

ON SOME ALGEBRAS ASSOCIATED TO GENUS ONE CURVES

TOM FISHER

ABSTRACT. Haile, Han and Kuo have studied certain non-commutative algebras associated to a binary quartic or ternary cubic form. We extend their construction to pairs of quadratic forms in four variables, and conjecture a further generalisation to genus one curves of arbitrary degree. These constructions give an explicit realisation of an isomorphism relating the Weil-Châtelet and Brauer groups of an elliptic curve.

1. INTRODUCTION

Let C be a smooth curve of genus one, written as either a double cover of \mathbb{P}^1 (case $n = 2$), or as a plane cubic in \mathbb{P}^2 (case $n = 3$), or as an intersection of two quadrics in \mathbb{P}^3 (case $n = 4$). We write $C = C_f$ where f is the binary quartic form, ternary cubic form, or pair of quadratic forms defining the curve. In this paper we investigate a certain non-commutative algebra A_f determined by f .

The algebra A_f was defined in the case $n = 2$ by Haile and Han [10], and in the case $n = 3$ by Kuo [12]. We simplify some of their proofs, and extend to the case $n = 4$. We also conjecture a generalisation to genus one curves of arbitrary degree n . The following theorem was already established in [10, 12] in the cases $n = 2, 3$. We work throughout over a field K of characteristic not 2 or 3.

Theorem 1.1. *If $n \in \{2, 3, 4\}$ then A_f is an Azumaya algebra, free of rank n^2 over its centre. Moreover the centre of A_f is isomorphic to the co-ordinate ring of $E \setminus \{0_E\}$ where E is the Jacobian elliptic curve of C_f .*

Let E/K be an elliptic curve. A standard argument (see Section 6.1) shows that the Weil-Châtelet group of E is canonically isomorphic to the quotient of Brauer groups $\text{Br}(E)/\text{Br}(K)$. For our purposes it is more convenient to write this isomorphism as

$$(1) \quad H^1(K, E) \cong \ker \left(\text{Br}(E) \xrightarrow{\text{ev}_0} \text{Br}(K) \right).$$

where ev_0 is the map that evaluates a Brauer class at $0 \in E(K)$. The algebras we study explicitly realise this isomorphism.

Theorem 1.2. *If $n \in \{2, 3, 4\}$ then the isomorphism (1) sends the class of C_f to the class of A_f .*

Date: 25th July 2017.

The following two corollaries were proved in [10, 12] in the cases $n = 2, 3$.

Corollary 1.3. *Let $n \in \{2, 3, 4\}$. The genus one curve C_f has a K -rational point if and only if the Azumaya algebra A_f splits over K .*

Proof. This is the statement that the class of C_f in $H^1(K, E)$ is trivial if and only if the class of A_f in $\text{Br}(E)$ is trivial. \square

For $0 \neq P \in E(K)$ we write $A_{f,P}$ for the specialisation of A_f at P . This is a central simple algebra over K of dimension n^2 .

Corollary 1.4. *Let $n \in \{2, 3, 4\}$. The map $E(K) \rightarrow \text{Br}(K)$ that sends P to the class of $A_{f,P}$ is a group homomorphism.*

Proof. By Theorem 1.2 the Tate pairing $E(K) \times H^1(K, E) \rightarrow \text{Br}(K)$ is given by $(P, [C_f]) \mapsto [A_{f,P}]$. This corollary is the statement that the Tate pairing is linear in the first argument. \square

The algebras A_f are interesting for several reasons. They have been used to study the relative Brauer groups of curves (see [5, 8, 11, 13]) and to compute the Cassels-Tate pairing (see [9]). We hope they might also be used to construct explicit Brauer classes on surfaces with an elliptic fibration. This could have important arithmetic applications, extending for example [17].

In Sections 2 and 3 we define the algebras A_f and describe their centres. In Section 4 we show that these constructions behave well under changes of co-ordinates. The proofs of Theorems 1.1 and 1.2 are given in Sections 5 and 6.

The hyperplane section H on C_f is a K -rational divisor of degree n . Let $P \in E(K)$ where E is the Jacobian of C_f . In Section 7 we explain how finding an isomorphism $A_{f,P} \cong \text{Mat}_n(K)$ enables us to find a K -rational divisor H' on C_f such that $[H - H'] \mapsto P$ under the isomorphism $\text{Pic}^0(C_f) \cong E$. In the cases $n = 2, 3$ our construction involves some of the representations studied in [3].

Nearly all our proofs are computational in nature, and for this we rely on the support in Magma [4] for finitely presented algebras. We have prepared a Magma file checking all our calculations, and this is available online. It would of course be interesting to find more conceptual proofs of Theorems 1.1 and 1.2.

2. THE ALGEBRA A_f

In this section we define the algebras A_f for $n = 2, 3, 4$, and suggest how the definition might be generalised to genus one curves of arbitrary degree. The prototype for these constructions is the Clifford algebra of a quadratic form. We therefore start by recalling the latter, which will in any case be needed for our treatment of the case $n = 2$. We write $[x, y]$ for the commutator $xy - yx$.

2.1. Clifford algebras. Let $Q \in K[x_1, \dots, x_n]$ be a quadratic form. The Clifford algebra of Q is the associative K -algebra A generated by u_1, \dots, u_n subject to the relations deriving from the formal identity in $\alpha_1, \dots, \alpha_n$,

$$(\alpha_1 u_1 + \dots + \alpha_n u_n)^2 = Q(\alpha_1, \dots, \alpha_n).$$

The involution $u_i \mapsto -u_i$ resolves A into eigenspaces $A = A_+ \oplus A_-$. By diagonalising Q , it may be shown that A and A_+ are K -algebras of dimensions 2^n and 2^{n-1} . Moreover, rescaling Q does not change the isomorphism class of A_+ .

In the case $n = 3$ we let

$$\eta = u_1 u_2 u_3 - u_3 u_2 u_1 = u_2 u_3 u_1 - u_1 u_3 u_2 = u_3 u_1 u_2 - u_2 u_1 u_3.$$

Then η belongs to the centre $Z(A)$, and $\eta^2 = \text{disc } Q$, where if $Q(x) = x^T M x$ then $\text{disc } Q = -4 \det M$. Moreover, if $\text{disc } Q \neq 0$ then A_+ is a quaternion algebra and $A = A_+ \otimes K[\eta]$. Although not needed below, it is interesting to remark that the well known map

$$H^1(K, \text{PGL}_2) \rightarrow \text{Br}(K)$$

is realised by sending the smooth conic $\{Q = 0\} \subset \mathbb{P}^2$ (which as a twist of \mathbb{P}^1 corresponds to a class in $H^1(K, \text{PGL}_2)$) to the class of A_+ .

2.2. Binary quartics. Let $f \in K[x, z]$ be a binary quartic, say

$$f(x, z) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4.$$

Haile and Han [10] define the algebra A_f to be the associative K -algebra generated by r, s, t subject to the relations deriving from the formal identity in α and β ,

$$(\alpha^2 r + \alpha\beta s + \beta^2 t)^2 = f(\alpha, \beta).$$

Thus $A_f = K\{r, s, t\}/I$ where I is the ideal generated by the elements

$$\begin{aligned} r^2 - a, \\ rs + sr - b, \\ rt + tr + s^2 - c, \\ st + ts - d, \\ t^2 - e. \end{aligned}$$

We have $[r, s^2] = [r, rs + sr] = [r, b] = 0$, and likewise $[s^2, t] = 0$. Therefore $\xi = s^2 - c$ belongs to the centre $Z(A_f)$. By working over the polynomial ring $K[\xi]$, instead of the field K , we may describe A_f as the Clifford algebra of the quadratic form

$$Q_\xi(x, y, z) = ax^2 + bxy + cy^2 + dyz + ez^2 + \xi(y^2 - xz).$$

This quadratic form naturally arises as follows. Let $C \subset \mathbb{P}^3$ be the image of the curve $Y^2 = f(X, Z)$ embedded via $(x_1 : x_2 : x_3 : x_4) = (X^2 : XZ : Z^2 : Y)$. Then C is defined by a pencil of quadrics with generic member $x_4^2 = Q_\xi(x_1, x_2, x_3)$.

