ON SOME ALGEBRAS ASSOCIATED TO GENUS ONE CURVES
TOM FISHER

ABSTRACT. Haile, Han and Kuo have studied certain non-commutative alge-
bras associated to a binary quartic or ternary cubic form. We extend their
construction to pairs of quadratic forms in four variables, and conjecture a fur-
ther generalisation to genus one curves of arbitrary degree. These constructions
give an explicit realisation of an isomorphism relating the Weil-Chatelet and
Brauer groups of an elliptic curve.

1. INTRODUCTION

Let C' be a smooth curve of genus one, written as either a double cover of P*
(case n = 2), or as a plane cubic in P? (case n = 3), or as an intersection of two
quadrics in P? (case n = 4). We write C' = Cy where f is the binary quartic form,
ternary cubic form, or pair of quadratic forms defining the curve. In this paper
we investigate a certain non-commutative algebra Ay determined by f.

The algebra A was defined in the case n = 2 by Haile and Han [10], and in
the case n = 3 by Kuo [12]. We simplify some of their proofs, and extend to the
case n = 4. We also conjecture a generalisation to genus one curves of arbitrary
degree n. The following theorem was already established in [10, 12] in the cases
n = 2,3. We work throughout over a field K of characteristic not 2 or 3.

Theorem 1.1. If n € {2,3,4} then Ay is an Azumaya algebra, free of rank n?
over its centre. Moreover the centre of Ay is isomorphic to the co-ordinate ring of
E\ {0g} where E is the Jacobian elliptic curve of Cy.

Let E/K be an elliptic curve. A standard argument (see Section 6.1) shows
that the Weil-Chatelet group of E is canonically isomorphic to the quotient of
Brauer groups Br(E)/Br(K). For our purposes it is more convenient to write this
isomorphism as

(1) HY(K, E) = ker (Br(E) v, Br(K)) .

where ev( is the map that evaluates a Brauer class at 0 € E(K). The algebras we
study explicitly realise this isomorphism.

Theorem 1.2. Ifn € {2,3,4} then the isomorphism (1) sends the class of Cy to
the class of Ay.
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The following two corollaries were proved in [10, 12] in the cases n = 2, 3.

Corollary 1.3. Let n € {2,3,4}. The genus one curve Cy has a K -rational point
if and only if the Azumaya algebra Ay splits over K.

Proof. This is the statement that the class of C; in H'(K, E) is trivial if and only
if the class of Ay in Br(E) is trivial. O

For 0 # P € E(K) we write Ay p for the specialisation of Ay at P. This is a
central simple algebra over K of dimension n?.

Corollary 1.4. Let n € {2,3,4}. The map E(K) — Br(K) that sends P to the
class of Ay p is a group homomorphism.

Proof. By Theorem 1.2 the Tate pairing E(K) x H' (K, E) — Br(K) is given by
(P,[Cf]) = [Ay.p]. This corollary is the statement that the Tate pairing is linear
in the first argument. U

The algebras A; are interesting for several reasons. They have been used to
study the relative Brauer groups of curves (see [5, 8, 11, 13]) and to compute
the Cassels-Tate pairing (see [9]). We hope they might also be used to construct
explicit Brauer classes on surfaces with an elliptic fibration. This could have
important arithmetic applications, extending for example [17].

In Sections 2 and 3 we define the algebras A; and describe their centres. In Sec-
tion 4 we show that these constructions behave well under changes of co-ordinates.
The proofs of Theorems 1.1 and 1.2 are given in Sections 5 and 6.

The hyperplane section H on C} is a K-rational divisor of degree n. Let P €
E(K) where E is the Jacobian of Cy. In Section 7 we explain how finding an
isomorphism A;p = Mat, (K) enables us to find a K-rational divisor H" on C}
such that [H — H'] ~ P under the isomorphism Pic’(C;) = E. In the cases
n = 2,3 our construction involves some of the representations studied in [3].

Nearly all our proofs are computational in nature, and for this we rely on the
support in Magma [4] for finitely presented algebras. We have prepared a Magma
file checking all our calculations, and this is available online. It would of course
be interesting to find more conceptual proofs of Theorems 1.1 and 1.2.

2. THE ALGEBRA Aj

In this section we define the algebras Ay for n = 2, 3,4, and suggest how the defi-
nition might be generalised to genus one curves of arbitrary degree. The prototype
for these constructions is the Clifford algebra of a quadratic form. We therefore
start by recalling the latter, which will in any case be needed for our treatment of
the case n = 2. We write [z, y| for the commutator xy — yx.
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2.1. Clifford algebras. Let Q € K|xy,...,z,]| be a quadratic form. The Clifford
algebra of () is the associative K-algebra A generated by uq, ..., u, subject to the
relations deriving from the formal identity in aq, ..., ay,,

(rug + ...+ opun)? = Qan, ..., a).

The involution u; — —u; resolves A into eigenspaces A = A, ® A_. By diago-
nalising (), it may be shown that A and A, are K-algebras of dimensions 2" and
271 Moreover, rescaling ) does not change the isomorphism class of A_.

In the case n = 3 we let

7 = U1U2U3 — U3U2U] = U2U3UT] — UTUZU2 = U3ULU2 — U2U1U3.

Then 7 belongs to the centre Z(A), and n* = disc Q, where if Q(x) = 27 Mz then
disc ) = —4det M. Moreover, if disc ) # 0 then A, is a quaternion algebra and
A=A, ® K[n]. Although not needed below, it is interesting to remark that the
well known map

H'(K,PGL,) — Br(K)
is realised by sending the smooth conic {Q = 0} C P? (which as a twist of P!
corresponds to a class in H!'(K,PGLy)) to the class of A,.

