EXPLICIT MODULI SPACES FOR
CONGRUENCES OF ELLIPTIC CURVES

TOM FISHER

ABSTRACT. We determine explicit birational models over Q for the modular
surfaces parametrising pairs of N-congruent elliptic curves in all cases where
this surface is an elliptic surface. In each case we also determine the rank of the
Mordell-Weil lattice and the geometric Picard number.

1. INTRODUCTION

Let N > 2 be an integer. A pair of elliptic curves are said to be N-congruent, if
their N-torsion subgroups are isomorphic as Galois modules. Such an isomorphism
raises the Weil pairing to the power ¢ for some € € (Z/NZ)*. In this situation we
say that the N-congruence has power €. Since multiplication-by-m on one of the
elliptic curves (for m an integer coprime to N) changes € to m?e, we are only ever
interested in the class of € € (Z/NZ)* mod squares.

Let Z(N, €) be the surface that parametrises pairs of N-congruent elliptic curves
with power . This is a surface defined over Q. We only consider Z(N,¢e) up to
birational equivalence. Kani and Schanz [14, Theorem 4] classified the geome-
try of these surfaces, explicitly determining the pairs (N, e) for which Z(N,e¢) is
birational over C to either (i) a rational surface, (ii) an elliptic K 3-surface, (iii)
an elliptic surface with Kodaira dimension one (also known as a properly elliptic
surface), or (iv) a surface of general type. In case (i) it is known that the surface is
rational over Q. We show in cases (ii) and (iii) that the surface is birational over
Q to an elliptic surface, determining in each case a Weierstrass equation for the
generic fibre as an elliptic curve over Q(7"). One application of these explicit equa-
tions is that we are then able to use the methods of van Luijk and Kloosterman
to compute the geometric Picard number of each surface.

The problem of computing Z(N,¢) is closely related to that of computing the
modular curves Xg(V,e) parametrising the elliptic curves N-congruent (with
power ) to a given elliptic curve E. Equations for Xg(NV,¢), and the family

of curves it parametrises, have been determined as follows. The cases N < 5 were
treated by Rubin and Silverberg [21], [23], [25] for ¢ = 1, and by Fisher [7], [§]
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for € # 1. The case N = 7 was treated by Halberstadt and Kraus [12] for ¢ = 1,
and by Poonen, Schaefer and Stoll [20] for € # 1. The case N = 8 was treated by
Chen [6], and the cases N = 9 and N = 11 by Fisher [9], [10].

If N is not a prime power, then in principle we obtain equations for X (N, ¢) as a
fibre product of modular curves of smaller level. Equations that are substantially
better than this have been obtained in the case (N,e) = (6,1) by Rubin and
Silverberg [22], and independently Papadopoulos [19], and in the cases (N,e) =
(12,1) and (12,7) by Chen [5, Chapter 7]. Chen also gives equations for Xg(NV,¢)
in the cases (IV,e) = (6,5) and (10,1).

The equations for Xg(N, ) do immediately give us equations for Z(N,¢), but
unfortunately this does not always make it easy to find the elliptic fibrations. The
main purpose of this note is to record the transformations that work in each case.

According to [14, Theorem 4] the surface Z(N, ¢) is rational over C for all N < 5,
and in the cases N = 6,7,8 with e = 1. In each of these cases Z(N,¢) is rational
over Q, as follows (see [5, Chapter 8]) from the results cited above.

In our terminology, it is part of the definition of an elliptic surface that it has
a section. As we describe below, some of the cases in the next two theorems were
already treated in [6], [10], [16].

Theorem 1.1. The surfaces Z(N,¢€) that are birational over C to an elliptic K3-
surface, are in fact birational over Q to an elliptic surface. The generic fibres are
the elliptic curves over Q(T') with the following Weierstrass equations.

7(6,5):  y?+3T(T —2)axy +2(T — 1)(T +2)(T?* — 2)y = 2* — 6(T — 1)(T° — 2)a?,
Z(7,3):  y? =% 4 (AT* + 4T3 — 51T* — 2T — 50)2* + (6T + 25)(52T7% — 4T + 25)z,
Z(8,3): =2~ (3T* — T)a® — AT*(4T* — 15)x + 4T*(53T* 4 81T? + 162),
Z(8,5): y*=a"—2(T* +19)2* — (4T% — 49)(T* — 6T + 25)x,

Z(9,1):  y?+ (672 + 3T + 2)ay + T*(T + 1)(4T% + 9T + 9)y

= 2% — (16T* + 127° + 9T + 6T + 1)2?,
Z(12,1) 1 y* +2(5T% + 9)zy + 96(T? + 3)(T? + 1)*y = 2° + (T° + 3)(11T* + 1)
Theorem 1.2. The surfaces Z(N,e) that are birational over C to a properly

elliptic surface, are in fact birational over Q to an elliptic surface. The generic
fibres are the elliptic curves over Q(T) with the following Weierstrass equations.

Z(8,7): y* =a®+2(4T° — 15T* + 14T% — 1)2* + (T* — 1)*(16T* — 24T* + 1),

7(9,2) 0 ¢+ 34T + T% — 2wy + (T — 1)*(T? — 1)(4T% — 3T — T)y
=2° = 3(T + 1)(T? — 1)(9T* + 2T + 1)2?,
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Z(10,1) : y* — (3T — 2)(6T* — 5T — 2)xy
—4T*(T — 1)*(4T% — 2T — 1)(27T* — 54T% + 16T + 12)y
= 2% + T*T — 1)(27T°% — 54T° + 16T + 12)2?,
Z(10,3) 1 y* + (T% = 8T% — 9T — 8)wy + 2T*(T° — T? — 3T — 3)(7T° + 2T + 3)y
=23 + 23T +2)(T* — T? — 3T — 3)2?,
ZA1L,1) 0 P+ (TP + Tay = 2* — (4T° — 17T* + 3073 — 18T? + 4)a?
+T?(2T — 1)(3T% — 7T + 5)*x.