2.3. **Ternary cubics.** Let $f \in K[x, y, z]$ be a ternary cubic, say

$$\begin{aligned} f(x, y, z) = & ax^3 + by^3 + cz^3 + a_2x^2y + a_3x^2z \\ & + b_1xy^2 + b_3y^2z + c_1xz^2 + c_2yz^2 + mxyz. \end{aligned}$$

In the special case $c = 1$ and $a_3 = b_3 = c_1 = c_2 = 0$, Kuo [12] defines the algebra A_f to be the associative K -algebra generated by x and y subject to the relations deriving from the formal identity in α and β ,

$$f(\alpha, \beta, \alpha x + \beta y) = 0.$$

We make the same definition for any ternary cubic f with $c \neq 0$. Thus $A_f = K\{x, y\}/I$ where I is the ideal generated by the elements

$$\begin{aligned} & cx^3 + c_1x^2 + a_3x + a, \\ & c(x^2y + xyx + yx^2) + c_1(xy + yx) + c_2x^2 + mx + a_3y + a_2, \\ & c(xy^2 + yxy + y^2x) + c_2(xy + yx) + c_1y^2 + my + b_3x + b_1, \\ & cy^3 + c_2y^2 + b_3y + b. \end{aligned}$$

2.4. **Quadratic intersections.** Let $f = (f_1, f_2)$ be a pair of quadratic forms in four variables, say x_1, \dots, x_4 . Assuming $C_f = \{f_1 = f_2 = 0\} \subset \mathbb{P}^3$ does meet the line $\{x_3 = x_4 = 0\}$, we define the algebra A_f to be the associative K -algebra generated by p, q, r, s subject to the relations deriving from the formal identities in α and β ,

$$(2) \quad f_i(\alpha p + \beta r, \alpha q + \beta s, \alpha, \beta) = 0, \quad i = 1, 2$$

$$(3) \quad [\alpha p + \beta r, \alpha q + \beta s] = 0.$$

Explicitly if $f_1 = \sum_{i \leq j} a_{ij}x_i x_j$ and $f_2 = \sum_{i \leq j} b_{ij}x_i x_j$ then $A_f = K\{p, q, r, s\}/I$ where I is the ideal generated by the elements

$$\begin{aligned} & a_{11}p^2 + a_{12}pq + a_{22}q^2 + a_{13}p + a_{23}q + a_{33}, \\ & a_{11}(pr + rp) + a_{12}(ps + rq) + a_{22}(qs + sq) + a_{14}p + a_{24}q + a_{13}r + a_{23}s + a_{34}, \\ & a_{11}r^2 + a_{12}rs + a_{22}s^2 + a_{14}r + a_{24}s + a_{44}, \\ & b_{11}p^2 + b_{12}pq + b_{22}q^2 + b_{13}p + b_{23}q + b_{33}, \\ & b_{11}(pr + rp) + b_{12}(ps + rq) + b_{22}(qs + sq) + b_{14}p + b_{24}q + b_{13}r + b_{23}s + b_{34}, \\ & b_{11}r^2 + b_{12}rs + b_{22}s^2 + b_{14}r + b_{24}s + b_{44}, \\ & pq - qp, \\ & ps + rq - qr - sp, \\ & rs - sr. \end{aligned}$$

One motivation for including the commutator relation (3) is that without it, the relations (2) would be ambiguous.

2.5. Genus one curves of higher degree. Let C be a smooth curve of genus one. If D is a K -rational divisor on C of degree $n \geq 3$ then the complete linear system $|D|$ defines an embedding $C \rightarrow \mathbb{P}^{n-1}$. We identify C with its image, which is a curve of degree n . If $n = 3$ then C is a plane cubic, whereas if $n \geq 4$ then the homogeneous ideal of C is generated by quadrics.

Let A be the associative K -algebra generated by $u_1, u_2, \dots, u_{n-2}, v_1, v_2, \dots, v_{n-2}$, subject to the relations deriving from the formal identities in α and β ,

$$f(\alpha u_1 + \beta v_1, \alpha u_2 + \beta v_2, \dots, \alpha u_{n-2} + \beta v_{n-2}, \alpha, \beta) = 0 \quad \text{for all } f \in I(C),$$

$$[\alpha u_i + \beta v_i, \alpha u_j + \beta v_j] = 0 \quad \text{for all } 1 \leq i, j \leq n-2.$$

This definition may be thought of as writing down the conditions for C to contain a line. The fact that C does not contain a line then tells us that there are no non-zero K -algebra homomorphisms $A \rightarrow K$.

We conjecture that the analogues of Theorems 1.1 and 1.2 hold for these algebras. In support of this conjecture, we have checked that Theorem 1.1 holds in some numerical examples with $n = 5$.

3. THE CENTRE OF A_f

In this section we exhibit some elements ξ and η in the centre of A_f . In each case ξ and η generate the centre, and satisfy a relation in the form of a Weierstrass equation for the Jacobian elliptic curve.

3.1. Binary quartics. Let C_f be a smooth curve of genus one defined as a double cover of \mathbb{P}^1 by $y^2 = f(x, z)$, where f is a binary quartic. It already follows from the results in Sections 2.1 and 2.2 that the centre of A_f is generated by $\xi = s^2 - c$ and $\eta = rst - tsr$. Alternatively, this was proved by Haile and Han [10] for quartics with $b = 0$, and the general case follows by making a change of co-ordinates (see Section 4). The elements ξ and η satisfy $\eta^2 = F(\xi)$ where

$$(4) \quad F(x) = x^3 + cx^2 - (4ae - bd)x - 4ace + b^2e + ad^2.$$

This is a Weierstrass equation for the Jacobian of C_f .

There is a derivation $D : A_f \rightarrow A_f$ defined on the generators r, s, t by $Dr = [s, r]$, $Ds = [t, r]$ and $Dt = 0$. To see this is well defined, we checked that the derivation acts on the ideal of relations defining A_f . It is easy to see that D must act on the centre of A_f . We find that $D\xi = 2\eta$ and $D\eta = 3\xi^2 + 2c\xi - (4ae - bd)$.

3.2. Ternary cubics. Let $C_f \subset \mathbb{P}^2$ be a smooth curve of genus one defined by a ternary cubic f . With notation as in Section 2.3, the centre of A_f contains

$$\xi = c^2(xy)^2 - (cy^2 + c_2y + b_3)(cx^2 + c_1x + a_3) + (cm - c_1c_2)xy + a_3b_3.$$

There is a derivation $D : A_f \rightarrow A_f$ defined on the generators x, y by $Dx = c[xy, x]$ and $Dy = c[y, yx]$. Let $a'_1, a'_2, a'_3, a'_4, a'_6 \in \mathbb{Z}[a, b, c, \dots, m]$ be the coefficients of a Weierstrass equation for the Jacobian of C_f , as specified in [7, Section 2],

i.e. $a'_1 = m$, $a'_2 = -(a_2c_2 + a_3b_3 + b_1c_1)$, $a'_3 = 9abc - (ab_3c_2 + ba_3c_1 + ca_2b_1) - (a_2b_3c_1 + a_3b_1c_2)$, $a'_4 = \dots$. (These formulae were originally given in [2].) Then $\eta = \frac{1}{2}(D\xi - a'_1\xi - a'_3)$ is also in the centre of A_f , and these elements satisfy

$$\eta^2 + a'_1\xi\eta + a'_3\eta = \xi^3 + a'_2\xi^2 + a'_4\xi + a'_6.$$

In fact ξ and η generate the centre of A_f . This was proved by Kuo [12] in the case $c = 1$ and $a_3 = b_3 = c_1 = c_2 = 0$. The general case follows by making a change of co-ordinates (see Section 4).

3.3. Quadric intersections. Let $C_f \subset \mathbb{P}^3$ be a smooth curve of genus one defined by a pair of quadratic forms $f = (f_1, f_2)$. Let a_1, \dots, a_{10} and b_1, \dots, b_{10} be the coefficients of f_1 and f_2 , where we take the monomials in the order

$$x_1^2, x_1x_2, x_1x_3, x_1x_4, x_2^2, x_2x_3, x_2x_4, x_3^2, x_3x_4, x_4^2.$$

Let $d_{ij} = a_i b_j - a_j b_i$. With notation as in Section 2.4 we put

$$\begin{aligned} p_i &= d_{1i}p + d_{2i}q + d_{3i}, & r_i &= d_{1i}r + d_{2i}s + d_{4i}, \\ q_i &= d_{2i}p + d_{5i}q + d_{6i}, & s_i &= d_{2i}r + d_{5i}s + d_{7i} \end{aligned}$$

and $t = qr - ps = rq - sp$. Then

$$\begin{aligned} \xi &= (p_5s)^2 + (s_1p)^2 \\ &\quad + (d_{56}p_4 + d_{29}p_5 + d_{37}p_5 - d_{27}p_6)s - d_{56}(d_{13}r + d_{23}s - d_{17}q + d_{12}t - d_{19})s \\ &\quad + (d_{14}s_6 + d_{29}s_1 - d_{37}s_1 - d_{23}s_4)p - d_{14}(d_{27}p + d_{57}q + d_{35}r - d_{25}t - d_{59})p \end{aligned}$$

belongs to the centre of A_f . We give a slightly simpler expression for ξ in Section 4.3, but this alternative expression is only valid when t is invertible.

