic curve y*> = 23 +ax+b. Let Uy, respectively
Us, be the space of quadratic forms vanishing at

(i(5,8) 1.« Fols, 1)), respectively (g1(s,) . - go(s,1)),
for all s,t € K satisfying a = —27s%c4(t) and b = —54s%cs(t). Let Wy be the
space of cubic forms constructed from Uy by the procedure in Theorem 2.1. Then
W, defines the union of Xg(13,k) C P® and 42 lines, where the latter are not in
general defined over K.

The cubic forms in Theorem 2.2, as polynomials with coefficients in Z[a, b],
are available from [F5]. As described in Sections 5.2 and 5.3, we have also
found equations that define the curve Xg(13,k%) exactly, and define the j-map
Xg(13,k) — P Tt would be possible to simplify the f;(s,t) and g;(s,t) by mak-
ing a change of coordinates on P°. However, we made our choice of co-ordinates
with the aim of simplifying the cubic forms.

Remark 2.3. If a and b have weights 2 and 3, and zq,...,x; have weights
3,3,2,2,1,1,0, then the cubic forms in the case k = 1 are homogeneous with
weights 6,7,7,8,8,9,9. Likewise, if x1,..., 27 have weights 2,2,1,1,1,0,0, then
the cubic forms in the case k = 2 have weights 4,5,5,6,6,6,7. These gradings
reflect the fact that Xg(13, k) only depends on E up to quadratic twist.
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2.2. The surfaces Z(13,1) and Z(13,2). The surface Z(n, k) parametrises pairs
of elliptic curves E' and E’ that are n-congruent with power k, up to simultaneous
quadratic twist. We have computed equations for these surfaces in the case n = 13.

Theorem 2.4. (i) The surface Z(13,1) is birational over Q to the surface with
affine equation y* + hi(r,s)y = g1(r, s) where
hi(r,s) = s* + (2r* —5r + 7)s° 4+ (r* — 3r® — 147 +r 4+ 16)s?
+72(2r® — 5r? + 157 4+ 27)s +r*(r? — 1),
gi(r,s) = 4(Tr — 8)s® +22(r — 2)s° — (287 + 247* — 213 — 39r% 4 2r + 68)s*
+ r%(84r° 4 233r% — 1161 — 223)s* — r*(20r* + 1817 + 181)s?
— 4r%(r — 1)(7r + 3)s.
(ii) The surface Z(13,2) is birational over Q to the surface with affine equation
Y%+ ho(r, )y = go(r, s) where
ho(r,s) = r2s* +r(2r® + Tr® + 1)s® + (r° + Tr* + 973 + 72 + 1)
+2(r* +2r + Vs +7+1,
ga(r, 8) = 2r*(5r + 4)s” + r*(19r® + 48r% + 33r 4 22)s°
+ 72(87° + 40r* 4+ 793 + 82r% 4 471 + 21)s°
—r(r" —29r° — 91r* — 75r® — 53r? — 34r — 7)s*
+7(67° + 35r° + 50! + 377 + 42r% + 22r + 10)s°
+ 7 (147" + 33r° 4+ 307 + 14r + 1)s* + r*(10r + 13)s + 2r.
(111) Let k =1 or2. Let j,j' : Z(13,k) — P! be the maps giving the j-invariants of
the elliptic curves E and E'. We have computed polynomials Ay, By, Dy € Z[r, s]
such that jj' = A3 /Dy and (j — 1728)(j' — 1728) = B2/Dy,. The polynomials Ay,
and By, are available from [F5]. The Dy are given by
Di(r,s) =s(r+s—1)** +s -1 + 1% —r® 4 1s* —rs — s> + 5)'3,
Dy(r,s) = —r(r* +rs +r + 1)3(r3s +r2s* + 2r’s +rs* +rs +r +5)".
Remark 2.5. Let £ = 1 or 2. By completing the square, the first two parts of
Theorem 2.4 are equivalent to the statement that Z(13,k) is birational to the

surface y* = Fy(r, s, 1) where F} is the homogeneous polynomial of degree 10 + 2k
satisfying Fy(r, s, 1) = hg(r, s)? + 4gi(r, s).

According to Kani and Schanz [KS], the surfaces Z(13, k) are of general type,
and so by the Bombieri-Lang conjecture (see for example [HS]) are expected to
contain only finitely many curves of genus 0 or 1.
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On Z(13,1) there are genus 0 curves given by the vanishing of s, r + s — 1,
>+ s —1, r and r + s. The first three of these are factors of D;, and so do
not correspond to any families of elliptic curves. The last two define copies of
the modular curves X,(10) and Xy(25). Remarkably we found a further pair of
genus 0 curves given by

P 4+ rts — 3rt — 135+ 20287 — Ar?s — 2rs? 4+ 82 — 4s° = 0.

From this we obtain the infinite family of directly 13-congruent elliptic curves
presented in Example 8.5. There are also genus 1 curves given by the vanishing of
r?+s,r’+rs—r—s+1and r?+rs—s. These are copies of Xo(m) for m = 27,36
and 49.

On Z(13,2) there are genus 0 curves given by the vanishing of r, r?+rs+r+1, s
and r2s+7s?4+rs+2s2—2s+1. The first two are factors of Ds, the third is a copy
of X(18), and from the fourth we obtain the infinite family of skew 13-congruent
elliptic curves presented in Example 8.6. There are also genus 1 curves given by
the vanishing of » + 1, s — 1, rs + 1, 72s + 2rs + 1 and r%s 4+ rs + 1. These are
copies of Xo(m) for m = 19,20,21,24 and 32. A further genus 1 curve is given by

s+ 12 +3r2s+drs+r+2=0.

This is an elliptic curve of rank 2 with Cremona label 267632 f1 and Weierstrass
equation y? = x® — 515z — 4494. It parametrises another infinite family of non-
trivial pairs of skew 13-congruent elliptic curves.

It would be interesting to determine whether there are any more curves of genus
0 or 1 on the surfaces y*> = Fj(r, s, 1).

2.3. Baran’s modular curve. For k = 1,2 we have written Z(13, k) as a double
cover of P? ramified over the curve C, = {F, = 0}. A rational point on Cj
corresponds to an elliptic curve that is 13-congruent to itself in a non-trivial way.
Such a congruence is only possible if the mod 13 Galois representation of the
elliptic curve is not surjective. More specifically, arguing as in [Ha], we see that
C1 and Cy are copies of the modular curves XF(13) and X[ (13) associated to the
normaliser of a split or non-split Cartan subgroup of level 13.

These curves were first computed by Baran [Ba], who also discovered the sur-
prising fact, specific to level 13, that the two curves are isomorphic. We were able
to verify using Magma that our singular curves C; and C5 (of degrees 12 and 14)
are both birational to the smooth plane quartic

C={(y+2)2" — 2’ +y2)a” + (v* — 9’2+ 292" — )z — (22" — 3y2") = 0} C P°

found by Baran. Using Theorem 2.4(iii) we were also able to recover the two
different moduli interpretations of this curve, as given in [Ba, Appendix A]. We
remark that the determination of all Q-rational points on C' (and hence also on
C1 and Cy) was recently completed in [B+].

We describe further modular curves on the surfaces Z(13, k) in Section 7.
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3. TWISTS AND QUOTIENTS

In this section we recall the definition of X (n) over a non-algebraically closed
field, and explain how in principle Xg(n, k) may be described as a twist of X (n).
We also describe Z(n, k) as a quotient of X (n) x X (n). We write ¢, for a primitive
nth root of unity, and u,, for the group of all nth roots unity.

Let n > 3 be an integer. The modular curve X (n) is the smooth projective
curve birational to Y (n), where Y (n) is the modular curve parametrising the
pairs (E, ¢) where E is an elliptic curve and ¢ : E[n| — p, X Z/nZ is a symplectic
isomorphism. By symplectic we mean that the Weil pairing on E[n| agrees with
the standard pairing ((¢,c), (&,d)) — ¢4~¢ on u, x Z/nZ. We note that, with
this definition, X (n) is both defined over Q and geometrically irreducible.

Let I" be the group of symplectic automorphisms of p,, X Z/nZ. As a group this
is a copy of SLy(Z/nZ), but with Galois action given by

_ (x(e) 0) _(x(o)7" 0O
. o= (40 ) (19

where x is the mod n cyclotomic character. There is an action of T on X (n) given
by v : (E,¢) — (E,v¢). We suppose that

(i) we have embedded X (n) C PV~ and
(i) the action of I is given by a Galois equivariant group homomorphism

p: T = GLy(Q(¢))-

The following is a variant of [F3, Lemma 3.2]. We write oy, for the automorphism
of Q(¢,) given by ¢, — ¢*. We also write  for equality in PGLy.

Lemma 3.1. Let E/K be an elliptic curve and ¢ : E[n] — p, X Z/nZ a symplectic
isomorphism defined over K. Suppose h € GLy(K) satisfies

(3) a(R)h™" o owp(a(9)d™")

or all 0 € Gal(K/K). Then Xg(n, k) C PN~ is the twist of X(n) C PN given
f (K/K) (n, k) f g
by Xg(n, k) = X(n); x — hx.

Proof. Let ey : pin X Z/nZ — i, X Z./n7Z be the map sending (¢, b) — (¢*,b). The
non-cuspidal points of Xg(n, k) correspond to pairs (F, ) where F is an elliptic
curve and ¢ : F[n] — FEln| is an isomorphism that raises the Weil pairing to the
power k1. (In fact we could take the power to be km? for any m € (Z/nZ)*, but
the choice here is convenient for the definition of a.) Let a: Xg(n, k) — X (n) be
given by (F,v) — (F,er¢pt)). Then

) ala)a™ o p(o(erd)(erd) ) = plexa(9)d™ ey ") = aupl(a(@)d™),
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where for the last two equalities we have used (2) and the fact that both &5 and
p are Galois equivariant.

Now let X' = {x € P! : hx € X(n)}. Since o(h)h™! is an automorphism of
X (n) we see that X' is defined over K. By (3) and (4) the curves Xg(n, k) and X’
are twists of X (n) by the same cocycle, and are therefore isomorphic over K. [

The following description of Z(n, k) as a quotient of X (n) x X (n) is the starting
point of [KS]. We revisit this result since we wish to be sure that it works over a
non-algebraically closed field.

Lemma 3.2. The surface Z(n, k) is birational to the quotient of X(n) x X(n) by
the action of T' given by v — (p(7), orp(7)).

Proof. There is a Galois equivariant map X (n) x X(n) — Z(n, k) given by
((Ev, 61), (B, ¢2)) = (B, Ba, 63 1),

where g4, is as in the proof of Lemma 3.1. If we act by v € I then ¢, and ¢5 become
v¢1 and Ek’}/E];lQﬁQ. This leaves ¢, 'ex¢ unchanged. Conversely, any pair of points
in Y(n) x Y(n) with the same image in Z(n, k) are related in this way. O

4. THE MODULAR CURVE X (p)

In this section we explain how (in the case n = p is a prime) we may arrange
that the assumptions (i) and (ii) in Section 3 are satisfied. We also describe the
ring of invariants that arises in this context.

4.1. Group actions on curves. Let X be a smooth projective curve over C,
and let G be a finite group of automorphisms of X. Let G act trivially on C* and
on C(X)* by o: f+ foo~t. Splitting the exact sequence of G-modules

0—-C*—C(X)*— DivX — PicX -0
into short exact sequences, and taking group cohomology gives a diagram
HY(G,C(X)*)
|
(Div X )¢ — (Pic X)¢ —= HY(G, C(X)*/C*)
LA
H?(G,C>)

Let T : (Pic X)¢ — H?(G,C*) be the composite of the connecting maps ¢ and A.
Since G acts faithfully on X, we have H'(G, C(X)*) = 0 by Hilbert’s theorem 90.
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We thus obtain an exact sequence

(Div X)¢

~J

(5) 0—s — (Pic X)¢ 5 H2(G, C).