2.2. Binary quartics. Let f € K|z, z] be a binary quartic, say
f(x,2) = az* + b’z + cx?2? + doz® + ez’

Haile and Han [10] define the algebra A to be the associative K -algebra generated
by r, s,t subject to the relations deriving from the formal identity in o and §3,

(o’ +afs + 57t)° = f(a, B).
Thus Ay = K{r,s,t}/I where I is the ideal generated by the elements
2

r® —a,
rs+ sr —b,
rt4tr + s — c,
st+ts—d,
t? —e.
We have [r,s%] = [r,rs + sr] = [r,b] = 0, and likewise [s?,#] = 0. Therefore

¢ = s* — ¢ belongs to the centre Z(A;). By working over the polynomial ring
K[¢], instead of the field K, we may describe Ay as the Clifford algebra of the
quadratic form

Qe(z,y,2) = az® + bry + cy® + dyz + ez* + £(y° — x2).
This quadratic form naturally arises as follows. Let C' C P? be the image of the
curve Y2 = f(X,Z) embedded via (z1 : 2o : 23 : 14) = (X?: XZ : Z?:Y). Then
C is defined by a pencil of quadrics with generic member 237 = Q¢ (21, 22, x3).
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2.3. Ternary cubics. Let f € K|[z,y, 2] be a ternary cubic, say
f(z,y, 2) = ax® + by + c2* + axx®y + azx®z
+ bixy® + bsy’z + 22 4 ey + mayz.

In the special case ¢ = 1 and a3 = by = ¢; = ¢2 = 0, Kuo [12] defines the algebra
Ay to be the associative K-algebra generated by = and y subject to the relations
deriving from the formal identity in o and j3,

f(a, B, ax + By) = 0.

We make the same definition for any ternary cubic f with ¢ # 0. Thus A; =
K{x,y}/I where I is the ideal generated by the elements

cx® + clx2 + asx + a,

c(x*y + xyx + y2®) + c1(vy + yx) + o2 + ma + azy + ag,

c(zy® +yry +y*r) + eo(zy +ya) + 1y’ +my + sz + by,

cy® + coy® + bsy + b.
2.4. Quadric intersections. Let f = (fi, f2) be a pair of quadratic forms in four
variables, say z1,...,z4. Assuming Cy = {f1 = fo = 0} C P? does meet the line

{z3 = x4 = 0}, we define the algebra Ay to be the associative K -algebra generated
by p, q, 7, s subject to the relations deriving from the formal identities in o and £,

(2) filap+ Bryaq + Bs,a, ) =0, =12
(3) [ap + Pr,aq + ps] = 0.
Explicitly if f; = Zigj a;;riv; and fo = Zigj bijr;x; then Ay = K{p,q,r,s}/I
where [ is the ideal generated by the elements
a11p® + a12pq + a22q” + a13p + azsq + ass,
ar (pr 4 rp) 4+ a12(ps + rq) + asn(qs + sq) + arap + azaq + ar3r + a3s + a4,
a1 4 a1978 + A998 + a1aT + A245 + G,
b11p” + b1apq + baog® + bizp + basq + bss,
bia(pr +7p) + bia(ps + 1q) + baa(qs + 5q) + brap + baaq + bizr + bazs + bay,
bi1r? 4 biars + bags”® + biar + boas + b,

pqg — qp,
ps +rq — qr — sp,
TS — ST.

One motivation for including the commutator relation (3) is that without it, the
relations (2) would be ambiguous.
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2.5. Genus one curves of higher degree. Let C' be a smooth curve of genus
one. If D is a K-rational divisor on C of degree n > 3 then the complete linear
system |D| defines an embedding C' — P"~!. We identify C with its image, which
is a curve of degree n. If n = 3 then C'is a plane cubic, whereas if n > 4 then the
homogeneous ideal of C' is generated by quadrics.

Let A be the associative K-algebra generated by uq, us, . .., Uy_2,v1,Va, ..., Uy 2,
subject to the relations deriving from the formal identities in a and S,

flauy + By, aug + Pog, ..., QUy_g + Bun_g,a, ) =0 forall f e I(C),
[aw; + Bog, auj + Boj] =0  forall 1 <i,j <n—2.

This definition may be thought of as writing down the conditions for C' to contain
a line. The fact that C' does not contain a line then tells us that there are no
non-zero K-algebra homomorphisms A — K.

We conjecture that the analogues of Theorems 1.1 and 1.2 hold for these alge-
bras. In support of this conjecture, we have checked that Theorem 1.1 holds in
some numerical examples with n = 5.

3. THE CENTRE OF Ay

In this section we exhibit some elements § and 7 in the centre of A¢. In each
case £ and 7 generate the centre, and satisfy a relation in the form of a Weierstrass
equation for the Jacobian elliptic curve.

3.1. Binary quartics. Let C; be a smooth curve of genus one defined as a double
cover of P! by y? = f(x, 2), where f is a binary quartic. It already follows from the
results in Sections 2.1 and 2.2 that the centre of Ay is generated by { = s* —c and
n = rst — tsr. Alternatively, this was proved by Haile and Han [10] for quartics
with b = 0, and the general case follows by making a change of co-ordinates (see
Section 4). The elements £ and 7 satisfy n? = F(£) where

(4) F(z) = 2% + c2® — (4ae — bd)x — 4ace + b’e + ad”.
This is a Weierstrass equation for the Jacobian of Cy.

There is a derivation D : Ay — Ay defined on the generators r, s, ¢ by Dr = [s, 7],
Ds = [t,r] and Dt = 0. To see this is well defined, we checked that the derivation

acts on the ideal of relations defining A;. It is easy to see that D must act on the
centre of Ay. We find that D = 2n and Dn = 382 + 2¢€ — (4ae — bd).

3.2. Ternary cubics. Let C; C P? be a smooth curve of genus one defined by a
ternary cubic f. With notation as in Section 2.3, the centre of A; contains

€ =cA(xy)? — (cy® + coy + b3)(cx® + crx + a3) + (em — cic9)xy + asbs.