There is a derivation $D : A_f \rightarrow A_f$ defined on the generators p, q, r, s by $Dp = \frac{1}{2}[p, \varepsilon]$, $Dq = \frac{1}{2}[q, \varepsilon]$ and $Dr = Ds = 0$ where

$$\varepsilon = d_{12}(pr + rp) + d_{15}(ps + qr + sp + rq) + d_{25}(qs + sq).$$

Then $\eta = \frac{1}{2}D\xi$ is also in the centre of A_f . We show in Section 5 that ξ and η generate the centre, and that they satisfy a Weierstrass equation for the Jacobian of C_f .

4. CHANGES OF CO-ORDINATES

In this section we show that making a change of coordinates does not change the isomorphism class of the algebra A_f . We also describe the effect this has on the central elements ξ and η , and on the derivation D .

Let $\mathcal{G}_2(K) = K^\times \times \mathrm{GL}_2(K)$ act on the space of binary quartics via

$$(\lambda, M) : f(x, z) \mapsto \lambda^2 f(m_{11}x + m_{21}z, m_{12}x + m_{22}z).$$

Let $\mathcal{G}_3(K) = K^\times \times \mathrm{GL}_3(K)$ act on the space of ternary cubics via

$$(\lambda, M) : f(x, y, z) \mapsto \lambda f(m_{11}x + m_{21}y + m_{31}z, \dots, m_{13}x + m_{23}y + m_{33}z).$$

Let $\mathcal{G}_4(K) = \mathrm{GL}_2(K) \times \mathrm{GL}_4(K)$ act on the space of quadric intersections via

$$\begin{aligned} (\Lambda, I_4) : (f_1, f_2) &\mapsto (\lambda_{11}f_1 + \lambda_{12}f_2, \lambda_{21}f_1 + \lambda_{22}f_2), \\ (I_2, M) : (f_1, f_2) &\mapsto (f_1(\sum_{i=1}^4 m_{i1}x_i, \dots), f_2(\sum_{i=1}^4 m_{i1}x_i, \dots)). \end{aligned}$$

We write $\det(\lambda, M) = \lambda \det M$ in the cases $n = 2, 3$, and $\det(\Lambda, M) = \det \Lambda \det M$ in the case $n = 4$. A *genus one model* is a binary quartic, ternary cubic, or pair of quadratic forms, according as $n = 2, 3$ or 4 .

Theorem 4.1. *Let f and f' be genus one models of degree $n \in \{2, 3, 4\}$. In the case $n = 3$ we suppose that $f(0, 0, 1) \neq 0$ and $f'(0, 0, 1) \neq 0$. In the case $n = 4$ we suppose that C_f and $C_{f'}$ do not meet the line $\{x_3 = x_4 = 0\}$. If $f' = \gamma f$ for some $\gamma \in \mathcal{G}_n(K)$ then there is an isomorphism $\psi : A_{f'} \rightarrow A_f$ with*

$$(5) \quad \xi \mapsto (\det \gamma)^2 \xi + \rho$$

$$(6) \quad \eta \mapsto (\det \gamma)^3 \eta + \sigma \xi + \tau$$

for some $\rho, \sigma, \tau \in K$, with $\sigma = \tau = 0$ if $n \in \{2, 4\}$. Moreover there exists $\kappa \in A_f$ such that

$$(7) \quad \psi D(x) = (\det \gamma) D\psi(x) + [\kappa, \psi(x)]$$

for all $x \in A_{f'}$.

PROOF: We prove the theorem for γ running over a set of generators for $\mathcal{G}_n(K)$. The set of generators will be large enough that the extra conditions in the cases $n = 3, 4$ (avoiding a certain point or line) do not require special consideration.

Writing η in terms of the $D\xi$ we see that (6) is a formal consequence of (5) and (7). It therefore suffices to check (5) and (7). We may paraphrase (7) as saying that $\psi D\psi^{-1}$ and $(\det \gamma)D$ are equal up to inner derivations. In particular we only need to check this statement for x running over a set of generators for A_f .

We now split into the cases $n = 2, 3, 4$.

4.1. Binary quartics. Let $\gamma = (\lambda, M)$. There is an isomorphism $\psi : A_{f'} \rightarrow A_f$ given by

$$\begin{aligned} r &\mapsto \lambda(m_{11}^2 r + m_{11}m_{12}s + m_{12}^2 t), \\ s &\mapsto \lambda(2m_{11}m_{21}r + (m_{11}m_{22} + m_{12}m_{21})s + 2m_{12}m_{22}t), \\ t &\mapsto \lambda(m_{21}^2 r + m_{21}m_{22}s + m_{22}^2 t). \end{aligned}$$

We find that (5) and (7) are satisfied with

$$\begin{aligned} \rho = -\lambda^2 &\left(2m_{11}^2 m_{21}^2 a + m_{11}m_{21}(m_{11}m_{22} + m_{12}m_{21})b \right. \\ &\left. + 2m_{11}m_{12}m_{21}m_{22}c + m_{12}m_{22}(m_{11}m_{22} + m_{12}m_{21})d + 2m_{12}^2 m_{22}^2 e \right) \end{aligned}$$

and $\kappa = \lambda(m_{11}m_{21}r + m_{12}m_{21}s + m_{12}m_{22}t)$.

4.2. Ternary cubics. The result is clear for $\gamma = (\lambda, I_3)$. We take $\gamma = (1, M)$. If this change of co-ordinates fixes the point $(0 : 0 : 1)$, equivalently $m_{31} = m_{32} = 0$, then there is an isomorphism $\psi : A_{f'} \rightarrow A_f$ given by

$$\begin{aligned} x &\mapsto m_{33}^{-1}(m_{11}x + m_{12}y - m_{13}), \\ y &\mapsto m_{33}^{-1}(m_{21}x + m_{22}y - m_{23}). \end{aligned}$$

We checked (5) by a generic calculation (leading to a lengthy expression for ρ which we do not record here), and find that (7) is satisfied with

$$\kappa = cm_{33}(m_{23}(m_{11}x + m_{12}y) - m_{13}(m_{21}x + m_{22}y)).$$

It remains to consider a transformation that moves the point $(0 : 0 : 1)$. Let $f'(x, y, z) = f(z, x, y)$. By hypothesis $a = f'(0, 0, 1) \neq 0$. From the first relation defining A_f it follows that x is invertible, i.e. $x^{-1} = -(cx^2 + c_1x + a_3)/a$. There is an isomorphism $\psi : A_{f'} \rightarrow A_f$ given by $x \mapsto -yx^{-1}$ and $y \mapsto x^{-1}$. We find that (5) and (7) are satisfied with $\rho = 0$ and $\kappa = cyx + c_1y$.

4.3. Quadric intersections. The result for $\gamma = (\Lambda, I_4)$ follows easily from the fact our expressions for ε and ξ are linear and quadratic in the d_{ij} . We take $\gamma = (I_2, M)$. If

$$M = \begin{pmatrix} U^{-1} & 0 \\ 0 & I_2 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} I_2 & 0 \\ V & I_2 \end{pmatrix}$$

then an isomorphism $\psi : A_{f'} \rightarrow A_f$ is given by

$$\begin{cases} p \mapsto u_{11}p + u_{21}q \\ q \mapsto u_{12}p + u_{22}q \\ r \mapsto u_{11}r + u_{21}s \\ s \mapsto u_{12}r + u_{22}s \end{cases} \quad \text{or} \quad \begin{cases} p \mapsto p - v_{11} \\ q \mapsto q - v_{12} \\ r \mapsto r - v_{21} \\ s \mapsto s - v_{22} \end{cases}.$$

We checked (5) by a generic calculation, and find that (7) is satisfied with $\kappa = 0$ or $\kappa = v_{11}(d_{12}r + d_{15}s) + v_{12}(d_{15}r + d_{25}s)$.

