
ON SOME ALGEBRAS ASSOCIATED TO GENUS ONE CURVES
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Abstract. Haile, Han and Kuo have studied certain non-commutative alge-
bras associated to a binary quartic or ternary cubic form. We extend their
construction to pairs of quadratic forms in four variables, and conjecture a fur-
ther generalisation to genus one curves of arbitrary degree. These constructions
give an explicit realisation of an isomorphism relating the Weil-Châtelet and
Brauer groups of an elliptic curve.

1. Introduction

Let C be a smooth curve of genus one, written as either a double cover of P1

(case n = 2), or as a plane cubic in P2 (case n = 3), or as an intersection of two
quadrics in P3 (case n = 4). We write C = Cf where f is the binary quartic form,
ternary cubic form, or pair of quadratic forms defining the curve. In this paper
we investigate a certain non-commutative algebra Af determined by f .

The algebra Af was defined in the case n = 2 by Haile and Han [10], and in
the case n = 3 by Kuo [12]. We simplify some of their proofs, and extend to the
case n = 4. We also conjecture a generalisation to genus one curves of arbitrary
degree n. The following theorem was already established in [10, 12] in the cases
n = 2, 3. We work throughout over a field K of characteristic not 2 or 3.

Theorem 1.1. If n ∈ {2, 3, 4} then Af is an Azumaya algebra, free of rank n2

over its centre. Moreover the centre of Af is isomorphic to the co-ordinate ring of

E \ {0E} where E is the Jacobian elliptic curve of Cf .

Let E/K be an elliptic curve. A standard argument (see Section 6.1) shows
that the Weil-Châtelet group of E is canonically isomorphic to the quotient of
Brauer groups Br(E)/Br(K). For our purposes it is more convenient to write this
isomorphism as

(1) H1(K,E) ∼= ker
(

Br(E)
ev0−→ Br(K)

)
.

where ev0 is the map that evaluates a Brauer class at 0 ∈ E(K). The algebras we
study explicitly realise this isomorphism.

Theorem 1.2. If n ∈ {2, 3, 4} then the isomorphism (1) sends the class of Cf to

the class of Af .
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The following two corollaries were proved in [10, 12] in the cases n = 2, 3.

Corollary 1.3. Let n ∈ {2, 3, 4}. The genus one curve Cf has a K-rational point

if and only if the Azumaya algebra Af splits over K.

Proof. This is the statement that the class of Cf in H1(K,E) is trivial if and only

if the class of Af in Br(E) is trivial. �

For 0 6= P ∈ E(K) we write Af,P for the specialisation of Af at P . This is a
central simple algebra over K of dimension n2.

Corollary 1.4. Let n ∈ {2, 3, 4}. The map E(K) → Br(K) that sends P to the

class of Af,P is a group homomorphism.

Proof. By Theorem 1.2 the Tate pairing E(K) ×H1(K,E) → Br(K) is given by

(P, [Cf ]) 7→ [Af,P ]. This corollary is the statement that the Tate pairing is linear

in the first argument. �

The algebras Af are interesting for several reasons. They have been used to
study the relative Brauer groups of curves (see [5, 8, 11, 13]) and to compute
the Cassels-Tate pairing (see [9]). We hope they might also be used to construct
explicit Brauer classes on surfaces with an elliptic fibration. This could have
important arithmetic applications, extending for example [17].

In Sections 2 and 3 we define the algebras Af and describe their centres. In Sec-
tion 4 we show that these constructions behave well under changes of co-ordinates.
The proofs of Theorems 1.1 and 1.2 are given in Sections 5 and 6.

The hyperplane section H on Cf is a K-rational divisor of degree n. Let P ∈
E(K) where E is the Jacobian of Cf . In Section 7 we explain how finding an
isomorphism Af,P ∼= Matn(K) enables us to find a K-rational divisor H ′ on Cf
such that [H − H ′] 7→ P under the isomorphism Pic0(Cf ) ∼= E. In the cases
n = 2, 3 our construction involves some of the representations studied in [3].

Nearly all our proofs are computational in nature, and for this we rely on the
support in Magma [4] for finitely presented algebras. We have prepared a Magma
file checking all our calculations, and this is available online. It would of course
be interesting to find more conceptual proofs of Theorems 1.1 and 1.2.

2. The algebra Af

In this section we define the algebras Af for n = 2, 3, 4, and suggest how the defi-
nition might be generalised to genus one curves of arbitrary degree. The prototype
for these constructions is the Clifford algebra of a quadratic form. We therefore
start by recalling the latter, which will in any case be needed for our treatment of
the case n = 2. We write [x, y] for the commutator xy − yx.
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2.1. Clifford algebras. Let Q ∈ K[x1, . . . , xn] be a quadratic form. The Clifford
algebra of Q is the associative K-algebra A generated by u1, . . . , un subject to the
relations deriving from the formal identity in α1, . . . , αn,

(α1u1 + . . .+ αnun)2 = Q(α1, . . . , αn).

The involution ui 7→ −ui resolves A into eigenspaces A = A+ ⊕ A−. By diago-
nalising Q, it may be shown that A and A+ are K-algebras of dimensions 2n and
2n−1. Moreover, rescaling Q does not change the isomorphism class of A+.

In the case n = 3 we let

η = u1u2u3 − u3u2u1 = u2u3u1 − u1u3u2 = u3u1u2 − u2u1u3.

Then η belongs to the centre Z(A), and η2 = discQ, where if Q(x) = xTMx then
discQ = −4 detM . Moreover, if discQ 6= 0 then A+ is a quaternion algebra and
A = A+ ⊗K[η]. Although not needed below, it is interesting to remark that the
well known map

H1(K,PGL2)→ Br(K)

is realised by sending the smooth conic {Q = 0} ⊂ P2 (which as a twist of P1

corresponds to a class in H1(K,PGL2)) to the class of A+.

2.2. Binary quartics. Let f ∈ K[x, z] be a binary quartic, say

f(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4.

Haile and Han [10] define the algebra Af to be the associative K-algebra generated
by r, s, t subject to the relations deriving from the formal identity in α and β,

(α2r + αβs+ β2t)2 = f(α, β).

Thus Af = K{r, s, t}/I where I is the ideal generated by the elements

r2 − a,
rs+ sr − b,
rt+ tr + s2 − c,
st+ ts− d,
t2 − e.