There is a derivation D : Ay — Ay defined on the generators z,y by Dx =
clry, x] and Dy = cly, yx]. Let a!, ab, a}, aly, ag € Z[a, b, c, ..., m| be the coefficients
of a Welerstrass equation for the Jacobian of Cf, as specified in [7, Section 2],
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ie. a) = m, ay = —(ascas + agbs + bicy), ay = 9abc — (abscy + basze; + caghy) —
(agbscr + asbica),ay = .... (These formulae were originally given in [2].) Then
n = 3(D& — a}& — af) is also in the centre of Ay, and these elements satisfy
0+ ai€n + agn = € + ae” + ajf + ag.
In fact £ and 7 generate the centre of Ay. This was proved by Kuo [12] in the

case ¢ = 1 and ag3 = b3 = ¢; = ¢ = 0. The general case follows by making a
change of co-ordinates (see Section 4).

3.3. Quadric intersections. Let Cy C P? be a smooth curve of genus one defined
by a pair of quadratic forms f = (fi, f2). Let ay,...,a10 and by, ..., bjp be the
coefficients of f; and fy, where we take the monomials in the order

T, T1Te, T1T3, T1Ty, Ty, Tols, Toly, T3, T3y, T
Let d;; = a;b; — a;b;. With notation as in Section 2.4 we put
pi = dyp + doiq + ds;, Ty = dyr + dy;s + dyg,
¢ = daip + dsiq + dg, $; = dyir + dsis + dy;
and t = qr — ps = rq — sp. Then
£ = (pss)? + (s1p)?
+ (dsepa + daops + dsrps — darpe)s — dse(disr + dazs — dizq + diot — dig)s
+ (d14s6 + dags1 — dz7sy — da3ss)p — dia(dorp + ds7q + dssr — dast — dsg)p

belongs to the centre of A;. We give a slightly simpler expression for £ in Sec-
tion 4.3, but this alternative expression is only valid when ¢ is invertible.

There is a derivation D : Ay — A; defined on the generators p,q,r,s by Dp =
[p,e], Dg = 3[g, €] and Dr = Ds = 0 where

e = dya(pr+rp) + dis(ps + qr + sp + rq) + das(qs + sq).

Then n = %Df is also in the centre of Ay. We show in Section 5 that £ and 7

generate the centre, and that they satisfy a Weierstrass equation for the Jacobian
of Cf.

1
2

4. CHANGES OF CO-ORDINATES

In this section we show that making a change of coordinates does not change
the isomorphism class of the algebra Ay. We also describe the effect this has on
the central elements £ and 7, and on the derivation D.

Let Go(K) = K* x GLy(K) act on the space of binary quartics via

(A, M)« f(x,2) = N f(mpx + ma1z, miax + maaz).
Let G3(K) = K* x GL3(K) act on the space of ternary cubics via
(AN M) 2 f(x,y,2) = Af(mpz + mory + ma12, . .., Mi3x + Masgy + Maszz).
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Let G4(K) = GLy(K) x GL4(K) act on the space of quadric intersections via
(A, 1) = (f1, f2) = (M fi + Az fo, Aarfi + Aaafa),

(I, M) < (f1, f2) = (AT mazi, ), (0 magi, . ..).

We write det(A\, M) = Adet M in the cases n = 2,3, and det(A, M) = det A det M
in the case n = 4. A genus one model is a binary quartic, ternary cubic, or pair
of quadratic forms, according as n = 2,3 or 4.

Theorem 4.1. Let f and [’ be genus one models of degree n € {2,3,4}. In the
case n = 3 we suppose that f(0,0,1) # 0 and f'(0,0,1) # 0. In the case n =4 we
suppose that Cy and Cp do not meet the line {x3 = x4 = 0}. If f' =~f for some
v € Gu(K) then there is an isomorphism ¢ : Ap — Ay with

(5) &> (det )’ +p

(6) N (dety)*n+oé+ 1

for some p,o,7 € K, witho =7 =0 ifn € {2,4}. Moreover there exists k € Ay
such that

(7) ¥D(z) = (det ) Dyp(z) + [k, ¥ ()]

forallx € Ayp.

PrOOF: We prove the theorem for v running over a set of generators for G, (K).

The set of generators will be large enough that the extra conditions in the cases

n = 3,4 (avoiding a certain point or line) do not require special consideration.
Writing 7 in terms of the DE we see that (6) is a formal consequence of (5) and

(7). It therefore suffices to check (5) and (7). We may paraphrase (7) as saying

that v D1y~ and (det~)D are equal up to inner derivations. In particular we only

need to check this statement for x running over a set of generators for Ay.
We now split into the cases n = 2,3, 4.

4.1. Binary quartics. Let v = (A, M). There is an isomorphism ¢ : Ay — Ay
given by

7= Am3 e+ myimyes + miyt),
s = A(2mymarr + (mi1mag + Miamar)s + 2migmast),
t > AX(m3,7 + Mo mags + miyt).
We find that (5) and (7) are satisfied with
p = —N(2m};m3 a + mima (mi1mas + mizmar )b
+ 2m1m19Ma1 Moo + MiaMaga(M11Mag + Miamar )d + 2m§2m§26)

and kK = A(my1mai7r + miama1 S + miaMmaot).
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4.2. Ternary cubics. The result is clear for v = (), I3). We take v = (1, M). If
this change of co-ordinates fixes the point (0: 0 : 1), equivalently mg; = mgy = 0,
then there is an isomorphism ¢ : Ay — Ay given by

T — myy (Mi1T + msy — mas),

Y > Mg (M1 + Mgy — Ma3).
We checked (5) by a generic calculation (leading to a lengthy expression for p
which we do not record here), and find that (7) is satisfied with

K = Cmgs (m23(m11x +migy) — mag(max + m22y))-

It remains to consider a transformation that moves the point (0 : 0 : 1). Let
f'(x,y,z) = f(z,2,y). By hypothesis a = f/(0,0,1) # 0. From the first relation
defining Ay it follows that x is invertible, i.e. 271 = —(ca® 4+ ¢;x + ag)/a. There
is an isomorphism ¢ : Ay — Ay given by  — —yz ! and y — 2!, We find
that (5) and (7) are satisfied with p = 0 and k = cyz + 1y.