Although we have not made it formally part of the statements of Theorems 1.1
and 1.2, our methods do also give the moduli interpretations of these surfaces. In
other words, given a point on one of these surfaces (away from a certain finite set
of curves) we can determine the corresponding pair of N-congruent elliptic curves.
The fact that N-congruent elliptic curves over Q have traces of Frobenius (at all
primes of good reduction) that are congruent mod N, then provides some very
useful check on our calculations.

The second part of the following corollary was conjectured by Kani and Schanz
[14, Conjecture 5], and its proof (for ¢ = 1) was completed by Zexiang Chen
in his PhD thesis [5]. For N sufficiently large it is expected (with variants of
this conjecture variously attributed to Frey, Mazur, Kani and Darmon) that the
conclusions of the corollary are false.

Corollary 1.3. Let N <12 and ¢ € (Z/NZ)* withe =1 if N =11 or 12.

(i) There are infinitely many pairs of non-isogenous elliptic curves over Q(T')
that are N -congruent with power €.

(ii) There are infinitely many pairs of non-isogenous elliptic curves over Q that
are N -congruent with power €.

Moreover the j-invariants j; and jy of the elliptic curves in (i) (resp. (ii)) corre-
spond to infinitely many curves (resp. points) in the (ji,j2)-plane.

Proof. In Table 3 we list at least one Q-rational section of infinite order for each
of the elliptic surfaces in Theorems 1.1 and 1.2. This proves the first part. The
second part follows by specialising T'. See the proof of [10, Theorem 1.5] for further
details. The final sentence of the statement is included to guard against various
“cheat” proofs, where new examples are generated from old by taking quadratic
twists, or making substitutions for 7. O

Remark 1.4. If elliptic curves E; and F, are N-congruent with power ¢ = —1,
then the quotient of F; x E, by the graph of the N-congruence is a principally
polarised abelian surface. The surface Z(NN,—1) may then be interpreted as a
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Hilbert modular surface, parametrising degree N morphisms from a genus 2 curve
to an elliptic curve. At the outset of our work, this moduli interpretation had not
been made explicit for any N > 5. Remarkably however, this approach has been
used by A. Kumar [16] to independently obtain results equivalent to the first two
parts of Theorem 1.1 and the first three parts of Theorem 1.2. As far as we are
aware, his methods do not generalise to € # —1.

In Tables 1 and 2 we record some further data concerning the elliptic surfaces in
Theorems 1.1 and 1.2. Since a K3-surface may admit many elliptic fibrations, the
data in Table 1 comes with the caveat that it relates to the elliptic fibration we
happened to find in Theorem 1.1. Since a properly elliptic surface has a unique
elliptic fibration, there is no such caveat for Table 2. We list in each case the
Kodaira symbols of the singular fibres (with bracketing to indicate fibres that are
Galois conjugates), the order of the torsion subgroup over Q(7'), the ranks of the
group of sections over Q(7") and Q(7'), and finally the geometric Picard number
p. The lower bounds on the ranks are immediate from the independent sections
of infinite order listed in Tables 3 and 4. The upper bounds on the ranks, and the
geometric Picard numbers are justified in Section 4.

TABLE 1. The elliptic K3-surfaces in Theorem 1.1

(N,¢) singular fibres [tors| rank/Q rank/Q p

(6,5) (L2, 12), 15, (Is, I3, I5), 1, Ly 1 2 2 20

(7.3) LI, (In, 1), (I, Ib), I3, Ijg 2 2 2 20

8,3)  (I,1), L, (I, 1), (I, L), (I, L), It 1 4 5 20

(8,5) In, Iy, (I, In), (I, In), (I3, I3), I§ 2 2 4 20

9,1)  (I,1,1), I, (I, I, I), I, I, It 1 3 419

(12,1) (I3, 14, 14, I, Iy, Iy, Iy, 1), (I, 1), (T, 1) 1 3 d 19

TABLE 2. The properly elliptic surfaces in Theorem 1.2

(N,¢) singular fibres [tors| rank/Q rank/Q p
(8,7) Iy, (In,In), (I, I2), (Is, I3), Iy, Is, Is 2 1 2 30
(9,2) (I, 1o, 1y), (I3, I3), (Is, I3, I3), Lo, I 1 2 2 29
(10,1) (Io, 1), (In, I), (Iy, Is, Is), Is, Ty, IV 1 1 1 28
(10,3) (11,1, 1), I, (In, L), (I, L), (I3, Iy, ), L, I, g 1 3 4 28
(11,1) (I3, 14, 1y), Lo, (I, 1p, In), I3, Iy, (14, 14), Tho 2 2 2 28
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TABLE 3. Mordell-Weil generators over Q(7)

z-coordinates of independent sections of infinite order
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0, 27* — 4T,

472 + 20T + 25, 6T + 25,

—7, =T?+9, —4T? — 6T, (47° — 2T* + 1073 + 612 + 18T /(T — 1),
—4T? + 49, 273 4+ 197? + 60T + 63,

0, 4T+ 273 — 272, 4T* + 4T3 + 972 + 18T + 9,

0, —127* — 24T?% — 12, 476 4 12T* — 4T? — 12,

AT + 4T° — 9T* — 1073 + 472 + 6T + 1,

0, 27° — 813 + 4T? + 6T — 4,

0, 275 — 4T* — 4T3 + 6T, 415 — 2T* — 1473 — 1872 — 6T,
T* +4T? + 4, 3T? — 7T +5.

TABLE 4. Additional Mordell-Weil generators over Q(7)
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2T* — 5T% — 9, (2T + 5T* 4 2072 + 9)v/=2),

273 4 T2 + 18T — 35, (1273 — 612 — 108T + 210)+/—3),
1672 — 196, (8T* — 346712 + 3038)+/—1),

—(19/3)T* — 1573 — 972, ...),

—127% —407% — 12, ...),

—16T* — 64T% — 48, ...),

4T°% — 20T° — 39T* — 3672 — 14T% + 1, ...),

(
(
(
(
(
(
(
(—7T° — 237° — 30T* — 15T% — 972, ... ).