It remains to consider a transformation that moves the line $\{x_3 = x_4 = 0\}$. Let $f'_i(x_1, x_2, x_3, x_4) = f_i(x_3, x_4, x_1, x_2)$ for $i = 1, 2$. By hypothesis C_f does not meet the line $\{x_1 = x_2 = 0\}$ and so $t = qr - ps$ is invertible, i.e.

$$t^{-1} = -(d_{89}(s_1r + s_4) + d_{8,10}(r_5q + r_6 + p_5s + p_7 + d_{29}) + d_{9,10}(q_1p + q_3))/\Delta$$

where $\Delta = d_{8,10}^2 - d_{89}d_{9,10}$. There is an isomorphism $\psi : A_{f'} \rightarrow A_f$ given by $p \mapsto -st^{-1}$, $q \mapsto qt^{-1}$, $r \mapsto rt^{-1}$, $s \mapsto -pt^{-1}$ and $t \mapsto t^{-1}$. Under our assumption that t is invertible, we have $\xi = \xi_1 + c_1$ where

$$\begin{aligned} \xi_1 = & (d_{15}^2 - d_{12}d_{25})t^2 + (d_{15}d_{37} - d_{12}d_{67} - d_{15}d_{46} - d_{25}d_{34})t \\ & + (d_{37}d_{8,10} - d_{36}d_{9,10} + d_{46}d_{8,10} - d_{47}d_{89})t^{-1} + (d_{8,10}^2 - d_{89}d_{9,10})t^{-2}, \end{aligned}$$

and $c_1 \in K$ is a constant (depending on f). Working with ξ_1 in place of ξ makes it easy to check (5). Finally (7) is satisfied with

$$\kappa = \lambda(p(s_1r + s_4) + q_{10}) + \mu(r(q_1p + q_3) + s_8) + r(d_{12}p + d_{15}q) - \frac{1}{2}(d_{23}r + d_{26}s)$$

for certain $\lambda, \mu \in K$. In fact we may take $\lambda = (2d_{48}d_{8,10} - d_{38}d_{9,10} - d_{89}d_{49} + d_{89}d_{3,10})/(2\Delta)$ and $\mu = (2d_{3,10}d_{8,10} - d_{4,10}d_{89} - d_{9,10}d_{39} + d_{9,10}d_{48})/(2\Delta)$. \square

5. PROOF OF THEOREM 1.1

In this section we prove the following refined version of Theorem 1.1. The first two parts of the theorem show that A_f is an Azumaya algebra.

Theorem 5.1. *Let C_f be a smooth curve of genus one, defined by a genus one model f of degree $n \in \{2, 3, 4\}$. Then*

- (i) *The algebra $A = A_f$ is free of rank n^2 over its centre Z (say).*
- (ii) *The map $A \otimes_Z A^{\text{op}} \rightarrow \text{End}_Z(A)$; $a \otimes b \mapsto (x \mapsto axb)$ is an isomorphism.*
- (iii) *The centre Z is generated by the elements ξ and η specified in Section 3, subject only to these satisfying a Weierstrass equation.*
- (iv) *The Weierstrass equation in (iii) defines the Jacobian of C_f .*

For the proof of the first three parts of Theorem 5.1 we are free to extend our field K . However working over an algebraically closed field, it is well known that smooth curves of genus one C_f and $C_{f'}$ are isomorphic as curves (i.e. have the same j -invariant) if and only if the genus one models f and f' are in the same orbit for the group action defined at the start of Section 4. We now split into the cases $n = 2, 3, 4$ and verify the theorem by direct computation for a family of curves covering the j -line. The general case then follows by Theorem 4.1.

The generic calculations in Sections 3.1 and 3.2 already prove Theorem 5.1(iv) in the cases $n = 2, 3$. The case $n = 4$ will be treated in Section 5.3.

5.1. Binary quartics. Let $K[x_0, y_0] = K[x, y]/(F)$ where

$$F(x, y) = y^2 - (x^3 + a_2x^2 + a_4x + a_6).$$

We consider the binary quartic $f(x, z) = a_6x^4 + a_4x^3z + a_2x^2z^2 + xz^3$. Specialising the formulae in Section 3.1 we see that $\xi, \eta \in A_f$ satisfy $F(\xi, \eta) = 0$.

Lemma 5.2. *There is an isomorphism of K -algebras $\theta : A_f \rightarrow \text{Mat}_2(K[x_0, y_0])$ given by*

$$r \mapsto \begin{pmatrix} -y_0 & x_0^2 + a_2x_0 + a_4 \\ -x_0 & y_0 \end{pmatrix}, \quad s \mapsto \begin{pmatrix} 0 & x_0 + a_2 \\ 1 & 0 \end{pmatrix}, \quad t \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Moreover we have $\theta(\xi) = x_0I_2$ and $\theta(\eta) = y_0I_2$.

PROOF: We write E_{ij} for the 2 by 2 matrix with a 1 in the (i, j) position and zeros elsewhere. Then $\text{Mat}_2(K[x_0, y_0])$ is generated as a $K[x_0, y_0]$ -algebra by E_{12} and E_{21} subject to the relations $E_{12}^2 = E_{21}^2 = 0$ and $E_{12}E_{21} + E_{21}E_{12} = 1$. We define a K -algebra homomorphism $\phi : \text{Mat}_2(K[x_0, y_0]) \rightarrow A_f$ via

$$x_0 \mapsto \xi, \quad y_0 \mapsto \eta, \quad E_{12} \mapsto t, \quad E_{21} \mapsto s - s^2t.$$

We checked by direct calculation that θ and ϕ are well defined (i.e. they send all relations to zero), and that they are inverse to each other. \square

5.2. Ternary cubics. Let $K[x_0, y_0] = K[x, y]/(F)$ where

$$F(x, y) = y^2 + a_1xy + a_3y - (x^3 + a_2x^2 + a_4x + a_6).$$

We consider the ternary cubic $f(x, y, z) = x^3F(z/x, y/x)$. Specialising the formulae in Section 3.2 we see that $\xi, \eta \in A_f$ satisfy $F(\xi, \eta) = 0$.

Lemma 5.3. *There is an isomorphism of K -algebras $\theta : A_f \rightarrow \text{Mat}_3(K[x_0, y_0])$ given by*

$$x \mapsto \begin{pmatrix} -x_0 - a_2 & -1 & 0 \\ x_0^2 + a_2x_0 + a_4 & 0 & y_0 \\ y_0 + a_1x_0 + a_3 & 0 & x_0 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 0 & 0 & 0 \\ -a_1 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Moreover we have $\theta(\xi) = x_0I_3$ and $\theta(\eta) = y_0I_3$.

PROOF: We write E_{ij} for the 3 by 3 matrix with a 1 in the (i, j) position and zeros elsewhere. Then $\text{Mat}_3(K[x_0, y_0])$ is generated as a $K[x_0, y_0]$ -algebra by E_{12} , E_{23} and E_{31} subject to the relations

$$E_{12}^2 = E_{23}^2 = E_{31}^2 = E_{12}E_{31} = E_{23}E_{12} = E_{31}E_{23} = 0,$$

and

$$E_{12}E_{23}E_{31} + E_{23}E_{31}E_{12} + E_{31}E_{12}E_{23} = 1.$$

We define a K -algebra homomorphism $\phi : \text{Mat}_3(K[x_0, y_0]) \rightarrow A_f$ via $x_0 \mapsto \xi$, $y_0 \mapsto \eta$ and

$$E_{12} \mapsto -xy^2(x + \xi + a_2), \quad E_{23} \mapsto -y^2(xy - a_1), \quad E_{31} \mapsto (yx - a_1)y^2.$$

We checked by direct calculation that θ and ϕ are well defined, and that they are inverse to each other. \square

5.3. **Quadratic intersections.** Let $f' \in K[x, z]$ be a binary quartic, say

$$f'(x, z) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4.$$

The morphism $C_{f'} \rightarrow \mathbb{P}^3$ given by $(x_1 : x_2 : x_3 : x_4) = (xz : y : x^2 : z^2)$ has image C_f where $f = (f_1, f_2)$ and

$$(8) \quad \begin{aligned} f_1(x_1, x_2, x_3, x_4) &= x_1^2 - x_3x_4, \\ f_2(x_1, x_2, x_3, x_4) &= x_2^2 - (ax_3^2 + bx_1x_3 + cx_3x_4 + dx_1x_4 + ex_4^2). \end{aligned}$$

We write r', s', t' and ξ', η' for the generators and central elements of $A_{f'}$.

Lemma 5.4. *There is an isomorphism of K -algebras $\theta : A_f \rightarrow \text{Mat}_2(A_{f'})$ given by*

$$p \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad q \mapsto \begin{pmatrix} r' & s' \\ 0 & r' \end{pmatrix}, \quad r \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad s \mapsto \begin{pmatrix} t' & 0 \\ s' & t' \end{pmatrix}.$$

Moreover we have $\theta(\xi) = (\xi' + c)I_2$ and $\theta(\eta) = -\eta'I_2$.

Proof. Again the proof is by direct calculation, the K -algebra homomorphism inverse to θ being given by $E_{12} \mapsto p$, $E_{21} \mapsto r$ and

$$r'I_2 \mapsto pqr + rqp, \quad s'I_2 \mapsto prqr + rqrp, \quad t'I_2 \mapsto psr + rsp. \quad \square$$

To complete the proof of Theorem 5.1, and hence of Theorem 1.1, it remains to show that in the case $n = 4$ the Weierstrass equation satisfied by ξ and η is in fact an equation for the Jacobian of C_f .