We have [r, s2] = [r, rs + sr] = [r, b] = 0, and likewise [s2, t] = 0. Therefore
ξ = s2 − c belongs to the centre Z(Af ). By working over the polynomial ring
K[ξ], instead of the field K, we may describe Af as the Clifford algebra of the
quadratic form

Qξ(x, y, z) = ax2 + bxy + cy2 + dyz + ez2 + ξ(y2 − xz).

This quadratic form naturally arises as follows. Let C ⊂ P3 be the image of the
curve Y 2 = f(X,Z) embedded via (x1 : x2 : x3 : x4) = (X2 : XZ : Z2 : Y ). Then
C is defined by a pencil of quadrics with generic member x2

4 = Qξ(x1, x2, x3).
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2.3. Ternary cubics. Let f ∈ K[x, y, z] be a ternary cubic, say

f(x, y, z) = ax3 + by3 + cz3 + a2x
2y + a3x

2z

+ b1xy
2 + b3y

2z + c1xz
2 + c2yz

2 +mxyz.

In the special case c = 1 and a3 = b3 = c1 = c2 = 0, Kuo [12] defines the algebra
Af to be the associative K-algebra generated by x and y subject to the relations
deriving from the formal identity in α and β,

f(α, β, αx+ βy) = 0.

We make the same definition for any ternary cubic f with c 6= 0. Thus Af =
K{x, y}/I where I is the ideal generated by the elements

cx3 + c1x
2 + a3x+ a,

c(x2y + xyx+ yx2) + c1(xy + yx) + c2x
2 +mx+ a3y + a2,

c(xy2 + yxy + y2x) + c2(xy + yx) + c1y
2 +my + b3x+ b1,

cy3 + c2y
2 + b3y + b.

2.4. Quadric intersections. Let f = (f1, f2) be a pair of quadratic forms in four
variables, say x1, . . . , x4. Assuming Cf = {f1 = f2 = 0} ⊂ P3 does meet the line
{x3 = x4 = 0}, we define the algebra Af to be the associative K-algebra generated
by p, q, r, s subject to the relations deriving from the formal identities in α and β,

fi(αp+ βr, αq + βs, α, β) = 0, i = 1, 2(2)

[αp+ βr, αq + βs] = 0.(3)

Explicitly if f1 =
∑

i≤j aijxixj and f2 =
∑

i≤j bijxixj then Af = K{p, q, r, s}/I
where I is the ideal generated by the elements

a11p
2 + a12pq + a22q

2 + a13p+ a23q + a33,

a11(pr + rp) + a12(ps+ rq) + a22(qs+ sq) + a14p+ a24q + a13r + a23s+ a34,

a11r
2 + a12rs+ a22s

2 + a14r + a24s+ a44,

b11p
2 + b12pq + b22q

2 + b13p+ b23q + b33,

b11(pr + rp) + b12(ps+ rq) + b22(qs+ sq) + b14p+ b24q + b13r + b23s+ b34,

b11r
2 + b12rs+ b22s

2 + b14r + b24s+ b44,

pq − qp,
ps+ rq − qr − sp,
rs− sr.

One motivation for including the commutator relation (3) is that without it, the
relations (2) would be ambiguous.
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2.5. Genus one curves of higher degree. Let C be a smooth curve of genus
one. If D is a K-rational divisor on C of degree n ≥ 3 then the complete linear
system |D| defines an embedding C → Pn−1. We identify C with its image, which
is a curve of degree n. If n = 3 then C is a plane cubic, whereas if n ≥ 4 then the
homogeneous ideal of C is generated by quadrics.

LetA be the associativeK-algebra generated by u1, u2, . . . , un−2, v1, v2, . . . , vn−2,
subject to the relations deriving from the formal identities in α and β,

f(αu1 + βv1, αu2 + βv2, . . . , αun−2 + βvn−2, α, β) = 0 for all f ∈ I(C),

[αui + βvi, αuj + βvj] = 0 for all 1 ≤ i, j ≤ n− 2.

This definition may be thought of as writing down the conditions for C to contain
a line. The fact that C does not contain a line then tells us that there are no
non-zero K-algebra homomorphisms A→ K.

We conjecture that the analogues of Theorems 1.1 and 1.2 hold for these alge-
bras. In support of this conjecture, we have checked that Theorem 1.1 holds in
some numerical examples with n = 5.

3. The centre of Af

In this section we exhibit some elements ξ and η in the centre of Af . In each
case ξ and η generate the centre, and satisfy a relation in the form of a Weierstrass
equation for the Jacobian elliptic curve.

3.1. Binary quartics. Let Cf be a smooth curve of genus one defined as a double
cover of P1 by y2 = f(x, z), where f is a binary quartic. It already follows from the
results in Sections 2.1 and 2.2 that the centre of Af is generated by ξ = s2− c and
η = rst − tsr. Alternatively, this was proved by Haile and Han [10] for quartics
with b = 0, and the general case follows by making a change of co-ordinates (see
Section 4). The elements ξ and η satisfy η2 = F (ξ) where

(4) F (x) = x3 + cx2 − (4ae− bd)x− 4ace+ b2e+ ad2.

This is a Weierstrass equation for the Jacobian of Cf .
There is a derivationD : Af → Af defined on the generators r, s, t byDr = [s, r],

Ds = [t, r] and Dt = 0. To see this is well defined, we checked that the derivation
acts on the ideal of relations defining Af . It is easy to see that D must act on the
centre of Af . We find that Dξ = 2η and Dη = 3ξ2 + 2cξ − (4ae− bd).

3.2. Ternary cubics. Let Cf ⊂ P2 be a smooth curve of genus one defined by a
ternary cubic f . With notation as in Section 2.3, the centre of Af contains

ξ = c2(xy)2 − (cy2 + c2y + b3)(cx2 + c1x+ a3) + (cm− c1c2)xy + a3b3.

There is a derivation D : Af → Af defined on the generators x, y by Dx =
c[xy, x] and Dy = c[y, yx]. Let a′1, a

′
2, a
′
3, a
′
4, a
′
6 ∈ Z[a, b, c, . . . ,m] be the coefficients

of a Weierstrass equation for the Jacobian of Cf , as specified in [7, Section 2],
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i.e. a′1 = m, a′2 = −(a2c2 + a3b3 + b1c1), a′3 = 9abc − (ab3c2 + ba3c1 + ca2b1) −
(a2b3c1 + a3b1c2), a′4 = . . .. (These formulae were originally given in [2].) Then
η = 1

2
(Dξ − a′1ξ − a′3) is also in the centre of Af , and these elements satisfy

η2 + a′1ξη + a′3η = ξ3 + a′2ξ
2 + a′4ξ + a′6.