We organise the proofs of Theorems 1.1 and 1.2 as follows. The cases N = 8 and
N =9 were already treated in [6], [10], by starting from equations for Xg(N,¢).
In Section 2 we use a similar approach to treat the cases (N,e) = (7,3), (11,1)
and (12,1). Then in Section 3 we treat the cases (N,¢) = (6,5), (10,1) and (10, 3)
by exhibiting Z(N,¢) as a degree 3 cover of a K3-surface.

The calculations described in this paper were carried out using Magma [1].
Accompanying Magma files are available from the author’s website. We assume
that the reader is familiar with the standard techniques for putting an elliptic
curve in Weierstrass form, as described in [2, §8], or as implemented in Magma.
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2. PROOFS VIA EQUATIONS FOR Xpg(N, ¢)

We prove Theorems 1.1 and 1.2 in the cases (N,¢) = (7,3), (11,1) and (12, 1).
The case (N,e) = (7,3) was treated in [5, Section 8.2], but as this has not been
published before, we include the details for completeness.

Case (N,e) = (7,3). Let E be the elliptic curve y* = 2%+ az + b. The following
equation for Xg(7,3), as a quartic curve in P?, was computed by Poonen, Schaefer
and Stoll [20, Section 7.2], building on work of Halberstadt and Kraus [12].

F(a,b;x,y,2) = —a*s* + 2abx’y — 1202z — 6(a® + 6b%)2y* + 6ax?2?
+ 2a*bry® — 12abry®z + 18bayz* + (3a* + 19ab®)y*
— 2(4a® + 210%)y32 4 6a*y* 2% — Sayz® + 32*.
Replacing F by a quadratic twist does not change the isomorphism class of
Xg(7,3). This is borne out by the identity
F(Na, N3y Az, y, \22) = NF(a,b; 2,7y, 2).
The surface Z(7,3) is the quotient of {F = 0} C A? x P? by this G,,-action.
We have F(y, z1y;22,T,y) = y*(cy® + hy — f) where
c=(T*+1)(3T* - 8T + 3),
h=T*(19T — 42)x} + 2T(T — 3)*z129 — 6(T% — 1)23,
f =36T2%02 — 2(T — 6)x,25 + 5.
Therefore Z(7,3) is birational to the total space for the genus one curve over
Q(T) with equation Y2 = h% + 4cf. This is a double cover of P! with a rational
point above (x; : x9) = (1 : 0). Putting this elliptic curve in Weierstrass form,

and replacing T by (67 — 3)/(4T + 4), gives the equation in the statement of
Theorem 1.1.

Case (N,e) = (11,1). Let E be the elliptic curve y*> = 2® + ax + b. Equations
for X(11,1) as a curve in P* were computed in [9, Theorem 1.2]. These equations
are the 4 x 4 minors of the 5 x 5 Hessian matrix of the cubic form

F(a,b;v,w,x,y,2) = v° + av’z — 2avz? + davzy — 6bvrz + avy® + 6bvyz
2w + aw’z — dawr? — 12bwzz + d*wz?® — 202 + 3bx’y

+ 2a*2%z + 6bxy® + dabxz® + by® — a’y*z + abyz® + 20727

+ a’vz

Replacing F by a quadratic twist does not change the isomorphism class of
Xg(11,1). This is borne out by the identity

F(Xa, X*b; \2v, Nw, Az, Ny, 2) = A\°F(a, b;v,w, 1y, 2).
We may describe Z(11,1) as the quotient of a 3-fold in A% x P* by this G,,,-action.
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We start by using the discriminant condition 4a® + 270 # 0 to simplify the
equations for Xg(11,1). The polynomials
Fy = vz + 2wz + 2% — 2y — o,
Fy = axz + b2* — vx + vy — 2wz,
Fy = a®2* 4+ 2awz — dazx® — 12bzz — 3w?,
Fy = 2% + 2avz — 2a2® + dazy + ay® — 6bxz + 6byz + 3v°,
Fy = 2a®yz — abz? — dave — 2avy — 6bvz — 3bz? — 12bzy — 3by?,
are linear combinations of the derivatives of F', where the matrix implicit in taking
these linear combinations is invertible if 4a® + 27b* # 0. Now Xg(11,1) is defined
by the 4 x 4 minors of the 5 x 5 Jacobian matrix (M say) of Fi,..., Fs.
We make the substitutions
a = (4U + 3x3)zy — 373,
b= 372(1'1 + 373)1'4 — <4U + 3:['3)364335 + 21'?),
('U, w,r,y, Z) = (.172,’174 + TyTs + SCE, XT3Tq — SL’E, X5, T4, 1)
We have 4a® + 270> = x4h for some polynomial h. We add x5 times the first

row of M to the second row. We then divide all but the first row by x4. Let
I C Q[U, x1, x9, x3, x4, x5) be the ideal generated by the 4 x 4 minors of M, and

J={f €QU,x1, 22,23, 24, 35| : x2hf € I}.

Using the Grébner basis machinery in Magma we find that J N Q[U, x1, x, 23, 4]
is generated by 3 homogeneous polynomials of degree 4. These define a surface in
P* of degree 12. By the substitution

4221 — w9 + 23)U + (2122 — 23 + 2324)

T —
2(2x4 — xo)U + 2(x1709 — 23 + x324)

this surface is birational to the surface {Q; = Q2 = 0} in A! x P? where

Ql = 4(T — 2)1’133'2 + 81’11’3 + (T — 2)21'%
+4(T — 2)ayw3 + 2(T? — T + 1)amy + da; — 4T 7374,
Qo = 823 + 163113 — 4(2T — V) wyzy — T(T — 2)a5 — T w013
—2(T* = T + Dagzy — 2(T — 4)x3 — 2(T* + 4T — 1)z324.
These same equations define a genus one curve in P? defined over Q(7'), with a

rational point at (z1 : x2: 23 :24) = (0:0:0:1). Putting this elliptic curve in
Weierstrass form gives the equation in the statement of Theorem 1.2.