Let A and B be the 4 by 4 matrices of partial derivatives of f_1 and f_2 . We define a, b, c, d, e by writing $\frac{1}{4} \det(Ax + B) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4$. As shown in [1], the Jacobian of C_f has Weierstrass equation $y^2 = F(x)$ where F is the monic cubic polynomial defined in (4).

We claim that $\eta^2 = F(\xi + c_0)$ for some constant $c_0 \in K$ (depending on f). In verifying this claim we are free to extend our field. We are also free to make changes of coordinates. Indeed if $f' = \gamma f$ for some $\gamma = (\Lambda, M) \in \mathcal{G}_4(K)$ then by Theorem 4.1 there is an isomorphism $\psi : A_{f'} \rightarrow A_f$ with $\xi \mapsto (\det \gamma)^2 \xi + \rho$ and $\eta \mapsto (\det \gamma)^3 \eta$. On the other hand the monic cubic polynomials F and F' (associated to f and f') are related by $F'(x - \frac{1}{3}c') = (\det \gamma)^6 F((\det \gamma)^{-2}x - \frac{1}{3}c)$. Finally we checked that for f as specified in (8), the claim is satisfied with $c_0 = 0$.

6. PROOF OF THEOREM 1.2

In this section we recall the definition of the isomorphism (1), and then prove that the construction of A_f from C_f is an explicit realisation of this map.

6.1. Galois cohomology. Let E/K be an elliptic curve. Writing \overline{K} for a separable closure of K , the short exact sequences of Galois modules

$$(9) \quad 0 \rightarrow \overline{K}^\times \rightarrow \overline{K}(E)^\times \rightarrow \overline{K}(E)^\times / \overline{K}^\times \rightarrow 0,$$

and

$$0 \rightarrow \overline{K}(E)^\times / \overline{K}^\times \rightarrow \text{Div } E \rightarrow \text{Pic } E \rightarrow 0,$$

give rise to long exact sequences

$$(10) \quad H^2(K, \overline{K}^\times) \rightarrow H^2(K, \overline{K}(E)^\times) \rightarrow H^2(K, \overline{K}(E)^\times / \overline{K}^\times),$$

and

$$(11) \quad H^1(K, \text{Div } E) \rightarrow H^1(K, \text{Pic } E) \rightarrow H^2(K, \overline{K}(E)^\times / \overline{K}^\times) \rightarrow H^2(K, \text{Div } E).$$

Since $H^1(K, \mathbb{Z}) = 0$ it follows by Shapiro's lemma that $H^1(K, \text{Div } E) = 0$. We may identify $H^1(K, \text{Pic } E) = H^1(K, \text{Pic}^0 E) = H^1(K, E)$ and $H^2(K, \overline{K}^\times) = \text{Br}(K)$. As shown in [14, Appendix] we may identify

$$\text{Br}(E) = \ker(H^2(K, \overline{K}(E)^\times) \rightarrow H^2(K, \text{Div } E)).$$

We fix a local parameter t at $0 \in E(K)$. The left hand map in (9) is split by the map sending a Laurent power series in t to its leading coefficient. It follows that the right hand map in (10) is surjective, and hence $H^1(K, E) \cong \text{Br}(E) / \text{Br}(K)$. Since the natural map $\text{Br}(K) \rightarrow \text{Br}(E)$ is split by evaluation at $0 \in E(K)$ this also gives the isomorphism (1).

6.2. Cyclic algebras. Let L/K be a Galois extension with $\text{Gal}(L/K)$ cyclic of order n , generated by σ . For $b \in K^\times$ the cyclic algebra $(L/K, b)$ is the K -algebra with basis $1, v, \dots, v^{n-1}$ as an L -vector space, and multiplication determined by $v^n = b$ and $v\lambda = \sigma(\lambda)v$ for all $\lambda \in L$. This is a central simple algebra over K of dimension n^2 . It is split by L and so determines a class in $\text{Br}(L/K)$.

We compute cohomology of $C_n = \langle \sigma | \sigma^n = 1 \rangle$ relative to the resolution

$$\dots \rightarrow \mathbb{Z}[C_n] \xrightarrow{\Delta} \mathbb{Z}[C_n] \xrightarrow{N} \mathbb{Z}[C_n] \xrightarrow{\Delta} \mathbb{Z}[C_n] \rightarrow 0,$$

where $\Delta = \sigma - 1$ and $N = 1 + \sigma + \dots + \sigma^{n-1}$. Thus for A a $\text{Gal}(L/K)$ -module,

$$H^i(\text{Gal}(L/K), A) = \begin{cases} \ker(N|A) / \text{im}(\Delta|A) & \text{if } i \geq 1 \text{ odd,} \\ \ker(\Delta|A) / \text{im}(N|A) & \text{if } i \geq 2 \text{ even.} \end{cases}$$

In particular $K^\times / N_{L/K}(L^\times) \cong H^2(\text{Gal}(L/K), L^\times) = \text{Br}(L/K)$. This isomorphism is realised by sending $b \in K^\times$ to the class of $(L/K, b)$.

Let E/K be an elliptic curve, and fix a local parameter t at $0 \in E(K)$. If $g \in K(E)^\times$ then we write $(L/K, g)$ for the cyclic algebra $(L(E)/K(E), g)$. We may describe the isomorphism (1) in terms of cyclic algebras as follows.

Lemma 6.1. *Let C/K be a smooth curve of genus one curve with Jacobian E , and suppose $Q \in C(L)$. Let P be the image of $[\sigma Q - Q]$ under $\text{Pic}^0(C) \cong E$. Then the isomorphism (1) sends the class of C to the class of $(L/K, g)$ where $g \in K(E)^\times$ has divisor $(P) + (\sigma P) + \dots + (\sigma^{n-1}P) - n(0)$, and is scaled to have leading coefficient 1 when expanded as a Laurent power series in t .*

PROOF: We identify $E \cong \text{Pic}^0(E)$ via $T \mapsto (T) - (0)$. Then the class of C in $H^1(K, \text{Pic } E)$ is represented by $(P) - (0)$, and its image under the connecting map in (11) is represented by $g \in K(E)^\times$ where $\text{div } g = N_{L/K}((P) - (0))$. Finally to lift to an element of $\ker(\text{ev}_0 : \text{Br}(E) \rightarrow \text{Br}(K))$ we scale g as indicated. \square

6.3. Binary quartics. We prove Theorem 1.2 in the case $n = 2$. By a change of coordinates we may assume¹ that $a \neq 0$ and $b = 0$, i.e.

$$f(x, z) = ax^4 + cx^2z^2 + dxz^3 + ez^4.$$

Let E be the Jacobian of C_f , with Weierstrass equation as specified in Section 3.1. We know by Theorem 1.1 that the centre Z of A_f is a Dedekind domain with field of fractions $K(E)$. Therefore the natural map $\text{Br}(Z) \rightarrow \text{Br}(K(E))$ is injective, and so it suffices for us to consider the class of the quaternion algebra $A_f \otimes_Z K(E)$ in $\text{Br}(K(E))$. This algebra is generated by r and s subject to the rules $r^2 = a$, $rs + sr = 0$ and $s^2 = \xi + c$. It is therefore the cyclic algebra $(L/K, g)$ where $L = K(\sqrt{a})$ and $g \in K(E)^\times$ is the rational function $g(\xi, \eta) = \xi + c$.

By inspection of the Weierstrass equation for E in Section 3.1, we see that $\text{div } g = (P) + (\sigma P) - 2(0)$ where $P = (-c, d\sqrt{a}) \in E(L)$. Let C_f have equation $y^2 = f(x_1, x_2)$, and let $Q \in C(L)$ be the point $(x_1 : x_2 : y) = (1 : 0 : \sqrt{a})$. Let $\pi : C_f \rightarrow E$ be the covering map, i.e. the map $T \mapsto [2(T) - H]$ where H is the fibre of the double cover $C_f \rightarrow \mathbb{P}^1$. Using the formulae in [1] we find that $\pi(Q) = -P$. Therefore $[\sigma Q - Q] = [H - 2(Q)] = P$. It follows by Lemma 6.1 that the isomorphism (1) sends the class of C to the class of the cyclic algebra $(L/K, g)$. This completes the proof of Theorem 1.2 in the case $n = 2$.

6.4. Ternary cubics. We prove Theorem 1.2 in the case $n = 3$. Since 2 and 3 are coprime, we are free to replace our field K by a quadratic extension. We may therefore suppose that $\zeta_3 \in K$ and that $f(x, 0, z) = ax^3 - z^3$ with $a \neq 0$. Further substitutions of the form $x \leftarrow x + \lambda y$ and $z \leftarrow z + \lambda' y$ reduce us to the case

$$f(x, y, z) = ax^3 + by^3 - z^3 + b_1xy^2 + b_3y^2z + mxyz.$$

The algebra $A_f \otimes_Z K(E)$ is generated by x and $v = yx - \zeta_3 xy - \frac{1}{3}(1 - \zeta_3)m$ subject to the rules $x^3 = a$, $xv = \zeta_3 vx$ and $v^3 = g(\xi, \eta)$ where

$$g(\xi, \eta) = \eta - \zeta_3^2 m \xi - 3(1 - \zeta_3)ab + \frac{1}{9}(\zeta_3 - \zeta_3^2)m^3.$$

It is therefore the cyclic algebra $(L/K, g)$ where $L = K(\sqrt[3]{a})$.

