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ABSTRACT. We establish the faithfulness of Verma modules for rational Iwa-
sawa algebras of split semisimple compact L-analytic groups. We also prove
the algebraic independence of Arens-Michael envelopes over Iwasawa algebras
and compute the centre of affinoid enveloping algebras of semisimple p-adic
Lie algebras.

1. INTRODUCTION

1.1. Prime ideals in Iwasawa algebras. The majority of work so far related to
the study of the prime spectrum of non-commutative Iwasawa algebras has pro-
duced negative results. By this we mean that results in this area have tended to
put constraints on the set of prime ideals for such a ring rather than uncover prime
ideals that were not known before: see for example [34], [35], [6], [4], [2], [8]. This
work continues in that tradition. However, most of these theorems were established
in characteristic p in the first instance with eventual consequences in characteristic
zero; by contrast, our methods here have a definite characteristic zero flavour and
our results do not have immediate implications in positive characteristic.

Suppose that L is a finite extension of @, and that K is a complete discretely
valued field extension of L. Let G be a compact open subgroup of the group of
L-points of a connected, simply connected, split semisimple affine algebraic group
scheme G defined over Oy, and write KG to denote the Iwasawa algebra of con-
tinuous K-valued distributions on G. The annihilator of every simple K G-module
that is finite dimensional over K is a prime ideal of finite codimension in K G, and
moreover every prime ideal with this property will arise in this way. Evidence so
far suggests that non-zero prime ideals in KG that do not arise in this way are very
scarce; indeed we suspect that when the algebraic group scheme G is simple and G
has trivial centre they do not exist. We present further evidence in that direction.

1.2. The main result. A natural place to look for more prime ideals in KG is
as annihilators of simple K G-modules that are not finite dimensional over K. By
standard arguments in ring theory such ideals will always be prime and of infinite
codimension in K G. Thus if our suspicion above is correct then all such annihilators
must be zero. We show that this is the case for a large class of naturally arising
examples. More precisely, in §5.7 below we prove

Theorem A. Let p be an odd very good prime for G and let G be an open subgroup
of G(Op) with trivial centre. Let B* be a Borel subgroup scheme of G and let
Ky be a 1-dimensional locally L-analytic K-representation of BT := GNBT(Op).
Then the induced KG-module KG ® g+ Ky is faithful.
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We refer the reader to [3, §6.8] for a precise definition of what it means for a
prime number p to be a very good prime for G and simply remark here that this
condition is satisfied by any p > 5 if G is not of type A. These “Verma modules”
KG ®kp+ Ky are not always irreducible, but it follows from the work of Orlik
and Strauch [27, Theorem 3.5.2] that generically they are irreducible at least when
L=Q,.

We note that Theorem A refutes the main result in [17] whose proof has been
known to contain a gap for a number of years [16], and whose statement was already
known to be false for open pro-p subgroups G of SLy(Z,) following the work of Wei,
Zhang and the first author [6], [4], using very different methods to those found in
this paper.

1.3. Two related results. We also prove some other results of independent inter-
est. Write D(H, K) to denote the algebra of L-locally analytic K-valued distribu-
tions on a compact L-analytic group H in the sense of Schneider and Teitelbaum
[32]. There is a natural map from the Iwasawa algebra KH to D(H, K) because
every L-locally analytic function on H is continuous. We may also consider the sub-
algebra D(H, K); consisting of those distributions in D(H, K) that are supported
at the identity in the sense of [21]. At the end of §3 we prove the following result,
which is essential to our proof of Theorem A.

Theorem B. The natural map KH ®x D(H,K); — D(H, K) is an injection.

We note that in the case H = Z, an immediate consequence of Theorem B is
the well-known algebraic independence of the logarithmic series log(1+T") over the
Iwasawa algebra O[[T]], so Theorem B may be viewed as a (slightly stronger)
non-commutative analogue of this algebraic independence.

In [3, §9.3] we promised a future proof that the centre of the affinoid enveloping

algebra U(g)n, i is the closure of the image of the centre of U(gx) in U(g)n k:

o —

Theorem C. We have Z (U@K) = U(g)ﬁK-

We provide a proof of Theorem C in §4.4 of this paper, which is much simpler
than that found in [5] for the case n = 0.

1.4. Future work. We believe that this work raises two interesting questions. By
an affinoid highest weight module we mean a module that can be written in the
form U(g)n,x ®u(g) M for some highest weight U(gx)-module M. Recall that an
ideal that arises as the annihilator of a simple module is called primitive.

Question A. Is it the case that every primitive ideal of U(g),, x with K-rational
infinitesimal central character is the annihilator of a simple affinoid highest weight
module?

Some evidence pointing towards a positive answer to Question A is provided by
Duflo’s main theorem in [14] that states that every primitive ideal of the classical
enveloping algebra U(gx) with K-rational infinitesimal central character is the
annihilator of a highest weight module. In particular to answer yes, it would suffice

to prove that every primitive ideal of UG-):K is controlled by U(gk).-

Question B. Is every affinoid highest weight module that is not finite-dimensional
over K faithful as a KG-module?
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Since Verma modules for classical enveloping algebras are generically irreducible,
our Theorem 5.4 below may be viewed as giving evidence towards a positive answer
to Question B. We believe that if we could give positive answers to both these
questions then, in the case L = Q,, we would be able to use the faithful flatness of
D(G, K) over KG due to Schneider and Teitelbaum [33] together with our affinoid
version [3, Theorem D] of Quillen’s Lemma to prove that every non-zero prime ideal
of K@ is the annihilator of a finite dimensional simple module.

1.5. Acknowledgements. The first author would like James Zhang for the invi-
tation to visit Seattle in 2012, and for his encouragement that led to the eventual
proof of Theorem 5.4. Many of the results in this paper were established during
the Banff 2013 Workshop “Applications of Iwasawa Algebras”; we thank its organ-
isers for the invitation to visit and for the opportunity to speak about this work
there. The second author thanks Homerton College for funding his travel to this
workshop.

