ON BINARY QUARTICS AND THE CASSELS-TATE PAIRING
TOM FISHER

ABSTRACT. We use the invariant theory of binary quartics to give a new for-
mula for the Cassels-Tate pairing on the 2-Selmer group of an elliptic curve.
Unlike earlier methods, our formula does not require us to solve any conics. An
important role in our construction is played by a certain K3 surface defined by
a (2,2,2)-form.

1. INTRODUCTION

Let E be an elliptic curve over a number field K. The Mordell-Weil theorem
tells us that the abelian group F(K) is finitely generated, but there is no known
algorithm guaranteed to compute its rank. Instead, for each integer n > 2 there
is an exact sequence of abelian groups

0— E(K)/nE(K) = S™(E/K) — III(E/K)[n] — 0.

The n-Selmer group S™(E/K) is finite and effectively computable. Computing
S (E/K) gives an upper bound for the rank of E(K), but this will be sharp only
if the n-torsion of the Tate-Shafarevich group II(E/K) is trivial.

Cassels [4] showed that there is an alternating pairing

( Der: S"UE/K) x S™(E/K) = Q/Z

whose kernel is the image of S (”2)(E /K). By computing this pairing, our upper
bound for the rank of E(K) improves from that obtained by n-descent to that
obtained by n2-descent. In view of the generalisation to abelian varieties, due to
Tate, the pairing is known as the Cassels-Tate pairing.

Cassels [6] also described a method for computing the pairing in the case n = 2.
His method involves solving conics over the field of definition of each 2-torsion
point on E. More recently, Donnelly [10] found a method that only involves
solving conics over K, and implemented this in Magma [3]. In this article we use
the invariant theory of binary quartics to give a self-contained account of a version
of his method that is relatively simple to implement.

Since this article was first written, Jiali Yan has written her PhD thesis [18],
extending some of these ideas to Jacobians of genus 2 curves, and Bill Allombert
has implemented our method for computing the pairing as part of the function
ellrank in pari/gp [15]. I thank them both, and also Steve Donnelly and John
Cremona, for useful discussions.
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2. BINARY QUARTICS

A binary quartic over a field K is a homogeneous polynomial g € K|z, z| of
degree 4. Binary quartics ¢g; and g are K -equivalent if
g2(z,2) = Mgy (ax + vz, B + 62)

for some A\, o, 5,7, € K with AM(ad — ) # 0. They are properly K-equivalent if
in addition A(ad — v) = £1. The invariants of the binary quartic
(1) g(z,2) = az* + ba’z + ca®2? + dv2® + e2?
are

I = 12ae — 3bd + ¢,

J = T2ace — 2Tad® — 27b%*e + 9bed — 2¢°.
The binary quartics g; and g, have invariants related by 1(g2) = A (ad — 8v)*1(g1)
and J(g2) = A\(ad — 57)%J(g1). In particular, properly equivalent binary quartics
have the same invariants. The discriminant is A = 16(41® — J?)/27. We say that
g is K -soluble if there exist x, z € K, not both zero, such that g(x, z) is a square
in K. The reason for this terminology is that if A(g) # 0 then there is a smooth
projective curve C' of genus one with affine equation y* = g(x,1), and we are
asking that C'(K) # (0. As shown by Weil [17], the Jacobian of C' is the elliptic
curve

(2) Er;: y*=a"—27Ix —27J.

Now let K be a number field, and M its set of places. A binary quartic over
K is everywhere locally soluble if it is K,-soluble for all places v € M. We note
that every elliptic curve over K can be written in the form (2) for some I, J € K

with 413 — J2 £ 0.
Lemma 2.1. Let I,J € K with 413 — J> # 0. Then

everywhere locally soluble
SE;;/K) = binary quartics over K /(proper K -equivalence).

with tmvariants I and J

Proof. The case K = Q is proved in [2], the only simplification in this case being
that (since the only roots of unity in Q are +1) equivalent quartics with the same
invariants are always properly equivalent (even in the cases where I = 0 or J = 0).
The general case is similar. Il

Although Lemma 2.1 specifies S (E; ;/K) as a set, the group law is not ob-
vious. The following description is taken from [8], [9]. Let L be the étale algebra
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K|p] where ¢ is a root of X —3IX + J = 0. Then the binary quartic (1) has
cubic imvariant
4ap + 3b* — 8ac

z(g) = 3 :
By a change of coordinates (that is, replacing g by a properly equivalent quartic)
we may assume that z(g) is a unit in L. The group law on S@(E; ;/K) is then
given by multiplying the cubic invariants in L* /(L*)?. The method for converting
an element of L*/(L*)? back to a binary quartic does, however, involve solving a
conic over K.