¹It is incorrectly claimed in [10, Section 5] that we may further assume $d = 0$.

Let E be given by the Weierstrass equation specified in Section 3.2. We find that $\text{div } g = (R) + (\sigma R) + (\sigma^2 R) - 3(0)$ for a certain point $R \in E(L)$ with x -coordinate $-(1/3)m^2 + b_1\sqrt[3]{a} - b_3(\sqrt[3]{a})^2$. Let $Q = (1 : 0 : \sqrt[3]{a}) \in C_f(L)$. Let $\pi : C_f \rightarrow E$ be the covering map, i.e. the map $T \mapsto [3(T) - H]$ where H is the hyperplane section. Using the formulae in [1] we find that $\pi(Q) = \sigma R - \sigma^2 R$. We compute

$$3[\sigma Q - Q] = \pi(\sigma Q) - \pi(Q) = \sigma(\sigma R - \sigma^2 R) - (\sigma R - \sigma^2 R) = 3\sigma^2 R.$$

Since generically E has no 3-torsion, it follows that $[\sigma Q - Q] = \sigma^2 R$. Taking $P = \sigma^2 R$ in Lemma 6.1 completes the proof.

6.5. Dihedral algebras. Let L/K be a Galois extension with $\text{Gal}(L/K) \cong D_{2n}$ where $D_{2n} = \langle \sigma, \tau \mid \sigma^n = \tau^2 = (\sigma\tau)^2 = 1 \rangle$ is the dihedral group of order $2n$. Let K_1 , F and \tilde{F} be the fixed fields of σ , τ and $\sigma\tau$. For $(b, \varepsilon, \tilde{\varepsilon}) \in K_1^\times \times F^\times \times \tilde{F}^\times$ satisfying $N_{K_1/K}(b)N_{F/K}(\varepsilon) = N_{\tilde{F}/K}(\tilde{\varepsilon})$ we define the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$ to be the K -algebra with basis $1, v, \dots, v^{n-1}, w, vw, \dots, v^{n-1}w$ as an L -vector space, and multiplication determined by $v^n = b$, $w^2 = \varepsilon$, $(vw)^2 = \tilde{\varepsilon}$, $v\lambda = \sigma(\lambda)v$ and $w\lambda = \tau(\lambda)w$ for all $\lambda \in L$. As we explain below, this is a special case of a crossed product algebra. In particular it is a central simple algebra over K of dimension $(2n)^2$. It is split by L and so determines a class in $\text{Br}(L/K)$.

Let $N = 1 + \sigma + \dots + \sigma^{n-1} \in \mathbb{Z}[D_{2n}]$. We compute cohomology of D_{2n} relative to the resolution

$$(12) \quad \dots \longrightarrow \mathbb{Z}[D_{2n}]^4 \xrightarrow{\Delta_3} \mathbb{Z}[D_{2n}]^3 \xrightarrow{\Delta_2} \mathbb{Z}[D_{2n}]^2 \xrightarrow{\Delta_1} \mathbb{Z}[D_{2n}] \longrightarrow 0$$

where

$$\Delta_3 = \begin{pmatrix} \sigma - 1 & 0 & 0 \\ 0 & \tau - 1 & 0 \\ 0 & 0 & \sigma\tau - 1 \end{pmatrix}, \quad \Delta_2 = \begin{pmatrix} N & 0 \\ 0 & \tau + 1 \\ \sigma\tau + 1 & \sigma + \tau \end{pmatrix}, \quad \Delta_1 = \begin{pmatrix} \sigma - 1 \\ \tau - 1 \end{pmatrix},$$

and our convention is that Δ_m acts by right multiplication on row vectors. This resolution is a special case of that defined in [16], except that we have applied some row and column operations to simplify Δ_2 and Δ_3 . Using this resolution to compute $\text{Br}(L/K) = H^2(\text{Gal}(L/K), L^\times)$ we find

$$(13) \quad \frac{\{(b, \varepsilon, \tilde{\varepsilon}) \in K_1^\times \times F^\times \times \tilde{F}^\times \mid N_{K_1/K}(b)N_{F/K}(\varepsilon) = N_{\tilde{F}/K}(\tilde{\varepsilon})\}}{\{(N_{L/K_1}(\lambda_1), N_{L/F}(\lambda_2), N_{L/\tilde{F}}(\lambda_1\lambda_2)) \mid \lambda_1, \lambda_2 \in L^\times\}} \cong \text{Br}(L/K).$$

This isomorphism is realised by sending $(b, \varepsilon, \tilde{\varepsilon})$ to the class of the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$. Our claim that dihedral algebras are crossed product algebras is justified by comparing this description of $\text{Br}(L/K)$ with that obtained from the standard resolution.

In more detail, there is a commutative diagram of free $\mathbb{Z}[D_{2n}]$ -modules

$$\begin{array}{ccccccc} & & \longrightarrow \bigoplus_{(g,h) \in D_{2n}^2} \mathbb{Z}[D_{2n}] & \xrightarrow{d_2} & \bigoplus_{g \in D_{2n}} \mathbb{Z}[D_{2n}] & \xrightarrow{d_1} & \mathbb{Z}[D_{2n}] \longrightarrow 0 \\ & & \downarrow \phi_2 & & \downarrow \phi_1 & & \parallel \\ & & \longrightarrow \mathbb{Z}[D_{2n}]^3 & \xrightarrow{\Delta_2} & \mathbb{Z}[D_{2n}]^2 & \xrightarrow{\Delta_1} & \mathbb{Z}[D_{2n}] \longrightarrow 0 \end{array}$$

where the first row is the standard resolution, i.e. $d_1(e_g) = g - 1$ and $d_2(e_{g,h}) = g(e_h) - e_{gh} + e_g$, and the second row is the resolution (12). We choose ϕ_1 such that

$$\begin{aligned} \phi_1(e_1) &= (0, 0), & \phi_1(e_{\sigma^i}) &= (1 + \sigma + \dots + \sigma^{i-1}, 0) & \text{for } 0 < i < n, \\ \phi_1(e_{\tau}) &= (0, 1), & \phi_1(e_{\sigma^i \tau}) &= (1 + \sigma + \dots + \sigma^{i-1}, \sigma^i) & \text{for } 0 < i < n. \end{aligned}$$

We further choose ϕ_2 such that for $0 \leq i, j < n$ we have

$$\phi_2(e_{\sigma^i, \sigma^j}) = \phi_2(e_{\sigma^i, \sigma^j \tau}) = \begin{cases} (0, 0, 0) & \text{if } i + j < n, \\ (1, 0, 0) & \text{if } i + j \geq n, \end{cases}$$

and $\phi_2(e_{\tau, \tau}) = (0, 1, 0)$, $\phi_2(e_{\sigma \tau, \sigma \tau}) = (0, 0, 1)$. The 2-cocycle $\xi \in Z^2(D_{2n}, L^\times)$ corresponding to $(b, \varepsilon, \tilde{\varepsilon})$ is now the unique 2-cocycle satisfying

$$\xi_{\sigma^i, \sigma^j} = \xi_{\sigma^i, \sigma^j \tau} = \begin{cases} 1 & \text{if } i + j < n, \\ b & \text{if } i + j \geq n, \end{cases}$$

and $\xi_{\tau, \tau} = \varepsilon$, $\xi_{\sigma \tau, \sigma \tau} = \tilde{\varepsilon}$. The cross product algebra associated to ξ is the K -algebra with basis $\{v_g : g \in D_{2n}\}$ as an L -vector space, and multiplication determined by $v_g v_h = \xi_{g,h} v_{gh}$ and $v_g \lambda = g(\lambda) v_g$ for all $\lambda \in L$. Identifying $v_{\sigma^i} = v^i$ and $v_{\sigma^i \tau} = v^i w$, we recognise this as the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$.

Let E/K be an elliptic curve, and fix a local parameter t at $0 \in E(K)$. We may describe the isomorphism (1) in terms of dihedral algebras as follows.