2. GENERALITIES ON COMPLETED GROUP RINGS

2.1. Module algebras and smash products. Let k£ be a commutative base ring.
Recall [26, Chapter 4] that if H is a Hopf algebra over k and A is a k-algebra, then
Ais a left H-module algebra if there exists an action
HerA— A, r®a—r1-a
such that
r-(ab)=(r1-a)(ra-b), r-1=¢€(r)l, (rs)-a=r-(s-a) and l-a=a

for all ;s € H and a,b € A. Here we use the sumless Sweedler notation. There
is a similar notion of right H-module algebra, and the two notions coincide in the
case when H is commutative.

Whenever A is a left H-module algebra, define A#H := A®y H and write a#r for
the tensor a ® r in A#H. Then A#H becomes an associative k-algebra called the
smash product of A with H, with multiplication given by
(a#r)(b#ts) = a(ry - b)#ras forall a,be A and r,s€ H.
This smash product contains A and H as k-subalgebras, and A is naturally a left
A# H-module via the rule
(a#tr)-b=a(r-b) forall a,be A and re€ H.
Note that the subset of H-invariants in A, namely
A ={acA:r-a=¢(r)a forall rec H}
is always a k-subalgebra of A. We have the following well-known

Lemma. Let H be a Hopf algebra over k and let A be a left H-module algebra.
Then

(a) A is an A#H —A -bimodule, and

(b) EndA#HA = (AH)OP.

Proof. (a) The left regular representation of A on itself commutes with the right
regular representation, so we have to check that every r € H acts on A by a right
AH_module endomorphism:

r-(ab)=(r-a)b forall r€ HacA and bec A"
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Now 7 - (ab) = (r1 - a)(rz2 - b) = (r1 - a)(e(r2)b) = ((r1€(r2)) - a)b. But rie(re) = r by
the counit axiom in H. Therefore r - (ab) = (r - a)b as required.
(b) Let ¢ : A — A be a left A#H-module endomorphism. Since ¢ is H-linear,

r-p(l)=¢@(r-1) =p(e(r)l) =¢€(r) - p(1) forall re H,
which shows that ¢(1) € A*. Since ¢ is left A-linear,
p(x) =p(zl) =zp(l) forall z€A

and therefore ¢ agrees with right muliplication by ¢(1) € A¥. Hence the anti-
homomorphism A# — Endazp A which sends 7 € A to right multiplication by r
is a bijection. O

2.2. Locally constant functions. Let G be a profinite group. Recall that a
function f : G — kis locally constant if for all g € G there is an open neighbourhood
U of g such that f is constant on U.

Definition. Let C>*° = C*(G, k) denote the set of all locally constant functions
from G to k.

C becomes a unital commutative k-algebra when equipped with pointwise mul-
tiplication of functions. Moreover it is a Hopf algebra over k, with comultiplication
A, antipode S and counit € given by the formulas

A(f)(g:h) = f(gh), S(f)(g)=f(g™") and e(f) = f(1)
for all f € C* and all g,h € G.

2.3. G-graded algebras. We recall [7, Definition 2.5] for the convenience of the
reader.

Definition. Let G be a profinite group and let A be a k-algebra. We say that A
is G-graded if for each clopen subset U of G there exists a k-submodule Ay of A
such that

(i) A=Ay, @Ay, ®---® Ay, it G=U; U---UU, is an open partition of G,
(i) Ay < Ay if U C V are clopen subsets of G,
(iii) Ay - Ay C Ayy if U,V are clopen subsets of G,
(iv) 1 € Ay whenever U is an open subgroup of G.

In this situation, [7, Proposition 2.5] asserts that for a profinite group G, a
k-algebra A is G-graded if and only if A is a C'"°°-module algebra.

For every open subgroup U of G, let Y™ denote the k-subalgebra of functions
f € C° that are constant on the left cosets gU of U in G. Then

O® = U UC(X)

U<.G

and YC™ is even a Hopf subalgebra of C> whenever U is normal, because it is
naturally isomorphic to the algebra of k-valued functions on the finite group G/U
in this case.

Proposition. Let G be a profinite group, let U be an open normal subgroup of G
and let A be a G-graded k-algebra. Then the algebra of Y C™-invariants of A is
precisely Ay .
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Proof. The Hopf algebra Y™ is spanned by the characteristic functions d,¢; of all
the cosets of U in G. By the construction given in the proof of [7, Proposition 2.5],
the action of YC> on A and the G-graded structure are related by

Agu =d4u-A forall ged.
Now the d,¢; form a family of commuting idempotents in UCce, and

) =ow={ § i 950

so that (0,0 — €(dqu))0y = O for all g € G. This implies that
Ay CATCT.
On the other hand, let € A be Y C*-invariant. Then
p= v -p)+1=0v) p=(6v-p) +el—0o0v)p=2dv-pcAy

as required. ([l

Corollary. The algebra of C*°-invariants in A is ngoG Ay,

2.4. Completed group rings. Let kG denote the completed group ring of G with
coefficients in k:

kG :=limk[G /U]
—
where the inverse limit is taken over all the open normal subgroups U of G.

Lemma. Let G be a profinite group and let S C k be a multiplicatively closed subset
consisting of non zero-divisors.

(a) kG is a G-graded k-algebra.

(b) The algebra of C*°-invariants in kG is k.

(c) The central localisation S™'kG of kG is a G-graded S~'k-algebra.
(d) The algebra of C*°-invariants in S™'kG is S™1k.

Proof. (a) This follows from [7, Lemma 2.9].

(b) For any open normal subgroup U of G let €y : kG — k[G/U] be the natural
surjection. Let « € kG\k; then by the definition of inverse limit, we can find some
open subgroup U of G such that the ey (z) ¢ ey (k). But ey (k) = ey (kU) so z ¢ kU.
Hence ﬂUgoG kU = k and we may apply Corollary 2.3.