There is an alternative description of T in terms of theta groups. For D € Div X
representing an element of (Pic X )¢ we define the theta group

©p ={(f,0): f € C(X)*,0 € G such that div(f) =0D — D}
with group law

(6) (f;0)0(g,7) = (f-0lg),0m).

This group sits naturally in an exact sequence 0 - C* — ©p — G — 0. In other
words, Op is an extension of G by C*.

Lemma 4.1. If [D] € (Pic X)% then Y(D) is the class of ©p in H*(G,C>).

Proof. For each 0 € G we pick f, € C(X)* with div(f,) = 0D — D. The class of
©p in H?(G,C*) is represented by the 2-cocycle ¢ satisfying

(7) (fo,0) 0 (fr,7) = ¢(0,7)(for, 07).

Comparing (6) and (7) we find that ¢(o,7) = f, - o(f,) - f;.}. By the formulae for
the connecting maps in group cohomology, we see that the image of [D] under ¢
is represented by o — f,, and its image under A is represented by ¢. O

Lemma 4.2. If[D] € (Pic X)%¢ and H°(X, O(D)) has dimensionn > 1, then there
is a natural action of G on the 1-dimensional subspaces of HY(X,O(D)) giving

rise to a projective representation p : G — PGL, (C). This lifts to a representation
p: G — GL,(C) if and only if T(D) = 0.

Proof. There is a linear action of ©p on H(X,O(D)) via (f,0) : g — f-o(g).
Picking a basis for H°(X, O(D)), this defines a representation 7 : © p — GL,(C).
There is a commutative diagram with exact rows

0 C* ©p -G 0

0 —= C* ——= GL,(C) — PGL,(C) —= 0

By Lemma 4.1 we have Y(D) = 0 if and only if the top row splits. If the top
row splits then it is clear that p lifts to p (as indicated by the dotted arrow).
Conversely if p lifts to p, then by a diagram chase each o € G lifts uniquely to
x € ©p with w(x) = p(o), and the map ¢ — x is a splitting of the top row. O
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4.2. The action of PSLy(Z/pZ) on X (p). We shall need the following standard
group-theoretic facts.

Lemma 4.3. Let G = SLy(Z/pZ) where p > 5 is a prime. Then

(i) The groups H'(G,C*) are trivial fori=1,2.
(ii) Ewvery projective representation of G lifts uniquely to a representation.

Proof. (i) The group G is generated by elements S = (% }) and T' = (} 1) with
St =TrP = (ST)? = I,. Therefore H'(G,C*) = Hom(G,C*) = 0. The vanishing
of H?(G,C*) was proved by Schur, using the fact that every Sylow subgroup of G
is either cyclic or a generalised quaternion group. See [G, Theorem 4.232] or [Hu,
Chapter V, Satz 25.7].

(ii) If p: G — PGL,(C) is a projective representation then

{(g, M) € G x GLn(C) : p(g) o< M}

is an extension of G by C*, and so corresponds to an element of H?(G,C*). Thus
the vanishing of H?(G,C*) proves the existence of a lift, and the vanishing of
Hom(G, C*) shows it is unique. O

Now let X = X(p) where p > 5 is a prime. As a Riemann surface, it is
the quotient of the extended upper half plane $* = $ U P}(Q) by the action of
['(p) = ker(SLo(Z) — SLo(Z/pZ)). There is an action of G = PSLy(Z/pZ) on
X with quotient the j-line. The quotient map is ramified over j = 0,1728, co
with ramification indices 3, 2 and p. Thus, writing v = (p? — 1)/24, all but three
G-orbits of points on X have size |G| = 12pv, and the remaining orbits have
sizes 12v, 4pv and 6pv. It may be proved using the Hurwitz bound (see [AR,
Theorem 20.40]) that G is the full automorphism group of X when p > 7.

The character table of G = SLy(Z/pZ) is described for example in [FH, §5.2].
The non-trivial representations of smallest degree are conjugate representations ¢
and ¢ each of degree m = (p—1)/2, and conjugate representations 1 and v each
of degree m+ 1. Klein gave equations for X (p) both as a curve of degree (m —1)v
in P™~! with G acting via ¢, and as a curve of degree mv in P™ with G acting via
1. Following the terminology in [AR], we call these the z-curve and the A-curve.
For example, when p = 7 the z-curve is the Klein quartic.

Theorem 4.4 (Adler, Ramanan). The group (Pic X)¢ is infinite cyclic, generated
by a divisor class X\ of degree v = (p* —1)/24.

Proof. This is [AR, Theorem 24.1]. The proof works by analysing the exact se-
quence (5). The authors first show that (Div X)¢/ ~ is infinite cyclic, generated
by a divisor class of degree ged(12v, 4pv, 6pr) = 2v. By Lemma 4.3(i) and the
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Hochschild-Serre exact sequence
Hom(G,C*) =% Hom({#1},C*) — H*(G,C>) o, H*(G,C").

we have H?(G,C*) = Z/2Z. The proof is completed by constructing A as the
difference of the hyperplane sections for the z-curve and the A-curve. Il

Applying the Riemann Hurwitz theorem to the j-map X(p) — P! shows that
X(p) has genus (p — 6)v + 1. The canonical divisor is therefore 2(p — 6)\.

4.3. An abstract ring of invariants. We introduce a ring that plays a central
role in our calculations.

Theorem 4.5. Let R = ®g>0Rq = Pa>oH (X, O(dN)) and G = SLy(Z/pZ).
(i) There is a natural action of G on R where —Iy acts as (—1)% on Ry.
(ii) The G-invariant subring of R is generated by elements ¢y, cg and D of
degrees 4p, 6p and 12.
(iii) We may scale ¢4, cg and D so that ¢3—c2 = 1728DP and the j-map X — P!
is given by j = c¢3/DP.

Proof. (i) Suppose that Ry = H°(X,O(d)\)) has dimension n > 1. Since \ is
G-invariant, we obtain a projective representation p : G — PGL,(C), and by
Lemma 4.3(ii) this lifts uniquely to a representation p : G — GL,,(C). This gives
the required action of G on R,. It is clear that p(—1Iy) = £1I,,. Lemma 4.2 shows
that the sign is + (i.e., the action factors via G) precisely when T(d\) = 0.
However we saw in the proof of Theorem 4.4 that T(\) is the non-trivial element
of H*(G,C*) = Z/2Z. The action of G on Ry therefore factors via G precisely
when d is even.

(ii) The fibres of the j-map above 0, 1728 and oo are effective divisors in the classes
of 4pA, 6pA and 12\. We let ¢4, cg and D be the corresponding elements of R. Let
f € Ry be a G-invariant element. We show by induction on d that f belongs to
the subring generated by ¢4, cg and D. If d > 1 then f vanishes on the G-orbit of
some point P € X. If the orbit has size 4pv, 6pr or 12v then we divide through
by ¢4, cg or D, and apply the induction hypothesis. Otherwise the orbit has size
|G| = 12pv. In this case we divide through by a linear combination of ¢i and 2
chosen so that it vanishes at P.

(iii) Let P € X be a cusp, i.e., a point above j = oo. Let f be a linear combination
of ¢} and ¢Z that vanishes at P. Since f vanishes at exactly |G| points (counted
with multiplicity) it cannot vanish on any orbits of size |G|. Therefore f vanishes
only at the cusps, and so must be a scalar multiple of DP. Scaling the invariants
appropriately gives the relation as claimed. Finally, the formula offered for the
j-map quotients out by the action of G, and has degree |G|. It must therefore
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agree with the j-map up to composition with a Mobius map. However, since both
maps send the zeros of ¢4, cg and D to j = 0,1728 and oo, this Mobius map fixes
three points, and is therefore the identity. O

In our earlier work [F'3] on twists of X (p) for p = 7 and 11, we mainly worked
with the z-curve. In the case p = 13 the z-curve has degree 35 in P5 and the
A-curve has degree 42 in PS. By Theorem 4.5 we have

EBdZOHO(X7 O<5d)\))g = C[D57 Dcﬁa D4C47 C4Ce, DBC?,L];
(8) Bas0H(X,0(6d)\))¢ = C[D, cg].

The ring of invariants is much simpler in the second of these two cases. We
therefore decided to work with the A-curve in the case p = 13.

5. EQUATIONS FOR X (13) AND ITS TWISTS

5.1. Equations for the A-curve. Let ¢ = ¢*™/13 and &, = (¥ + (%, Let G =
PSLy(Z/137Z) be the subgroup of SL7(C) generated by My, Mg and M;3 where

1 1 1 1 1 1

S & & & &% &
S & & &% & &
& & & &1 & &
& & &1 &2 &a &
& & & & & &
& & & & & G

and M3 = Diag(1, ¢, ¢4, ¢3,¢"2,¢%,¢19). We write Clx, .. ., xz¢)q for the space of
homogeneous polynomials of degree d.

w

[ NI R N R NI NS R NS

=

Il

|

o O O O O O =
O O O O = O O
o O O =, O O O
o O = O O o O
_ O O O O O
_ O O O O O O
o O O O O = O

Definition 5.1. An invariant of degree d is a polynomial I € Clzy, ..., xg]s sat-
isfying T o g = I for all g € G.
The invariants of smallest degree are () and F' given by
Q = x§ + 1174 + T2T5 + T3T6,
F = 2:703 + 6x0(T12375 + Towywe) + 3(T1T2T4T5 + T1T3T4T6 + ToT3T5T6)
+ 2125 4 Toxh + 238 + w47 + 538 + w623

We use these invariants to give equations for X (13) as a curve of degree 42 in P9,
defined over Q. For f and g homogeneous forms in zg, ..., xs we put

(9) (f.9) = trace(H (f)H(Q)" H(g)H(Q)™")
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where H denotes the Hessian matrix, that is, the 7 x 7 matrix of second partial
derivatives. We prove the following refinement of Theorem 2.1.

Theorem 5.2. Let ) and F' be the invariants defined above.

(i) The wvector space W of cubic forms f satisfying (f,F — 3Q* = 0 has
dimension 7. Moreover F — 3Q? is, up to scalars, the unique quartic form
satisfying (f, F — 3Q?) =0 for all f € W.

(ii) Let U be the vector space of quadratic forms vanishing on the G-orbit of
{zo = 0} in (P®)V. Then W is the space of cubic forms constructed from
U by the procedure in Theorem 2.1.

(iii) If W has basis fo, ..., fe then

X(13) 2 {fo=...=fs=F+Q*=0} C P

This is a curve of degree 42, and the 84 cusps are cut out by the quadratic
form Q. The cubic forms fq, ..., fe are not sufficient to define the curve,
but rather define the union of the curve and 42 lines. The 42 lines each
pass through two cusps, and may be divided into 14 sets of 3, where each
set of 3 lines spans one of the hyperplanes in (ii).

Proof. The first two parts are checked by linear algebra. The space of cubic forms
W has basis fy, ..., f¢ where

3

fo = —2xy + xo(x124 + 2275 + T376) + 12375 + TaT4Ts,
2 2 2 2

f1 = xox] + 2m0x324 + 2017906 + 2oy + X525 + TeT5,

and the remaining f; are obtained from f; by the action of Mg, i.e., by cyclically
permuting the subscripts 1,2,...,6.

Let aq,...,as be coordinates on P°. We write ag = 0, a_; = —a,; and agree to
read all subscripts mod 13. According to [F'3, Section 2], the z-curve for X (13) is
defined by the 4 by 4 Pfaffians of the 13 by 13 skew symmetric matrix (a;—;a;4;).
According to [AR, §51], the A-curve is the image of the z-curve via the map

(molez...:x6):(1:

A calculation, performed using Magma [BCP], shows that the A-curve is defined
by the vanishing of fy,..., fs and F + Q% As we remark in the proof of the
next lemma, further equations are needed to generate the homogeneous ideal. We
also checked using Magma that this curve has degree 42, and that it meets the

Az Q4 Qg a3z Aag (12
al'ag'a4'a8'a3'a6 ’

hypersurface defined by ) in 84 distinct points. This set of points is preserved by
the action of G = PSLy(Z/137Z), and so must be the set of cusps on X (13).
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If we write Pp=(1:0...:0), L =(0:1:0:...:0), etc, then Py, P, ..., Fs
are cusps, and the cubics vanish on the lines PPy, PoPs and P3FP;. These lines
belong to a single G-orbit of size 42. Another calculation using Magma shows that

the cubics define a curve of degree 84, which must therefore be the union of X (13)
and the 42 lines. 4

Some care must be taken in working with the above model for X (13), since it
is not projectively normal. In other words, the rings S and S’ in the following
lemma are not the same.