3. STATEMENT OF RESULTS

In this section we state our new formula for the Cassels-Tate pairing on the
2-Selmer group of an elliptic curve. First we need some more invariant theory.
The binary quartic (1) has Hessian

h(z,z) = (3b* — 8ac)x* + 4(bc — 6ad)z”z + 2(2¢* — 24ae — 3bd)x* 2>
+ 4(ed — 6be)zz® + (3d* — 8ce)z*.

There are exactly three linear combinations of g(x, z) and h(x, z) that are singular
(i.e. have repeated roots). Following [9] this prompts us to put

) G(z,2) = 5 (49w, 2) + bz 2)),
(@) A2 =520 20 g

so that G(1,0)G(z, z) = H(z, 2)*>. We note that z(g) = G(1,0) = H(1,0).

Theorem 3.1. Let I,J € K with 4I° — J? # 0. Let g1, g2, g3 be everywhere locally
soluble binary quartics over K with invariants I and J. Let Hy(x, z) be the binary
quadratic form (4), with coefficients in L = K|p], associated to g;. Suppose that
2(91)2(g2)2(g3) = m? for some m € L*, and write

2

2(g2)z
(5) w_fﬁ(% 2) = aq1(x, 2) + Bz, 2)o + 1 (z, 2)p
where ay, f1,71 € K|z, z]. For each v € My we choose x,, z, € K, with g1(x,, z,)
a square in K, and y1(xy,2,) # 0. If g2(1,0) # 0 then the Cassels-Tate pairing

on S@(E; ;/K) is given by
(6) ([91), [g2Dor = ] (92(1,0), (@0, 20))e

veEMg

where (1, )y KJX/(KX)? x KX/(KX)* = uy is the Hilbert norm residue symbol.
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Remark 3.2. (i) If we wish to compute the pairing starting only with g; and gs,
then we first change coordinates so that z(g;) and z(go) are units in L, multiply
these together, and then compute g3 by solving a conic over K. This conic is the
same as the one that has to be solved in Donnelly’s method [10].

(ii) We show in Remark 8.3 that the binary quadratic form ~; is not identically
zero. Therefore, by our assumption that g; is everywhere locally soluble, it is
always possible to choose z,, 2, € K, with the stated properties.

(iii) The assumption that g»(1,0) # 0 is no limitation, since if g2(1,0) = 0 then
[g2] = 0 in the 2-Selmer group, which certainly implies the pairing is trivial.

(iv) By definition the Cassels-Tate pairing takes values in Q/Z. In our formula it
takes values in jip. It should be understood that we have identified po = 1Z/Z.
(v) Since ( , )or is alternating and bilinear and [g;] + [ga] + [g3] = 0 we have
([91], [g2)) e = ([91], [g3])cT- So we may equally write go(1,0) or g3(1,0) in (6).
Notice however that the binary quartics g and g3 do both contribute to the pairing
via (5). Moreover we must use the exact formulae for z(g1), z(g2) and z(g3), these
being linear in ¢. It is not enough just to know these quantities up to squares,
since this would change the left hand side of (5).

(vi) If E(K)[2] = 0 then m is uniquely determined up to sign. By the product
formula for the Hilbert norm residue symbol this makes no difference to (6). If
E(K)[2] # 0 then there are more choices for m, but it turns out (see the proof of
Theorem 8.2) that we may use any one of these to compute the pairing.

Remark 3.3. The product over all places in Theorem 3.1 is a finite product.
Indeed, outside an easily determined finite set of places, we have

(i) v is a finite prime, with residue field of size at least 11.
(ii) g1 and 77 have v-adically integral coefficients, with v A(gy) content(~;).
(iii) ¢2(1,0) is a v-adic unit and v { 2.
Under conditions (i) and (ii) we can pick our local point (by Hensel lifting a smooth
point on the reduction that is not a root of 7;) such that ~;(z,, z,) is a unit. It
follows by (iii) that the local contribution at v is trivial.