(c) By (a) we can find we family ((kG)y) (for U ranging over the clopen subsets
of G) of k-submodules of kG satisfying the conditions of the definition of a G-graded
k-algebra. Then the family (S~(kG)y) gives S~1kG the structure of a G-graded
k-algebra.

(d) In view of part (b), it is enough to prove that S™1kU N kG = kU for every
open normal subgroup U of G. Suppose that s~'z € kG for some s € S and
r€kU. Let y=0p - (s'x) € kU and 2 = (1 — dy) - s 'z € (1 — dy) - kG so that
sz =y + 2z Then z — sy € kU and sz € (1 —dy) - kG, so

x—sy=sz€dy-kG N (1-6y) - kG=0

and therefore s™'z = y € kU as required. (]
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3. THE MULTIPLICATION MAP KG ®k D(G,K); — D(G, K) 1S INJECTIVE

3.1. Compact p-adic analytic groups. Now let G be a compact p-adic analytic
group and let R be a complete discrete valuation ring of characteristic zero with a
residue field k of characteristic p. Fix a uniformiser 7 € R and let K be the field
of fractions of R. We define the algebra of continuous K-valued distributions of G
to be the central localisation

KG := K ®gr RG.

of the completed group ring RG. In this situation we may naturally form three
smash product algebras following §2.1:

o Aj = kGH#C>(G, k),

e Ap = RG#C*(G, R), and

o Ay = KG#C*(G,K).
Then A7 naturally acts on T'G for all T € {K, R, k} by Lemma 2.4.

Theorem. (a) kG is a simple Ap-module.
(b) KG is a simple Ax-module.

Proof. (a) Since Ay is generated by kG and C*°(G, k), an Ag-submodule of kG is
just a left ideal I of kG such that

C=(G,k)- T C1.

By [7, Definition 2.6], we see that every open subgroup U of G controls I. Hence
IX, the controller subgroup of I, is trivial. Now [7, Theorem A] is also valid for left
ideals, and in our situation this implies that the left ideal I is generated as a left
ideal by its intersection with the ground field k. Therefore I =0 or I = kG.

(b) Let I be a Ag-submodule of KG. Then I N RG is a Ag-submodule of RG
and ((I N RG) + 7RG) /7RG is a Ag-submodule of kG. By part (a), we see that
either (I N RG) + 7RG = RG or (I N RG) + 7RG = wRG. In the first case, the
m-adic completeness of RG implies that I N RG = RG and in the second case,
I N RG C mRG. Thus in the first case I = KG. In the second case, since I = 71,
an easy induction shows that I N RG C 7#"RG for all n > 0 and so I N RG = 0,
therefore I = 0. |

3.2. Theorem. Let G be a compact p-adic analytic group and let KG — D be
a homomorphism of C*°(G, K)-module algebras. Let D; denote the algebra of
C*(G, K)-invariants in D. Then the multiplication map

KG QK Dl — D
is injective.
Proof. Let aq,--- ,am, € KG be linearly independent over K and let ¢1,...,t, €
D1 be given such that
Oéltl+"'+04mtm:0
inside D. The Agx-module KG is simple by Theorem 3.1(b) and its endomorphism
ring End 4, (KG) seen to be K by Lemma 2.1(b) and Lemma 2.4(d). It follows

that the «; are linearly independent over End 4, (K G), and so using the Jacobson
Density Theorem we can find &1, ...,&,, € Ak such that

&i(aj) =6, forall j=1,...,m.
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Now D is a left KG-module by left multiplication, and this action commutes with
right multiplication by D;. Consequently, D is an Ax— Di-bimodule. Therefore

m

0=¢& - Zaj = (Gt = Sty =t;
Jj=1 Jj=

1

foralli=1,...,m. O

3.3. Locally analytic distribution algebras. Now suppose that L is a finite
extension of @, that is contained in K and let M be a locally L-analytic manifold.
The space of K-valued L-analytic distributions D(M, K) on M is the strong dual
C"(M, K); of the space C*"(M, K) of K-valued locally L-analytic functions on
M — see [32, §2].

When G is a locally L-analytic group, multiplication in the group G induces a
structure of a unital associative K-algebra on D(G, K) [32, Proposition 2.3]. This
algebra is called the algebra of K -valued locally L-analytic distributions on G.

Lemma. D(G, K) is a G-graded K-algebra, whenever G is compact.

Proof. Since G is a locally L-analytic group, every clopen subset U of G is a locally
L-analytic manifold, so we may set

D(G, K)y = D(U, K).

With this definition, parts (ii) and (iv) of Definition 2.3 are clear. We may assume
that all clopen subsets featuring in the statement of parts (i) and (iii) of the Defi-
nition are finite unions of cosets of a fixed open normal subgroup H of G. For each
g € G let 6, € D(G, K) be the Dirac distribution. It was observed in the proof of
[32, Lemma 3.1] that

D(G,K)= €P 6, D(H,K).
geG/H

Part (i) follows immediately, and part (iii) follows since D(H, K) is a subalgebra of
G which is stable under conjugation by each d, inside D(G, K). O

Corollary. Let G be a compact L-analytic group. Then
(a) D(G,K) is a C*°-module algebra.
(b) The algebra of invariants under this action is precisely
D(G,K),:= (] D(H K).
H<G
(¢) The natural map KG @k D(G,K); — D(G, K) is injective.
(d) Let g = K ®p, L(G). Then the natural map
KGek U(gx) = D(G,K)

is also injective.

Proof. (a) Apply Lemma 3.3 together with [7, Proposition 2.5].

(b) Apply part (a) together with Corollary 2.3.

(¢) This follows from Theorem 3.2.