Lemma 5.3. Let X = X(13) C P° be as in Theorem 5.2. Let S = @®4>054 be its
homogeneous coordinate ring, and let S" = @450H(X, Ox(d)). Then

D (dim Sg)t? =14 7t + 284> + 77 4+ 119¢* 4 ..
d>0

> (dim Sp)tt =14 7t + 35¢% + 77 + 119¢* + ..
d>0

and dim Sy = dim S, = 42d — 49 for all d > 3.

Proof. Using the Grobner basis machinery in Magma [BCP] we were able to com-
pute 42 quartic forms that together with the 7 cubic forms generate the homo-
geneous ideal of X. From this it is easy to compute dim .S; for any given d. In
particular we verified the values recorded in the statement of the lemma for each
d < 4. On the other hand, since X has degree 42 and genus 50 it follows by
Riemann-Roch that dim S}, = 42d — 49 for all d > 3.

Let T' = &4T, be the homogeneous coordinate ring of the set of 84 cusps. Again
by computer algebra we find

D (dm Ty)t! = 1+ 7t + 274 + 708° + 84¢* + ..
d>0

Therefore dim T; = 84 for all d > 4. We show by induction on d that the inclusion
Sa C Sl is an equality for all d > 3. We have already checked this for d = 3, 4.
So let f e S, with d > 5. Since dim 7y = 84 we may reduce to the case where f
vanishes at the cusps. But then applying the induction hypothesis to f/Q € S)_,
gives the result. Finally, by identifying S} with the subspace of S}, vanishing at
the cusps, we compute

dim S} = dim S5 — dim T3 = 7,
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Remark 5.4. We have shown that dimS] = 7 and therefore X(13) C P° is
embedded by a complete linear system. This is a special case of the “WYSIWYG
hypothesis” in [AR].

Definition 5.5. A covariant of degree d is a column vector v of polynomials in
Clxo, . . ., xglq satisfying vo g = gv for all g € G.

Starting from an invariant I of degree d we may construct a covariant of degree
d—1 as
81/81'0
Vol =HQ)™|
81/81'6
On the other hand if v and w are covariants of degrees d and e then
v-w = v H(Q)w = coeff(Q(v + tw), t)
is an invariant of degree d + e. We may also think of covariants as G-equivariant
polynomial maps C” — C7. Thus the composition of covariants v and w of degrees
d and e is a covariant v o w of degree de.
It is easy to compute the dimensions of the spaces of invariants and covariants
of any given degree d from the character table of G. We may also solve for the

invariants and covariants of degree d by linear algebra over Q((), at least if d is
not too large.

Remark 5.6. A standard trick for computing invariants is to start with an ar-
bitrary polynomial f and apply the operator f +— I_év'l deG f og. An efficient
way to organise this calculation, which will become important in Section 6, is
the following. Let 7 : f 1—13 Zgo f o M}, be the projection map that sends a
monomial fixed by M3 to itself, and all other monomials to zero. Then starting
with a monomial in the image of m we apply the operators f — Z?:o f o M and
[ f4+13n(f o My).

For our work in Sections 5.2 and 5.3, it is important that we find ways of
constructing invariants and covariants from previously known examples in a basis-
free way. Another consideration is that it would be overkill for us to completely
classify the invariants and covariants, as we are only interested in them modulo
the equations defining the curve X = X(13).

Writing ¢ for the standard representation of G C SL;(C), we find that A%y
contains a copy of the trivial representation. The corresponding G-invariant al-
ternating form is

(10) @ = (xoAx1Axy)— (o AT2AT5)+ (o AT3AT6) + (X1 AT3AT5) — (T2 ATy A Tg).
Again let ( , ) be as defined in (9).
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Lemma 5.7. There is a TX7 alternating matriz N of linear forms in Clzo, ..., xg),
unique up to an overall scaling, such that

<(NVQF>1'> g_xF> =0

i

for all 0 <11 <6.

Proof. This is checked by linear algebra. We find that

0 T4 —Ts Tg —T1 Ty —I3
—xy 0 0 x5 w19 —x3 O
x5 0 0 0 —x¢ —x9g 24
(11) N=|-2¢ —25 0 0 0 21 2
r1 —Xy g 0 0 0 —z9
—ry x3 %9 —x1 0 0 0
T3 0 —x4 —xz9 x9 0 0
In a more succinct notation, we have N = (1V;;) where INV;; = (a%i A a%j)q). O

We define covariants vz = VoF and vq4 = H(Q) 'Nvs, where N is given
by (11). Then vy = v3 o vy is a covariant of degree 9, and ¢g = vy - vg is an
invariant of degree 13. Our next theorem shows that although the rings S and S’
in Lemma 5.3 are different, their G-invariant subrings are the same.

Theorem 5.8. Let S be the coordinate ring of X C P°. Then S¢ = C|Q, ¢s] and
the j-map X — P! is given by j = 1728 — c2/Q'3.

Proof. We find that ¢4(0,1,0,0,0,0,0) = —1, and so ¢g does not vanish identically
on X. Since X C PS is the A-curve, it has hyperplane section 6. Therefore S¢
is a subring of
Bas0H (X, 0(6dN))C.

By Theorem 4.5, or more specifically (8), the latter is a polynomial ring in two
variables, generated in degrees 2 and 13. Since we have constructed invariants ()
and cg of these degrees, and these invariants do not vanish on X, this proves the
first part of the theorem.

By Theorem 4.5(iii) we have j — 1728 = £c2/Q"? for some constant €. Let w be
a primitive cube root of unity, and put a = v/—1 + 3w. The point

(2 wtaiw—a:wtaiw—a:wta:w—a)eX

is fixed by M2 € G of order 3, and so lies above j = 0. The function ¢2/Q"'? takes
the value 1728 at this point. Therefore £ = —1. U
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For later use (when applying Lemma 6.2) we also record a point on X above
J =1728. Let i = /—1 and let 8 be a root of 2 — (i + 1)z — 2 +i = 0. Let o
be the automorphism of Q(3) given by 3 — 3% — 5. Then the point

(1:8:0(B):0%(B): 8:0(B):0°(B) € X
is fixed by Mg € G of order 2, and so lies above j = 1728.
5.2. Equations for X;(13,1). We compute equations for Xz(13,1) from those
for X = X (13) in Theorem 5.2 by making a change of coordinates. For this we use

the 7 x 7 matrix formed from the following 7 covariants. As before, the subscripts
indicate the degrees of the covariants.

v = (wo, 1, ..., 26)" vio = coeff(vy o (v + tvs), t?)
V3 = VQF Vig = V3 0Vy
vy = H(Q) 'Nv; vig = coeff(vy o (vy + tvy), t?)

Vg = V30Vs3
Lemma 5.9. We have
det(vy, Vs, vy, Vg, V10, Vi, V13) = (cg — 1728@13)2 mod /(X).

Proof. The left hand side is an invariant of degree 52, and so by Theorem 5.8 is
a linear combination of Q*, @'3¢c2 and ci. We may determine the correct linear
combination by evaluating each side at some random points on X. We initially did
this by working mod p for some moderately sized prime p. To verify the answer
in characteristic 0, we used the point on X defined over a degree 20 number field
given by (1:1:~:...) where 7 is a root of

220 4+ 517 — 7210 4 2215 4 102 + 213 + 5t + 42 — 21210
+192° + 1028 + 32" + 828 — 172° + 522 + 222 +1=0. O

We now twist the invariants () and F'. Specifically we put

Q(y1,---,y7) = Q(vavi + y2Vs + YsVa + YaVo + YsVio + YsViz + YrVi3)
Fyi, .. y7) = F(y1v1 + y2Vs + YsVa + YaVo + Ys5Vio + YsViz + YrVis)

Each of the coefficients of these forms is an invariant, and so working modulo (X))
may be written as a polynomial in ) and ¢g. By a series of computations similar
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to the proof of Lemma 5.9 we find that
Ay, -, y7) = Qyi — 4Q%y1y2 + 44Q Y14 + cyrys — 36Q Y1y — 2Q°Y3
— 124Q°yays — coy2ys + 300Q°yayr + 6Qy5 + coysys + 324Q ysys
— 12Q%sys — 2Q%csysyr + 502Q"y; + 24Q%ceyays + 27Q" coyaye
—396Q" " yayr + 4302Q""y3 — 36Q" ysys — 35Q°coysyr + 150Q " y;
— 54Q°csysyr — (3282Q" — §)y7.

The coefficient of 32 is vy - v; = @, and the coefficient of y3y, is v4 - ve = cg, which
is how we defined ¢g in the last section. We note that several of the coefficients
were forced to be zero by the fact there are no monomials in ) and cg of the
appropriate degree. In a similar way we compute

Flyi, .. yr) = Q%1 — 4Q%ys — 124Q5yPyy — ceydys + 300Q% 3y,
— 6Q"Ys — 372Q Y1 y2y4 — 3QceyTy2ys + 900Q°yTyoyr + 18Q° YTy
+ .+ (307161Qes — 32Q° ) ysys — (24003375Q%° + 408Q" ci — 2¢5)ys.

We now make a change of coordinates to simplify Q and F, and so that we
obtain correct formulae in the case j(E) = 0. We put ¢ = —864b and substitute

y1 = 16Q°%(12a°(x1 + 2x5) + 18abxs + 14(4a® + 27b%) x5 + 81b%xs),
Yy = 2Q°(96a*wy — 144ab(xs — 3x4) + (48a* — 324b%)z5
+ (52a® — 297b%) 26 — 864a’ba7),
Yz = Q" (2a(w3 — 5614) + 3b(44x5 + 3x6) + 1760%27),
ys = —4Q*(4a® + 27b%) (225 — x),
ys = 2Q°(2axy — 3bxs — 4a’xy),
ys = Q" (2a(x3 — 2x4) + 3b(2z5 + 376) + Sa’xy),
yr = 2(4a® + 27b%)zg.

This transformation has determinant —2%33¢%Q3%(4a® + 27b%)?. Dividing Q and
F by 21632a%(4a® + 27b%) and 2323%a8(4a® + 27b%)2, and eliminating @ by the rule
Q¥ = 16(4a® + 27b%), we obtain

Q(xy,...,x7) = 23 — 625 + ar; + 9bcc3:c6 — 6ax3 + 18bryws + 24a’ 427
+ 2a°7% — 36abrszy — 3a’x] + 162b%732,
and
F(xy,...,27) = —a] — 12050y — 542323 — 18axiz? + 5dbrizsxs
+ 72a2x%az4$7 + 6a2x%:c§ — 108abz? 1T527 + 486b°% 1 :E7 60:U1x2

+ ... — 432ab(4a® — 27b*)zex — 3(8a® — 27b?)(40a> — 27b?) 3.
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These polynomials O and F have weights 6 and 12 with respect to the grading in
Remark 2.3.
For f and g homogeneous polynomials in xy,...,x; we define

(f.9) = trace(H (f)H(Q) " H(g)H(Q)™").
The proof of the next theorem is similar to that of [F3, Lemmas 3.7 and 3.12].