4.3. Quadric intersections. The result for v = (A, I,) follows easily from the
fact our expressions for ¢ and { are linear and quadratic in the d;;. We take

v = (I, M). If
Ut 0 I, 0
M = or 2
0 ]2 V ]2

then an isomorphism v : Ay — Ay is given by

P = u1p + u21q P p— v
q = Ui2p + U22q qr—q— 12
T = UT + U9 S or =T — Uy
S > U1aT + U99S SH> 8 — Uggy

We checked (5) by a generic calculation, and find that (7) is satisfied with x = 0
or K = Uu(dlgT’ + d158) + Ulg(d157" + d258).

It remains to consider a transformation that moves the line {x3 = x4 = 0}. Let
fi(xq, 29, x5, 24) = fi(ws, x4, 21, 22) for i = 1,2. By hypothesis Cy does not meet
the line {z1 = xo = 0} and so t = ¢gr — ps is invertible, i.e.

t7t = —(dso(s17 + 54) + ds10(759 + 76 + p5s + pr + dag) + do1o(qip + ¢3)) /A

where A = dg,lo — dggdg 10. There is an isomorphism ¢ : Ay — Ay given by
pr —st g qt L, r—=rt! s —pt~!and t — t~!. Under our assumption
that t is invertible, we have £ = & + ¢; where

&1 =(d}s — diados)t* + (disdzy — diader — disdag — dasdaa)t
+ (dsrds 10 — dsed 10 + dagds 10 — d47ds9)t*1 + (dﬁ,lo - d89d9,10)t727
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and ¢; € K is a constant (depending on f). Working with & in place of £ makes
it easy to check (5). Finally (7) is satisfied with

k= )\(p(slr + 54) + Cho) + M(T(%p +q3) + 38) + 7 (diop + disq) — %(dzﬂ' + dag5s)

for certain )\,,U/ € K. In fact we may take A = (2d48d8,10 — d38d9,10 — d89d4g +
d89d3,10)/(2A> and H = (2d3,10d8,10 - d4,10d89 - d9,10d39 + d9,10d48)/(2A)- O

5. PROOF OF THEOREM 1.1

In this section we prove the following refined version of Theorem 1.1. The first
two parts of the theorem show that A is an Azumaya algebra.

Theorem 5.1. Let C; be a smooth curve of genus one, defined by a genus one
model f of degree n € {2,3,4}. Then
(i) The algebra A = Ay is free of rank n* over its centre Z (say).
(ii) The map A ®z A°® — Endz(A); a ® b +— (x +— axb) is an isomorphism.
(iii) The centre Z is generated by the elements & and n specified in Section 3,
subject only to these satisfying a Weierstrass equation.
(iv) The Weierstrass equation in (i) defines the Jacobian of C.

For the proof of the first three parts of Theorem 5.1 we are free to extend our
field K. However working over an algebraically closed field, it is well known that
smooth curves of genus one Cy and C} are isomorphic as curves (i.e. have the
same j-invariant) if and only if the genus one models f and f’ are in the same
orbit for the group action defined at the start of Section 4. We now split into
the cases n = 2, 3,4 and verify the theorem by direct computation for a family of
curves covering the j-line. The general case then follows by Theorem 4.1.

The generic calculations in Sections 3.1 and 3.2 already prove Theorem 5.1(iv)
in the cases n = 2,3. The case n = 4 will be treated in Section 5.3.

5.1. Binary quartics. Let Kz, yo| = K|z, y|/(F) where
F(z,y) =y — (2 + az2” + asz + ag).
3

We consider the binary quartic f(z, z) = agz + a4z + aaz®2? + 223, Specialising
the formulae in Section 3.1 we see that &, € Ay satisty F'(§,n) = 0.

Lemma 5.2. There is an isomorphism of K-algebras 6 : Ay — Maty(K [z, yo))
given by

—Yo x% + oo + a4 0 x9+ as
T , S , L=
—X Yo 1 0 0 0

Moreover we have 0(&) = xoly and 0(n) = yols.
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ProOOF: We write E;; for the 2 by 2 matrix with a 1 in the (4, j) position and
zeros elsewhere. Then Mats (K [xg,yo]) is generated as a K|z, yo]-algebra by Ejs
and FEy, subject to the relations E%, = E2 = 0 and E9FEy + EyFEjp = 1. We
define a K-algebra homomorphism ¢ : Maty(K [z, yo|) — Ay via

o= & yo—=n, B —t, E21I—>s—s2t,

We checked by direct calculation that 6 and ¢ are well defined (i.e. they send all
relations to zero), and that they are inverse to each other. O

5.2. Ternary cubics. Let K|[zo,yo] = K|z, y]/(F) where
F(z,y) = 92 + a1y + agy — (.’E3 + aox® + asx + ag).

We consider the ternary cubic f(x,y,2) = 23F(2/x,y/z). Specialising the formu-
lae in Section 3.2 we see that £, n € Ay satisfy F(¢,n) = 0.

Lemma 5.3. There is an isomorphism of K-algebras § : Ay — Mats(K [z, yo))
given by

—Xg — a9 -1 0 0 0 0
T x% +asxo+as 0 yol, yr—=~ 1 —a; 0 —1
yot+aixg+az 0 1z 1 0 0

Moreover we have 0(§) = xol3 and 0(n) = yols.

ProoF: We write E;; for the 3 by 3 matrix with a 1 in the (¢, j) position and
zeros elsewhere. Then Mats (K [xg, yo]) is generated as a K|[xo, yol-algebra by Ejs,
FEy3 and Ej3; subject to the relations

E122 = E§3 = Eg?l = E12E31 = E23E12 = E31E23 = 07
and
EioEysEsy + Eogbisi Eyg + Esy Erolias = 1.