(d) It was observed in [32, §2] that U(gk) is contained in D(H, K) for every
open subgroup H of G; therefore U(gx) C D(G, K);. Now apply part (c). O
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We remark that it follows from the work of Kohlhaase [21, Proposition 1.2.8]
that the image of U(gk) is in fact dense in D(G, K);. It is the hyper-enveloping
algebra or Arens-Michael envelope of U(gg) in the sense of Schmidt [30].

4. AFFINOID ENVELOPING ALGEBRAS AND VERMA MODULES

4.1. The adjoint action of G(R) on U(g). Let G be a connected, simply-
connected, split semisimple, affine algebraic group scheme over R with Lie algebra
g. The Lie algebra g is a G-module via the adjoint action; see [20, I1.1.12(1), 1.7.18].
In particular, the group of R-points G(R) of G acts on g by Lie algebra automor-
phisms, and therefore by functoriality on U(g) by R-algebra automorphisms. This
action preserves the natural PBW-filtration

0C F()U(g) C FlU(g) -
on U(g). Let ® be the root system of G relative to a fixed split maximal torus T,
and let z, : G, — G and e, = (dz,)(1) € g be the root homomorphism and root
vector corresponding to the root a € ®, respectively.
Lemma. Letr € R, a € .
(a) For every G-module M, each divided power % preserves M .
(b) For allb e U(g) there exists i > 1 such that % -b=0.
(c) zo(r)-a=3""_, 24re)™ () for all a € U(g).

m=0 m!

Proof. (a) We may view M as a G,-module by restriction via z,. Hence it is a
module over the distribution algebra Dist(G,) of the additive group G, by [20,
I.7.11]. It is known [20, 1.7.3, 1.7.8] that this distribution algebra has a basis
consisting of the divided powers of the generator of Lie(G,).

(b) U(g) is a G-module so %(b) lies in U(g) by part (a). Now [g, F;U(g)] C
F;_1U(g) for all j > 0, so if b € F;_1U(g) for some i > 1 then ad(re,)*(b) = 0.
The result follows because U(g) has no R-torsion.

(c) This follows from the definitions — see [20, 1.2.8(1), 1.7.12]. Note that the
right hand side of the equation makes sense by part (b). (|

4.2. Deformations and w-adic completions. Recall [3, §3.5] that a deformable
R-algebra is a positively Z-filtered R-algebra A such that FyA is an R-subalgebra
of A and gr A is a flat R-module. A morphism of deformable R-algebras is an
R-linear filtered ring homomorphism. Let A be a deformable R-algebra. Its n-th
deformation is the R-subalgebra

Ap =) 7"FACA.
i>0
Ay becomes a deformable R-algebra when we equip A,, with the subspace filtration
arising from the given filtration on A, and multiplication by 7' on graded pieces
of degree i extends to a natural isomorphism of graded R-algebras
gr A = grA,
by [3, Lemma 3.5]. The assignment A — A,, is functorial in A. A :=lim A/7%A will
—
denote the m-adic completion of A. Recall almost commutative affinoid K -algebras

from [3, §3.8]. Such an algebra B has a double associated graded ring Gr(B); when
B=A,x:=A,0rK
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for some deformable R-algebra A, [3, Corollary 3.7] tells us that Gr(B) can be
computed as follows:

—

Gr(B) = Gr(An k) = grA/mgr A
We fix the deformation parameter n in what follows.

4.3. Semisimple affinoid enveloping algebras. The enveloping algebra U(g)
has associated graded ring grU(g) = S(g) and is therefore deformable. For each
n = 0, the semisimple affinoid enveloping algebra

—

U(9)n, i

is almost commutative affinoid, and its double associated graded ring is

Gr(U (@) = S(a)
By functoriality, the adjoint action of G(R) on U(g) from §4.1 extends to each
Um;(. This action preserves the double filtration on UmK and induces an
action of G(R) on Gr(U(/g):K) = S(gk), which factors through G(k).

Proposition. Letr € R, a € ® and a € UWK. Then the series

Z ad(req )™ (a)

m!
m2>=0
—_—
converges in U(g)n kx to zo(T) - a.

Proof. Without loss of generality, we may assume that a € m Let D :=
ad(rey), viewed as a derivation of U(/g):,K and let N > 0 be given. Then there
exists b € U(g), such that a = b mod lef/(-gm. Now %(b) = 0 for some ¢ > 1
by Lemma 4.1(b). Since U(g), is also a G-module, ?—,7 preserves VU (g),, and
therefore also 7V @l by Lemma 4.1(a). Thus for all N > 0 there exists ¢ > 1
such that

D! —
2@ e VT
Hence %i(a) — 0 as ¢ — oo inside U/(g)\n, and therefore the series )

—

converges to an element e (a) of U(g),, say. This defines an R-linear endomor-

= ‘o7 (@)

phism a +— eP(a) of U(g),, which agrees with the action of x,(r) on its dense
subalgebra U(g),, by Lemma 4.1(c). O

L —

Corollary. (a) Every two-sided ideal I of U(g)n, i is preserved by G(R).
(b) Every central element z of U(@)n,x 15 fized by G(R).

Proof. Since the ring R is local, the Chevalley group G(R) is generated by elements
of the form z,(r) (where r € R and a € ®) by a result of Abe [1, Proposition 1.6].
Fixr€ R and o € 9.

(a) Let a € I. Since [ is a two-sided ideal, ZZ:O ad(%#(a) €l forall N >0.
This sequence of elements converges to x,(r) - a by the proposition, so 2, (r)-a € I
because [ is closed by [22, Corollary 1.5.5].

(b) By the proposition, we have z4(r) -z = > °_ ad(:Z'f‘)m (2) = z because
[req, z] = 0 by assumption. O
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4.4. The centre of U( )n.ic- The ring of invariants U(g)® of U(g) under the ad-
joint action of G is a deformable R-algebra, and it was shown in [3, Proposition

o —

9.3(a)] that the completlon of its n-th deformation U(g)5 x is contained in the cen-

tre Z (UG-)\ ) of U ( )n,ic- We can now prove Theorem C from the Introduction.