Theorem 5.10. Let E/K be the elliptic curve y*> = x> +ax +b. Let fi,..., f7 be
a basis for the space of cubic forms f satisfying (f,F —3Q?%) = 0. Then

Xp(13, )2 {fi=...= fr=F+Q*=0} C P5

Proof. We assume that j(E) # 0, 1728, equivalently ab # 0, leaving the remaining
cases to Section 5.4. Let (¢ : ... : 2¢) be a K-point on X(13) corresponding
to (F,¢) for some choice of symplectic isomorphism ¢ : E[13] — 3 x Z/137Z.
By Theorem 5.8, and the formula j(E) = 1728(4a%)/(4a® + 27b%), we may scale
(mo, ..., x¢) to satisfy Q(wo, ..., xs)"* = 16(4a® + 27b?) and

(12) ce(xo, ..., T6) = —864b.
Let h be the 7 x 7 matrix formed by evaluating the covariants
(13) Q°v1, Q°vs, Q"'va, Q*vy, Q%vi0, Q"V1a, Vi3
at (xg,...,26). By Lemma 5.9 and our assumption a # 0 this matrix is non-

singular. Let p : SLo(Z/13Z) — GL7(K) describe the action of PSLy(Z/13Z) on
X(13). We claim that

(14) a(h)h™" o< p(a(¢)d)
for all o € Gal(K/K). Let & = a(¢)¢~! € SLy(Z/13Z). Since (o(z¢) : ... : 0(x6))
corresponds to (E,o(¢)) we have

o(xg) T
(15) C | = Aen(és)
o(xg) Tg
for some A\, € K. Then since cg is an invariant of degree 13 we have
o(cs(wo, ..., 26)) = A3cg(wo, - . ., T6).

By (12) and our assumption b # 0, it follows that A, is a 13th root of unity. Since
the covariants (13) all have degree a multiple of 13, our claim (14) now follows
from (15) and the definition of a covariant (see Definition 5.5).
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Finally, Lemma 3.1 shows that Xg(13,1) C P° is obtained from X (13) C P°
by making the change of coordinates given by h, and Theorem 5.2 shows how we
may recover equations for the curve from Q and F. O

The cubic forms fi, ..., f7, as polynomials with coefficients in Z[a, b], are avail-
able from [F5]. Alternatively, they may be computed from the description given
in Section 2.1.

Next we compute the j-map Xg(13,1) — P!. Revisiting Lemma 5.7 with Q
and F in place of Q and F we obtain a skew symmetric matrix N given by

N = (8?%_ A %)Cb where

O =12(xy ANxg Aay) — 2(x1 Axg Axs) — (1 Ay A xg) + 6(xy Axy A xs)
+6(x1 A zg A xg) + 12a(xy A x5 A x7) + 12a(xy A 26 A7) — 6(22 A 23 A T5)
—6(ze ANxg Axg) + 12(x9 Ay A 5) + 18(2 A Ty A 6) + 24a(xe A 75 A 27)
+ 36a(xs A xg A x7) — 12a(x3 A 24 A7) + 18b(x3 A 25 A7) + 54b(x4 N\ 26 N T7)
+ 12a*(z5 A 6 A 7).

We put v = Vo F, vy = H(Q) N3, by = b3 003 and ¢ = coeff(Q(by + toy), ).

The map j : Xg(13,1) — P! satisfies j — 1728 = &c2/Q' for some constant &.
Evaluating at the tautological point (1:0:...:0) € Xg(13,1) we find

Q(1,0,...,0) =1 and «¢(1,0,...,0) = —216b/(4a® + 27b°).
Since j(E) = 1728(4a?)/(4a® + 27b%) it follows that & = —(4a® + 27b?) and so
(4a® + 27b%)c2
[olE :
Remark 5.11. (i) The quadratic form Q may be recovered from & as the GCD
of the 6 x 6 Pfaffians of A" where N;; = (6% A %)CI).

(ii) We may simplify Q and ® by making the further change of coordinates

j=1728 —

T = —au; — a*uy + 9bus + 9buy — (3/2)bus — 3aug + 2a’uy,
w9 = (1/2)auy + (1/3)a*uy — (9/2)busg — 3buy + (3/4)bus + aug — a*ur,

xy = 3bus + 2auy, x4 = 2aug — 3buz, x5 = —(1/2)u; — aur, v = —(1/3)aus + us,
x7 = (1/2)uz + (1/12)us. Then Q = uju; + ugug + uzus + u3 and

(16) ¢ = (ul/\UQ/\U3)—|—(Ul/\U4/\U7)+(UQ/\’LL4/\U6)—|—(U3/\U4/\U5)+(U5/\U6/\U7>.

In particular these expressions do not depend on a and b. Unfortunately, this
change of coordinates makes F more complicated.
(iii) The alternating forms (10) and (16) differ by a relabelling of the variables.
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In computing our equations for Xg(13,1) from those for X (13) we have there-
fore twisted by a cocycle taking values in the stabiliser of ®. According to [FH,
Proposition 22.12] this stabiliser is the 14-dimensional exceptional Lie group Gbs.

5.3. Equations for Xg(13,2). Let G = PSLy(Z/137Z) be the subgroup of SL;(C)
defined in Section 5.1. We write g — ¢ for the automorphism of G induced by

¢ (2

Definition 5.12. A skew covariant of degree d is a column vector w of polynomials
in Clxy, ..., xg|q satisfying wo g = gw for all g € G.

Our first example of a skew covariant is ws = (fo, f1,..., f6)T where the f; are
the cubic polynomials vanishing on X (13), as defined in the proof of Theorem 5.2.
Let wy = (g0, 91,---,96)" be the skew covariant of degree 4 where

go = 4xo(T170375 — ToT4T6) + T1T5 — ToTs + T3X) — T4TE + T5TE — TET,
g1 = 43535(;% — 4x§x3x4 4+ 4xoT 12006 — 2x0x§x5 — 2x0x§x6 — x‘z’x4 + LU%JJQI5
— 2x1x3xi — xlxg — xgxg — 2x§x§ 4+ 4931405 + x§x4x6 + x4x5x§,
and the remaining g; are obtained from ¢; by the action of Mg, i.e. by cyclically
permuting the subscripts 1,2,...,6 and alternating the signs. We note that the
polynomials gg, g1, .., gs vanish at the cusps of X (13), but do not vanish iden-
tically on X (13), and are not divisible by . They therefore account for the

discrepancy (in degree 2) between the rings S and S’ in Lemma 5.3.
We construct further skew covariants by precomposing with a covariant.

ws = coeff (w3 o (vy + tvs), t) wg = coeff(wy o (vi + tvs), t?)
wg = coeff(wy o (Vi + tvs),t) w1 = coeff(ws o (v + tvs), t?)
wy = coeff (w3 o (vi + tvs), t?) w1z = coeff(ws o (v + tvs), t*)

Lemma 5.13. We have
det(wy, Ws, Wg, Wr, Wg, Wi, Wi3) = 2Q(ca — 1728Q"%)* mod I(X).

Proof. The proof is similar to that of Lemma 5.9. The factor ¢ on the right hand
side arises since the entries of w, vanish at the cusps. U

We now twist the invariants ) and F'. Specifically we put

Ay, .-, y7) = Q(1wWa + YoWs + YsWe + Ya W7 + YsWs + Ys W11 + Y7 W13)
Flyi, ... yr) = F(y1wy + yaWs + YsWe + YaWr + YsWs + Ys W11 + Y7 W13)

Each of the coefficients of these forms is an invariant, and so working modulo (X))
may be written as a polynomial in ) and ¢g. By a series of computations similar
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to the proof of Lemma 5.9 we find that

Ay, -, yr) = 2Q"; + 16Q°y1ys — 72Q°y1ys + Qcgyrys + 6Q°y3
— 2¢6y2ys — 864Q%yays + 1932Qy2yr — 4Q°Y5 + coysys — 72Q y3ys
— 20Qcoysys — 42Q°coysyr — 12Q7y; — 3Qceyays + 576Q°yays
+ 1008Q " yayr + 612Q%y2 + 198Q°csysys — 196Q" coysy
+ 24408Q" y5 — 163296Q ysyr + (132630Q" + ¢3)y7,

and

Flyr, - yr) = 5Q%1 + 8Q%lys + @ coytya — 144Q" yiys — 19Q°ceyiys
— 42Q%csy yr + 54Q%yTys — 6Q%coytyays + 144Q Y yaus
+ ...+ (886425322502 — 1969502Q" 2 + 2¢5)ys.
We put ¢4 = —864b and substitute

y1 = 6Q'"(36bx; + 90bxy — 2a*(5xs5 + Sx4 + 275) — abxg + 42abry),

Yo = 4Q*(4a® + 27b%) (13472, — 93625 — 317axs — 185ax7),

y3 = 3Q™(36bxy — 18bxy + 2a* (w3 — 8y — 1425) + abxg + Gabwy),

ys = 24Q°(4a® + 27b%) (2121 — 3635 — axe + axy),

ys = 3Q° (18bxy — 2a* (w3 + 215) + 3abxg + 6abxy),

ye = 8Q(4a® + 270*) (621 — 629 — axg),

yr = —4(4a® + 276%) (32, — aze — axy).
This transformation has determinant 2263848Q3%(4a3 + 27b)*. Dividing Q and F
by 2183%a*(4a® + 270?)% and 2323%a%(4a® + 270%)3, and eliminating @ by the rule
Q" = 16(4a® + 27b%), we obtain

Q(x1,...,77) = X127 + Tomg + T3T5 + T3,
and
F(x1,...,27) = 48axixy + 36bxiws + 7202775 + 8a’zrixe + 160’7527

— 144azir; — 216bx3woxs + 4320 w01y + 432075 0005 — 48a* T w027

+ ...+ 12a%(a® + 92322 + 56a° (a® + Tb*)xexs + 16a*(3a® + 20b%)x7.
These polynomials Q and F have weights 2 and 10 with respect to the grading in

Remark 2.3.
For f and g homogeneous polynomials in x1,...,r7; we define

(f.9) = trace(H (f)H(Q)" H(g)H(Q)™").
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Theorem 5.14. Let E/K be the elliptic curve y*> = 23+ ax +b. Let f1,..., fr
be a basis for the space of cubic forms f satisfying (f, F — 48(4a> + 270*) Q*) = 0.
Then

Xp(13,2) = {fi = ... = fr = F + 16(4a® + 27b*)Q* = 0} C P".

Proof. The proof is similar to that of Theorem 5.10, except that we now form the
matrix h by evaluating the skew covariants

Q11W4, Q4W5, Qlowﬁ, Q?’W?, Q9W8> QwWi1, Wi3

and show using the definition of a skew covariant (see Definition 5.12) that

—~—

a(h)h™" o< p(a(d)¢?)
for all o € Gal(K/K). O

Again the cubic forms fi,. .., f7, as polynomials with coefficients in Z[a, b], are
available from [F5]. Alternatively, they may be computed from the description
given in Section 2.1.

Next we compute the j-map Xpg(13,2) — P!. Revisiting Lemma 5.7 with Q
and F in place of Q and F we obtain a skew symmetric matrix N given by
N = (a%i A 52-)® where

J
b = (IL‘l /\ZL‘4/\$7) - (ZEl /\ZE5/\ZE6) - (I‘Q/\I'3/\I7) - (1'2/\1}4/\1’6) - (ZL‘3/\£L‘4/\$5).
We put v3 = Vo F, by = H(Q) 'Nv3, by = b3 03 and ¢ = coeff(Q(vy + tvg), t).
The map j : Xg(13,2) — P! satisfies j — 1728 = £c¢2/Q™ for some constant &.
In principle we could compute £ by carefully keeping track of all the changes of
coordinates and rescalings described above, but in practice it is simpler to look at
some numerical examples. We find that
g

210 (43 + 27b2)10Q13"

Remark 5.15. We have arranged that the forms Q and ® do not depend on a and
b, and indeed, up to a relabelling of the variables, are the same as the forms we

j=1728 —

started with. Therefore, exactly as in Remark 5.11, we have twisted by a cocycle
taking values in Gb.