Example 3.4. Let E/Q be the elliptic curve
2 +y =2 — 2% — 9292 — 10595

labelled 571al in [7]. A 2-descent shows that S (E/Q) = (Z/2Z)?, and its non-
zero elements are represented by

g1(z,2) = —112* + 682°2 — 52272% — 164x2® — 642%,
go(z,2) = —4a* — 602°2 — 2322227 — 5222% — 324,

g3(z,2) = —=31a* — 7822 + 32222% 4 10222° — 532%.
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Each of these binary quartics has invariants I = 44608 and J = 18842960, and
discriminant A = —2'2-571. By (5), with m = §(20¢* — 8656¢ + 936032), we get

4
m(z,z) = 5(5x2 — 1622 — 122%).

For each odd prime p there is a smooth F,-point on the reduction of y* = ¢;(x, 1)
mod p, whose z-coordinate is not a root of 522 — 16x — 12 = 0. Indeed we checked
this claim directly for p = 3,5,7,11 and 571, and for all other primes it follows by
Hasse’s bound. Therefore the odd primes make no contribution to (6).

To compute the contribution at p = 2 we write g;(z,1) = z* + 4¢(x) where

q(z) = =32* + 172% — 132 — 41z — 16.

By Hensel’s lemma the equation ¢(x) = 0 has a root in Z, with x = 2* + O(2°).
But then 7;(z,1) = 5 mod (QJ)?, and since (5, —1); = 1 the contribution is
again trivial. Finally, since g1(15,4) > 0 and ~;(15,4) < 0, there is a contribution
from the real place. This shows that the Cassels-Tate pairing on S®(E/Q) is
non-trivial, and hence rank £(Q) = 0.

4. THE CASSELS-TATE PAIRING

There are two standard definitions of the Cassels-Tate pairing (in the case of
elliptic curves) called in [11], [16] the homogeneous space definition and the Weil
pairing definition. Both definitions appear in Cassels’ original paper [4], although
the method in [6] (see also [12]) is a variant of the Weil pairing definition. In this
section we review the homogeneous space definition, and highlight its connection
with the Brauer-Manin obstruction.

Let K be a field with separable closure K. We write H'(K, —) for the Galois
cohomology group H*(Gal(K/K),—). Let C//K be a smooth projective curve. We
define

(7) Br(C) = ker <H2(K, K(C)*) — H*(K,Div (J)).

It is shown in the Appendix to [14] that this is equivalent to the usual definition
Br(C) = H2(C,G,,). Identifying Br(K) = H*(K,K ), there is a natural map
(8) Br(K) — Br(C).

We will need the following two facts, whose proofs we give below.
(i) For P € C(K) there is an evaluation map

Br(C) — Br(K); A~ A(P).

This is a group homomorphism, and a section to the map (8). Moreover the
evaluation maps behave functorially with respect to all field extensions.
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(ii) Suppose C'is a smooth curve of genus one, with Jacobian elliptic curve E.
If H3(K, K ) =0 then there is an isomorphism

HY(K,E) ~ Br(0)

Ve —r —.

o Al B
Now let E be an elliptic curve over a number field K. Let C' and D be principal
homogeneous spaces under E. Since H3(K,K ) = 0 for K a number field, we
have ¥ ([D]) = A mod Br(K) for some A € Br(C). Now suppose that C' and D
are everywhere locally soluble. For each place v € Mg we pick a local point
P, € C(K,). The Cassels-Tate pairing III(E/K) x III(E/K) — Q/Z is defined

by

(10) <[O]7 [D]>CT = Z ian(A(Pv))

’UGMK

where inv, : Br(K,) — Q/Z is the local invariant map. As this form of the
definition makes clear, if ([C], [D])cr # 0 then the genus one curve C'is a counter-
example to the Hasse Principle explained by the Brauer-Manin obstruction.

We check that the pairing is well defined, i.e. it does not depend on the choices
of A and of the P,. By class field theory there is an exact sequence

0 — Br(K) — @D Br(k,) = Q/Z — 0.
vEME

It follows that if we change A by adding an element of Br(K) then the pairing (10)
is unchanged. Next, since the class of D is trivial in H'(K,, F), the analogue of (9)
over K, shows that the restriction of A to the Brauer group of C'/K, is constant,
i.e. it belongs to the image of Br(K,). Therefore the pairing (10) does not depend
on the choice of local points P,,.

We now prove the facts we quoted in (i) and (ii) above.