We define a K-algebra homomorphism ¢ : Mats(K [z, yo]) — Af via ¢ — &,
Yo — n and

B -z (z+ &+ as), Eurr —y*(zy—a1), FEs— (yz—a)y’.

We checked by direct calculation that 6 and ¢ are well defined, and that they are
inverse to each other. O
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5.3. Quadric intersections. Let f’ € K|z, z| be a binary quartic, say

f'(z,2) = az* + b’z + cx®2? + daz® + ex™.

2

The morphism Cp — P? given by (1 : @2 : #3 : ¥4) = (xz : y : 2% : 2?) has image

Cy where f = (f1, f2) and

2
, _ 2
fi(xy, x2, T3, 24) = ] — T34,

fo(z1, xe, 23, 24) = x% — (ax% + bxi1xs + cra3ry + driT4 + exi).

(8)
We write 1/, s',t" and &', 7' for the generators and central elements of Ay .

Lemma 5.4. There is an isomorphism of K-algebras 6 : Ay — Maty(Ap) given
by

p = , Q= , T = , St
0 0 ! 0

Moreover we have (&) = (&' + ¢)Iy and 0(n) = —n'Ls.

Proof. Again the proof is by direct calculation, the K-algebra homomorphism
inverse to 6 being given by Eis — p, Fo — 7 and

r'Iy = pgr +rqp, 8l prar +rqrp, Iy v psr+rsp. O

To complete the proof of Theorem 5.1, and hence of Theorem 1.1, it remains
to show that in the case n = 4 the Weierstrass equation satisfied by ¢ and 7 is in
fact an equation for the Jacobian of Cf.

Let A and B be the 4 by 4 matrices of partial derivatives of f; and f,. We
define a, b, ¢, d, e by writing } det(Az + B) = aa* + bz® + cx® + dz +e. As shown in
[1], the Jacobian of C}; has Weierstrass equation y* = F(x) where F is the monic
cubic polynomial defined in (4).

We claim that > = F(£ + ¢) for some constant ¢y € K (depending on f).
In verifying this claim we are free to extend our field. We are also free to make
changes of coordinates. Indeed if f* = v f for some v = (A, M) € G4(K) then
by Theorem 4.1 there is an isomorphism ¢ : Ay — A, with £ — (dety)*¢ + p
and 1 — (detv)3n. On the other hand the monic cubic polynomials F' and F’
(associated to f and f’) are related by F'(z — 5¢/) = (detv)SF((detv) "%z — 3c).

3
Finally we checked that for f as specified in (8), the claim is satisfied with ¢q = 0.

6. PROOF OF THEOREM 1.2

In this section we recall the definition of the isomorphism (1), and then prove
that the construction of Ay from C is an explicit realisation of this map.
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6.1. Galois cohomology. Let E/K be an elliptic curve. Writing K for a sepa-
rable closure of K, the short exact sequences of Galois modules

(9) 0K = K(E)—=K(E)/K* =0,
and

0— K(E)*/K" —= DivE — PicE — 0,
give rise to long exact sequences
(10) HA (K, K”) = HY(K, K(E)*) — H (K K (B)*[K"),
and
(11) HY(K,DivE)— H'(K,PicE) - H*K,K(E)*/K") = H*(K,Div E).
Since H'(K,Z) = 0 it follows by Shapiro’s lemma that H' (K, Div E) = 0. We may
identify H'(K,Pic E) = H'(K,Pic° E) = H'(K,E) and H*(K,K ) = Br(K). As
shown in [14, Appendix| we may identify

Br(E) = ker (H*(K, K(E)*) — H*(K,Div E)) .

We fix a local parameter ¢ at 0 € E(K). The left hand map in (9) is split by the
map sending a Laurent power series in ¢ to its leading coefficient. It follows that
the right hand map in (10) is surjective, and hence H'(K, E) = Br(E)/Br(K).
Since the natural map Br(K) — Br(FE) is split by evaluation at 0 € E(K) this
also gives the isomorphism (1).

6.2. Cyclic algebras. Let L/K be a Galois extension with Gal(L/K) cyclic of
order n, generated by . For b € K* the cyclic algebra (L/K,b) is the K-algebra
with basis 1,v,...,v" ! as an L-vector space, and multiplication determined by
v" = b and vA = o(A)v for all A € L. This is a central simple algebra over K of
dimension n?. Tt is split by L and so determines a class in Br(L/K).

We compute cohomology of C), = (g|c™ = 1) relative to the resolution

L —Z[C] 2 Z[C,] 2 ZIeL] S Z[C,) — 0,

where A=0—1and N=1+0+ ...+ 0"'. Thus for A a Gal(L/K)-module,

H(Gal(L/K), 4) = { ker(N|A)/im(A]A) if i > 1 odd,

ker(A|A)/im(N|A) if i > 2 even.

In particular K /Ny (L*) = H*(Gal(L/K), L*) = Br(L/K). This isomorphism
is realised by sending b € K* to the class of (L/K,b).

Let E/K be an elliptic curve, and fix a local parameter ¢t at 0 € E(K). If
g € K(E)* then we write (L/K, g) for the cyclic algebra (L(E)/K(E),g). We
may describe the isomorphism (1) in terms of cyclic algebras as follows.
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Lemma 6.1. Let C'/K be a smooth curve of genus one curve with Jacobian E,
and suppose @ € C(L). Let P be the image of [0Q — Q] under Pic’(C) = E.
Then the isomorphism (1) sends the class of C' to the class of (L/K,g) where
g € K(E)* has dwisor (P)+ (6P)+ ...+ (6" 'P) —n(0), and is scaled to have
leading coefficient 1 when expanded as a Laurent power series in t.