5.4. The cases j(F) = 0,1728. We have shown that the equations for Xg(13,1)
and Xp(13,2) in Theorems 5.10 and 5.14 are correct for all elliptic curves E with
J(E) # 0,1728. We now remove this restriction. The first step is to show that if
the theorems are correct for some elliptic curve E then they are correct for any
2-isogenous elliptic curve F'.

Let E be the elliptic curve y?> = 23 + ax + b, and let F be the elliptic curve
y? = 28 + Az + B where A = —150° — 4a, B = 14af + 22b and 6 is a root of
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2 +ax +b=0. If we put ¢ = 30 and d = 36? + a then E is isomorphic to
y?> = x(2? + cx + d) and F is isomorphic to y* = z((x — ¢)? — 4d). In particular F
and [’ are 2-isogenous.

Starting from the equations in Theorems 5.10 and 5.14, we find there is an
isomorphism Xpg(13,1) = Xp(13,2) given by (z1 :...:27) — (2] : ... : 2%) where

= (146% + 8a)x; + 320%x5 — (3af — 25b)x3 + (38ah — 18b)z4 — (18aH?

+ 3000 + 16a?) x5 — (11a6* — 3b0 + 24a*)x¢ + (14460% — 44020 + 132ab)x7,
(146 4 8a)xy + (3af + Tb)xs + (11ab + 15b)x4 — (17a0* — 9b6 + 8a®) x5
— (5a0% — 2160 + 8a*)x¢ + (144b6* + 10a*6 + 66ab)x-,

= 80z, + 80z + 8075 + (300% + 24a)x4 + (1008 — 6b)x5 — (Sab + 24b)x¢

+ (12a6* — 108b0) 7,

7l = 4011 + 8025 + (507 + da)x3 — (5ab — 3b)xg,
xh = —40x1 — 12025 + (30° — 4a)xy + (af + 9b)zs + (6ab* — 1860 + 16a°)xr,
Ty = —dxy — 1279 + 6024 — (60 + 4a)x5 — 120077,
ol = 2z + 4xg + 013 + (30% + 20)xs.

The determinant of this transformation is —2'93%d%(¢? — 4d)°, and so in particular
is non-zero.

Let E,; be the elliptic curve y? = 2 4+ ax + b. Since F; o is 2-power isogenous
to y* = 2® — 442+ 112 and Ep; is 2-isogenous to y? = z3 — 152+ 22, it follows that
Theorems 5.10 and 5.14 hold for the elliptic curves E; o and Ej;. It remains to
show that if these results hold for some elliptic curve with j = 0,1728 then they
hold for all such curves.

The non-cuspidal points of Xg(p, k) correspond to pairs (F, 1), where F' is an
elliptic curve and v : F[p] — E[p| is a isomorphism that raises the Weil pairing
to the power k. We write SL(E[p]) for the group of automorphisms of E[p| that
respect the Weil pairing. Then SL(E|p]) acts on Xg(p, k) via vy : (F,¢) — (F,yy).
There is therefore a group homomorphism

(17) 5+ Aut(E)/{£1} — SL(E[p])/{£1} — Aut(Xz(p, k).

Lemma 5.16. Let E and E' be elliptic curves defined over K and o : E' — E
an isomorphism defined over K. Then there is an isomorphism B : Xg/(p, k) —
Xg(p, k) defined over K satisfying

a(8)8~ = me(o(a)a™)
for all o € Gal(K/K).
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Proof. Let 8 : Xg/(p, k) — Xg(p,k) be the isomorphism given on non-cuspidal
points by (F,v) — (F,at). Then o(8)3~! maps (F,v) — (F,o(a)a"1), and is

therefore equal to 7g(o(a)a™). d

Proof of Theorem 5.10 for 5 = 1728. We have already shown that the theorem
holds for £ = E;. We now prove it for £/ = E,,. We identify Aut(E) = puy
via ¢ @ (z,y) = (C%x,(3y). Let a : ' — E be the isomorphism given by
(z,y) — (a=%x,a=3/*y). Then

o(a'/*
(18) ola)a™t = Ezl—/‘l)

Let X, X, C P° be the models claimed for Xg(13,1) and Xz (13,1) in Theo-
rem 5.10. We have already shown that X = Xg(13,1). From the grading in
Remark 2.3 we construct an isomorphism 3 : X, — X given by

(11 txg) > (210 xg azy 0\ Pxy axs : axg a3/2x7).
Then
1 if o(a'/?) = a!/?
(19) T A S
v ifo(a'?) = —a
where
iy ixp) > (T iyt —X3 T —Xy T T L —T7).

If 0(8)B~t = mp(o(a)a™) for all ¢ € Gal(K/K) then we see by Lemma 5.16
that X, and Xp (13,1) are twists of X = Xg(13,1) by the same cocycle, and
are therefore isomorphic over K. Comparing (18) and (19), it remains to show
that mg sends (4 — t. More generally, we claim that ¢ is the unique involution of
XEg(13,1) defined over Q(7). By [AR, Theorem 20.40] the second map in (17) is
an isomorphism. This reduces our claim to one about SL(E[13])/{£1}. It may
be checked, for example by consulting the LMFDB [L], that the mod 13 Galois
representation attached to F/Q(7) has image a split Cartan subgroup, i.e., the
subgroup C' of diagonal matrices in GLy(Z/13Z). But then the group

{h € SLy(Z/13Z) : ghg™* = £h for all g € C}/{%1}
is cyclic of order 6, and so contains a unique element of order 2. U

Proof of Theorem 5.10 for 7 = 0. We have already shown that the theorem
holds for E = Ey;. We now prove it for £ = Ey,. We identify Aut(E) = ug
via ¢ @ (z,y) — ((%2,(3y). Let a : ' — E be the isomorphism given by
(z,y) — (b73z,b7%/3y). Then

—1 U(bl/G)
pL/6 -
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Let X, X, C P% be the models claimed for Xg(13,1) and Xz (13,1) in Theo-
rem 5.10. We have already shown that X = Xg(13,1). From the grading in
Remark 2.3 we construct an isomorphism S : X, — X given by

(x1:...ixp) = (20 2 b Bxs 032, 0P s b P bxz).
Then
1 if o(bY/3) = b/3
()BT =14 e if o(b/?) = (bl
g2 if o(bY/?) = (/3
where

e:(my:. . rag) e (21 @9 (33t Gy ¢ s (G @ 7).

Arguing as in the proof with j = 1728, it remains to show that the map np
sends (s + ¢. We find that € and &2 are the only order 3 automorphisms of
Xp(13,1) defined over Q((3). Therefore Xg/(13,1) is isomorphic to X or Xj .
To rule out the latter we take b = 2 and consider the 3-isogenous elliptic curves
E :y*=23+2and F : y* = 23 — 120z + 506. Since 3 is a quadratic residue
mod 13 we have Xp/(13,1) = Xp(13,1). However the curves Xi/, and Xp(13,1)
are not isomorphic, since they have a different number of points mod 19. U

The proof of Theorem 5.14 in the cases 7 = 0,1728 is similar.

6. MODULAR DIAGONAL QUOTIENT SURFACES

In this section we prove Theorem 2.4.

6.1. Equations for Z(13,1). Let X = X(13) C P% be the A-curve as defined in
Section 5.1. By Lemma 3.2 the surface Z(13,1) is birational to the quotient of
X x X C P®x P by the diagonal action of G = PSLy(Z/13Z). We write o, . .., Ts

and o, . . ., ys for our coordinates on the first and second copies of P°.
Definition 6.1. A bi-invariant of degree (m,n) is a polynomial in xy, ..., zs and
Yo, - - -, Yg, that is homogeneous of degrees m and n in the two sets of variables,

and is invariant under the diagonal action of G.

In principle, we may obtain equations for Z(13,1) by computing generators and
relations for the ring of bi-invariants mod (X x X). In practice we only compute
some of the generators and some of the relations, and then explain why these are
sufficient.

At the start of Section 5.1 we defined invariants ) and F' of degrees 2 and 4. We
write Q9o and Fjyo for these same polynomials viewed as bi-invariants of degrees
(2,0) and (4,0). More generally we define bi-invariants );; and Fj; by the rules

QAo + 1o, - - -, Az + f1ys) = N Qa0 + AuQ11 + 11° Qo2
F(Azo + pyo, . .-, Az + pys) = X Fao + N pFa + ...+ p* Foy
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where the subscripts indicate the degree.

The dimension of the space of bi-invariants of degree (m,n) may be computed
from the character table for G. For some small values of m and n these dimensions
are as follows.

01 2 3 4 5 7 8 9 10
0j1 0 1 O 0 14
17010 2 1 5 14 17 37 48
2{10 3 1 10 9 32 38 90 118 226
310 2 1 10 14 41 67 142 222 402 602
412 1 10 14 51 82 198 316 610 938 1592
)

0 5 9 41 82 206 377 746 1244 2152 3346

To compute the bi-invariants of a given degree we use the efficient averaging
method described in Remark 5.6.

To find relations between the bi-invariants modulo I(X x X') we initially worked
mod p for some moderately sized prime p, employing the heuristic that a poly-
nomial vanishing at many F,-points on X x X is likely to vanish on the whole
surface. One way to establish these relations rigorously would be to employ the
Grobner basis machinery in Magma. However this proved too slow in all but the
simplest cases. We instead used the following lemma, which is an easy consequence
of Bezout’s theorem.

Lemma 6.2. Let I be a bihomogeneous form of degree (m,n) with m,n < 23. If
I wanishes at all points (P,Q) € X x X with j(P),j(Q) € {0,1728, 00} then I
vanishes on X x X.

Proof. We fix Py € X with j(P) € {0,1728,00}, and let f(Q) = [(Fo, Q). The
hypersurface {f = 0} C P% meets X in at least 84 + 364 + 546 > 42 x 23 points.
Since X has degree 42 and f has degree n < 23 it follows by Bezout’s theorem
that f vanishes identically on X. Therefore I vanishes on {Fy} x X. We now fix
any Qo € X. Applying the same argument to g(P) = I(P, (), and using that
m < 23, shows that [ vanishes on X x X. Il

We note that if the bihomogeneous form in Lemma 6.2 is a bi-invariant (or a
skew bi-invariant, as defined in the next section) then this significantly reduces
the amount of work needed to check the hypotheses of the lemma.

If I is a bi-invariant of degree (m,n) then we write I’ for the bi-invariant of
degree (n,m) obtained by switching the z’s and y’s. A bi-invariant of degree
(m,m) is symmetric if I' = I, and anti-symmetric if I' = —1.

The vector space of bi-invariants of degree (3,3) has dimension 10, and the
subspace of symmetric bi-invariants has dimension 9. Making a good choice of
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basis for this space significantly simplifies the calculations that follow. To specify
our choice of basis z, ..., 29, we let mq, ..., mjy be the monomials

3 2 2 2 2 2 2 2 3
TolYolY1, T1T4YgY1, ToX3YoYy, L3T4Ts5YoYy, T2T3Y7,
3.3 .2 3 3 3 2.3
TylY1, ToTleYr, L1TaTelYy, T2T5T6Y1, T3TLgly,

and then record the coefficients of these monomials in a table.

myp Mg Mg My M5 Mg M7 Mg Mg Mo
2|1 =2 =2 4 0 1 1 1 -1 0
»|-2 0 4 -2 -1 -1 -2 -1 1 0
zz1 0 =3 0 1 -1 0 0 0 O 0
24| O -2 0 o 0 0 -1 0
z5 | 1 0 -3 0 0 1 0 -1 0
| 1 -1 =3 0 0 1 0 -1 0
zz| 1 -1 =2 4 0 1 1 -1 0
21 0 -4 2 0 -1 0 0 0 1 -1
z9| 0 0 2 0 0 0 0 0 0

Some of these bi-invariants may also be described in terms of the Q);; and Fj;.
Specifically we have

(20) 8 =2+ 25 — 25 — 27,
(21) Q11Q20Q02 = 25 — 5,
Qu1F2 = —3(2 — 27 + 29),
Q0 F13 + QoaFz1 = 21 + 20 — 424 + 26 + 27 — 28 — 329.