(i) For P € C(K) there is a short exact sequence of Galois modules

0— 0 —KC)* 2870
where Op is the local ring at P. Taking Galois cohomology gives an exact sequence
0 — HX(K,0%) — H*(K,K(C)*) 2% H*(K,7).

It follows by (7) that each element of Br(C') can be represented by a cocycle taking
values in OF, and so can be evaluated at P.
(ii) There is an exact sequence of Galois modules

0— K — K(C)* — DivC — PicC — 0,

where DivC and PicC are the divisor group and Picard group for C' over K.
Splitting into short exact sequences, and taking Galois cohomology, gives the
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following exact sequences

H*(K, K(C))

H'(K,DivC) — H'(K,PicC) —= H*(K,K(C)*/K ") — H*(K,Div 0)

H3(K,K")

By Shapiro’s lemma and the fact that H'(K,Z) = 0 we have H'(K,DivC) = 0.
It follows by (7) and a diagram chase that there is an exact sequence

(11) Br(K) — Br(C) — H'(K,PicC) — H}(K,K").

In fact, had we started from the definition Br(C') = HZ(C,G,,), then (11) would
follow from the Hochschild—Serre spectral sequence.

If C is a smooth curve of genus one with Jacobian E, then taking Galois coho-
mology of the exact sequence

0— Pic®C — PicC 2572 — 0
gives
(12) 7 -2 HY(K,E) — H'(K,PicC) — 0

with 6(1) = [C]. If H3(K,K") = 0 then from (11) and (12) we obtain the
isomorphism V.

5. CYCLIC EXTENSIONS

The definition of the map ¥¢ in the last section simplifies when we evaluate it
on classes split by a cyclic extension L/K. Let G = Gal(L/K) be generated by o
of order n. We recall that for A a G-module, the Tate cohomology groups are

~ ker(AJA) ~ ker(N|A)
HY(G,A)= ———~ d HYG A)= —/
@A) =va ™ (@A) = A
where A=1—cand N=1+0+ ...+ 0" ! satisfy AN = NA =0 in Z|[G].

For b € K* there is a cyclic K-algebra with basis 1,v,...,v" ! as an L-vector
space, and multiplication determined by v" = b and vz = o(z)v for all z € L. We
write (L/K,b) for the class of this algebra in Br(K) = H*(K,K”). Likewise if
f € K(C)* then (L/K, f) is an element of H*(K, K(C)*).
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Lemma 5.1. Suppose = € Div) C with Ny x(Z) = div(f) for some f € K(C)*.
If & 1s the image of = under

H'(G,Pic C) = H'(G, Pic) C) 2 H'(K, E)
then Ve (&) = (L/K, f).

Proof. We follow the construction of Ws in Section 4. We start with the exact
sequence of G-modules

0— L — L(C)* — Div, C — Pic, C — 0.

Splitting into short exact sequences, and taking Galois cohomology, gives a dia-
gram as before. The connecting map

HY (G, Pic, C) — H(G, L(C)* /L)

is now given by =+ f. Therefore W (&) is the image of f under the map

K(C)X 730 2 inf 2 T
——— = H°(G,L(CY*) =2 H*(G,L(C)*) — H*(K,K(C)*).
N (L) = (OO = HG, L)) 5 H(K R (C))
This is the cyclic algebra (L/K, f) as required. O

6. PAIRS OF BINARY QUARTICS AND (2,2)-FORMS

Let C be a smooth curve of genus one. First suppose, as in Section 2, that C'is
defined by a binary quartic g. Then C' — P! is a double cover ramified over the 4
roots of g. We write H for the hyperplane section (i.e., fibre of the map C' — P*'),
and ¢ for the involution on C' with @ + +(Q) ~ H for all @ € C.

Next we suppose that C' C P! x P! is defined by a (2, 2)-form, i.e., a polynomial
f(xq, 21; T2, 29) that is homogeneous of degree 2 in each of the sets of variables
21,71 and x9,29. Projecting C to either factor gives a double cover of P!. The
corresponding binary quartics are obtained by writing f as a binary quadratic form
in one of the sets of variables, and taking its discriminant. We write pr,, pry : C' —
P! for the projection maps. Let H;, Hy and ¢1, 15 be the corresponding hyperplane
sections and involutions.

Lemma 6.1. Let C' = {f(xy, 21; 79, 20) = 0} C P! x P! as above.