In fact ξ and η generate the centre of Af . This was proved by Kuo [12] in the
case c = 1 and a3 = b3 = c1 = c2 = 0. The general case follows by making a
change of co-ordinates (see Section 4).

3.3. Quadric intersections. Let Cf ⊂ P3 be a smooth curve of genus one defined
by a pair of quadratic forms f = (f1, f2). Let a1, . . . , a10 and b1, . . . , b10 be the
coefficients of f1 and f2, where we take the monomials in the order

x2
1, x1x2, x1x3, x1x4, x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4.

Let dij = aibj − ajbi. With notation as in Section 2.4 we put

pi = d1ip+ d2iq + d3i, ri = d1ir + d2is+ d4i,

qi = d2ip+ d5iq + d6i, si = d2ir + d5is+ d7i

and t = qr − ps = rq − sp. Then

ξ = (p5s)
2 + (s1p)

2

+ (d56p4 + d29p5 + d37p5 − d27p6)s− d56(d13r + d23s− d17q + d12t− d19)s

+ (d14s6 + d29s1 − d37s1 − d23s4)p− d14(d27p+ d57q + d35r − d25t− d59)p

belongs to the centre of Af . We give a slightly simpler expression for ξ in Sec-
tion 4.3, but this alternative expression is only valid when t is invertible.

There is a derivation D : Af → Af defined on the generators p, q, r, s by Dp =
1
2
[p, ε], Dq = 1

2
[q, ε] and Dr = Ds = 0 where

ε = d12(pr + rp) + d15(ps+ qr + sp+ rq) + d25(qs+ sq).

Then η = 1
2
Dξ is also in the centre of Af . We show in Section 5 that ξ and η

generate the centre, and that they satisfy a Weierstrass equation for the Jacobian
of Cf .

4. Changes of co-ordinates

In this section we show that making a change of coordinates does not change
the isomorphism class of the algebra Af . We also describe the effect this has on
the central elements ξ and η, and on the derivation D.

Let G2(K) = K× ×GL2(K) act on the space of binary quartics via

(λ,M) : f(x, z) 7→ λ2f(m11x+m21z,m12x+m22z).

Let G3(K) = K× ×GL3(K) act on the space of ternary cubics via

(λ,M) : f(x, y, z) 7→ λf(m11x+m21y +m31z, . . . ,m13x+m23y +m33z).
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Let G4(K) = GL2(K)×GL4(K) act on the space of quadric intersections via

(Λ, I4) : (f1, f2) 7→ (λ11f1 + λ12f2, λ21f1 + λ22f2),

(I2,M) : (f1, f2) 7→ (f1(
∑4

i=1mi1xi, . . .), f2(
∑4

i=1mi1xi, . . .)).

We write det(λ,M) = λ detM in the cases n = 2, 3, and det(Λ,M) = det Λ detM
in the case n = 4. A genus one model is a binary quartic, ternary cubic, or pair
of quadratic forms, according as n = 2, 3 or 4.

Theorem 4.1. Let f and f ′ be genus one models of degree n ∈ {2, 3, 4}. In the

case n = 3 we suppose that f(0, 0, 1) 6= 0 and f ′(0, 0, 1) 6= 0. In the case n = 4 we

suppose that Cf and Cf ′ do not meet the line {x3 = x4 = 0}. If f ′ = γf for some

γ ∈ Gn(K) then there is an isomorphism ψ : Af ′ → Af with

ξ 7→ (det γ)2ξ + ρ(5)

η 7→ (det γ)3η + σξ + τ(6)

for some ρ, σ, τ ∈ K, with σ = τ = 0 if n ∈ {2, 4}. Moreover there exists κ ∈ Af
such that

(7) ψD(x) = (det γ)Dψ(x) + [κ, ψ(x)]

for all x ∈ Af ′.

Proof: We prove the theorem for γ running over a set of generators for Gn(K).
The set of generators will be large enough that the extra conditions in the cases
n = 3, 4 (avoiding a certain point or line) do not require special consideration.

Writing η in terms of the Dξ we see that (6) is a formal consequence of (5) and
(7). It therefore suffices to check (5) and (7). We may paraphrase (7) as saying
that ψDψ−1 and (det γ)D are equal up to inner derivations. In particular we only
need to check this statement for x running over a set of generators for Af .

We now split into the cases n = 2, 3, 4.

4.1. Binary quartics. Let γ = (λ,M). There is an isomorphism ψ : Af ′ → Af
given by

r 7→ λ(m2
11r +m11m12s+m2

12t),

s 7→ λ(2m11m21r + (m11m22 +m12m21)s+ 2m12m22t),

t 7→ λ(m2
21r +m21m22s+m2

22t).

We find that (5) and (7) are satisfied with

ρ = −λ2
(
2m2

11m
2
21a+m11m21(m11m22 +m12m21)b

+ 2m11m12m21m22c+m12m22(m11m22 +m12m21)d+ 2m2
12m

2
22e
)

and κ = λ(m11m21r +m12m21s+m12m22t).
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4.2. Ternary cubics. The result is clear for γ = (λ, I3). We take γ = (1,M). If
this change of co-ordinates fixes the point (0 : 0 : 1), equivalently m31 = m32 = 0,
then there is an isomorphism ψ : Af ′ → Af given by

x 7→ m−1
33 (m11x+m12y −m13),

y 7→ m−1
33 (m21x+m22y −m23).

We checked (5) by a generic calculation (leading to a lengthy expression for ρ
which we do not record here), and find that (7) is satisfied with

κ = cm33

(
m23(m11x+m12y)−m13(m21x+m22y)

)
.

It remains to consider a transformation that moves the point (0 : 0 : 1). Let
f ′(x, y, z) = f(z, x, y). By hypothesis a = f ′(0, 0, 1) 6= 0. From the first relation
defining Af it follows that x is invertible, i.e. x−1 = −(cx2 + c1x + a3)/a. There
is an isomorphism ψ : Af ′ → Af given by x 7→ −yx−1 and y 7→ x−1. We find
that (5) and (7) are satisfied with ρ = 0 and κ = cyx+ c1y.