We find using Lemma 6.2 that z9 and the following 9 quadratic formsin zq, ..., 23
vanish identically on X x X.

2124 — 23%s, 2127 — 2128 + 2227 — 2426 + 2527,
2126 — R3%7, 21(21 + 29 — 23 — 24 -+ 25 — 27) — 29%¢ + 2326,
2427 — 5%, 24(21 + 22 — 23 — 24 + 25) — 2328,
22+ 22 — 2024, 25(21 + 20 — 23 — 24 + 25) — 2128,

28(21 + 25 — 2 — 27) — Z5R7.

These quadratic forms define a rational surface ¥ C P7. Indeed, the map ¥ — P2
given by projection onto the first 3 coordinates, is a birational map with inverse

(z1,...,28) = (r,8,1,7(r 4+ 5)/s,7%(r +5)/s,7f(r,s)/(s(r* + 5 — 1)),

(22) 2 2 2
rof(rs)/(s(r” + s = 1)), r(r + 5)f(r,5)/57)
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where f(r,s) =1 +ris —r? 4+ 5% — s.

The space of anti-symmetric bi-invariants of degree (3,3) is 1-dimensional,
spanned by w = Q9F13 — Qo2F31. We write Z(13,1) as a double cover of ¥
by finding an expression for w? in terms of 2, ..., zs. Specifically, working mod
I(X x X), we find the relation w? + 64(Q20Q02)® = g(z1, . .., 2z5) where

g(21,...,28) = 2120 + 25 — 482023 + 482025 + 1262925 — 482927 — 22028
+ 48z§ — Tz3z4 — 572325 — 1082325 + 1262327 + 212328 + zz — 412425
— 262426 + 82428 + 10422 — 602526 — 1062527 + 1202528 + 3725 — 102627

— 1582425 + z? — 702725 + zg.
It follows by (20), (21) and (22) that
w® = ((r —1)/(s*(r* + s — 1)))*Fi(r,s,1)

where F} is the polynomial defined in Remark 2.5. The bi-invariants therefore
define a rational map from Z(13,1) to the surface y* = Fy(r,s,1). We show in
Remark 6.3 below that this map has degree 1.

We now compute the maps j and j’ giving the moduli interpretation of Z(13,1).
To do this we need some more bi-invariants, and some more relations. If v is a
covariant of degree m (see Definition 5.5) and y = (yo,...,¥ys)? then y' H(Q)v
is a bi-invariant of degree (m,1). Applying this construction to v, as defined in
Section 5.2 gives a bi-invariant I;;. We put Izs = (> yia%i)-ﬁﬂ and Iy3 = Il,. Let
c¢ be the invariant of degree 13 defined at the end of Section 5.1, now viewed
as a bi-invariant of degree (13,0). Then ¢ has degree (0,13). Let o = Qq0l2,
of = Q02[§2, B = Q82—72306, g = ngfszcé and v = (Q20Q02)*. Working mod
I(X x X) we find some relations

fila+a) = fs, Q1132123 = go,
L(B+8) = fr, hacecy = Qu1(ls + Lay + lo7” — 647°),
where each f;, g;, h;, {; is a homogeneous polynomial of degree 7 in zy, ..., z5. These

polynomials are available from [F5]. The relations were checked using Lemma 6.2.
Using (20), (21) and (22) we may then write the coefficients of the quadratics

(Y —a)(Y — ) and (Y — B)(Y — (') as rational functions in r and s. The
discriminant of each quadratic is equal to Fi(r, s, 1) times a square. Moreover, by
Theorem 5.8 we have j = 1728 — 32 /(a~y*), which we may then write as an element

of Q(r, s,/ Fi(r,s,1)). The final expressions for j and j’ are too complicated to
record here, but take the form specified in Theorem 2.4, and are available from [F5].

Remark 6.3. We have constructed rational maps

(23) X x X — 2(13,1) — {y? = Fi(r,5,1)} Y% pL < pL,
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The composite corresponds to a Galois extension of function fields, with Galois
group G x G. Since G = PSLy(Z/13Z) is a simple group, the diagonal subgroup
Ag C G x G is a maximal subgroup. Therefore one of the last two maps in (23)
is birational. However if the last map were birational, then this would mean that
in attempting to quotient out by Ag, we had in fact quotiented out by G x G.
To exclude this possibility we may check, for example, that the rational function
Q%,/(Q20Q02) on X x X is not G x G-invariant. In fact, it is not even (Mg) X (Mg)-
invariant. Therefore Z(13,1) is birational to {y* = Fy(r,s,1)}, and this completes
the proof of Theorem 2.4 in the case k = 1.

6.2. Equations for Z(13,2). The calculations here are similar to those in the
last section. The main difference is that we modify the definition of a bi-invariant.
As in Section 5.3 we write g — ¢ for the automorphism of G induced by ¢ s (%

Definition 6.4. A skew bi-invariant of degree (m,n) is a polynomial in z, . .., xg
and o, - . ., Yg, that is homogeneous of degrees m and n in the two sets of variables,
and is invariant under the action of G via g : (x,y) — (gz, gy).

The polynomials (099 and Qo2 defined in Section 6.1 are skew bi-invariants, but
(11 is not. The dimension of the space of skew bi-invariants of degree (m,n) may
again be computed from the character table for G. For some small values of m
and n these dimensions are as follows.

01 2 3 4 5 6 7 8 9 10
0j1r 01 0 2 O 4 1 7 3 14
1/0 0 0 1 1 4 5o 14 17 37 48
210 3 1 10 9 32 38 90 118 226
3]0 1 1 9 14 40 67 142 222 402 602
412 1 10 14 51 82 198 316 610 938 1592
510 4 9 40 82 205 377 746 1244 2152 3346

In particular the spaces of skew bi-invariants of degrees (2,2) and (3,3) have
dimensions 3 and 9. The first of these spaces has basis 1, t5, t3 where

t = 20292 + 22yoys + . ..
ty = () — 174 — ToTs — T3T6)Yg + TIYoYL + - - -
t3 = (—5xf + 1104 + Tox5 + T376)ya — (2] + 22126)Yoy1 + - - . -

To specify the first 5 polynomials in the basis w4, ..., u9 we chose for the space of
skew bi-invariants of degree (3, 3), we let my, ..., mg be the monomials

2 2 2 2 3 2 2 2 2.3 2 3 2 3 3 2.3
ToZ3YoY1, T1TY0Y1, T3YolY1, ToTsYolYi, T1T3Yy, ToZaly, TyTs5Y1, T1Ts5T6Y1, LToTglq,
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and then record the coefficients of these monomials in a table

my Mms M3 My My Mg M7y Mg Mg
w| 0O -2 0 0 -1 0 0 -1 0
wl(-3 1 0 -1 0 0 0 1 0
us{ O 2 0 O 1 O 1 2 0
uy|—1 1 0 1 0 0 0 0 O
us | -1 -2 -1 =3 0 O 0 0 1
Amongst other relations, we found that wug, ..., ug and the following polynomials
vanish identically on X x X.
U3y — ULUs, ug’ — U UgU3 — 2u§u3 — u%m + U U3U4 + U2U3UL — UU3 U5,
loug — t3uq, trug (ug — ug) — ta(urug — urug + uguz + Uzus),

tltg — UuUius.
The first two relations define a rational surface ¥ C P*, parametrised by
(uh ‘e 7u5> = (T, 17 —Ts, f(rv S)? _Sf(r7 8))
where f(r,s) = (r*s +2rs+1)/(r?s + rs* + rs + 1). The other three show that
(t1,ta,t3) = (=s(r* +rs+r+1)/7,r(r’s +rs* +rs + 1) /7, (r*s + 2rs + 1) /7)
where 73 = (r2 +rs +r+ 1)(r’s + rs®> + rs + 1)
For I a skew bi-invariant we write I’ for the skew bi-invariant obtained as
‘[/(x7 y) = ‘[(y7 —Xg, — T2, —T3, Ly, —Ts, —Tp, _xl)‘
It may be checked that I” = I. The space of skew bi-invariants of degree (3,2) is
spanned by I3y = 12(717375 — T27426)ya + . . . and the space of skew bi-invariants of
degree (4, 1) is spanned by I; = y* H(Q)w4 where w, is the skew covariant defined
in Section 5.3. We put Iy = I}, and I}y = I};. Let a = Q3,1%, o = Q3,13,
B = Qi 1146, B = Q5qIu1cy and v = I35153. Working mod I(X x X) we find some
relations
Q20Q02 = 11 — 1o,
LTy = (t — t2)(ur + up — 3usg — uy),
uy(uy +uz)y = fu,
tg(tl + tg)(a/ + O/) = f12,
A(tTts + ugus) (B + B') = fao + f157 + f1o7” + f57°,
g10¢6Cs = fos + f157 + fi37° + f37°,

where each f;, g; is a polynomial of weighted degree ¢ in tq, t9, t3, uq, ..., us, where
the t’s have weight 2 and the u’s have weight 3. These polynomials are available
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from [F5]. The relations were checked using Lemma 6.2. Using these relations,
and the above parametrisation of Y, we may write the coefficients of the quadrat-
ics (Y —arn)(Y — /1) and (Y — B7)(Y — /1) as rational functions in r and s.
The discriminant of each quadratic is equal to Fy(r, s, 1) times a square, where F
is the polynomial defined in Remark 2.5. The skew bi-invariants therefore define
a rational map from Z(13,2) to the surface {y*> = Fy(r, s,1)}. Adapting the argu-
ment in Remark 6.3 shows that this map has degree 1. Moreover by Theorem 5.8
we have j = 1728 — %/(a(Q20Q02)"°), which we may then rewrite as an element
of Q(r, s,/ F»(r,s,1)). This gives the moduli interpretation, and so completes the
proof of Theorem 2.4 in the case k = 2.

7. MODULAR CURVES ON Z(13,1) AND Z(13,2)

Following on from Sections 2.2 and 2.3 we describe some more modular curves
on the surfaces Z(13,1) and Z(13,2).

Let m > 2 be an integer coprime to 13. Then any pair of m-isogenous elliptic
curves are 13-congruent with power k, where £ = 1 if m is a quadratic residue
mod 13, and k = 2 otherwise. There is therefore a copy of the modular curve
Xo(m) on the surface Z(13,k). In Table 1 we explicitly identify these curves in
all cases where the genus g of Xo(m) is 0 or 1. The polynomials F} and F, were
defined in Remark 2.5.

In compiling Table 1 we used the SmallModularCurve database in Magma to
check the moduli interpretations. For example, the entry with m = 10 shows that
Z(13,1) contains a curve isomorphic to y? = t> + 16t — 16. We parametrise this
curve by putting ¢ = —(T?% + 87T + 20)/T, and find by Theorem 2.4(iii) that

X2 — (5 + )X + 45 = (X = 51o(T)) (X — j1(20/7))

where
(T(T +4)° 4+ 16T + 80)°
T(T +4)°(T + 5)?

Jio(T) =

is the j-map on X(10).

To find many of these curves it was necessary to blow up the surfaces in The-
orem 2.4. For example, the entry with m = 15 shows that when we blow up our
model for Z(13,2) at (r : s: 1) = (1 : —1:0) we obtain a curve isomorphic to
y? = (t* +t—1)(t* + 13t + 11). Putting this elliptic curve in Weierstrass form we
find it has Cremona label 15al, and is therefore isomorphic to X,(15).