(i) The composite L1ty is translation by some P € E = Jac(C'). Moreover the
isomorphism Pic’(C) = E sends [H, — Ha] — P.
(i) If H; = pri(1:0) then

diV(f([Eth; 1a0>/Z%> - H2 + LTHQ — 2H1
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Proof. (i) If @ € C then 15Q + 1110Q ~ Hy and Q + 1oQ) ~ H,. Subtracting one
from the other gives [1110Q — Q] = [H1 — H»] as required.

(ii) The specified rational function on C factors via pr; and is therefore invariant
under pull back by ¢;. It has a zero at each point in the support of Hs, and a
double pole at each point in the support of H;. Since there are no other poles,
and the divisor has degree 0, it must therefore be as stated. U

Remark 6.2. Lemma 6.1(i) is closely related to Poncelet’s Porism, as described
n [13]. Our use of (2,2)-forms was inspired by the treatment in [1].

We write discy(f) for the discriminant of f when it is viewed as a binary qua-
dratic form in the kth set of variables.

Lemma 6.3. Let C = {f(z1, 21; 72, 22) = 0} C P! X P! as above. Let a € K* and
let C, Cy be the following quadratic twists of C.

Cy ay® = discy(f)
Cy: ay? = discy (f)

Then V¢, ([Co]) = (K(Va)/K, f(x1,21;1,0)/27).

Proof. If a € (K*)? then C; and Cy are isomorphic over K and so by (9) we have
Ve, ([Co]) = 0. We may therefore suppose that a € (K*)% Let L = K(y/a) and
G = Gal(L/K) = {1,0}. We claim there is a divisor Z € Div) (C}) such that

(i) Cy is the twist of C; by the class of = in ﬁ]l(G, Pic) (C})), and
(il) Np/x(2) = div(f (21, 2151,0)/27).
Then by Lemma 5.1 we have U¢, ([Cy] — [C1]) = (L/K, f(z1,21;1,0)/2%). Since
Ve, is a group homomorphism and ¥, ([C4]) = 0 this proves the lemma.
We construct Z as follows. We factor the projection map pr; : C — P! as

c -2 0 S p

where ¢; is the quadratic twist map (an isomorphism defined over L), and & =
(x; : z;) is the natural double cover. Let D; = (1 : 0) and H; = ¢! D; = pri(1:0).
We put ¢ = ¢1¢, ' and = = ¢, Dy — D;. We now prove (i) and (ii).

(i) Let ¢; and ¢ be the involutions on C' defined before Lemma 6.1. Since
o(¢1) = ¢1u1 and o(py) = ¢aty it follows that (@) = ¢iL11967 . Identifying C
and C via ¢, and hence = with Hy — Hy, it follows by Lemma 6.1 that o(¢)¢~! is
translation by some P € E = Jac(C}), and the isomorphism Pic’(C}) = E sends
[E] = —P. The minus sign does not matter since |G| = 2.
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(ii) By Lemma 6.1(ii) with H; = ¢7D; and Hy = ¢5 D, we have

div(f(zq, 215 1, 0)/2%) = ¢1:(P5 D2 + 113Dy — 2¢7D1)
= ¢*D2 + U(¢*D2) — 2D,
= Nk (2). O

7. TRIPLES OF BINARY QUARTICS AND (2,2, 2)-FORMS

Let E/K be an elliptic curve. An n-covering of F is a pair (C,v) where C' is
a smooth curve of genus one, and v : ' — E is a morphism, such that, for some
choice of isomorphism 1) : C — E defined over K, there is a commutative diagram

LN

E——F
Xn

The n-coverings of E are parametrised by H'(K, E[n]).

Suppose that Cy, Cy, C3 are 2-coverings of F that sum to zero in H'(K, E[2]).
We pick isomorphisms v; : C; — E as above, and let g; = (o +— o(1;)1; ') be the
corresponding cocycle in Z!(Gal(K /K), E[2]). Our hypothesis is that e; + &5 + €3
is a coboundary. However, by adjusting the choice of 13, we may suppose that
€1+ €2 + €3 = 0. It may then be checked that the morphism

/,Li01XCQX03—>E
(Pr, Po, P3) = 01 (Py) + a(Pa) + h3(P3)
is defined over K.

Remark 7.1. We are still free to replace ¢3 by P +— ¢3(P)+ T for T € E(K)|2],
and for this reason there are # FE(K)[2] choices for the map pu.