Theorem. We have Z (UG)T,K) = UG)EK,

Proof. By base-changing to the completion of the maximal unramified extension
of K, we may assume that the residue field k& of R is algebraically closed. Let

z€Z (U/(g)\n> Then z is fixed by the action of G(R) by Corollary 4.3(b), so the

symbol grZz of the image Z of z in gr, U@:K is fixed by the induced action of

G(R) on Gr(U(/g):K) = S(gk), which is just the adjoint action of G(k) on S(gx).
Since the group Gy, is reduced and k is algebraically closed, it follows from [20,
Remark 1.2.8] that gr z € S(gi)S*. Therefore

Gr(U(9)5 k) € Gr(Z(U(@)n.x)) © S(ar)
It was shown in the proof of [3, Theorem 6.10] that the identification of Gr(UG)T’K)
with S(gg) maps Gr(U(g)fﬁK) onto S(gx)G*. Therefore the two inclusions displayed

above are equalities and the result follows. ([

4.5. Affinoid Verma modules. Let T C B be a split maximal torus in G con-

tained in a Borel subgroup B. We will view the unipotent radical N of B as being

generated by the negative roots of the adjoint action of T on G, and let NT be the

unipotent radical of the opposite Borel BT containing T. Let t,b,n, n™ and b™ be

the corresponding Lie algebras, so that we have the root space decomposition
g=noton’.

Let A : 7"t — R be an R-linear character. View A\ as a character of 7"b™
by pulling back along the surjection 7#b% —» 7"t with kernel #™"n™, and let K
be the corresponding one-dimensional module over the affinoid enveloping algebra

Ubt)n x
Definition. The affinoid Verma module with highest weight A is

VA = U( )n K ®U(b+) K K/\-

We will compute the annihilator of this affinoid Verma module in U(/)jK To

do this, we will first need to understand its characteristic variety Ch(V/\) Recall
from [3, Definition 3.3] that this is an algebraic subset of the prime spectrum of the

polynomial algebra Gr(UT)?K) = S(gk)-
Lemma. Ch(V)‘) (b)*.

Proof. Let A : b} — k be defined by A\(Z) = A(r"z) for any = € bT, and let kj
denote the corresponding S (b;)—module. Then there is a natural double filtration
on V* such that e

Gr(V*) = S(gk) ®S(b2-—) k5.

The support of this graded module inside Spec S(gy) is (b)7)+ by definition. O
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4.6. The annihilator of an affinoid Verma module. It is well known that the
centre Z(gr) of U(gx) acts on the classical Verma module V* := U(gk) Buel) K

by a character x» : Z(gx) — K; see [12, Proposition 7.4.4]. Since V* is dense in
VX, the action Z(gg) on V* also factors through x.

In [3, §9.8] we defined the nilpotent cone in g* to be the set of zeros N* of
G -invariant polynomials in S(gr) = O(gj) with no constant term:

N* = V(S(@)$).

After the next preliminary result, we will be able to compute the annihilator of
VA and thereby prove a precise affinoid analogue of [12, Theorem 8.4.3].

Lemma. Suppose that k is algebraically closed, and p is very good for G. Then

(a) the ideal Gr(ker x» - U(/g)?;() equals S(gk)fk -S(grk)-
(b) This ideal is prime.
(c) If G := G(k) then G - (b))* is Zariski dense in N'*.

Proof. Part (a) follows from [3, Theorem 6.10], and part (b) follows from the proof
of [11, Proposition 3.4.1]. In the proof of [11, Proposition 3.4.1] it was also shown
that under our hypotheses, the natural action map G x? (bg)l — N* induces
an isomorphism O(N*) — O(G xB (b))1), and is therefore dominant. Part (c)
follows. O

—

Theorem. If p is very good for G, then the annihilator of 173‘ inside U(g)n k 1S
generated by ker x .

—

Proof. Let I, be the annihilator of V* inside U, := U(g)n, x and let Jy = ker xx-U,.
Then Jyx C I, by the remarks made at the start of §4.6. By base-changing to
the completion of the maximal unramified extension of K, we may assume that
the residue field k of R is algebraically closed. This allows us to identify the
characteristic varieties of finitely generated U,,-modules with their corresponding
sets of k-points.

Since Jy C I, the characteristic variety Ch(U,,/Iy) is contained in Ch (U, /Jy),
which equals N* by part (a) of the lemma.

The two-sided ideal I is G(R)-stable by Corollary 4.3(a), so Ch(U,, /1) is stable

—~

under the adjoint action of G := G(k) on gj. Also I annihilates V*, so Ch(U,, /1)

contains Ch(V*) which is equal to (bf)* by Lemma 4.5. Therefore Ch(Uy, /1))
contains G - (b))% which is Zariski dense in N* by part (c) of the lemma. Since
Ch(U,,/I,) is closed, we deduce that Ch(U, /1)) = N* = Ch(U,/J»). Hence

Gr(Jy) € Gr(Iy) € \/Gr(Iy) = \/Gr(Jy) = Gr(Jy)

because Gr(Jy) is prime by part (b) of the lemma. The result follows. O
4.7. The action of UE)ZK on affinoid Verma modules. In §5 we will need the
following elementary result about the analytic density of certain infinite discrete
subsets in affinoid polydiscs.

Lemma. Let Ay, Ao, ..., Ay be infinite subsets of R and suppose that an element
f in the Tate algebra K({x1,...,xy) vanishes on Ay X As X --- x Ap. Then f = 0.
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Proof. Proceed by induction on ¢. The case when ¢ = 0 is vacuous so we may
assume that ¢ > 1. For every y € Ay let gy(x1,...,2e-1) = flx1,...,20-1,y) €
K(z1,...,2¢-1). Then g, vanishes on Ay x Az x---x Ay so by induction, g, =0
for all y € Ay. Therefore z, — y divides f for all y € Ay.