8 TOM FISHER

Case (N,e) = (12,1). Let E be the elliptic curve y? = z°+ax+b. Equations for
Xg(12,1) as a curve in P° were computed in [5, Theorem 1.7.10]. These equations
are FO = Fl = F2 = Fg = 0 where

Fy=—X?Z4+aXY?+6bY? — 6aY?Z — 122°,
Fy = X? +12X7 4+ 362% — 2ugug — u? + aus,
Fy = 4aXY + 36bY?% — 24aY Z — 2uguy + 2auqus + bu%,
Fy =8uXZ — 4a*Y? — ug + 2buqus.
These polynomials satisfy
Fi(N2a, N*b; AX, Y, AZ, Nug, Mut, ug) = AN™ Fy(a,b; X, Y, Z, ug, uy, up)

where (mq, mq, ma, m3) = (3,2,3,4). Again, it is our aim to quotient out by this
Gp-action. We do this by setting (X + 62)Y = u3. Specifically, we substitute
(XY, Z, up, uy, up) = (22 — 6y, 1,y, vz, wz,z) and then solve for a and b so that
the first two equations are satisfied. In the remaining two equations we substitute

T+1
v=2(w=2y)y+ 7@y +1) = (w+2y)").
The resultant with respect to w is f(T)x'y%g(z, y)*h(x,y) where f(T) is a rational
function in T, g(x,y) = 25(y + 1) — 9% (2% + 4)?,

h(z,y) = (T + 1)*2%y* + (T + 2)(T? + 3)*2*
— AT — 1)(T + 3)%xy + A(T + 3)*y* + 12T(T + 1)*(T + 3)*

and g = (144(T + 1)y + (T + 3)*((T — 3)x®> + 12(T + 1)))/(8(T + 3)x). Therefore
Z(12,1) is birational to the total space for the genus one curve C' = {h = 0} in
A? defined over Q(T). Replacing z by 2(T + 3)/(T?% + 3)x, and completing the
square in y shows that C' has equation

(1) Y%= —(T+2)x* — (4T° + 5T7% + 6T + 9)a*> — 3T(T* + 3)%.

This gives a genus one fibration on Z(12,1) defined over Q, but without a Q-
rational section. Indeed the fibres with 7" > 0 have no real points.

We now find another genus one fibration that does have a QQ-rational section.
Let F(x1,22,x3) be the unique homogeneous polynomial of degree 6 with the
property that F'(xz,T,1) is the right hand side of (1). Then F is the discriminant
of the following quadratic in 7T'.

viwy + (T? + 2)aiws + 2T 275 — 2T w3013 + T205 + 30523 + 3T w025 + 9235 = 0

This same equation defines a genus one curve in P? defined over Q(7T'), with a
rational point at (x; : o : z3) = (1 : 0 : 0). Putting this elliptic curve in
Weierstrass form gives the equation in the statement of Theorem 1.1.
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3. DEGREE 3 COVERS OF K3-SURFACES

We prove Theorems 1.1 and 1.2 in the cases (N, ¢) = (6,5), (10,1) and (10, 3).
In the first of these cases, Chen’s equations for Xg(6,5) already give a genus one
fibration on Z(6,5), but one without a section. The content of Theorem 1.1 in
this case is that we can find another genus one fibration that does have a section.

For N an odd integer, let Z*(N,¢) be the double cover of Z(N,¢) that param-
etrises pairs of elliptic curves whose ratio of discriminants is a square.

Theorem 3.1. If (N,e) = (3,2), (5,1) or (5,2) then Z*(N,¢) is a double cover
of P?, ramified over the union of two cuspidal cubics, with equation

(2) y2 = F+(u,v,w)F_(u,v,w)

where

7*3,2) 1 Fp=u(u+3v+w)?+4°

Z*(5,1) : Fy = u(u® — 11luv — v*) + w?*(12u + v) £ 2w(3u® — 4uv + 4w?),

7%(5,2) : Fy=u*(11v + 8w) + w?(8u — v + 4w) £ 2u(2v — w)(4u — v + 4w).

Proof. Let E be the elliptic curve y?> = 23 +az +b. We put A = —4a® — 27b%, and
define polynomials

f(z) =2+ azx +b,

g(r) = 3ar* + 18bz® — 6a*2? — 6abx — a® — 9b?,

h(x) = 3ax® + 9z — a?,

j(x) = 27bx® — 18ax* — 27abx — 2a® — 27b%.
If we assign the variables x, a,b weights 1, 2, 3, then each of these polynomials is
homogeneous. We note that j2 = —4h® — 27TAf2.

Case (N,e) = (3,2). The following equations for the family of curves parametrised
by Xp(3,2) are taken from [7, Section 13]. Starting from the Klein form®

D(&,n) = —27a&* — 54b&3n — 18a¢%n? — bdabén® + (a® — 270%)n?,
we define

1 | D D 1| D D
A =q5| 5T and BlEm=go| ¢
Dn£ Dnn A£ An

)

where the subscripts denote partial derivatives. These forms satisfy the syzygy
(3) —4A% — 27B? = 16(4a® + 27b%)2D?.

'We obtain D from ®(&,7) in [7, Section 9] by putting ¢4 = —48a, ¢g = —864b, multiplying
€ by 12, and dividing through by 21233,
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The family of elliptic curves 3-congruent to £ with power ¢ = 2 is given by

y* =2+ A&, )z + B(E,n).

We dehomogenise by putting (£,7) = (z,1). Then D = f3 —27f% = j — 3f,h
where f, = 32? +a. The quantities (u,v,7,s) = (D, f.h, h3 3°Af?) are related by
(4) (4r + (u+ 3v)*)(ru — v*) = rs.