Lemma 6.2. *Let C/K be a smooth curve of genus one with Jacobian E , and suppose $Q \in C(F)$. Let P be the image of $[\sigma Q - Q]$ under $\text{Pic}^0(C) \cong E$. Then the isomorphism (1) sends the class of C to the class of $(L/K, g, 1, h)$ where $g \in K_1(E)^\times$ and $h \in \tilde{F}(E)^\times$ have divisors $(P) + (\sigma P) + \dots + (\sigma^{n-1} P) - n(0)$ and $(P) + (-P) - 2(0)$, and are scaled to have leading coefficient 1 when expanded as Laurent power series in t .*

PROOF: We have $[\sigma Q - Q] = P$ and $[\tau Q - Q] = 0$. We identify $E \cong \text{Pic}^0(E)$ via $T \mapsto (T) - (0)$. Then the class of C in $H^1(K, \text{Pic } E)$ is represented by the pair $((P) - (0), 0)$. Reading down the first column of Δ_2 , the image of this class under the connecting map in (11) is represented by a triple $(g, 1, h)$ where $\text{div } g = N_{L/K_1}((P) - (0))$ and $\text{div } h = (\sigma \tau + 1)((P) - (0)) = (P) + (-P) - 2(0)$. Finally to lift to an element of $\ker(\text{ev}_0 : \text{Br}(E) \rightarrow \text{Br}(K))$ we scale g and h as indicated. \square

6.6. Quadric intersections. We prove Theorem 1.2 in the case $n = 4$. We are free to make field extensions of odd degree. We may therefore suppose that C_f meets the plane $\{x_4 = 0\}$ in four points in general position, and that one of the three singular fibres in the pencil of quadrics vanishing at these points is defined over K . In other words, we may assume that $f_1(x_1, x_2, x_3, 0) = q_1(x_1, x_3)$ where q_1 is a binary quadratic form. Then f_2 must have a term x_2^2 , and so by completing the square $f_2(x_1, x_2, x_3, 0) = x_2^2 + q_2(x_1, x_3)$. Adding a suitable multiple of f_1 to f_2 we may suppose that q_2 factors over K , and so without loss of generality $q_2(x_1, x_3) = -x_1 x_3$. Making linear substitutions of the form $x_i \leftarrow x_i + \lambda x_4$ for $i = 1, 2, 3$ brings us to the case

$$\begin{aligned} f_1(x_1, x_2, x_3, x_4) &= ax_1^2 + bx_1 x_3 + cx_3^2 + (d_1 x_1 + d_2 x_2 + d_3 x_3 + d_4 x_4) x_4, \\ f_2(x_1, x_2, x_3, x_4) &= x_2^2 - x_1 x_3 - ex_4^2. \end{aligned}$$

Let L/K be the splitting field of $G(X) = aX^4 + bX^2 + c$. Then $\text{Gal}(L/K)$ is a subgroup of D_8 . We suppose it is equal to D_8 , the other cases being similar. We have $L = K(\theta, \sqrt{\delta})$ where θ is a root of G and $\delta = ac(b^2 - 4ac)$. The generators σ and τ of D_8 act as

$$\begin{aligned} \sigma : \theta &\mapsto \frac{1}{\sqrt{\delta}}(ab\theta^3 + (b^2 - 2ac)\theta), & \sigma : \sqrt{\delta} &\mapsto \sqrt{\delta}, \\ \tau : \theta &\mapsto \theta, & \tau : \sqrt{\delta} &\mapsto -\sqrt{\delta}. \end{aligned}$$

The fixed fields of σ , τ and $\sigma\tau$ are $K_1 = K(\sqrt{\delta})$, $F = K(\theta)$ and $\tilde{F} = K(\phi)$ where $\phi = a(\theta + \sigma(\theta))$.

Let $A = A_f \otimes_Z K(E)$. The second generator q of A_f satisfies $aq^4 + bq^2 + c = 0$. We may therefore embed $F \subset A$ via $\theta \mapsto q$, and hence $L \subset A_1 = A \otimes_K K_1$. We find that A_1 is generated as a $K_1(E)$ -algebra by q and

$$v = a(r\sigma(q) - qr) + \frac{a}{\sqrt{\delta}}(aq^3\sigma(q) - c)(d_1q + d_2 + d_3q^{-1})$$

subject to the rules $aq^4 + bq^2 + c = 0$, $vq = \sigma(q)v$ and $v^4 = g(\xi, \eta)$, for some $g \in K_1(E)$. It is therefore the cyclic algebra $(L/K_1, g)$. Writing ξ for the element that was denoted $\xi + c_0$ in Section 5.3, we have

$$g(\xi, \eta) = \xi^2 - \frac{4acd_2}{\sqrt{\delta}}\eta + \frac{2(bm + 2acd_2^2)}{b^2 - 4ac}\xi + 8aced_2^2 + \frac{m^2 + d_2^2n}{b^2 - 4ac}.$$

where $m = cd_1^2 - bd_1d_3 + ad_3^2 + (b^2 - 4ac)d_4$ and $n = bcd_1^2 + ac(d_2^2 - 4d_1d_3) + abd_3^2$.

Let $Q = (\theta^2 : \theta : 1 : 0) \in C_f(F)$, and let $P = [\sigma Q - Q]$ under the usual identification $\text{Pic}^0(C_f) \cong E$. We compute the point P as follows. We put

$$\begin{pmatrix} Tz_1 \\ z_2 \\ z_1 \\ Tz_2 \end{pmatrix} = \begin{pmatrix} a & \phi & (\phi^2 + ab)/2a & 0 \\ a & -\phi & (\phi^2 + ab)/2a & 0 \\ -ad_1 & -ad_2 & -ad_3 & -ad_4 - e\phi^2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

Inverting this 4 by 4 matrix M gives

$$(\det M)f_2(x_1, x_2, x_3, x_4) = \alpha(z_1, z_2)T^2 + \beta(z_1, z_2)T + \gamma(z_1, z_2)$$

for some binary quadratic forms α, β, γ . Replacing f_2 by f_1 gives a scalar multiple of the same equation. Therefore C_f has equation $y^2 = \beta(z_1, z_2)^2 - 4\alpha(z_1, z_2)\gamma(z_1, z_2)$. The points Q and $\sigma(Q)$ are given by $(z_1 : z_2 : y) = (1 : 0 : \pm a(\theta - \sigma(\theta)))$. Exactly as in Section 6.3, we compute P using the formulae for the covering map. Relative to the Weierstrass equation for E specified in Section 5.3, this point has x -coordinate

$$(14) \quad x(P) = \frac{2a\phi^2(d_2d_3\phi + m) - d_2(d_1\phi + ad_2)(b\phi^2 + a(b^2 - 4ac))}{2a^2(b^2 - 4ac)} \in \widetilde{F}.$$

We find that P and its Galois conjugates are zeros of g . Therefore $\text{div } g = (P) + (\sigma P) + (\sigma^2 P) + (\sigma^3 P) - 4(0)$. It follows by Lemma 6.1 that the class of A_f , and the image of the class of C_f under (1), agree after restricting to $\text{Br}(E \otimes_K K_1)$. It remains to show that the same conclusion holds without the quadratic extension.

For $a \in A_1 = A \otimes_K K_1$ let $\bar{a} = (1 \otimes \tau)a$. We find that $v\bar{v} = \xi - x(P)$ where $x(P)$ is given by (14). Now let $A_2 = A_1 \oplus A_1w$ with multiplication determined by $w^2 = 1$ and $wa = \bar{a}w$ for all $a \in A_1$. This is the dihedral algebra $(L/K, g, 1, \xi - x(P))$. The subalgebra generated by K_1 and w is a trivial cyclic algebra. Therefore $A_2 \cong A \otimes_K \text{Mat}_2(K)$. In particular A and A_2 have the same class in $\text{Br}(K(E))$. Lemma 6.2 now completes the proof.

7. GEOMETRIC INTERPRETATION

Let C be a smooth curve of genus one with Jacobian elliptic curve E . Let H and H' be K -rational divisors on C of degree $n \geq 2$. We assume that H and H' are *not* linearly equivalent, and so their difference corresponds to a non-zero point $P \in E(K)$. The complete linear systems $|H|$ and $|H'|$ define an embedding $C \rightarrow \mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$. Assuming $n \in \{2, 3, 4\}$, the composite of this map with the first and second projections is described by genus one models f and f' .

In this section we investigate the following problem.

Given f and P , how can we compute f' ?

The answers we give might be viewed as explicitly realising the connection between the Tate pairing and the obstruction map, as studied in [6, 15, 18]. Our answers also serve to motivate the definition of A_f , and indeed (however much it might seem an obvious guess in hindsight) this is how we actually found the correct definition of A_f in the case $n = 4$.

We give no proofs in this section. However all our claims may be verified by generic calculations.