4.3. Quadric intersections. The result for γ = (Λ, I4) follows easily from the
fact our expressions for ε and ξ are linear and quadratic in the dij. We take
γ = (I2,M). If

M =

(
U−1 0

0 I2

)
or

(
I2 0

V I2

)
then an isomorphism ψ : Af ′ → Af is given by

p 7→ u11p+ u21q

q 7→ u12p+ u22q

r 7→ u11r + u21s

s 7→ u12r + u22s

 or


p 7→ p− v11

q 7→ q − v12

r 7→ r − v21

s 7→ s− v22

 .

We checked (5) by a generic calculation, and find that (7) is satisfied with κ = 0
or κ = v11(d12r + d15s) + v12(d15r + d25s).

It remains to consider a transformation that moves the line {x3 = x4 = 0}. Let
f ′i(x1, x2, x3, x4) = fi(x3, x4, x1, x2) for i = 1, 2. By hypothesis Cf does not meet
the line {x1 = x2 = 0} and so t = qr − ps is invertible, i.e.

t−1 = −(d89(s1r + s4) + d8,10(r5q + r6 + p5s+ p7 + d29) + d9,10(q1p+ q3))/∆

where ∆ = d2
8,10 − d89d9,10. There is an isomorphism ψ : Af ′ → Af given by

p 7→ −st−1, q 7→ qt−1, r 7→ rt−1, s 7→ −pt−1 and t 7→ t−1. Under our assumption
that t is invertible, we have ξ = ξ1 + c1 where

ξ1 =(d2
15 − d12d25)t2 + (d15d37 − d12d67 − d15d46 − d25d34)t

+ (d37d8,10 − d36d9,10 + d46d8,10 − d47d89)t−1 + (d2
8,10 − d89d9,10)t−2,
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and c1 ∈ K is a constant (depending on f). Working with ξ1 in place of ξ makes
it easy to check (5). Finally (7) is satisfied with

κ = λ
(
p(s1r + s4) + q10

)
+ µ
(
r(q1p+ q3) + s8

)
+ r(d12p+ d15q)− 1

2
(d23r + d26s)

for certain λ, µ ∈ K. In fact we may take λ = (2d48d8,10 − d38d9,10 − d89d49 +
d89d3,10)/(2∆) and µ = (2d3,10d8,10 − d4,10d89 − d9,10d39 + d9,10d48)/(2∆). 2

5. Proof of Theorem 1.1

In this section we prove the following refined version of Theorem 1.1. The first
two parts of the theorem show that Af is an Azumaya algebra.

Theorem 5.1. Let Cf be a smooth curve of genus one, defined by a genus one

model f of degree n ∈ {2, 3, 4}. Then

(i) The algebra A = Af is free of rank n2 over its centre Z (say).

(ii) The map A⊗Z Aop → EndZ(A); a⊗ b 7→ (x 7→ axb) is an isomorphism.

(iii) The centre Z is generated by the elements ξ and η specified in Section 3,

subject only to these satisfying a Weierstrass equation.

(iv) The Weierstrass equation in (iii) defines the Jacobian of Cf .

For the proof of the first three parts of Theorem 5.1 we are free to extend our
field K. However working over an algebraically closed field, it is well known that
smooth curves of genus one Cf and Cf ′ are isomorphic as curves (i.e. have the
same j-invariant) if and only if the genus one models f and f ′ are in the same
orbit for the group action defined at the start of Section 4. We now split into
the cases n = 2, 3, 4 and verify the theorem by direct computation for a family of
curves covering the j-line. The general case then follows by Theorem 4.1.

The generic calculations in Sections 3.1 and 3.2 already prove Theorem 5.1(iv)
in the cases n = 2, 3. The case n = 4 will be treated in Section 5.3.

5.1. Binary quartics. Let K[x0, y0] = K[x, y]/(F ) where

F (x, y) = y2 − (x3 + a2x
2 + a4x+ a6).

We consider the binary quartic f(x, z) = a6x
4 +a4x

3z+a2x
2z2 +xz3. Specialising

the formulae in Section 3.1 we see that ξ, η ∈ Af satisfy F (ξ, η) = 0.

Lemma 5.2. There is an isomorphism of K-algebras θ : Af → Mat2(K[x0, y0])

given by

r 7→

−y0 x2
0 + a2x0 + a4

−x0 y0

 , s 7→

0 x0 + a2

1 0

 , t 7→

0 1

0 0

 .

Moreover we have θ(ξ) = x0I2 and θ(η) = y0I2.
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Proof: We write Eij for the 2 by 2 matrix with a 1 in the (i, j) position and
zeros elsewhere. Then Mat2(K[x0, y0]) is generated as a K[x0, y0]-algebra by E12

and E21 subject to the relations E2
12 = E2

21 = 0 and E12E21 + E21E12 = 1. We
define a K-algebra homomorphism φ : Mat2(K[x0, y0])→ Af via

x0 7→ ξ, y0 7→ η, E12 7→ t, E21 7→ s− s2t.

We checked by direct calculation that θ and φ are well defined (i.e. they send all
relations to zero), and that they are inverse to each other. 2

5.2. Ternary cubics. Let K[x0, y0] = K[x, y]/(F ) where

F (x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6).

We consider the ternary cubic f(x, y, z) = x3F (z/x, y/x). Specialising the formu-
lae in Section 3.2 we see that ξ, η ∈ Af satisfy F (ξ, η) = 0.

Lemma 5.3. There is an isomorphism of K-algebras θ : Af → Mat3(K[x0, y0])

given by

x 7→


−x0 − a2 −1 0

x2
0 + a2x0 + a4 0 y0

y0 + a1x0 + a3 0 x0

 , y 7→


0 0 0

−a1 0 −1

1 0 0

 .

Moreover we have θ(ξ) = x0I3 and θ(η) = y0I3.

Proof: We write Eij for the 3 by 3 matrix with a 1 in the (i, j) position and
zeros elsewhere. Then Mat3(K[x0, y0]) is generated as a K[x0, y0]-algebra by E12,
E23 and E31 subject to the relations

E2
12 = E2

23 = E2
31 = E12E31 = E23E12 = E31E23 = 0,

and

E12E23E31 + E23E31E12 + E31E12E23 = 1.

We define a K-algebra homomorphism φ : Mat3(K[x0, y0]) → Af via x0 7→ ξ,
y0 7→ η and

E12 7→ −xy2(x+ ξ + a2), E23 7→ −y2(xy − a1), E31 7→ (yx− a1)y2.

We checked by direct calculation that θ and φ are well defined, and that they are
inverse to each other. 2
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5.3. Quadric intersections. Let f ′ ∈ K[x, z] be a binary quartic, say

f ′(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4.