As we verify in Remark 3.2 below, this is an equation for Z(3,2) in P(1,1,2,3)
where the coordinates u,v,r, s have weights 1,1,2,3. We see by (3) that, up to
squared factors, the ratio of discriminants is s/u. We substitute s = uw? in (4) to

give a quadratic in r whose discriminant is the polynomial F', F' in the statement
of the theorem.

Case (N,e) = (5,1). The following equations for the family of curves parametrised
by Xp(5,1) are taken from [7, Section 13]. Starting from the Klein form?

D(X, 1) = A2+ 22a2"0p% + 22000\° 13 — 1650\t — 528abA” 11
—220(a® 4+ 12b*) X8 + 264a*bX° 1" — 165a(5a® + 320%)\* i
— 880b(3a® + 200*) N\ 1i” + 22a%(25a” + 168b%)\*p'”
+20(19a*b + 128ab®) A\p't + (125a° + 1792ab* + 6400b%) 12,
we define
1 | Dax Dy 1 | Dx Dy,

- o and B\ )=
5808 Dy Dy,

A\, p
(A ) 360 | 4, A,

)

where the subscripts denote partial derivatives. These forms satisfy the syzygy
(5) 4A3 +27B% = (4a® + 27*) D°.
The family of elliptic curves 5-congruent to E with power ¢ = 1 is given by
y* =2 + A\ p)x + B\, ).
We dehomogenise by putting (A, 1) = (z,1). Then
D =4kf =3(f*+9)" +32A(f* +9),

where k(z) = f2+ fj +4Af +3g(xf, — 2f) = 2% + 12a2" + 84ba® + . ..
The quantities (t,u,v,r,s) = (4f,2(f? + g), 16A, 4k, D) are related by

r? + st? = u(u® — 1luw — v*) + (12u +v)s,
rt = 3u® — 4uv + 4s.

(6)

2We obtain D from D(), i) in [7, Section 8] by putting ¢4 = —48a, ¢g = —864b, multiplying
A by 12, and dividing through by 224312
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These are equations for Z(5,1) in P(1,2,2,3,4) where the coordinates ¢, u,v,r, s
have weights 1,2,2,3,4. We see by (5) that, up to squared factors, the ratio of
discriminants is s. Putting s = w? we obtain from (6) the equation
(r? — st*)? = (r* + st*)? — 4s(rt)? = Fy (u,v,w)F_(u, v, w)
where F are the polynomials in the statement of the theorem.

Case (N,e) = (5,2). The following equations for the family of curves parametrised
by Xg(5,2) are taken from [8, Theorem 5.8]. Starting from the Klein form®

D(\, p) = (125a® — 4320*) A" + 2430a*bA" 1 — 22a(25a* — 378b%) A0
— 1106(11a® — 108b*)\p® — 165a°(5a* — 27b*)A3u* — 132ab(53a” — 1896*)\"1i°
+220(a® — 123ab* + 816")A\°u°® + 132ab(19a® — 2976*)N\° 1"
—165(a” — 26a*b* + 189ab")A\*i® — 110(3a°b — 34a’b® + 1356°)\*°
—22a%(a® — 30%)(a® 4 276*) N2 "% — 10ab(5a® + 82ab* + 189b*) \pu*?
+ (a — a®b* — 181a’b* — 6756°)u'?,
we define

1 | Dax Di —1 | Dx D,

= — , and BA\p)=-— ,
1452 D,x Dy,

A\ p
(A1) 180 | A4, A,

where the subscripts denote partial derivatives. These forms satisfy the syzygy
(7) —4A% - 27B? = 16(4a® + 27b%)*D".
The family of elliptic curves 5-congruent to F with power € = 2 is given by
y? = 2® + A\, p)x + B\, ).
We dehomogenise by putting (A, 1) = (z,1). Then

(8) D =16Af" = g° + 4(2¢° — ¢°j — 4Af?g).
The quantities (r,s,v,w) = (Af* Af2g, g3, 29° — g% — 4Af2g) are related by
(9) r(4s — 20+ w)? + 27rsv + sw? — s*(v — 4w) = 0.

This is an equation for Z(5,2) as a cubic surface in P2. We see from (7) and (8)
that, up to squared factors, the ratio of discriminants is r(16r — v + 4w). Putting
r(16r — v + 4w) = (4r — u)?, where u is a new variable, and using this equation
to eliminate r from (9), we obtain a quadratic in s whose discriminant is the
polynomial F, F_ in the statement of the theorem. O

3We obtain D from D(), i) in [8, Section 5] by putting ¢4 = —48a, ¢g = —864b, multiplying
A by 12, and dividing through by 236315,
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Remark 3.2. Let (N,e) = (3,2), (5,1) or (5,2). We saw in the proof of The-
orem 3.1 that one model for Z(N,¢) is the weighted projective plane P(1,2,3)
where the co-ordinates x,a,b have weights 1,2,3. We mapped this to another
model for Z(N,¢) defined by (4), (6) or (9). The inverse maps are as follows.

(2 =1 +72°
(3,2) a = —3r(r+uv + 20%),
L b =7(u+ 30)(ru +v*) + 2r*(r + 30?),
(= 32u — v + 5t
a = —3(8u — v)(32u — v) — 288rt + 30(28u + v)t* — 75t

(5:1) b= —2(32u — v)*(4u + v) — 144(32u — v)rt + 6(32u — v)(88u — 5v)t*
\ + 10087t® — 150(28u + v)t* + 25015,
(z=A4drs+4rv+rw — s°,

65.2) a = 3(8rs® + 4rs*v + 6rs’w + rsw® — s*),

b =1?s(165> — 8s*v — 245°w — 40svw — 155w* + dvw* — 2w?)

+ rs®(24s” + 8sv + 34sw + Tw?) — 2s°.