Now K(x1,...,x.) is a Noetherian unique factorisation domain by [15, Theorem
3.2.1], and as y ranges over Ay, the zy — y form a collection of infinitely many
distinct irreducible elements of K{x1,...,x¢). Therefore f = 0. O

Now consider the action of UTt):K on the affinoid Verma module V> from §4.5.

Let vy € V* be a highest weight vector, let oy, -+, au, € tf be the positive roots
corresponding to the adjoint action of t on n* and choose a generator f; € n for the
—a;-root R-submodule of n. Write 7 := fflf§2 oo fBm € U(n) for any € N™.
It is easy to see that

h-fPuy = (X — Zﬁjaj)(h)fﬂv)\ forall het
j=1

Thus fPvy spans a one-dimensional U (t) x-submodule of U(ng) - vy C X//\*, so Kf?
is actually a U(t),, x-module where tx acts via the character A — >0, Bja; € t.

In particular, we see that U(ng) - vy is a locally finite U(/t)n\’K—module.

—

Proposition. The action of U(t)n,x on U(nk) - vy is faithful.

Proof. Let aq,...,ay be the simple roots, let hy,...,hy € t be the corresponding
coroots and let wy, ..., wy € t} be the corresponding system of fundamental weights,
so that w;(h;) = 6;; for all 4,5 = 1,...,¢. By [18, §13.1], we may use the Cartan
matrix C' = ((a;, ;) associated to the root system of gx to express the simple
roots in terms of the fundamental weights:

I
aj :ZCjkwk forall j=1,...,¢.
k=1

Let C* denote the adjugate matrix of C and let d := det C’; it then follows that
¢
dw; = ZC;"jaj forall i=1,...,¢.
j=1

All entries of C* are known to be non-negative integers; see either [18, §13.2, Table
1] or [23]. Therefore for each u € N,

¢ ¢ ¢
Z.uidwi = Z (Z MO;J) a;
i=1 J=1 \i=1

is a linear combination of aq, ..., a, with non-negative integer coefficients. We now
observe that for any p € N, tx acts on the vector

L
LT el
e =] ij“l# Yoy € U(ng) - ox
j=1
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via the character

Because our group G is simply connected, the coroots h; span t over R and therefore
we may identify the affinoid enveloping algebra U(t), x with the Tate algebra

—

K({(r"hy,...,m"hy). Consider the isomorphism K({x1,...,xz) = U(t)n,x which
sends z; to A(7"™h;) — " h,. Viewing U(ng) - vy as a K(x1,...,x¢)-module via this
isomorphism and remembering that w;(h;) = d;;, we can calculate that

xzj-e, =dn"puje, forall j=1,...,¢ and pe€ N,
Therefore for every f € K(x1,...,2,) and p € N we have

fren=fldr™p,....do"ue)e,.

We may now apply the lemma with each A; being the infinite subset d7”N of R to
deduce that if f € K(x1,...,x.) kills every e,, then f = 0. The result follows. O

4.8. The Cartan involution. Recall [20, §I1.1.4] that for each element w of the
Weyl group W of G we can find a representative w € G(R) of w € W which
normalises T(R). By [20, §I1.1.4(4)], these elements permute the root subgroups of
G according to the action of W on the root system ®. If wy € W is the longest
element, then it follows that

wo- bt =0 and wo-b=0b"
in the adjoint action of G(R) on g.

(VA) = Ann, — (V7).

Proposition. wg - Ann U(b)n &

U(ﬂ,x

Proof. By Theorem 4.6, I := AnnU(/w\K (‘73‘) is generated by ker y which is fixed

—

by the adjoint action of G(R) on U(g)n,x. Therefore wy-I =1, so

—_—

wg - AnnU(b/J:ﬁ,K(VA) =wo - I Nwy - U(b+)n,K =1INn U(b)n,K = AnnU(/bSn\,K (V)‘)

as required. 0

5. FAITHFULNESS OF AFFINOID VERMA MODULES OVER IWASAWA ALGEBRAS

5.1. L-uniform groups. Throughout §5 we will assume that p is an odd prime,
and that L is a finite extension of Q, contained in K; we have the corresponding
chain of inclusions of discrete valuation rings:

Z,C O, CR.

Following Orlik and Strauch [27, Remark 2.2.5(ii)], we say that a uniform pro-p
group G is L-uniform if G is locally L-analytic, and the Lie algebra L¢g is an Op-
submodule of the L-Lie algebra £(G). The (modified) isomorphism of categories
G— %LG between uniform pro-p groups and finite rank torsion-free Z,-Lie algebras
from [13, Theorem 9.10] induces a one-to-one correspondence between L-uniform
groups and torsion-free Op-Lie algebras of finite rank.
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Let G be an L-uniform group. In §5.1, §5.2 and §5.3 we will suspend the notation
from §4 and temporarily use the letter g to denote the R-Lie algebra associated with
G, defined as follows:

1
g:= R@(’)L *LG.
p

This extends [3, Definition 10.2] to arbitrary finite extensions L of Q,. Recall that
the algebra D(G, K) of K-valued locally L-analytic distributions from §3.3 is a
Frechet-Stein algebra by [33, Theorem 5.1], and therefore we have at our disposal
the K-Banach space completions D,.(G, K) for each real number 1/p < r < 1. The
abbreviation

will also be used throughout §5.

5.2. The distribution algebra D, /,(G, K). We begin by recording the following
extension of [5, Theorem 5.1.4] and [31, Proposition 6.10] to arbitrary complete
discrete valuation fields K of mixed characteristic and arbitrary L-uniform groups
in the language of locally analytic distribution algebras.