The morphism Cf ′ → P3 given by (x1 : x2 : x3 : x4) = (xz : y : x2 : z2) has image
Cf where f = (f1, f2) and

(8)
f1(x1, x2, x3, x4) = x2

1 − x3x4,

f2(x1, x2, x3, x4) = x2
2 − (ax2

3 + bx1x3 + cx3x4 + dx1x4 + ex2
4).

We write r′, s′, t′ and ξ′, η′ for the generators and central elements of Af ′ .

Lemma 5.4. There is an isomorphism of K-algebras θ : Af → Mat2(Af ′) given

by

p 7→

0 1

0 0

 , q 7→

r′ s′

0 r′

 , r 7→

0 0

1 0

 , s 7→

t′ 0

s′ t′

 .

Moreover we have θ(ξ) = (ξ′ + c)I2 and θ(η) = −η′I2.

Proof. Again the proof is by direct calculation, the K-algebra homomorphism

inverse to θ being given by E12 7→ p, E21 7→ r and

r′I2 7→ pqr + rqp, s′I2 7→ prqr + rqrp, t′I2 7→ psr + rsp. �

To complete the proof of Theorem 5.1, and hence of Theorem 1.1, it remains
to show that in the case n = 4 the Weierstrass equation satisfied by ξ and η is in
fact an equation for the Jacobian of Cf .

Let A and B be the 4 by 4 matrices of partial derivatives of f1 and f2. We
define a, b, c, d, e by writing 1

4
det(Ax+B) = ax4 + bx3 + cx2 +dx+e. As shown in

[1], the Jacobian of Cf has Weierstrass equation y2 = F (x) where F is the monic
cubic polynomial defined in (4).

We claim that η2 = F (ξ + c0) for some constant c0 ∈ K (depending on f).
In verifying this claim we are free to extend our field. We are also free to make
changes of coordinates. Indeed if f ′ = γf for some γ = (Λ,M) ∈ G4(K) then
by Theorem 4.1 there is an isomorphism ψ : Af ′ → Af with ξ 7→ (det γ)2ξ + ρ
and η 7→ (det γ)3η. On the other hand the monic cubic polynomials F and F ′

(associated to f and f ′) are related by F ′(x− 1
3
c′) = (det γ)6F ((det γ)−2x− 1

3
c).

Finally we checked that for f as specified in (8), the claim is satisfied with c0 = 0.

6. Proof of Theorem 1.2

In this section we recall the definition of the isomorphism (1), and then prove
that the construction of Af from Cf is an explicit realisation of this map.
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6.1. Galois cohomology. Let E/K be an elliptic curve. Writing K for a sepa-
rable closure of K, the short exact sequences of Galois modules

(9) 0→ K
× → K(E)× → K(E)×/K

× → 0,

and

0→ K(E)×/K
× → DivE → PicE → 0,

give rise to long exact sequences

(10) H2(K,K
×

)→ H2(K,K(E)×)→ H2(K,K(E)×/K
×

),

and

(11) H1(K,DivE)→ H1(K,PicE)→ H2(K,K(E)×/K
×

)→ H2(K,DivE).

Since H1(K,Z) = 0 it follows by Shapiro’s lemma that H1(K,DivE) = 0. We may

identify H1(K,PicE) = H1(K,Pic0E) = H1(K,E) and H2(K,K
×

) = Br(K). As
shown in [14, Appendix] we may identify

Br(E) = ker
(
H2(K,K(E)×)→ H2(K,DivE)

)
.

We fix a local parameter t at 0 ∈ E(K). The left hand map in (9) is split by the
map sending a Laurent power series in t to its leading coefficient. It follows that
the right hand map in (10) is surjective, and hence H1(K,E) ∼= Br(E)/Br(K).
Since the natural map Br(K) → Br(E) is split by evaluation at 0 ∈ E(K) this
also gives the isomorphism (1).

6.2. Cyclic algebras. Let L/K be a Galois extension with Gal(L/K) cyclic of
order n, generated by σ. For b ∈ K× the cyclic algebra (L/K, b) is the K-algebra
with basis 1, v, . . . , vn−1 as an L-vector space, and multiplication determined by
vn = b and vλ = σ(λ)v for all λ ∈ L. This is a central simple algebra over K of
dimension n2. It is split by L and so determines a class in Br(L/K).

We compute cohomology of Cn = 〈σ|σn = 1〉 relative to the resolution

. . .−→Z[Cn]
∆−→ Z[Cn]

N−→ Z[Cn]
∆−→ Z[Cn]−→ 0,

where ∆ = σ − 1 and N = 1 + σ + . . .+ σn−1. Thus for A a Gal(L/K)-module,

H i(Gal(L/K), A) =

{
ker(N |A)/im(∆|A) if i ≥ 1 odd,

ker(∆|A)/im(N |A) if i ≥ 2 even.

In particular K×/NL/K(L×) ∼= H2(Gal(L/K), L×) = Br(L/K). This isomorphism
is realised by sending b ∈ K× to the class of (L/K, b).

Let E/K be an elliptic curve, and fix a local parameter t at 0 ∈ E(K). If
g ∈ K(E)× then we write (L/K, g) for the cyclic algebra (L(E)/K(E), g). We
may describe the isomorphism (1) in terms of cyclic algebras as follows.
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Lemma 6.1. Let C/K be a smooth curve of genus one curve with Jacobian E,

and suppose Q ∈ C(L). Let P be the image of [σQ − Q] under Pic0(C) ∼= E.

Then the isomorphism (1) sends the class of C to the class of (L/K, g) where

g ∈ K(E)× has divisor (P ) + (σP ) + . . . + (σn−1P )− n(0), and is scaled to have

leading coefficient 1 when expanded as a Laurent power series in t.

Proof: We identify E ∼= Pic0(E) via T 7→ (T ) − (0). Then the class of C in
H1(K,PicE) is represented by (P )− (0), and its image under the connecting map
in (11) is represented by g ∈ K(E)× where div g = NL/K((P ) − (0)). Finally to
lift to an element of ker(ev0 : Br(E)→ Br(K)) we scale g as indicated. 2

6.3. Binary quartics. We prove Theorem 1.2 in the case n = 2. By a change of
coordinates we may assume1 that a 6= 0 and b = 0, i.e.

f(x, z) = ax4 + cx2z2 + dxz3 + ez4.