\

Remark 3.3. There are two naturally defined involutions on the K3-surfaces in
Theorem 3.1. The first switches the sign of y, and corresponds to swapping over the
pair of N-congruent elliptic curves. The second is given on Z*(3,1) and Z*(5,1)
by switching the sign of w, and on Z*(5,2) by (u,v,w,y) — (u,v,w, (u/u)?y)
where u = u(v — 4w)/(8u — (v — 4w)). This second involution switches the choice
of square root for the ratio of discriminants. The two involutions commute, and
the second swaps over the curves F'y =0 and F_ = 0.

Remark 3.4. For a suitable parametrisation of the cuspidal cubic F, = 0, we
obtain a family of elliptic curves with j-invariant

(3,1): § =27(T —3)*(T +1)*/T?,
(5,1) : j=(T+5)*T*—5)*T*+5T +10)*/(T? + 5T +5)°,
(5,2) : j=125T (2T + 1)*(2T* + 7T + 8)*/(T* + T — 1)°.

These correspond to X (3), XF(5) and X (5), where X (N) and X (N) are
the modular curves associated to the normaliser of a split or non-split Cartan
subgroup of level N. We may compute X"(N) as the quotient of Xy(N?) by the
Fricke involution, whereas the formula for X (5) is taken from [4, Corollary 5.3].

The use of these modular curves to construct pairs of N-congruent elliptic curves
is described further in [11].
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Let N be an odd integer and let € € (Z/2NZ)*. Then Xg(2N,e) — Xg(N,¢€) is
geometrically a Galois covering with Galois group PSLy(Z/27) = Ss. Since elliptic
curves which are 2-congruent have ratio of discriminants a square, it follows that
Z(2N,e) — Z*(N,¢) is a degree 3 cover. In the cases (2N, ¢) = (6,5), (10,1) and
(10,3) the surface Z(2N,¢) has an elliptic fibration. The pushfoward of a fibre
gives a divisor class D on the K3-surface Z*(N, ¢) with D? = 2. Using this divisor
class D we may write Z*(N,¢) as a double cover of P2. We have arranged (with
the benefit of hindsight) that the equations in Theorem 3.1 write Z*(N,¢) as a
double cover of P? in exactly this way.

The equations for Z(2N,¢) in Theorems 1.1 and 1.2 may be obtained from the
equations for Z*(N,¢e) in Theorem 3.1 as follows. The tangent line to a general
point on the cuspidal cubic F'y (u,v,w) = 0 has equation:

(10) (2N, ¢) = (6,5) (T° —1u+3(T — 1)v—w =0,
(11) (2N, ) = (10,1) (T —2)u —T(T — 1)*v+2(T — 1)w = 0,
(12) (2N, ¢) = (10, 3) T3u — (T + 1)v — T?w = 0.

We parametrise this line, and substitute into the right hand side of the equation
v? = F,(u,v,w)F_(u,v,w). After cancelling a squared factor (which arises since
we chose a tangent line) the right hand side is a binary quartic with a linear factor.
We now have the equation for a genus one curve over Q(7") with a rational point.
Putting this elliptic curve in Weierstrass form gives the equations for Z(6,5),
Z(10,1) and Z(10,3) in Theorems 1.1 and 1.2.

It remains to show that these degree 3 covers of Z*(IV, €) are the ones we wanted.
We use the following lemma.

Lemma 3.5. Let K be a field of characteristic not 2 or 3. Elliptic curves Ey and
Ey over K with j-invariants j; and ja, with ji, jo & {0,1728}, are 2-congruent if
and only if there exist m,x € K satisfying (j; — 1728)(j, — 1728) = m? and

2% — 3j1jox — 251j2(m + 1728) = 0.

Proof. This follows from the formulae in [23] or 7, Sections 8 and 13| by a generic
calculation. 4

We illustrate the use of Lemma 3.5 in the case (2N,e) = (10,3), the other
cases being similar. Above each point (u : v : w) € P? there are a pair of points
on Z*(5,2) possibly defined over a quadratic extension. These points correspond
to a pair of elliptic curves, say with j-invariants j; and j5. A calculation using
the formulae in Remark 3.2 shows that, for m a suitable choice of square root of
(J1 — 1728)(j2 — 1728), we have

j1j2 = GG(ua v, UJ)H(U, v, w)2
J1j2(m + 1728) = Gy(u, v,w)H(u,v,w)3
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where
Gs(u,v,w) = 640uv* — 768u*vw — 72u*v® — 240uv*w + . ..
Go(u,v,w) = 6912u"v? — 1376uv® — 14976u’v*w + . ..

are irreducible homogeneous polynomials of degrees 6 and 9, and H € Q(u, v, w)
is a rational function. Finally we claim that the polynomials

(13) X3 —3Gg(u, v, w) X — 2Gy(u, v, w) = 0,
arising from Lemma 3.5, and
(14) ul? — wT? —vT —v =0,

appearing in (12), define the same cubic extension. Indeed we find by computer
algebra that if (14) has root 7y then (13) has root

Xo = 3u*(8u — 3v — 4w) Ty + 12u(2uv — 4uw + vw) Ty

— 16u%v + 6uv® + Suw? — vw? + 4w?®.

4. COMPUTING THE PICARD NUMBERS

Let E/Q(T) be one of the elliptic curves in Theorems 1.1 and 1.2. We write
X — P! for the minimal fibred surface with generic fibre E. The reduction of £
mod p is an elliptic curve E,/F,(T), and the reduction of X mod p is a surface
X,/F,. We will always take p to be a prime of good reduction.

Let X = X xg Q and X, = X, X, F,. The Shioda-Tate formula [24, Corol-
lary 5.3] tells us that

(15) rank E(Q(T)) + 2+ Y ,em @ (e — 1) = rank NS(X),
and
(16) rank B, (F,(T)) + 2 + > _iepi(F,) (M — 1) = rank NS(X,),

where m; is the number of irreducible components in the fibre above t. We write
p and p, for the numbers on the right of (15) and (16). These are the geometric
Picard numbers of X and X,,. The sections exhibited in Tables 3 and 4 give a
lower bound for rank E(Q(T')) and hence by (15) a lower bound for p. These lower
bounds are exactly the values recorded in Tables 1 and 2.