Suppose further that C, Cy, C5 are defined by binary quartics g;, g2, g3 with
the same invariants I and J. Let 7 : C; x Oy x C5 — P! x P! x P! be the map that
projects to the z-coordinates. Then S = 7(u~!(0g)) is a surface in P* x P! x P!,
Geometrically it is the Kummer surface (E x F)/{£1}.

We write discg(F') for the discriminant of a (2,2,2) form F' when it is viewed
as a binary quadratic form in the kth set of variables.

Proposition 7.2. The surface S C P! x P! x P! is defined by a (2,2,2)-form F.
Moreover we may scale F' so that it has coefficients in K, and for all permutations
i,7,k of 1,2,3 we have discy,(F') = g;9;-

Proof. We first consider the special case where C} = Cy = C3 = E. Suppose that
P, Py, P; € E satisfy P, + P, + P; = 0g. If we specify the z-coordinates of P, and
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Ps, then in general this leaves two possibilities for the x-coordinate of P;. The
exceptional cases are when either P, or P, is a 2-torsion point.

Let A; = ; '(E[2]) be the set of ramification points for C; — P'. We identify
A; with its image in P!, i.e., the set of roots of g;. The observations in the last
paragraph show that when we project onto the ith and jth factors, S — P! x P!
is a double cover ramified over A; x P! and P! x A;. This shows that S is defined
by a (2,2,2)-form F. Moreover disc(F) = A\,gig; for some i, Ao, A3 € K*. We
claim that (i) A3 € (K*)? and (ii) Ay = Ay = A3. It is then clear we may rescale
F sothat A\{ = Ay = A3 = 1.

(i) Let C; have equation y? = g;(x;, z;). We note that K(S) C K(Cy x () is a
quadratic extension of K (P! x P') with Kummer generator

discs(F) _ Asg1 (21, 21)92(22, 22) —\ (ylyQ)2
=\ | 5= .

1.4 1.4 2.2
2179 R1%9 2175

Since this is a square in K(C; x C) it follows that A3 € (K*)2.
(ii) Since g1, g2, g3 have the same invariants I and J, we may reduce by the
action of SLy(K) x SLy(K) x SLy(K) to the case

g1(z,2) = g2, 2) = g3(w, 2) = 2’2 — §Iw2’ — L J2"

The result then follows by symmetry. O
Corollary 7.3. Let Cy, Cy, C3 and F be as above. If a = g3(1,0) # 0 then
Ve, ([Co]) = (K (Va)/K, F(w1, 251,05 1,0)/27).

Proof. We put f(x1, z1; 22, 20) = F(x1, 21; 22, 29; 1,0). By Proposition 7.2 we have
disci(f) = aga(we, z2) and disca(f) = agi(x1,21). The curves Cy and Cy are
therefore isomorphic to those considered in Lemma 6.3. Applying Lemma 6.3
gives the result. O

8. COMPUTING THE (2,2,2)-FORMS

To complete the proof of Theorem 3.1 we must explain how to compute the
(2,2,2)-form F. As before it is helpful to first consider the special case where
Ci=0,=0C3=FE.

Let E be the elliptic curve y? = 23 + az + b. We consider the maps

ExExE—-"-F

|-

P! x P! x P!
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where u(Py, Py, P3) = Py + P, + Py and 7 is the map taking the z-coordinate of
each point. An equation for S = w(u~!(0g)) is computed as follows.
Let P, = (x;,y;) for i = 1,2,3 be points on £ with P, + P, + P; = 0p. These
points lie on a line, say ¥y = Ax + v. Then as polynomials in z we have
P rar+b— D +v)= (v —2)(r— 1) (2 — 23).

Comparing the coefficients of the powers of = we obtain

/\22817
2 \v = a — s9,
v =b+ ss,

where s1, s9, s3 are the elementary symmetric polynomials in xq, x5, 3. Eliminat-
ing A and v gives the equation

(a — s2)* — 4s1(b+ s3) = 0.

The required (2,2,2)-form F' is obtained by homogenising this equation, i.e. we

replace z; by x;/z; and multiply through by 232223

Remark 8.1. We have F(z1,1;29,1;x3,1) = Woa2 — Wizz + Wy where
Wo = (21 — 12)2,
Wy = 2(z129 + a)(xq + x2) + 4b,
Wy = zia5 — 2ax109 — 4b(z1 + 25) + a®.
These are the formulae used in [5, Chapter 17] to show that the height on an

elliptic curve is a quadratic form.