Lemma. Let g be the R-Lie algebra associated with the L-uniform group G. Then
there is a natural isomorphism of K-Banach algebras

Dy/y(G. K) = Ulg)x-
Proof. Suppose first that L = Q. Let |- | : K — R be the norm which induces the
topology on K, normalised by |p| = 1/p. Let g1,...,gq be a minimal topological
generating set for G, let b; = g; — 1 € K[G] and write || = ay + - - - + a4 for each
a € N Tt follows from [33, §4] that the distribution algebra D, /p(G, K) consists
of all formal power series A = ZaeNd Aab® in by,..., by such that

IAl1/p == sup |da|(1/p)*!
aeNd

is finite. As a consequence of Cohen’s Structure Theorem for complete local domains
[24, Corollary 28.P.2], we can find an unramified field extension K’ of Q,, inside K
such that K /K" is finite. Let R be the ring of integers of K" and let g’ = R'®z, %L(;.
Then we have a commutative diagram

—

K Qg Dl/p(G,K/) — K Qs U(g/)K’

| |

Dy /p(G, K) Ulg)x

where the vertical maps are induced by multiplication inside D(G, K) and U(g)k
and the horizontal maps are induced by the inclusion of G into the groups of units

—_—

of U(g¢') k' and U(g)k, respectively.

Because K’ is unramified over Q,, it follows from [3, Theorem 10.4] that the top
arrow is an isomorphism. The arrow on the right is a bijection by [3, Lemma 3.9(c)],
and arrow on the left can be seen to be a bijection from the explicit description
of elements in Dy /,(G, K) as power series in the by, ..., by satisfying the particular
convergence condition stated above. The result follows in the case where L = Q,.



VERMA MODULES FOR IWASAWA ALGEBRAS ARE FAITHFUL 15

Returning to the general case, let Gy be the uniform pro-p group G viewed as
a locally Qp-analytic group, and let gy := %R ®z, Lg. Then there are natural
surjections of algebras U(go) — U(g) and Dy,,(G,K) — D1/,(Go, K), and it
follows from [29, Lemma 5.1] that

Dl/p(Gv K) = U(g) ®U(go) Dl/p(G07 K)
Therefore by the first part of this proof we obtain

Dl/p(GvK) = U(g) ®U(go) U(QO)K

o —

Now the algebra on the right hand side is isomorphic to U(g)x by [10, §3.2.3(iii)]
because U(go) is Noetherian. O

5.3. A general faithfulness result. Let G be an L-uniform group with associated
R-Lie algebra g. The following result will be our main engine for establishing the
faithfulness of modules over the Iwasawa algebra KG.

Theorem. Let N and H be L-uniform subgroups of G with associated R-Lie alge-
bras n and by such that g=n@®h. Let V be a U(g)x-module and suppose that there

is v € V such that v is a free generator of V as a U/(n)\K—module by restriction and
Ung)v is a faithful, locally finite RH-module again by restriction. Then V is a
faithful KG-module.

Proof. Let r and d be the ranks of n and g as R-modules, respectively. Choose an
R-basis {z1,...,z4} for g such that {z1,...,2,} is an R-basis for n.

Let I = [L : Qp]; then G, N and H have dimensions dl, rl and (d—r)I respectively
when viewed as uniform pro-p groups. We may choose a minimal topological gen-
erating set {g1,...,ga} for G such that g1,...,gm and gri41,. .., ga topologically
generate N and H, respectively. Write b; = g; — 1 € KG foreach i =1,...,1d.

Suppose that ¢ € Anngg (V). It suffices to prove that ( = 0. We may write
C =2 genu Aab® With A, € R. Collecting terms together we can then rewrite this
as ¢ = Y enr BC, for some ¢, € RH.

Now given w € U(ng)v, RHw C U(nk)v is finitely generated over R by assump-
tion. Thus there is a natural number ¢ such that we can write

o w= Zugxﬂ-v

BENT

for some p§ € K with pg = 0 for [8] >t and all . Furthermore, we may assume
that 43 is uniformly bounded in a and 8. Thus

Ozg-w:Zbo‘Ca%u: Z ugbo‘xﬂ.v.

aeNr! a€eNTl,BENT
But > ugbo‘xB e U(n)k and a5 (v) = 0 by assumption, so in fact
aeNTt, BeNT K
Z ,ugb(’xﬁ =0.
aeN", BENT

The multiplication map KN @k U(ng) — D(N, K) is injective by Corollary 3.3(d).
Since D(N, K) contained in D, ,,(N, K) which is isomorphic to U(n)x by Lemma
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—

5.2, the multiplication map KN @k U(ng) — U(n)x is also injective, and so

> > wbt@al =0,

BENT queNr!

Therefore ) yn pzb® =0 ¢€ KN for each 3 because the 2 are linearly indepen-
dent over K. It follows that ug = 0 for each pair «, 3, and hence ¢, -w = 0 for each
a. As this last equality is independent of the choice of w € U(ng)v, we deduce
that (, € Anngg(U(n)v) = 0 for each o and hence ( =) .y by = 0. O

5.4. Congruence kernels. We now assume that the L-uniform group G and the
R-algebraic group G from §4.1 satisfy the following conditions:

e G is simply connected,

e the Lie algebra g of G and the Lie algebra L¢g of G satisfy p™g = %R@oL Lg
for some integer n > 0,

e pis a very good prime for G in the sense of [3, §6.8].

For example, for every integer n > 0, G could be the congruence kernel
G = ker(G(OL) — G(OL/anrlOL)).

As in §4.5, we let t,b,n and bT denote the Lie algebras of T, B, N and BT of G
respectively and note that because these groups are defined over O we can find
L-uniform subgroups T, B, N and BT whose respective associated R-Lie algebras
are p"t,p"b,p"n and p"bT.

Theorem. The affinoid Verma module \//\)‘ is faithful as a KG-module for every
R-linear character X\ : p™t — R.

Proof. Since p™n is a complement to p”b* in p"g, VA is a free UWK—module
of rank 1 generated by the highest weight vector v € VA, The dense submodule
Ung)-vof VA s locally finite as a bj.-module; this implies that it is also a locally
finite RB*-submodule of 1//7‘ In particular, it is a locally finite RT-module.