Let X — P! be a minimal elliptic surface with non-constant j-invariant, and let

m = x(Ox). This may be computed from the fact that sum of the Euler numbers
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of the singular fibres is 12m. By [17, Lemma IV.1.1] the Hodge diamond of X is

00 1
B0 101 0 0
h20 htt ho2 m—1 10m m—1
B2l L2 0 0
h?? 1

The surfaces in Theorem 1.1 have m = 2 and those in Theorem 1.2 have m = 3.
To tie in with [14, Theorem 4], we note that p, = h*® = m — 1. By the Lefschetz
theorem on (1,1)-classes we have p < h'!' = 10m. This already determines p
in all cases with N < 8. It remains for us to improve this upper bound by 1
in the cases (N,e) = (9,1),(12,1),(9,2), and to improve it by 2 in the cases
(N,e) = (10,1),(10,3), (11,1).

The main tool we wish to use (see [26, Proposition 6.2]) is that there is an
injective map NS(X) — NS(X,) that preserves the intersection pairing.

Let f,(x) be the characteristic polynomial of Frobenius acting on HZ (X ,, Q,(1)),
normalised so that f,(0) = 1. This is a polynomial of degree by = 12m — 2, in-
dependent of the choice of prime ¢ # p. By the Weil conjectures it satisfies the
functional equation f,(z) = 42" f,(1/z). The polynomials f,(z) may be com-
puted from the numbers n, = |X,(F, )| using the Lefschetz trace formula. See
for example [27, Section 3|, where f, is denoted ﬁ. We used both the functional
equation and the Magma function FrobeniusActionOnTrivialLattice to limit
how many n, we had to compute. The polynomials f,(x) for two carefully chosen
primes of good reduction are recorded in Table 5.

Let A, € Q*/(Q*)? be the absolute value of the determinant of the intersection

pairing on NS(X,). It may be computed using either of the following two lemmas.

Lemma 4.1. Write f,(z) = g,(z)h,(x) where every root of g, is a root of unity,
and no root of h, is a root of unity. Then p, < degg, and in the case of equality
we have A, = h,(1)h,(—1) mod (Q*)%.

Proof. The first part is described for example in [27]. The Tate conjecture predicts
that this inequality is always an equality, and this has been proved in many cases.
See [13, Section 17.3] for the history of this problem and further references. The
formula for A, is a small refinement of a result of Kloosterman, that in turn
depends on known cases of the Artin-Tate conjecture.

Let Fi.(z) = [[(1—p"alfz) where f,(x) = [[(1—a;z). The result of Kloosterman
[15, Proposition 4.7], is that if k is an even integer with af = 1 for all a; which
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TABLE 5
(N,¢) Characteristic polynomial of Frobenius
(9,1)  fs(z)=(z =)@ +1)2@P+z+1)(@* + Lz +1)
fo(@) = (x = D)2 + 1)*(2? + Pz + 1)
(12,1) fs(x) = (& = 1)"%(z + 1)*(2? + 2 + 1)

fu(z) = (z = D)2(z + 1)%@* + o + 1)

9,2)  fo(z)=(z— D@+ 12(2?+ 2+ 1)} (2 + %:p +1)(2? + %x +1)
fis(@) = (2 = D) (@ + 2+ 1% + o+ 1) (2 + B +1)

(10,1) fr(z) = (z — D> (z + 1D2(2? + 2 + 1)} (2 + %x +1)2

fir(z) = —(z = 1)®P(z +1)°@@* — 2o+ 1)(2? + Ea +1)

(10,3) fa(z) = (z — 1)*(x + 1)2(2? + = + 1)?(2* + 2o + 1)(2? + Bx + 1)
far(z) = (x — 1)%(x + 1)*(2? + %x +1)?

(11,1)  fos(z) = (z — 1)®(z + 1)%(2® + P + 1)(a® + 2z + 1)
fss3(z) = (x — )22 + 2 + 1) (2 + %x + 1) (2% + %x +1)

are roots of unity, then

Fiy(p™*)
o ST

Let Hi(z) = [[(1 — p*BFx) where h,(z) = [[(1 — Biz). Then Fy(z) = (1 —
pFx)P Hy(x), and (17) becomes

A, = Hi(p™*) = []08F = 1) =, Oh (1) T T ] ®a(8)

i dlk i
where @, is the dth cyclotomic polynomial. For d > 2 we claim that [[, ®4(5;) is

a rational square. By the functional equation we have

51,...,52771:717”-7’7771;/71_17""7;11‘

Since d > 2 we have ®4(z) = 2D d4(1/2) where ¢(d) is even, say ¢(d) = 2n.
Therefore v, "®4(v;) = 7' ®4(y; ). It follows that [[1~, v; "®a(y:) € Q and

2m
Hq)d(ﬁz Hﬂ nq)d 61 —(H71n®d ’Yz) . 4
=1

Lemma 4.2. Suppose that Py, ... P, generate a finite index subgroup of E,(F,(T)).
Then we have A, = ([, ¢t) Reg(Pr, ..., P,) mod (Q*)* where the product is over
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t e P! (Fp) and c; is the number of irreducible components of multiplicity one in
the fibre ofyp above t.

Proof. See [24, Theorem 8.7 and (7.8)]. O

In the calculations below, we sometimes needed to find explicit generators for
E,(F,(T)). These were found by searching on 2-coverings, computed using 2-
descent in Magma, as implemented in the function field case by S. Donnelly.

If p = p, = p, for distinct primes p and ¢, then we have A, = A, mod (Q*).
As observed by van Luijk [27], this can sometimes be used to improve our upper
bound on p by 1. This is particularly useful since (assuming the Tate conjecture)
pp is always even. Indeed p, = degg, = by — degh,, and degh, is even by the
functional equation. See [15] and [18] for further examples.