Let E be the Jacobian of Cf , with Weierstrass equation as specified in Sec-
tion 3.1. We know by Theorem 1.1 that the centre Z of Af is a Dedekind domain
with field of fractions K(E). Therefore the natural map Br(Z) → Br(K(E)) is
injective, and so it suffices for us to consider the class of the quaternion algebra
Af ⊗Z K(E) in Br(K(E)). This algebra is generated by r and s subject to the
rules r2 = a, rs+ sr = 0 and s2 = ξ+ c. It is therefore the cyclic algebra (L/K, g)
where L = K(

√
a) and g ∈ K(E)× is the rational function g(ξ, η) = ξ + c.

By inspection of the Weierstrass equation for E in Section 3.1, we see that
div g = (P ) + (σP ) − 2(0) where P = (−c, d

√
a) ∈ E(L). Let Cf have equation

y2 = f(x1, x2), and let Q ∈ C(L) be the point (x1 : x2 : y) = (1 : 0 :
√
a). Let

π : Cf → E be the covering map, i.e. the map T 7→ [2(T ) − H] where H is
the fibre of the double cover Cf → P1. Using the formulae in [1] we find that
π(Q) = −P . Therefore [σQ − Q] = [H − 2(Q)] = P . It follows by Lemma 6.1
that the isomorphism (1) sends the class of C to the class of the cyclic algebra
(L/K, g). This completes the proof of Theorem 1.2 in the case n = 2.

6.4. Ternary cubics. We prove Theorem 1.2 in the case n = 3. Since 2 and 3
are coprime, we are free to replace our field K by a quadratic extension. We may
therefore suppose that ζ3 ∈ K and that f(x, 0, z) = ax3 − z3 with a 6= 0. Further
substitutions of the form x← x+ λy and z ← z + λ′y reduce us to the case

f(x, y, z) = ax3 + by3 − z3 + b1xy
2 + b3y

2z +mxyz.

The algebra Af ⊗Z K(E) is generated by x and v = yx − ζ3xy − 1
3
(1 − ζ3)m

subject to the rules x3 = a, xv = ζ3vx and v3 = g(ξ, η) where

g(ξ, η) = η − ζ2
3mξ − 3(1− ζ3)ab+ 1

9
(ζ3 − ζ2

3 )m3.

It is therefore the cyclic algebra (L/K, g) where L = K( 3
√
a).

1It is incorrectly claimed in [10, Section 5] that we may further assume d = 0.
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Let E be given by the Weierstrass equation specified in Section 3.2. We find that
div g = (R) + (σR) + (σ2R)− 3(0) for a certain point R ∈ E(L) with x-coordinate
−(1/3)m2 + b1

3
√
a − b3( 3

√
a)2. Let Q = (1 : 0 : 3

√
a) ∈ Cf (L). Let π : Cf → E

be the covering map, i.e. the map T 7→ [3(T ) − H] where H is the hyperplane
section. Using the formulae in [1] we find that π(Q) = σR− σ2R. We compute

3[σQ−Q] = π(σQ)− π(Q) = σ(σR− σ2R)− (σR− σ2R) = 3σ2R.

Since generically E has no 3-torsion, it follows that [σQ − Q] = σ2R. Taking
P = σ2R in Lemma 6.1 completes the proof.

6.5. Dihedral algebras. Let L/K be a Galois extension with Gal(L/K) ∼= D2n

where D2n = 〈σ, τ |σn = τ 2 = (στ)2 = 1〉 is the dihedral group of order 2n. Let K1,

F and F̃ be the fixed fields of σ, τ and στ . For (b, ε, ε̃) ∈ K×1 ×F×× F̃× satisfying
NK1/K(b)NF/K(ε) = NF̃ /K(ε̃) we define the dihedral algebra (L/K, b, ε, ε̃) to be

the K-algebra with basis 1, v, . . . , vn−1, w, vw, . . . , vn−1w as an L-vector space,
and multiplication determined by vn = b, w2 = ε, (vw)2 = ε̃, vλ = σ(λ)v and
wλ = τ(λ)w for all λ ∈ L. As we explain below, this is a special case of a crossed
product algebra. In particular it is a central simple algebra over K of dimension
(2n)2. It is split by L and so determines a class in Br(L/K).

Let N = 1 + σ + . . .+ σn−1 ∈ Z[D2n]. We compute cohomology of D2n relative
to the resolution

(12) . . .−→Z[D2n]4
∆3−→ Z[D2n]3

∆2−→ Z[D2n]2
∆1−→ Z[D2n]−→ 0

where

∆3 =


σ − 1 0 0

0 τ − 1 0

0 0 στ − 1

τ + 1 N −N

 , ∆2 =

 N 0

0 τ + 1

στ + 1 σ + τ

 , ∆1 =

(
σ − 1

τ − 1

)
,

and our convention is that ∆m acts by right multiplication on row vectors. This
resolution is a special case of that defined in [16], except that we have applied
some row and column operations to simplify ∆2 and ∆3. Using this resolution to
compute Br(L/K) = H2(Gal(L/K), L×) we find

(13)
{(b, ε, ε̃) ∈ K×1 × F× × F̃× | NK1/K(b)NF/K(ε) = NF̃ /K(ε̃)}
{(NL/K1(λ1), NL/F (λ2), NL/F̃ (λ1λ2)) | λ1, λ2 ∈ L×}

∼= Br(L/K).

This isomorphism is realised by sending (b, ε, ε̃) to the class of the dihedral algebra
(L/K, b, ε, ε̃). Our claim that dihedral algebras are crossed product algebras is
justified by comparing this description of Br(L/K) with that obtained from the
standard resolution.
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In more detail, there is a commutative diagram of free Z[D2n]-modules

//
⊕

(g,h)∈D2
2n
Z[D2n]

φ2
��

d2 //
⊕

g∈D2n
Z[D2n]

d1 //

φ1
��

Z[D2n] // 0

// Z[D2n]3
∆2 // Z[D2n]2

∆1 // Z[D2n] // 0

where the first row is the standard resolution, i.e. d1(eg) = g − 1 and d2(eg,h) =
g(eh)−egh+eg, and the second row is the resolution (12). We choose φ1 such that

φ1(e1) = (0, 0), φ1(eσi) = (1 + σ + . . .+ σi−1, 0) for 0 < i < n,

φ1(eτ ) = (0, 1), φ1(eσiτ ) = (1 + σ + . . .+ σi−1, σi) for 0 < i < n.