The surfaces Z(13,1) and Z(13,2) also contain modular curves of level 13. For
example, the factors of Dy and D, (as defined in Theorem 2.4(iii)) appearing with
multiplicity 13, say d; and d3, each define a copy of the genus 2 curve X;(13). In
fact it is a general phenomenon, exploited in [KS], that Z(n, k) contains copies of
Xi(n) above j = oo and j' = oc.
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TABLE 1. Copies of Xo(m) on Z(13,1) or Z(13,2)

Formula specifying a curve on (a blow up of) y? = F(r, s, 1)

w
(=}

W+ 1, =12 —t— 1, =2 —t) = t"2(t + 1) (4t* + 83 + 12t> + 8t + 1)
t,—t2,t—1) =3(t — 2)%(t — D) (¢t + 1)2(¢* — 6t% + 3t> + 18t — 19)

m g
2 0 Fy(4,-3—¢e*+tet, —2+42¢) = 28(4t + 1)e* + O(eP)
3 0 Fi(l,14+e+te®,2+¢e)=16(54t + 1)e* + O(£%)
4 0 Fi(1,te?, —1+¢e) =4(32t + 1)e* + O(e?)
5 0 Fy(te?,1,—1+¢) = —(16t% + 44t — 1)e* + O(&P)
6 0 [y(e3t,e%) =15t + 34t + 1)e'® + O(e1?)
7 0 F(1,—1+te? +te®, -1+ te?) = t*(t + 1)(t — 27)e'? + O(e'?)
8 0 Fy(e?—e®—tet, —1,—¢) = (t? + 28t + 68)e™* + O(e")
9 0 Fi(e,1—e?+1te31) = (1> — 18t — 27)eb + O(e)
10 0 F(0,¢,1) = t*(t — 1)2(t? + 16t — 16)
11 1 By(1,—e3+ et +ted ) = (t +2)(t3 — 1482 — 12t — 4)e® + O(e¥)
12 0 Fi(1,—1+te,e) =3(t* + 14t + 1)e* + O(£°)
14 1 Fi(e,1,—e*+ted) = (t* + 143 + 19¢> + 14t + 1)e'? + O(e'3)
15 1 Fy(1,—1+te,e) = (#+t—1)(t* + 13t + 11)e* + O(&?)
16 0 Fi(l,e,1+te) = (42 +4t — 1) + O(&3)
17 1 Fy(te, g% t) = t3(t* — 6% — 27t2 — 28t — 16)e% + O(%)
18 0 Fy(t,0,1) =2+ 10t + 1
19 1 Fy(=1,£,1) = (t — 1)*(t — 2)(¢3 + 10t2 + 12t + 4)
20 1 Fy(t 1 ) (t+ 1)%(t* + 1263 + 28t + 32t + 16)
21 1 Fy(1,—t%,t) =3 (t + 1)*(t* + 61 — 17t2 + 6t + 1)
24 1 Fy(t3 +2t2 —1,82 +2t) = 10t + 1)%(¢ + 2)%(¢t* — 4¢3 — 16t* — 8t + 4)
25 0 Fy(t,—t, 1) =t*(t* + 4t — 16)
27 1 Fy(t,t%,—1) = 3(t + 2)(t> — 6t* — 4)
32 1 F(t+1,-83,¢2+1) =2t + 1)5(4t* — 12¢* — 16t — 7)
1 Fy(
1 Fy(

S
Ne

Setting j = j’ in Theorem 2.4 give a curve whose irreducible components are
modular curves of level 13. This gives a convenient way of computing the double
covers Xs(13) — X(13) and X,5(13) — XL(13), as were recently computed by
another method in [DMS]. The details are as follows. Recall that in Theorem 2.4
we wrote Z(13,k) as a double cover of P2, We also wrote j + j' and jj' as
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rational functions in r and s. We now put r = x/z and s = y/z, and factor the
numerator and denominator of (j — j')? into irreducible polynomials in Q|x,y, z]|.
Let Ax(z,y,2) = 2*0(x/2,y/2). In the cases k = 1 and k = 2 we obtain

Fl(GngﬂngHgM)Z

(=4 = 8.8 6( 2 212 A 26
Y328 +y — 2)8(22 + yz — 22)2A%
and )
(G )2 = Fy(GsGyGsHyHs Hg)
210210(22 4+ zy + x2 + 22)* A3
where

e I} and F; are as in Remark 2.5. As noted in Section 2.3, they define copies
of X (13) and X[ (13).

e GG1,...,G5 have degrees 8,11,9, 10, 11. Each defines a copy of X (13) with
inverse image in Z(13, k) a copy of X(13).

e Hy,..., Hg have degrees 8,11,13,7,10, 12. Each defines a copy of X (13)
with inverse image in Z(13, k) a copy of X,s(13).

e M has degree 8, but factors as the product of two quartics defined over
Q(¢13). Each factor defines a curve whose inverse image in Z(13,1) is a
copy of X;(13), but with a non-standard moduli interpretation.

There is a group-theoretic explanation for the factorisations of these numera-
tors. In the case k = 1 we let PSLy(Z/13Z) act on its non-trivial elements by
conjugation, and find that there are 8 orbits, with stabilisers conjugate to (in an
obvious notation)

CT,Cs, Cs, Chs, Crs, Crs, B, B.
In the case k = 2 we let PSLy(Z/137Z) acts by conjugation on the elements in
PGLy(Z/13Z) whose determinant is not a square, and find that there are 7 orbits,
with stabilisers conjugate to

C;fs? CS’ CS? CS) Cnsa CHS’ CHS'
8. EXAMPLES

8.1. Examples over Q. We use our results, as presented in Section 2, to exhibit
some non-trivial pairs of 13-congruent elliptic curves over Q.

Example 8.1. Let F/Q be the elliptic curve y* = x* — 4x — 3, labelled 52a2 in
Cremona’s tables." Taking @ = —4 and b = —3 we find on Xx(13,1) the point

(=30:23:-72:—-16:0:16:1)

mapping to j = —28-3%-151%.23993 /(13-19'3). This is the j-invariant of the elliptic
curve E'/Q with Cremona label 988b1. Therefore E is directly 13-congruent to

IConfusingly, the numbering of the elliptic curves in the isogeny class 52a is different in
Cremona’s tables and in the LMFDB.
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the quadratic twist of £’ by some square-free integer d. Comparing a few traces
of Frobenius shows that d = 1.

Example 8.2. Let E/Q be the elliptic curve y* = x* + x — 10, labelled 52al in
Cremona’s tables. Taking a = 1 and b = —10 we find on Xg(13,2) the points
(9:0:4:2:-2:2:-1), (134: —45:134:44:5: —18: 4),
mapping to j = 2'.33/13 and —2%-33-151%-23993/(13 - 19'3). These correspond
to the elliptic curves 52a2 and 988b1 that are each skew 13-congruent to E.
In Theorem 2.4 we gave equations for the surfaces Z(13,1) and Z(13,2), each
as a double cover of P2. We use these formulae to exhibit some non-trivial pairs

of 13-congruent elliptic curves over Q, where both curves are beyond the range of
Cremona’s tables.

Example 8.3. There is a Q-rational point on the surface Z(13,1) above (r : s :
1) = (4 :5:3). This maps to the pair of j-invariants
—2573.8113 y —4418513633
= and J = :
22.312.54.11 25.3.5-11-2313

These are the j-invariants of a pair of directly 13-congruent elliptic curves

E: P +ay+y=2®— 464619z — 122105558

E y? 4 zy +y = 2 — 112768108184092 + 14959107699948354572
with conductors N = 3778170 =2-3-5-11-107? and N’ = 86897910 = 23N.

J

Example 8.4. There is a Q-rational point on the surface Z(13,2) above (r : s :
1) =(2:—=9:6). This maps to the pair of j-invariants
- 29%.61%-103 ,  13%-103%- 2705393

_ 2 0t d —
219 .37 .17 an J T Ty s 172 1918

These are the j-invariants of a pair of skew 13-congruent elliptic curves
E: 4 axy=2°+ 37962 — 685680
E": y? + xy = 2° 4+ 82467132569412 + 11003401358367836019
with conductors N = 1082118 = 2-3-17-103% and N’ = 20560242 = 19N.

8.2. Examples over Q(t). The following pairs of 13-congruent elliptic curves
over Q(t) were found as described in Section 2.2. By specialising ¢ they give rise
to infinitely many non-trivial pairs of 13-congruent elliptic curves over Q.



ON FAMILIES OF 13-CONGRUENT ELLIPTIC CURVES 37

Example 8.5. Let F/Q(t) be the elliptic curve
E: =2 =3p’qhx+2p°¢ fo,
where p(t) = t* — 3t — 1, q(t) = ¢3 — 2t> — 3t — 8, and
fi(t) =" + 4% + 8¢° + 6t* — 8t° — 24¢* — 27t — 8,
fot) = t" 4+ 410 567 — 12% — 63¢7 — 12415 — 137¢° — 80t* — 61> — 72¢
— 153t + 8.
Taking a = —3p%qf1 and b = 2p?¢* f,, we find on Xg(13,1) the point
(2592t(t + 1)(t* + 2t + 3)pqr® : —432t%(2t* + 3t + T)pqr?
D —T2(83 22 + 4t — D)pPqr : T2p%qr
P —6(t% — 3t' — 11#° — 142 — 5t —4)p : —24(t — V)pr: t — 1)

where r(t) = t*+t*+2t — 1. This point maps to j' = pg;/(rd) = 1728+ (qg3)/(rd)
where
gi(t) = 3 + 23170 + 270t + 2379t + 17607+*7 + 110676t*° + 586710t*°

4 2624262t%* + 9977316t* + 32555542t*% 4 920022441*! 4 226872066t*°

4 490871649t" + 935166681¢'® + 1571157252t + 2326844467t

+ 3029704865t'* + 3450459162t + 3407984048t + 2880044002t

42037108963t + 1159162859t + 486247810t° + 109783239t

— 2573144517 — 372056241° — 17036352t° — 3782272t* — 999681

+ 90624t* + 50176t + 8192,
go(t) = % + 344%™ 4 586t + ... — 10680320t — 2752512t — 262144,

d(t) = t1(t + 2)°(¢* + 4t + 9> + 11t + 8)(t° + 4¢° + 9t* + 8> + 2t> — 9t — 6)',

This is the j-invariant of an elliptic curve directly 13-congruent to E. (Notice that
the full formula for g, may be recovered from the equality of two expressions we

gave for j'.) Specialising ¢ and comparing traces of Frobenius, we find that the
correct quadratic twist is

E: =2 -3pC gz + 20" g

In Table 2 we record some pairs of 13-congruent elliptic curves over Q, obtained
by specialising the parameter ¢ in Example 8.5. In each case we have taken simul-
taneous quadratic twists so that E has conductor as small as possible. Only the
first 2 pairs of elliptic curves in Table 2 are isogenous (via an isogeny of the degree
indicated). Example 8.5 therefore shows that there are infinitely many non-trivial
pairs of directly 13-congruent elliptic curves over Q.
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TABLE 2. Pairs of directly 13-congruent elliptic curves

t E E deg | t E E’
1 11a3 11a?2 25 | 1/4  7707798% 27925352154%
—1 768h1 768h4 10 | =3 15211515 1566786045%
4 1368861 8363368% 8/5  46427580%  5448415795740x
2 27930s1 27930r1 3 48963840% 42941287680
—4 80408!1 8282024 5 147656145 1624217595%
—1/2 83030061 913330 7/2 192105606+ 23030964786522x
—1/3 271545f1 589524195x 5/2 774703710«  6034167197190x
1/2  5429670% 320350530 7 1040014080+ 24181367374080x%

Example 8.6. Let £/Q(t) be the elliptic curve
E: y' =2 =3p¢’ fre +2pg* fo.
where p(t) = t> +t + 1, q(t) = 5t* + 8t + 11, and

fit) =t* — 13¢5 — 4> — 5t + 1,
fo(t) = 59t + 183t% + 477t" + 315t° + 54¢° — 570t* — 499> — 429¢* — 123t — 43.