Case (N,e) = (9,1). We already know that p = 19 or 20. Since the Tate
conjecture has been proved for elliptic K3-surfaces, equality holds in Lemma 4.1.
By Lemma 4.1 we compute As = 3-17 and A; = 2 - 3. Since these are different,
it follows by the method of van Luijk that p = 19.

Case (N,e) = (12,1). This is identical to the previous example, except that
now As =1 and Ay = 7.

Case (N,e) = (9,2). We already know that p = 29 or 30. Let p = 7 or 13.

By Lemma 4.1 and (16) we have rank E,(F,(T)) < 3. We prove equality by
exhibiting three independent points of infinite order in E,(F,(7")). In addition to
the reductions of the two points in Table 3, we have when p = 7 the point

(5T° 4 6T* + 4T% + 61,17 + 3T° 4 6T° + 277 + 27)),
and when p = 13 the point
(ATC+8T° + 3T+ 7T + 5T + 10T +2, 10T +4T° +5T° +5T° +12T°% +4T* +12).

Using either Lemma 4.1 or Lemma 4.2 we find that A; = 2 and A3 = 17. Since
these are different, it follows that p = 29.

In the cases (NV,e) = (10,1),(10,3),(11,1) we aim to show that p = 28. We
were unable? to find a prime p with p, = 28, despite computing the polynomials
fp(z) for all p < 150. This prompted us to try a variant of van Luijk’s method,
were we use the intersection pairing to improve our upper bound for p by 2.

Case (N,e) = (10,1). We already know that p = 28, 29 or 30. In addition to
the point P; = (0,0) in Table 3 we have when p = 7 the points

Q1 = (6T 4 6T* 4+ 4T3 + 5T2 4T° + 6T° + 617 + T° + T° + 3T*),
Qo = (T° + 5T° + 6T + 4T3 + 5T2,2T° 4 6T + 277 + T° + 3T*),

4There is presumably a systematic reason for this, similar to that described in [3].
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and when p = 17 the points

Ry = (16T + 13T° 4 6T* 4 4T + 1272 4T° 4 2T + 5T7 + 8T° + 15T*),
Ry = ((6T®% 4+ 8T7 + 2T + 5T° + 8T* + 4T +T?) /(T + 6)*, ...).
Using either Lemma 4.1 or Lemma 4.2 we find that A7 = 1 and A7 = 2-59. Since
these are different, it follows that p < 29.
Reducing mod 7 or 17 does not change the Kodaira symbols of the singular
fibres. So by Lemma 4.2 it will be enough for us to work with the height pairing

on the Mordell-Weil group, rather than the intersection pairing on the full Néron-
Severi group. We compute

Reg(Pr, uQ + vQ2) = = (Tu® — 12uv + 18v%),
Reg(Py, 2Ry + yRy) = £ (1392% + T6xy + 316y7).

450

If p = 29 then the equation 2 (7u® — 12uv + 18v?) = 55(13922 + T6xy + 316y?)

has a solution in rational numbers u, v, x,y not all zero. However this quadratic
form of rank 4 is not locally soluble over the 3-adics. Therefore p = 28.

Case (N,e) = (10,3). We already know that p = 28, 29 or 30. Let p = 31 or 37.
Since p = 1 (mod 3) the reductions of the points in Tables 3 and 4 give us points
Py, Py, Ps, Py € E,(F,(T)). In addition when p = 31 we have

Q1 = (20T* + 1372 4 30T + 6T, 5T° + 4T* + 29T° + 4T* + 5T)),

Qo = (TT° +127° + 9T* +197% + 13T + 4) /(T + 29)*, ... ),

and when p = 37 we have

Ry = (36T* 4 11T° 4 472, 26T° + 34T* + 273 + 15T%),

Ry = (6T* + 5T° + T* + 26T + 32,297° + 35T* + 2T° + 1577 4 19T + 10).
Using either Lemma 4.1 or Lemma 4.2 we find that A3; = 2 -5 and Az; = 1.
Therefore p < 29.

As in the previous example, reducing mod 31 or 37 does not change the singular
fibres. We compute

Reg(Py, Py, Ps, Py, u@Qq +vQs) = &(25u* — duv + 520%),
Reg(Py, Py, Py, Py, xRy + yRy) = §(52° + 8y°).
If p = 29 then the equation 2 (25u? — 4uv 4 52v%) = (522 + 8y?) has a solution in

rational numbers u, v, x, y not all zero. However this quadratic form is not locally
soluble over the 3-adics. Therefore p = 28.
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Case (N,e) = (11,1). We already know that p = 28, 29 or 30. Let P, and P; be
the reductions mod p of the points in Table 3. In addition, when p = 23 we have
Q1 = (16T% + 5T 4 5,21T° 4+ 15T% + 3T + 18),
Qo = (18T° + 5T° + 5T* + 2273 + 97%) /(T + 16)?, ...),
and when p = 53 we have
Ry = (287° 4+ T* 4 23T° + 40T* + 15T, ...),
Ry = (49T° 4 44T° + 38T*) /(T* + 42T + 5), ... ).

Using either Lemma 4.1 or Lemma 4.2 we find that Ass = 2-7-11- 13 and
Asz = 11 - 131. Therefore p < 29.
Again, reducing mod 23 or 53 does not change the singular fibres. We compute

Reg(P1, Py, uQ, 4+ vQs) = 1 (57u* — 46uv + 1370?),

180
Reg(Py, Py, xRy + yRy) = 55=(5412” — 228zy + 1196y°).
If p = 29 then the equation 755 (57u® —46uv+1370v?) = 5= (5412 —228zy+1196y?)

has a solution in rational numbers u, v, z,y not all zero. However this quadratic
form is not locally soluble over the 11-adics. Therefore p = 28.
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