ProOOF: We identify E = Pic’(E) via T + (T) — (0). Then the class of C' in
H'(K,Pic E) is represented by (P) — (0), and its image under the connecting map
in (11) is represented by g € K(E)* where divg = Np,x((P) — (0)). Finally to
lift to an element of ker(evy : Br(E) — Br(K)) we scale g as indicated. O

6.3. Binary quartics. We prove Theorem 1.2 in the case n = 2. By a change of
coordinates we may assume' that a # 0 and b =0, i.e.
f(x,2) = ax* + ca®2® + dw2® + ezt

Let E be the Jacobian of Cf, with Weierstrass equation as specified in Sec-
tion 3.1. We know by Theorem 1.1 that the centre Z of Ay is a Dedekind domain
with field of fractions K(F). Therefore the natural map Br(Z) — Br(K(FE)) is
injective, and so it suffices for us to consider the class of the quaternion algebra
A; ®z K(F) in Br(K(E)). This algebra is generated by r and s subject to the
rules 72 = a, rs+sr = 0 and s* = £+ c. It is therefore the cyclic algebra (L/K, g)
where L = K(y/a) and g € K(FE)* is the rational function ¢g(&,n) = & + c.

By inspection of the Weierstrass equation for E in Section 3.1, we see that
divg = (P) + (o P) — 2(0) where P = (—c¢,dv/a) € E(L). Let Cy have equation
y? = f(z1,22), and let Q € C(L) be the point (1 : 29 : y) = (1: 0: y/a). Let
nm : Cy — E be the covering map, i.e. the map T+ [2(T) — H| where H is
the fibre of the double cover C; — P!. Using the formulae in [1] we find that
7(Q) = —P. Therefore [cQ — Q] = [H — 2(Q)] = P. It follows by Lemma 6.1
that the isomorphism (1) sends the class of C' to the class of the cyclic algebra
(L/K,g). This completes the proof of Theorem 1.2 in the case n = 2.

6.4. Ternary cubics. We prove Theorem 1.2 in the case n = 3. Since 2 and 3
are coprime, we are free to replace our field K by a quadratic extension. We may
therefore suppose that (3 € K and that f(z,0,z) = az® — 2z with a # 0. Further
substitutions of the form x <— x + Ay and z <+ z + X'y reduce us to the case

f(:ca Y, Z) = ax3 + by3 - 23 + blxy2 + b3y22 + miyz.

The algebra Ay ®, K(FE) is generated by z and v = yx — (3xy — %(1 — (3)m
subject to the rules 2° = a, zv = (zvr and v3 = g(£,n) where

9(&,m) =n — GGm& — 3(1 — G)ab + 5(¢s — ¢5)m”.
It is therefore the cyclic algebra (L/K, g) where L = K(/a).

Tt is incorrectly claimed in [10, Section 5] that we may further assume d = 0.
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Let E be given by the Weierstrass equation specified in Section 3.2. We find that
divg = (R)+ (0 R) + (6?R) — 3(0) for a certain point R € F(L) with z-coordinate
—(1/3)m? + by /a — b3(Va)®. Let Q = (1:0: ¥a) € Cy(L). Let 7 : Cy —» E
be the covering map, i.e. the map 7"+ [3(T") — H] where H is the hyperplane
section. Using the formulae in [1] we find that 7(Q) = o R — 0*R. We compute

3[0Q — Q] = 7(0Q) — 7(Q) = 0(¢0R — 0*R) — (0 R — 0*R) = 30°R.

Since generically E has no 3-torsion, it follows that [0Q — Q] = ¢?R. Taking
P = 0?R in Lemma 6.1 completes the proof.

6.5. Dihedral algebras. Let L/K be a Galois extension with Gal(L/K) = D,
where Ds,, = (0, 7|0™ = 7% = (07)? = 1) is the dihedral group of order 2n. Let K,
F and F be the fixed fields of o, 7 and o7. For (b,¢,¢) € K X F* x F* satisfying
Ni,/k(b)Nr/k(€) = Np i (€) we define the dihedral algebra (L/K,b,,€) to be
the K-algebra with basis 1,v,...,v" ' w,vw,...,v" 'w as an L-vector space,
and multiplication determined by v" = b, w* = ¢, (vw)? = £, vA = o(\)v and
w\ = 7(AN)w for all A € L. As we explain below, this is a special case of a crossed
product algebra. In particular it is a central simple algebra over K of dimension
(2n)2. Tt is split by L and so determines a class in Br(L/K).

Let N=1+40+...+ 0" ! € Z[D,,]. We compute cohomology of Dy, relative
to the resolution

(12) .. —Z[ Doyt 2% Z[Dyy|* 25 Z[Dyy]? 2% Z[Day] — 0
where
o—1 0 0
0 1 0 N 0 1
T — o—
A?) - ) AQ - O T+ 1 ) A1 - )
0 0 or — 1 41 N 7—1
oT g T
T+1 N —N

and our convention is that A,, acts by right multiplication on row vectors. This
resolution is a special case of that defined in [16], except that we have applied
some row and column operations to simplify Ay and Ajz. Using this resolution to
compute Br(L/K) = H*(Gal(L/K), L*) we find

{(b,,8) € K7 x F* X F* | Niqy/ie(b) Niyie(€) = N ()}
{(NLk, (M), Noyp(X2), Npjs(Aade)) | A, A € LX)
This isomorphism is realised by sending (b, £, €) to the class of the dihedral algebra
(L/K,b,e,€). Our claim that dihedral algebras are crossed product algebras is

justified by comparing this description of Br(L/K) with that obtained from the
standard resolution.