We further choose φ2 such that for 0 ≤ i, j < n we have

φ2(eσi,σj) = φ2(eσi,σjτ ) =

{
(0, 0, 0) if i+ j < n,

(1, 0, 0) if i+ j ≥ n,

and φ2(eτ,τ ) = (0, 1, 0), φ2(eστ,στ ) = (0, 0, 1). The 2-cocycle ξ ∈ Z2(D2n, L
×)

corresponding to (b, ε, ε̃) is now the unique 2-cocycle satisfying

ξσi,σj = ξσi,σjτ =

{
1 if i+ j < n,

b if i+ j ≥ n,

and ξτ,τ = ε, ξστ,στ = ε̃. The cross product algebra associated to ξ is the K-algebra
with basis {vg : g ∈ D2n} as an L-vector space, and multiplication determined by
vgvh = ξg,hvgh and vgλ = g(λ)vg for all λ ∈ L. Identifying vσi = vi and vσiτ = viw,
we recognise this as the dihedral algebra (L/K, b, ε, ε̃).

Let E/K be an elliptic curve, and fix a local parameter t at 0 ∈ E(K). We may
describe the isomorphism (1) in terms of dihedral algebras as follows.

Lemma 6.2. Let C/K be a smooth curve of genus one with Jacobian E, and

suppose Q ∈ C(F ). Let P be the image of [σQ − Q] under Pic0(C) ∼= E. Then

the isomorphism (1) sends the class of C to the class of (L/K, g, 1, h) where g ∈
K1(E)× and h ∈ F̃ (E)× have divisors (P ) + (σP ) + . . . + (σn−1P ) − n(0) and

(P ) + (−P )− 2(0), and are scaled to have leading coefficient 1 when expanded as

Laurent power series in t.

Proof: We have [σQ − Q] = P and [τQ − Q] = 0. We identify E ∼= Pic0(E)
via T 7→ (T ) − (0). Then the class of C in H1(K,PicE) is represented by the
pair ((P ) − (0), 0). Reading down the first column of ∆2, the image of this class
under the connecting map in (11) is represented by a triple (g, 1, h) where div g =
NL/K1((P )− (0)) and div h = (στ + 1)((P )− (0)) = (P ) + (−P )− 2(0). Finally to
lift to an element of ker(ev0 : Br(E)→ Br(K)) we scale g and h as indicated. 2
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6.6. Quadric intersections. We prove Theorem 1.2 in the case n = 4. We are
free to make field extensions of odd degree. We may therefore suppose that Cf
meets the plane {x4 = 0} in four points in general position, and that one of the
three singular fibres in the pencil of quadrics vanishing at these points is defined
over K. In other words, we may assume that f1(x1, x2, x3, 0) = q1(x1, x3) where q1

is a binary quadratic form. Then f2 must have a term x2
2, and so by completing

the square f2(x1, x2, x3, 0) = x2
2 + q2(x1, x3). Adding a suitable multiple of f1

to f2 we may suppose that q2 factors over K, and so without loss of generality
q2(x1, x3) = −x1x3. Making linear substitutions of the form xi ← xi + λx4 for
i = 1, 2, 3 brings us to the case

f1(x1, x2, x3, x4) = ax2
1 + bx1x3 + cx2

3 + (d1x1 + d2x2 + d3x3 + d4x4)x4,

f2(x1, x2, x3, x4) = x2
2 − x1x3 − ex2

4.

Let L/K be the splitting field of G(X) = aX4 + bX2 + c. Then Gal(L/K) is a
subgroup of D8. We suppose it is equal to D8, the other cases being similar. We
have L = K(θ,

√
δ) where θ is a root of G and δ = ac(b2 − 4ac). The generators

σ and τ of D8 act as

σ : θ 7→ 1√
δ

(abθ3 + (b2 − 2ac)θ), σ :
√
δ 7→

√
δ,

τ : θ 7→ θ, τ :
√
δ 7→ −

√
δ.

The fixed fields of σ, τ and στ are K1 = K(
√
δ), F = K(θ) and F̃ = K(φ) where

φ = a(θ + σ(θ)).
Let A = Af ⊗Z K(E). The second generator q of Af satisfies aq4 + bq2 + c = 0.

We may therefore embed F ⊂ A via θ 7→ q, and hence L ⊂ A1 = A ⊗K K1. We
find that A1 is generated as a K1(E)-algebra by q and

v = a(rσ(q)− qr) +
a√
δ

(aq3σ(q)− c)(d1q + d2 + d3q
−1)

subject to the rules aq4 + bq2 + c = 0, vq = σ(q)v and v4 = g(ξ, η), for some
g ∈ K1(E). It is therefore the cyclic algebra (L/K1, g). Writing ξ for the element
that was denoted ξ + c0 in Section 5.3, we have

g(ξ, η) = ξ2 − 4acd2√
δ
η +

2(bm+ 2acd2
2)

b2 − 4ac
ξ + 8aced2

2 +
m2 + d2

2n

b2 − 4ac
.

where m = cd2
1− bd1d3 + ad2

3 + (b2− 4ac)d4 and n = bcd2
1 + ac(d2

2− 4d1d3) + abd2
3.
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Let Q = (θ2 : θ : 1 : 0) ∈ Cf (F ), and let P = [σQ − Q] under the usual
identification Pic0(Cf ) ∼= E. We compute the point P as follows. We put

Tz1

z2

z1

Tz2

 =


a φ (φ2 + ab)/2a 0

a −φ (φ2 + ab)/2a 0

−ad1 −ad2 −ad3 −ad4 − eφ2

0 0 0 1



x1

x2

x3

x4

 .

Inverting this 4 by 4 matrix M gives

(detM)f2(x1, x2, x3, x4) = α(z1, z2)T 2 + β(z1, z2)T + γ(z1, z2)

for some binary quadratic forms α, β, γ. Relacing f2 by f1 gives a scalar multiple of
the same equation. Therefore Cf has equation y2 = β(z1, z2)2−4α(z1, z2)γ(z1, z2).
The points Q and σ(Q) are given by (z1 : z2 : y) = (1 : 0 : ±a(θ − σ(θ))).
Exactly as in Section 6.3, we compute P using the formulae for the covering map.
Relative to the Weierstrass equation for E specified in Section 5.3, this point has
x-coordinate

(14) x(P ) =
2aφ2(d2d3φ+m)− d2(d1φ+ ad2)(bφ2 + a(b2 − 4ac))

2a2(b2 − 4ac)
∈ F̃ .