=

Since RT is a subring of U(p™t) i, Proposition 4.7 implies that the action of RT
on U(ng) - v is faithful. Since p"b = p™n @ p™t, V* is faithful as a RB-module by
Theorem 5.3. e

Proposition 4.8 now implies that V* is also faithful as a RBT-module, so its
submodule U(ng) - v is also faithful over RBT. Since p™g = p"n @ p"b™, invoking
Theorem 5.3 again gives that V> is faithful as a KG-module, as required. O

5.5. Verma modules for congruence kernels. For each locally L-analytic char-
acter §: BT — 1+ pR, the contragredient of the natural 1-dimensional representa-
tion given by € induces a continuous 1-dimensional D(B™, K)-module K, via [32,
Corollary 3.4]. We may view Ky as a KBt-module by restriction recovering the
original 1-dimensional representation. That is b-x = 0(b)z for b € BT and z € K.

By instead restricting along the inclusion U(b};) — D(B*, K) we may view Kj
as a representation A of the K-Lie algebra b}. We can compute that for b € BT,
logh € p"*lb* acts by logf(b) € pR. Thus A may be viewed as an R-linear
character p"b™ — R.

Conversely, each R-linear map A : p"b™ — R induces a locally L-analytic homo-
morphism 6 : Bt — 14 pR via the rule

b+ exp(A(logb)) forall be BY.
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Definition. Let § : BY — 1 4 pR be a locally L-analytic group homomorphism.
The Verma module for the Iwasawa algebra K G with highest weight 6 is

M = KG®kgp+ Ko
where Kj is the one-dimensional K Bt-module K with BT-action given by 6.

Lemma. Let ) : p"b™ — R be the R-linear character of p"b™ corresponding to a
locally L-analytic group homomorphism 6 : BY — 1+pR. Then the KG-submodule

of VX generated by the highest weight vector vy is naturally isomorphic to MY.

Proof. By construction, B* acts on vy € V* via 6. Sending the highest weight

vector mg € MY to vy therefore induces a K G-module homomorphism M? — VA,
which fits into the following commutative diagram:

KN — U(pn)x

|

M® VA

-

Here the vertical arrows are bijections that send x € KN to xmy and y € U(p™n) g

—

to yuy, respectively. The top arrow is the natural inclusion of K'N into U(p"n)g,
so M? — VX is injective. The result follows. O

Corollary. MY is a faithful KG-module.

Proof. The commutative diagram in the proof of the lemma shows that the image
of M? is dense in V*. Now if an element of KG kills M?, then it must annihilate
all of V* by continuity, and is therefore zero by Theorem 5.4. O

5.6. Finite normal subgroups. Before we can give a proof of Theorem A, we
will need to understand better the finite normal subgroups of open subgroups of

G(Oy).

Proposition. Let G be an open subgroup of G(Or) and let F be a finite normal
subgroup of G. Then F is central in G(Op).

Proof. Choose a torsion-free open subgroup N of G which is normal in G(Op,), for
example a congruence kernel of G(Op). Then [N, F] < NN F =1 because N and
F' are both normal in G and because N is torsion-free, so F' centralises V. Because
Oy, is local, G(O}) is generated as an abstract group by the elements of the form
Zo(r) from §4 for a € ® and r € Oy, by [1, Proposition 1.6], so it will be sufficient
to show that F' commutes with each x4 (7).

Fixge F,a € ® and r € O, let x := x,(r) and note that g commutes with
a2 where t is the index of N in G(Op). Choose a faithful algebraic representation
p: G(L) = GL,, (L) for some m > 1, let u; = p(x) and ug = p(gzg~!). Then u;
and uy are unipotent by [19, Theorem 15.4(c)] and u! = u} because g commutes
with z¢. Now log and exp give well-defined bijections between unipotent matrices
in GL,,(L) and nilpotent matrices in M,, (L), so

1 1
U] = exp <t 10g(u§)> = exp <t log(ug)) = Uuy.

Therefore 2 = gzg~! because p is faithful. O
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5.7. Proof of Theorem A. By continuity, we can find an open subgroup H of
BT which is mapped into 1+pR by 6. Choose n large enough so that G contains an
open normal L-uniform subgroup G,, with associated R-Lie algebra p™g and such
that H contains an open L-uniform subgroup B; with associated R-Lie algebra
p"bt. Let 6, be the restriction of 6 to B,". Then since B, = BT NG,

M’ = KGp ®y g+ Ko, € KG @+ K.
Writing I := Anngq(KG ®kp+ Kp) and applying Corollary 5.5 gives
INKG, C Anngg, M =0.

Let F' be a finite normal subgroup of G. Then F'is central in G(Op,) by Proposition
5.6, so F'is also central in G. But G has trivial centre by assumption so F' is trivial.
Therefore KG is a prime ring by [9, Theorem A].

Next, KG is a crossed product of KG,, with the finite group G/G,,. By [25,
Theorem 2.1.15], S := KG,\{0} is an Ore set in the Noetherian domain KG,,. It
is stable under conjugation by G, so by [28, Lemma 37.7] it is also an Ore set in
the larger ring K'G and there is a crossed product decomposition

STIKG = (S7'KG,) * (G/G,).

Here S~'K@G,, is the quotient division ring of fractions of KG,,; thus S~'KG is an
Artinian ring because the group G/G,, is finite. Every regular element in K G stays
regular in KG,, and therefore becomes invertible in S™*KG by [25, Proposition
3.1.1]; hence ST1KG is the classical Artinian ring of quotients of KG.

Since I N KG,, = 0, the intersection I N .S is empty and therefore the two-sided
ideal S~1'I of ST'KG is proper. Now KG is prime, so ST'K(G is a prime Artinian
ring and is therefore simple. Therefore S™'I =0 and I = 0. (]
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