We now turn to the general case. So let S C P! x P! x P! be as in Section 7.
Let z(g;) be the cubic invariant, and write Hy, Hy, H3 for the binary quadratic
forms (4) over L = K|p] associated to g1, ga, g3-

Theorem 8.2. If 2(g1)2(g2)2(g3) = m? for some m € L*, and
H,HsHj

m
where Fy, Fy, Fy are (2,2,2)-forms defined over K, then S has equation Fy = 0.

(13) = Fo + Fip + Fayp?

Proof. Let P, = (x; : y; = ;) € C; for i = 1,2, 3, with u(Py, P, P3) = 0g. Let @Q; be
the image of P; under the covering map C; — E. By the formulae for the covering
map coming from classical invariant theory (see for example [8, Proposition 4.2]),
the z-coordinate of (); is

3hi(wi, 2
(14) g = Sulrn 2)

B 491‘(901‘,21‘).
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We recall from Section 3 that

4pgi + hi
(15) (g) I g
By (14), (15) and the equation y? = g;(x;, 2;) for C; we have
9H?
bt3p=— i
? 42(9:)y?
and hence
3 2
27H1H2H3)
16 i+3p) = —") .
(16) H<§ ?) < 8Mmy1Y2ys

i=1
Since )1 + Q2 + Q3 = Op these points lie on a line, say y = Az + v for some
A, v € K. Then as a polynomial in x we have

2 —27Ir —27] — (M\v +v)? = (z — &) (v — &) (z — &).
Putting x = —3¢p gives

3
(17) H &+ 30) = (v —3\p)*

We first suppose E(K)[2] = 0. In this case L is a field, so comparing (16)
and (17) we have
2THHyHs
8my1y2ys3
in L(S). Taking the coefficient of ¢* we see that F, vanishes on S. In general
there are #E(K)[2] choices for the square root, up to sign, and these correspond
to the #E(K)[2] choices in Remark 7.1.
It remains to check that Fj is not identically zero. For this we may work over

= :l:(l/ - 3)\80)7

an algebraically closed field. Then by a change of coordinates we may suppose
that g; and h; are linear combinations of x} + 2} and x?2?. The singular quartics
in this pencil are (27 — z2)?, (22 + 22)? and (2;2;)*. Since L = K x K X K we may
identify H; as a triple of binary quadratic forms. These are non-zero multiples of
x? — 22, 12+ 22 and x;z;, in this order if we made a suitable change of coordinates.
(This last claim may be checked without any calculation if we use stereographic
projection to identify the roots of the binary quadratic forms with the vertices of
an octahedron, and then rotate the octahedron.) Therefore the space of (2,2,2)-
forms spanned by Fy, Fi, F5 contains the forms

(2 — 23) (25 — 23) (a5 — 23), (2] +27)(23 + 23) (25 + 23), @121%2227323.

Since these are linearly independent, it follows that F3 is non-zero. Il
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Proof of Theorem 3.1. Let F = I3 be the equation for S in Theorem 8.2. We
specialise the last two sets of variables in (13) to (1,0). Then comparing with (5)
we have F(x,z;1,0;1,0) = v (z, z). By Corollary 7.3 we have

qjCl([CQD = (K(\/E)/Ka ’)/1(5(], Z)/Zz)v
where a = g3(1,0). Then by (10) we have

<[Cl]7 [OQDCT = Z ian<Kv<\/a)/Kva'71(xva Zv)/zg)

veEMK

Subject to identifying us = %Z/ Z, the Hilbert norm residue symbol is given by

(a,b), = inv,(K,(va)/K,,b).

This gives the formula in Theorem 3.1, except that we have g3(1,0) in place of
g2(1,0). As noted in Remark 3.2(v), this change does not matter. O

Remark 8.3. To show that v;(z, z) is not identically zero we show more generally
that F' cannot be made to vanish by specialising two of the sets of variables.
Indeed, by considering F' as given in Remark 8.1, it suffices to show that the
polynomials Wy, Wi, W5 never simultaneously vanish. This may be checked by
setting 1 = x5 = x and computing that the resultant of W; and W5 is 28(4a3 +
27b%)%. This last expression is non-zero, by definition of an elliptic curve.
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