(13) ~ Bi(L/K).
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In more detail, there is a commutative diagram of free Z[D,,]-modules

d
EB(gvh)eD%’n Z[Dap] — @geDQn Z[Ds,] L Z|Dy,] —0
l% L(bl H
Z[D2n]3 22 Z[-DQn]2 & D2n —_— O

where the first row is the standard resolution, i.e. di(e,) = ¢ — 1 and da(e, ) =
g(en) —egn+eg4, and the second row is the resolution (12). We choose ¢; such that

¢1(e1) = (0,0), p1(egi)=(1+0o+...+0710) for0<i<n,
o1(er) = (0,1), b1(epir) =(1+0+...+0 o) for0<i<n.
We further choose ¢y such that for 0 < 1,5 < n we have

0,0,0) ifi+j<n,
¢2( €oi UJ) ¢2( €oi O'j7'> = ( ) P .
(1,0,0) ifi4+j>n,

and ¢o(e,,) = (0,1,0), ¢2(€pror) = (0,0,1). The 2-cocycle §& € Z?(Dsy,, L*)
corresponding to (b, e, €) is now the unique 2-cocycle satisfying

1 ifi+7 <n,
50”',0']' = gai,aj‘r = . J
b ifi+j5>n,

and &, ; = €, {570 = €. The cross product algebra associated to £ is the K-algebra
with basis {v, : g € Ds,} as an L-vector space, and multiplication determined by
VU = g nUgn and v\ = g(A)v, for all A € L. Identifying v,: = v* and v,:, = v'w,
we recognise this as the dihedral algebra (L/K,b,¢,¢).

Let E/K be an elliptic curve, and fix a local parameter ¢t at 0 € E(K). We may
describe the isomorphism (1) in terms of dihedral algebras as follows.

Lemma 6.2. Let C/K be a smooth curve of genus one with Jacobian E, and
suppose Q@ € C(F). Let P be the image of [0Q — Q] under Pic’(C) = E. Then
the isomorphism (1) sends the class of C' to the class of (L/K, g,1,h) where g €
K\(E)* and h € F(E)* have divisors (P) + (6P) + ... + (6" 'P) — n(0) and
(P) 4+ (—=P) —2(0), and are scaled to have leading coefficient 1 when expanded as
Laurent power series in t.

PrOOF: We have [0Q — Q] = P and [7Q — Q] = 0. We identify £ = Pic’(E)
via T+ (T) — (0). Then the class of C' in H'(K,Pic F) is represented by the
pair ((P) — (0),0). Reading down the first column of Ay, the image of this class
under the connecting map in (11) is represented by a triple (g, 1, h) where divg =
Nk, ((P)—(0)) and divh = (o7 +1)((P) — (0)) = (P) 4+ (—P) —2(0). Finally to
lift to an element of ker(evy : Br(E£) — Br(K)) we scale g and h as indicated. O
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6.6. Quadric intersections. We prove Theorem 1.2 in the case n = 4. We are
free to make field extensions of odd degree. We may therefore suppose that C
meets the plane {x, = 0} in four points in general position, and that one of the
three singular fibres in the pencil of quadrics vanishing at these points is defined
over K. In other words, we may assume that f(z1, 22, 23,0) = ¢1(x1,x3) where ¢
is a binary quadratic form. Then f, must have a term z2, and so by completing
the square fo(zy1, T, 73,0) = 23 + q2(x1,73). Adding a suitable multiple of f;
to fo we may suppose that g¢o factors over K, and so without loss of generality
q2(71,x3) = —r1rs. Making linear substitutions of the form x; < x; + Azy for
1 =1,2,3 brings us to the case

fi(z1, xe, 23, 24) = a:z:% + bryxs + cx% + (dyx1 + dozo + d3xs + dyy)xy,

f2('r17 $2,$37$4) = l’% — T1T3 — exi.

Let L/K be the splitting field of G(X) = aX* + 0X? + ¢. Then Gal(L/K) is a
subgroup of Dg. We suppose it is equal to Dg, the other cases being similar. We
have L = K (6,/§) where 6 is a root of G and § = ac(b® — 4ac). The generators
o and 7 of Dg act as

U:@H%(abﬁg—i—(bQ—Zac)@), o: Vo=V,

T:0—0, 7V = =V,

The fixed fields of o, 7 and o7 are K; = K(v/9), F = K(0) and F = K(¢) where
o =a(f+o(0)).

Let A= A; ®7 K(E). The second generator g of A; satisfies ag* 4+ bg* + ¢ = 0.
We may therefore embed F' C A via 8 — ¢, and hence L C A = A ®k K;. We
find that A; is generated as a K;(F)-algebra by ¢ and

a

Vo

v =a(ro(q) — qr) + —=(ag’o(q) — ¢)(dig + da + dsqg™")

subject to the rules ag* + bg*> + ¢ = 0, vg = o(q)v and v* = g(&,n), for some
g € K1(F). It is therefore the cyclic algebra (L/Ky, g). Writing £ for the element
that was denoted &£ + ¢y in Section 5.3, we have

_ dacd, N 2(bm + 2acd3)
Vo 1 b? — dac

m? + dan
b2 — 4ac

g(&m) = ¢* € + 8aced; +

where m = cd} — bdydz + ad3 + (b* — 4ac)d, and n = bed? + ac(d3 — 4d,d3) + abds.
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Let Q = (6% : 0 :1:0) € Cy(F), and let P = [0Q — Q] under the usual
identification PicO(C’f) = FE. We compute the point P as follows. We put

Tz a ¢ (¢*+ab)/2a 0 T
z | a —¢  (p* +ab)/2a 0 To
o | | —ad, —ad, —ads —ady, — ed? T3

Tz 0 0 0 1 Ty

Inverting this 4 by 4 matrix M gives
(det M) fo(wr, 22, T3, 24) = 21, 22)T% + B(z1, 22) T + (21, 22)

for some binary quadratic forms «a, 5,7. Relacing f2 by fi gives a scalar multiple of
the same equation. Therefore C has equation y* = (21, 22)? — 4a(z1, 22)7(21, 22).
The points @ and o(Q) are given by (21 : 22 : y) = (1 : 0 : £a(6 — o(6))).
Exactly as in Section 6.3, we compute P using the formulae for the covering map.
Relative to the Weierstrass equation for E specified in Section 5.3, this point has
x-coordinate

_ 2a4¢?(dydzp + m) — do(dyd + ady) (b? + a(b® — 4ac))  ~

(14)  «(P) S — T e F.