Taking a = —3pg®f1 and b = 2pq® fo, we find on Xg(13,2) the point
(=2pqry : pqry : 2rs 1 —24(t + 1)2(t* +1)% 1 try : 2t : 0)

where

) = 29t" + 15t + 7t° — 32t* + 89t + 73t + 83t + 24,

) = 55t" + 117t% 4 269t° + 356t* 4 211t + 179> + 25t + 36,
) =15

) =13

T1 t

— 145 — 43t* — 853 — 106t% — 53t — 36,
360 + 34t + 1713 + 1142 — 22t — 5.

T3 t

(
Tg(t

(
T4(t

This point maps to j' = pqg;/d = 1728 — g3 /d where

g1(t) = 211" 4 665t + 1079¢'% + 414¢™ — 1754t — 5658t — 9756t° — 12536t
— 12796t° — 10606t> — 7358t* — 4030t* — 1831¢* — 553t — 131,
g2(t) = 3107t* + 45563t%% + 257591% + ... + 35789t + 4973,
dit) =+ 1)+ 1) +t+ 1222 + 26> + 3t + 1)
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This is the j-invariant of an elliptic curve skew 13-congruent to E. Specialising ¢
and comparing traces of Frobenius, we find that the correct quadratic twist is
By =2+ 3pa*gix + 2pqtge.

In Table 3 we record some pairs of 13-congruent elliptic curves over Q, obtained
by specialising the parameter ¢ in Example 8.6. In each case we have taken simul-
taneous quadratic twists so that E has conductor as small as possible. Only the
first 3 pairs of elliptic curves in Table 3 are isogenous (via an isogeny of the degree
indicated). Example 8.6 therefore shows that there are infinitely many non-trivial
pairs of skew 13-congruent elliptic curves over Q.

TABLE 3. Pairs of skew 13-congruent elliptic curves

T B By deg| T E E,
0  12lcl 1212 11| 3 185900al  7621900%
1 162¢1  162c4 21 | —7 255162el  4848078%
—1/3 1225h1  1225h2 37 | 1/2 1242150% 1242150«

-3 19601 2156011 1/7 1695978+ 429082434

—2  14175k1 18427501 —3/2 2141594% 49256662

1/3  23660f1 733460x —3/5 2147950  2147950x
—3/4 92950q1 2881450+ —5  4746924% 507920868
—1/2 98010s1 98010¢1 1/5  7495800% 397277400x

8.3. Tables. In Tables 4 and 5 we list some Q-rational points on Z(13,1) and
Z(13,2) that do not lie on any of the curves of genus 0 or 1 in Section 2.2.
In Table 6 we list some pairs of 13-congruent elliptic curves over Q with small
conductor. We have 3 methods for finding such examples

e We sort Cremona’s tables by traces of Frobenius mod 13 and look for
matches. This method is described more fully in [CF].

e We loop over all elliptic curves F in Cremona’s tables (ignoring quadratic
twists of earlier curves) and search for rational points on Xg(13,1) and
Xg(13,2). In many cases the second elliptic curve is beyond the range of
Cremona’s tables.

e We search for rational points on Z(13,1) and Z(13,2). This can give
examples where both curves are beyond the range of Cremona’s tables.

Elliptic curves are specified either by their Cremona label, or by writing Nx
where N is the conductor of the elliptic curve. In the latter case Weierstrass
equations are available from [F5]. We do not list examples that could be deduced
from earlier entries by swapping over the curves, by using an isogeny of degree
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TABLE 4. Known rational points on Z(13,1)

15, —63,4)
60, —65, 16)
30, 68, 63)

21,—1,98)

104, —481, 64)

680, —175, 289)
630, 685, —324)
440, —48, 1085)
51,136,111) (495,81, —1144)
78,172,169) (442,1224,1183)

( ( ( —5110, 5329, 1176)
( ( (

( ( (

( ( (

( (= (

( (= (

(—12,16,9)  (39,169,180) (1430, —1469, 225)
( (— (

( (= (=

( ( (

( ( (

( ( (

6552, —1352, 2835)
—6920, 8477, 4800)
2470, 9025, 7436)
—4389, 9386, 9702)
7259, 1525, 9996)
3105, 13225, 994)
13340, 4205, —5819)
10540, 289, —26908)
—34086, 34385, 3249)
8015, 58166, —833)
—220836, 913936, 859705)

56,256,245) (280, —1656, 49)

17, 289, 20) 1326, 2312, 1521)
05,—7,418) (3540, —3481, 144)
455,169,294) (1309, —3757, 588)
476,289,240) (4144, —999, 2695)

—5,23,6)

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

TABLE 5. Known rational points on Z(13,2)

9,40, 30)

40,27, 24)
17, —56, 34)
15, —64, 20)

49,64, 140)

(— (—1176,1331,231)

(= (

( (=

( (

(= (=
~7,9) (175,32, 140) (2975, 1, —255)

(= (

( (

(= (

( (=

(= (=

1445, —216, 510)

(7546, 1350, —735)
(—1682, 1331, 11484)

532,2197,1235) (4563, 12167, 13455)

63, 2560, 120) (14175, —1331, 4389)

1989, 2744, 2730) (1156, — 15625, 5525)
(13248, —42875, 21840)
(—78352, 54925, 21580)
(25205, —98304, 47712)
(—159367, 109744, 81016)

64, 343, 280) 925, —2662, 4070)
153,343, —105) 175, —4608, 3080)
363,250, 165) 1007, —4913, 2584)
790, —343,1106) 845,4968, 1482)
1107, 824, 246) 5635, 6859, 1995)

coprime to 13, or by taking simultaneous quadratic twists. We specify whether the
13-congruence is direct (k = 1) or skew (k = 2). The entries in bold are examples
coming from the infinite families in Examples 8.5 and 8.6.

The examples where both £ and E’ are within the range of Cremona’s tables
were independently found by Cremona and Freitas. Indeed, there are 18 such pairs
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TABLE 6. Pairs of 13-congruent elliptic curves

k E E' k E FE

2 92al 988b1 1 27154511 589524195%
1 34501 10005m1 2 314330:1 31433051

2 735¢l 9555h1 2 1082118 20560242

1 1190al 265370d1 2 1137150% 76189050

1 1274h1 21658t1 2 1242150% 1242150+«

1 144561 10115e1 1 1296924 1437132

2 1960i1 2156011 2 1425720% 1425720%

1 3990bal  43890cul 2 1695978« 429082434+«
2 471901 33033k1 2 2141594x 49256662+
2 507051 35490bg1 2 2147950« 2147950

1 1163801  151294h1 2 2164218« 413365638*
2 12274cl 13501451 2 2228037 69069147

1 13688b1l 8363368 1 2428110% 31565430

2 14175kl 18427501 2 3647770% 69307630

1 20184:1 2018471 1 3778170% 86897910

2 23660f1 733460« 1 3944850% 3944850

1 27930s1 27930r1 2 4083510% 730948290
2 29970f1  4705290% 2 4746924 507920868
2 69230ml1 761530 1 5429670« 320350530+
1 8040811 8282024+ 2 7495800« 397277400
1 83030b1 913330« 1 7707798+« 27925352154
2 92950q1 2881450 2 10052196 3608738364
1 95370cll  95370cml1 1 15211515+« 1566786045
2 98010s1 98010t1 2 15893150 842336950%
2 162266el 17686994 2 16207776x 1183167648
2 177735al  1955085% 2 17859765« 553652715
2 185900al1 7621900x 1 21140427« 264234197073
2 237538kl 23041186+ 1 21219400% 233413400%
2 255162el 4848078 2 21997290% 285964770
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in Table 6 which, together with the 3 elliptic curves (52a2, 735c2, 1190a2) isoge-
nous to those already in the table, gives the 39 examples in [CF, Section 3.7].
In addition the pair of curves with conductor 1242150 = 2 -3 - 52 - 72 . 13% was
independently found by Best and Matschke [Be], in connection with their work
tabulating elliptic curves with good reduction outside {2,3,5,7,11,13}.

APPENDIX A. ELLIPTIC CURVES WHOSE 13-TORSION SUBGROUPS HAVE
ISOMORPHIC SEMI-SIMPLIFICATIONS

If elliptic curves E; and E5 over Q are 13-congruent then their traces of Frobe-
nius are congruent mod 13 at all primes of good reduction. The converse is also
true provided that the elliptic curves F; and F5 do not admit a rational 13-isogeny.
Otherwise, the Chebotarev density theorem and Brauer Nesbitt theorem only give
that F4[13] and E5[13] have isomorphic semi-simplifications.

Theorem A.1. There are infinitely many pairs of elliptic curves Ey and Ey over
Q, each admitting a rational 13-isogeny, such that F1[13] and E»[13] have isomor-
phic semi-simplifications. Moreover these examples correspond to infinitely many
pairs of j-invariants.

We prove the theorem by finding pairs of 13-isogenies whose kernels are iso-
morphic as Galois modules. It then follows by properties of the Weil pairing that
the 13-torsion subgroups have isomorphic semi-simplifications. After we had com-
pleted the proof of Theorem A.1 we discovered that essentially the same proof was
given by N. Elkies in 2013 in response to a question asked by S. Keil at

https://mathoverflow.net/questions/129818/elliptic-curves-over—-qq
-with-identical-13-isogeny

Our motivation for considering Theorem A.1 is the following question of N. Fre-
itas, to which we still do not know an answer.

Question A.2 (Freitas). Are there any pairs of 13-congruent elliptic curves over
Q where one (and hence both) of these curves admits a rational 13-isogeny?

Proof of Theorem A.1. Let t be the coordinate on Xy(13) = P! specified in
Section 2.1, and let s =t + 4. The modular curve X;(13) is the genus 2 curve

y? = (2° — 30+ 1) = 2(2* — 3z + Da(x — 1) + 5% (x — 1)?

with automorphism group G = Cy generated by x +— 1/(1 —z) and y — —y. The
forgetful map 7 : X;(13) — X(13) quotients out by this action, and is given by

3 —3x+1 1 x—1
i + I

(2.9 s = x(r —1) 1—x x
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We claim that the quotient of X;(13) x X;(13) by the diagonal action of G is
birational to the surface ¥ = {Y? = f(T? — 3T + 1,T(T — 1); X)} C A® where

FOL X)) = (X7 =2X +5) (A = 22+ 5p*) X* — 20 + Ap + 6p%) X
+ (507 — 12Xp + 724%)).

Indeed, G acts on the fibres of the map a : X;(13) x X;(13) — X given by
((x1,11), (22, 42)) — (T, X,Y) where

X1To — 21 + 1 X:azg—?wg—l—l Y:(X2—3X+9)y1yg'
Tog— 1T To(xe — 1)’ (x1 — x9)3
Moreover, if we define §: 3 — X(13) x Xo(13) by
(T® — 3T + 1)X — 9T(T — 1) )
T(T - )X + (I° 312+ 1)’

T —

(T, X,Y) > (1, 85) = (

then there is a commutative diagram

X1(13) x X;(13) Xo(13) x Xo(13)

T

by

The surface ¥ parametrises pairs of 13-isogenies together with a choice of iso-
morphism between their kernels. It has infinitely many rational points, since there
is a genus 1 fibration given by (7, X,Y) — T, and it easy to exhibit a fibre (e.g.
T = —2) that is an elliptic curve of positive rank. U

Example A.3. The rational point (T, X,Y) = (17/33,1,126340/33%) on ¥ cor-
responds to the elliptic curves

Ey vV 4y =a%—a? -2z —1,
Ey: y*+y=2a%— 2% — 1424883795842044404862x
— 20702237422068075268318817670099,
with discriminants A(E;) = —3 - 7% and A(FE,) = 3-7%-13'% . 251'3 . 17681. By

construction Fj[13] and FE,[13] have isomorphic semi-simplifications. However F;
and Fs are not 13-congruent, as may be seen from the fact that p = 17681 ramifies

in Q(F,[13])/Q but not in Q(£;[13])/Q.

Remark A.4. The surface 3 also has a genus 2 fibration given by (7, X,Y) — X.
The fibres are twists of X;(13) parametrising 13-isogenies with a given Galois
action on the kernel.
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