We find that P and its Galois conjugates are zeros of g. Therefore div g =
(P ) + (σP ) + (σ2P ) + (σ3P )− 4(0). It follows by Lemma 6.1 that the class of Af ,
and the image of the class of Cf under (1), agree after restricting to Br(E⊗KK1).
It remains to show that the same conclusion holds without the quadratic extension.

For a ∈ A1 = A⊗KK1 let a = (1⊗τ)a. We find that vv = ξ−x(P ) where x(P )
is given by (14). Now let A2 = A1⊕A1w with multiplication determined by w2 = 1
and wa = aw for all a ∈ A1. This is the dihedral algebra (L/K, g, 1, ξ − x(P )).
The subalgebra generated by K1 and w is a trivial cyclic algebra. Therefore
A2
∼= A ⊗K Mat2(K). In particular A and A2 have the same class in Br(K(E)).

Lemma 6.2 now completes the proof.

7. Geometric interpretation

Let C be a smooth curve of genus one with Jacobian elliptic curve E. Let H
and H ′ be K-rational divisors on C of degree n ≥ 2. We assume that H and
H ′ are not linearly equivalent, and so their difference corresponds to a non-zero
point P ∈ E(K). The complete linear systems |H| and |H ′| define an embedding
C → Pn−1 × Pn−1. Assuming n ∈ {2, 3, 4}, the composite of this map with the
first and second projections is described by genus one models f and f ′.

In this section we investigate the following problem.

Given f and P , how can we compute f ′?
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The answers we give might be viewed as explicitly realising the connection between
the Tate pairing and the obstruction map, as studied in [6, 15, 18]. Our answers
also serve to motivate the definition of Af , and indeed (however much it might
seem an obvious guess in hindsight) this is how we actually found the correct
definition of Af in the case n = 4.

We give no proofs in this section. However all our claims may be verified by
generic calculations.

7.1. Binary quartics. The image of C → P1×P1 is defined by a (2, 2)-form, say

F (x, z;x′, z′) = f1(x, z)x′2 + 2f2(x, z)x′z′ + f3(x, z)z′2.

Then f = f 2
2 − f1f3, and f ′ is obtained in the same way, after switching the two

sets of variables. Thus, given a binary quartic f , we seek to find binary quadratic
forms f1, f2, f3 such that (

f2 −f1

f3 −f2

)2

=

(
f 0

0 f

)
.

Equivalently, we look for matrices M1,M2,M3 ∈ Mat2(K) satisfying

(α2M1 + αβM2 + β2M3)2 = f(α, β)I2.

This reduces the problem of finding f ′ from f to that of finding a K-algebra
homomorphism Af → Mat2(K). By Theorem 1.1 any such homomorphism must
factor via Af,P for some 0 6= P ∈ E(K). This point P turns out to be the same as
the point P considered at the start of Section 7. In conclusion, if Af,P ∼= Mat2(K)
and we can find this isomorphism explicitly, then we can write down a (2, 2)-form,
and hence a binary quartic f ′, such that Cf and Cf ′ are isomorphic as genus one
curves, but their hyperplane sections differ by P .

7.2. Ternary cubics. The image of C → P2 × P2 is defined by three (1, 1)-
forms. The coefficients may be arranged as a 3× 3× 3 cube. As explained in [3],
slicing this cube in three different ways gives rise to three ternary cubics. Two
of these are f and f ′. Thus, given a ternary cubic f , we seek to find matrices
M1,M2,M3 ∈ Mat3(K) satisfying

f(α, β, γ) = det(αM1 + βM2 + γM3).

If f(0, 0, 1) 6= 0 then we may assume (after rescaling f and multiplying each Mi

on the left by the same invertible matrix) that M3 = −I3. Then αM1 + βM2 has
characteristic polynomial γ 7→ f(α, β, γ), and so by the Cayley-Hamilton theorem

f(α, β, αM1 + βM2) = 0.

This reduces the problem of finding f ′ from f to that of finding a K-algebra
homomorphism Af → Mat3(K). By Theorem 1.1 any such homomorphism must
factor via Af,P for some 0 6= P ∈ E(K). This point P turns out to be the same as
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the point P considered at the start of Section 7. In conclusion, if Af,P ∼= Mat3(K)
and we can find this isomorphism explicitly, then we can write down a 3 × 3 × 3
cube, and hence a ternary cubic f ′, such that Cf and Cf ′ are isomorphic as genus
one curves, but their hyperplane sections differ by P .

7.3. Quadric intersections. The image of C → P3 × P3 is defined by an 8-
dimensional vector space V of (1, 1)-forms in variables x1, . . . , x4 and y1, . . . , y4.
Let W be the vector space of 4 by 4 alternating matrices B = (bij) of linear forms
in y1, . . . , y4 such that

4∑
i=1

xibij(y1, . . . , y4) ∈ V for all j = 1, . . . , 4.

We find that W is 4-dimensional. We choose a basis, and let M be a generic
linear combination of the basis elements, say with coefficients z1, . . . , z4. Then
M = (mij) is a 4 by 4 alternating matrix of (1, 1)-forms in y1, . . . , y4 and z1, . . . , z4.
The Pfaffian of this matrix is a (2, 2)-form, which turns out to be

f+
1 (y1, . . . , y4)f−2 (z1, . . . , z4)− f+

2 (y1, . . . , y4)f−1 (z1, . . . , z4),

where f± = (f±1 , f
±
2 ) describes the image of C → P3 via |H±|, and [H−H±] = ±P .

To tie in with our earlier notation, H+ = H ′ and f+ = f ′.
We write mij = (y1, . . . , y4)Mij(z1, . . . , z4)T where Mij ∈ Mat4(K). Assuming

Cf does not meet the line {x3 = x4 = 0} we have det(M12) 6= 0, and so we
may choose our basis for W such that M12 = I4. The matrices Mij then satisfy
fi(αM23 + βM24,−(αM13 + βM14), α, β) = 0 for i = 1, 2, where the first two
arguments commute, and M34 = M13M24 −M23M14 = M24M13 −M14M23.

This reduces the problem of finding f ′ from f to that of finding a K-algebra
homomorphism Af → Mat4(K). By Theorem 1.1 any such homomorphism must
factor via Af,P for some 0 6= P ∈ E(K). Again this point P turns out to corre-
spond to the difference of hyperplane sections for Cf and Cf ′ .
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