We find that P and its Galois conjugates are zeros of g. Therefore divg =
(P)+ (6P)+ (6*P) + (¢*P) — 4(0). Tt follows by Lemma 6.1 that the class of Ay,
and the image of the class of C'y under (1), agree after restricting to Br(E @k K;).
It remains to show that the same conclusion holds without the quadratic extension.

Forae A) = A®k K let @ = (1®7)a. We find that v0 = £ —2(P) where z(P)
is given by (14). Now let Ay = A;® A;w with multiplication determined by w? = 1
and wa = aw for all a € Ay. This is the dihedral algebra (L/K,g,1,& — x(P)).
The subalgebra generated by K; and w is a trivial cyclic algebra. Therefore
Ay 2 A ®k Maty(K). In particular A and Ay have the same class in Br(K(E)).
Lemma 6.2 now completes the proof.

7. GEOMETRIC INTERPRETATION

Let C' be a smooth curve of genus one with Jacobian elliptic curve E. Let H
and H' be K-rational divisors on C' of degree n > 2. We assume that H and
H' are not linearly equivalent, and so their difference corresponds to a non-zero
point P € E(K). The complete linear systems |H| and |H'| define an embedding
C — P! x P*!. Assuming n € {2,3,4}, the composite of this map with the
first and second projections is described by genus one models f and f’.

In this section we investigate the following problem.

Given f and P, how can we compute f'7
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The answers we give might be viewed as explicitly realising the connection between
the Tate pairing and the obstruction map, as studied in [6, 15, 18]. Our answers
also serve to motivate the definition of Ay, and indeed (however much it might
seem an obvious guess in hindsight) this is how we actually found the correct
definition of Ay in the case n = 4.

We give no proofs in this section. However all our claims may be verified by
generic calculations.

7.1. Binary quartics. The image of C' — P! x P! is defined by a (2, 2)-form, say
F(z,z2',2) = fi(z,2)2? + 2fy(x, 2)2'2 + f3(z, 2) 2"

Then f = f2 — fifs, and f’ is obtained in the same way, after switching the two
sets of variables. Thus, given a binary quartic f, we seek to find binary quadratic

forms fi, fo, f3 such that
fo —RY _(f 0
fs =/ 0 f)

Equivalently, we look for matrices My, My, M3 € Maty(K) satisfying
(@® My + aiMy + 3> M3)* = f(a, B) .

This reduces the problem of finding f’ from f to that of finding a K-algebra
homomorphism A; — Maty (/). By Theorem 1.1 any such homomorphism must
factor via Ay p for some 0 # P € E(K). This point P turns out to be the same as
the point P considered at the start of Section 7. In conclusion, if Ay p = Maty(K)
and we can find this isomorphism explicitly, then we can write down a (2, 2)-form,
and hence a binary quartic f’, such that Cy and C'p are isomorphic as genus one
curves, but their hyperplane sections differ by P.

7.2. Ternary cubics. The image of C — P? x P? is defined by three (1,1)-
forms. The coefficients may be arranged as a 3 x 3 x 3 cube. As explained in [3],
slicing this cube in three different ways gives rise to three ternary cubics. Two

of these are f and f’. Thus, given a ternary cubic f, we seek to find matrices
M17 MQ, M3 € Mat;;(K) Satisfying

f(a, B,7) = det(aMy + BMs + v Ms).

If £(0,0,1) # 0 then we may assume (after rescaling f and multiplying each M;
on the left by the same invertible matrix) that M3 = —I3. Then aM; + M, has
characteristic polynomial v — f(«, 8,7), and so by the Cayley-Hamilton theorem

f(a, B,aMy + BM,) = 0.

This reduces the problem of finding f’ from f to that of finding a K-algebra
homomorphism A; — Mats(K). By Theorem 1.1 any such homomorphism must
factor via Ay p for some 0 # P € E(K). This point P turns out to be the same as
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the point P considered at the start of Section 7. In conclusion, if Ay p = Mats(K)
and we can find this isomorphism explicitly, then we can write down a 3 x 3 x 3
cube, and hence a ternary cubic f’, such that Cy and C}s are isomorphic as genus
one curves, but their hyperplane sections differ by P.

7.3. Quadric intersections. The image of C — P? x P3 is defined by an 8-
dimensional vector space V' of (1,1)-forms in variables xy,..., 24 and yq,. .., ya.
Let W be the vector space of 4 by 4 alternating matrices B = (b;;) of linear forms
in y1,...,y4 such that

1
Zmibij(yl,...,m) eV forallj=1,...,4.
i=1

We find that W is 4-dimensional. We choose a basis, and let M be a generic
linear combination of the basis elements, say with coefficients zq,...,z4. Then
M = (my;) is a 4 by 4 alternating matrix of (1, 1)-formsin yy,...,ys and z1, . .., 24.
The Pfaffian of this matrix is a (2, 2)-form, which turns out to be

flJr(ylv--~>y4>f;(217"'7z4> - f;(ylv'~->y4)ff(217"'>z4)7

where f* = (fi7, f;) describes the image of C' — P3 via |H*|, and [H—H*] = +P.
To tie in with our earlier notation, H™ = H' and f* = f’.

We write m;; = (y1, ..., ya)M;j(21, ..., za)" where M;; € Maty(K). Assuming
Cy does not meet the line {z3 = x4 = 0} we have det(M;3) # 0, and so we
may choose our basis for W such that My = I,. The matrices M;; then satisfy
filaMss + BMsy, —(aMyz + BMiy),«, 3) = 0 for i = 1,2, where the first two
arguments commute, and M34 = M13M24 — M23M14 = M24M13 — M14M23.

This reduces the problem of finding f’ from f to that of finding a K-algebra
homomorphism Ay — Mat,(K). By Theorem 1.1 any such homomorphism must
factor via Afp for some 0 # P € E(K). Again this point P turns out to corre-
spond to the difference of hyperplane sections for C'y and C.
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