7.1. Binary quartics. The image of $C \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ is defined by a $(2, 2)$ -form, say

$$F(x, z; x', z') = f_1(x, z)x'^2 + 2f_2(x, z)x'z' + f_3(x, z)z'^2.$$

Then $f = f_2^2 - f_1f_3$, and f' is obtained in the same way, after switching the two sets of variables. Thus, given a binary quartic f , we seek to find binary quadratic forms f_1, f_2, f_3 such that

$$\begin{pmatrix} f_2 & -f_1 \\ f_3 & -f_2 \end{pmatrix}^2 = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix}.$$

Equivalently, we look for matrices $M_1, M_2, M_3 \in \text{Mat}_2(K)$ satisfying

$$(\alpha^2 M_1 + \alpha\beta M_2 + \beta^2 M_3)^2 = f(\alpha, \beta)I_2.$$

This reduces the problem of finding f' from f to that of finding a K -algebra homomorphism $A_f \rightarrow \text{Mat}_2(K)$. By Theorem 1.1 any such homomorphism must factor via $A_{f,P}$ for some $0 \neq P \in E(K)$. This point P turns out to be the same as the point P considered at the start of Section 7. In conclusion, if $A_{f,P} \cong \text{Mat}_2(K)$ and we can find this isomorphism explicitly, then we can write down a $(2, 2)$ -form, and hence a binary quartic f' , such that C_f and $C_{f'}$ are isomorphic as genus one curves, but their hyperplane sections differ by P .

7.2. Ternary cubics. The image of $C \rightarrow \mathbb{P}^2 \times \mathbb{P}^2$ is defined by three $(1, 1)$ -forms. The coefficients may be arranged as a $3 \times 3 \times 3$ cube. As explained in [3], slicing this cube in three different ways gives rise to three ternary cubics. Two of these are f and f' . Thus, given a ternary cubic f , we seek to find matrices $M_1, M_2, M_3 \in \text{Mat}_3(K)$ satisfying

$$f(\alpha, \beta, \gamma) = \det(\alpha M_1 + \beta M_2 + \gamma M_3).$$

If $f(0, 0, 1) \neq 0$ then we may assume (after rescaling f and multiplying each M_i on the left by the same invertible matrix) that $M_3 = -I_3$. Then $\alpha M_1 + \beta M_2$ has characteristic polynomial $\gamma \mapsto f(\alpha, \beta, \gamma)$, and so by the Cayley-Hamilton theorem

$$f(\alpha, \beta, \alpha M_1 + \beta M_2) = 0.$$

This reduces the problem of finding f' from f to that of finding a K -algebra homomorphism $A_f \rightarrow \text{Mat}_3(K)$. By Theorem 1.1 any such homomorphism must factor via $A_{f,P}$ for some $0 \neq P \in E(K)$. This point P turns out to be the same as

the point P considered at the start of Section 7. In conclusion, if $A_{f,P} \cong \text{Mat}_3(K)$ and we can find this isomorphism explicitly, then we can write down a $3 \times 3 \times 3$ cube, and hence a ternary cubic f' , such that C_f and $C_{f'}$ are isomorphic as genus one curves, but their hyperplane sections differ by P .

7.3. Quadric intersections. The image of $C \rightarrow \mathbb{P}^3 \times \mathbb{P}^3$ is defined by an 8-dimensional vector space V of $(1,1)$ -forms in variables x_1, \dots, x_4 and y_1, \dots, y_4 . Let W be the vector space of 4 by 4 alternating matrices $B = (b_{ij})$ of linear forms in y_1, \dots, y_4 such that

$$\sum_{i=1}^4 x_i b_{ij}(y_1, \dots, y_4) \in V \quad \text{for all } j = 1, \dots, 4.$$

We find that W is 4-dimensional. We choose a basis, and let M be a generic linear combination of the basis elements, say with coefficients z_1, \dots, z_4 . Then $M = (m_{ij})$ is a 4 by 4 alternating matrix of $(1,1)$ -forms in y_1, \dots, y_4 and z_1, \dots, z_4 . The Pfaffian of this matrix is a $(2,2)$ -form, which turns out to be

$$f_1^+(y_1, \dots, y_4) f_2^-(z_1, \dots, z_4) - f_2^+(y_1, \dots, y_4) f_1^-(z_1, \dots, z_4),$$

where $f^\pm = (f_1^\pm, f_2^\pm)$ describes the image of $C \rightarrow \mathbb{P}^3$ via $|H^\pm|$, and $[H - H^\pm] = \pm P$. To tie in with our earlier notation, $H^+ = H'$ and $f^+ = f'$.

We write $m_{ij} = (y_1, \dots, y_4) M_{ij}(z_1, \dots, z_4)^T$ where $M_{ij} \in \text{Mat}_4(K)$. Assuming C_f does not meet the line $\{x_3 = x_4 = 0\}$ we have $\det(M_{12}) \neq 0$, and so we may choose our basis for W such that $M_{12} = I_4$. The matrices M_{ij} then satisfy $f_i(\alpha M_{23} + \beta M_{24}, -(\alpha M_{13} + \beta M_{14}), \alpha, \beta) = 0$ for $i = 1, 2$, where the first two arguments commute, and $M_{34} = M_{13}M_{24} - M_{23}M_{14} = M_{24}M_{13} - M_{14}M_{23}$.

This reduces the problem of finding f' from f to that of finding a K -algebra homomorphism $A_f \rightarrow \text{Mat}_4(K)$. By Theorem 1.1 any such homomorphism must factor via $A_{f,P}$ for some $0 \neq P \in E(K)$. Again this point P turns out to correspond to the difference of hyperplane sections for C_f and $C_{f'}$.

REFERENCES

- [1] S.Y. An, S.Y. Kim, D.C. Marshall, S.H. Marshall, W.G. McCallum and A.R. Perlis, Jacobians of genus one curves, *J. Number Theory* **90** (2001), no. 2, 304–315.
- [2] M. Artin, F. Rodriguez-Villegas and J. Tate, On the Jacobians of plane cubics, *Adv. Math.* **198** (2005), no. 1, 366–382.
- [3] M. Bhargava and W. Ho, Coregular spaces and genus one curves, *Camb. J. Math.* **4** (2016), no. 1, 1–119.
- [4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, *J. Symb. Comb.* **24**, 235–265 (1997). <http://magma.maths.usyd.edu.au/magma/>
- [5] M. Ciperiani and D. Krashen, Relative Brauer groups of genus 1 curves, *Israel J. Math.* **192** (2012), no. 2, 921–949.

- [6] J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon and M. Stoll, Explicit n -descent on elliptic curves, I Algebra, *J. reine angew. Math.* **615** (2008) 121–155.
- [7] J.E. Cremona, T.A. Fisher and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, *Algebra & Number Theory* **4** (2010), no. 6, 763–820.
- [8] B. Creutz, Relative Brauer groups of torsors of period two, *J. Algebra* **459** (2016), 109–132.
- [9] T.A. Fisher and R.D. Newton, Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve, *Int. J. Number Theory* **10** (2014), no. 7, 1881–1907.
- [10] D. Haile and I. Han, On an algebra determined by a quartic curve of genus one, *J. Algebra* **313** (2007), no. 2, 811–823.
- [11] D.E. Haile, I. Han and A.R. Wadsworth, Curves C that are cyclic twists of $Y^2 = X^3 + c$ and the relative Brauer groups $\text{Br}(k(C)/k)$, *Trans. Amer. Math. Soc.* **364** (2012), no. 9, 4875–4908.
- [12] J.-M. Kuo, On an algebra associated to a ternary cubic curve. *J. Algebra* **330** (2011), 86–102.
- [13] J.-M. Kuo, On cyclic twists of elliptic curves of period two or three and the determination of their relative Brauer groups, *J. Pure Appl. Algebra* **220** (2016), no. 3, 1206–1228.
- [14] S. Lichtenbaum, Duality theorems for curves over p -adic fields. *Invent. Math.* **7** (1969) 120–136.
- [15] C. O’Neil, The period-index obstruction for elliptic curves. *J. Number Theory* **95** (2002), no. 2, 329–339.
- [16] C.T.C. Wall, Resolutions for extensions of groups, *Proc. Cambridge Philos. Soc.* **57** (1961) 251–255.
- [17] O. Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, *Arithmetic of higher-dimensional algebraic varieties* (Palo Alto, CA, 2002), 259–267, Progr. Math., 226, Birkhäuser Boston, Boston, MA, 2004.
- [18] Ju. G. Zarhin, Noncommutative cohomology and Mumford groups. *Mat. Zametki* **15** (1974), 415–419; English translation: *Math. Notes* **15** (1974), 241–244.

UNIVERSITY OF CAMBRIDGE, DPMMS, CENTRE FOR MATHEMATICAL SCIENCES, WILBERFORCE ROAD, CAMBRIDGE CB3 0WB, UK

E-mail address: T.A.Fisher@dpmms.cam.ac.uk