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Abstract. We establish the faithfulness of Verma modules for rational Iwa-

sawa algebras of split semisimple compact L-analytic groups. We also prove
the algebraic independence of Arens-Michael envelopes over Iwasawa algebras

and compute the centre of affinoid enveloping algebras of semisimple p-adic

Lie algebras.

1. Introduction

1.1. Prime ideals in Iwasawa algebras. The majority of work so far related to
the study of the prime spectrum of non-commutative Iwasawa algebras has pro-
duced negative results. By this we mean that results in this area have tended to
put constraints on the set of prime ideals for such a ring rather than uncover prime
ideals that were not known before: see for example [34], [35], [6], [4], [2], [8]. This
work continues in that tradition. However, most of these theorems were established
in characteristic p in the first instance with eventual consequences in characteristic
zero; by contrast, our methods here have a definite characteristic zero flavour and
our results do not have immediate implications in positive characteristic.

Suppose that L is a finite extension of Qp and that K is a complete discretely
valued field extension of L. Let G be a compact open subgroup of the group of
L-points of a connected, simply connected, split semisimple affine algebraic group
scheme G defined over OL, and write KG to denote the Iwasawa algebra of con-
tinuous K-valued distributions on G. The annihilator of every simple KG-module
that is finite dimensional over K is a prime ideal of finite codimension in KG, and
moreover every prime ideal with this property will arise in this way. Evidence so
far suggests that non-zero prime ideals in KG that do not arise in this way are very
scarce; indeed we suspect that when the algebraic group scheme G is simple and G
has trivial centre they do not exist. We present further evidence in that direction.

1.2. The main result. A natural place to look for more prime ideals in KG is
as annihilators of simple KG-modules that are not finite dimensional over K. By
standard arguments in ring theory such ideals will always be prime and of infinite
codimension in KG. Thus if our suspicion above is correct then all such annihilators
must be zero. We show that this is the case for a large class of naturally arising
examples. More precisely, in §5.7 below we prove

Theorem A. Let p be an odd very good prime for G and letG be an open subgroup
of G(OL) with trivial centre. Let B+ be a Borel subgroup scheme of G and let
Kθ be a 1-dimensional locally L-analytic K-representation of B+ := G ∩B+(OL).
Then the induced KG-module KG⊗KB+ Kθ is faithful.
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We refer the reader to [3, §6.8] for a precise definition of what it means for a
prime number p to be a very good prime for G and simply remark here that this
condition is satisfied by any p > 5 if G is not of type A. These “Verma modules”
KG ⊗KB+ Kθ are not always irreducible, but it follows from the work of Orlik
and Strauch [27, Theorem 3.5.2] that generically they are irreducible at least when
L = Qp.

We note that Theorem A refutes the main result in [17] whose proof has been
known to contain a gap for a number of years [16], and whose statement was already
known to be false for open pro-p subgroups G of SL2(Zp) following the work of Wei,
Zhang and the first author [6], [4], using very different methods to those found in
this paper.

1.3. Two related results. We also prove some other results of independent inter-
est. Write D(H,K) to denote the algebra of L-locally analytic K-valued distribu-
tions on a compact L-analytic group H in the sense of Schneider and Teitelbaum
[32]. There is a natural map from the Iwasawa algebra KH to D(H,K) because
every L-locally analytic function on H is continuous. We may also consider the sub-
algebra D(H,K)1 consisting of those distributions in D(H,K) that are supported
at the identity in the sense of [21]. At the end of §3 we prove the following result,
which is essential to our proof of Theorem A.

Theorem B. The natural map KH ⊗K D(H,K)1 → D(H,K) is an injection.

We note that in the case H = Zp an immediate consequence of Theorem B is
the well-known algebraic independence of the logarithmic series log(1 +T ) over the
Iwasawa algebra OK [[T ]], so Theorem B may be viewed as a (slightly stronger)
non-commutative analogue of this algebraic independence.

In [3, §9.3] we promised a future proof that the centre of the affinoid enveloping

algebra ̂U(g)n,K is the closure of the image of the centre of U(gK) in ̂U(g)n,K :

Theorem C. We have Z
(

̂U(g)n,K

)
= ̂U(g)Gn,K .

We provide a proof of Theorem C in §4.4 of this paper, which is much simpler
than that found in [5] for the case n = 0.

1.4. Future work. We believe that this work raises two interesting questions. By
an affinoid highest weight module we mean a module that can be written in the

form ̂U(g)n,K ⊗U(g) M for some highest weight U(gK)-module M . Recall that an
ideal that arises as the annihilator of a simple module is called primitive.

Question A. Is it the case that every primitive ideal of ̂U(g)n,K with K-rational
infinitesimal central character is the annihilator of a simple affinoid highest weight
module?

Some evidence pointing towards a positive answer to Question A is provided by
Duflo’s main theorem in [14] that states that every primitive ideal of the classical
enveloping algebra U(gK) with K-rational infinitesimal central character is the
annihilator of a highest weight module. In particular to answer yes, it would suffice

to prove that every primitive ideal of ̂U(g)n,K is controlled by U(gK).

Question B. Is every affinoid highest weight module that is not finite-dimensional
over K faithful as a KG-module?
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Since Verma modules for classical enveloping algebras are generically irreducible,
our Theorem 5.4 below may be viewed as giving evidence towards a positive answer
to Question B. We believe that if we could give positive answers to both these
questions then, in the case L = Qp, we would be able to use the faithful flatness of
D(G,K) over KG due to Schneider and Teitelbaum [33] together with our affinoid
version [3, Theorem D] of Quillen’s Lemma to prove that every non-zero prime ideal
of KG is the annihilator of a finite dimensional simple module.

1.5. Acknowledgements. The first author would like James Zhang for the invi-
tation to visit Seattle in 2012, and for his encouragement that led to the eventual
proof of Theorem 5.4. Many of the results in this paper were established during
the Banff 2013 Workshop “Applications of Iwasawa Algebras”; we thank its organ-
isers for the invitation to visit and for the opportunity to speak about this work
there. The second author thanks Homerton College for funding his travel to this
workshop.

2. Generalities on completed group rings

2.1. Module algebras and smash products. Let k be a commutative base ring.
Recall [26, Chapter 4] that if H is a Hopf algebra over k and A is a k-algebra, then
A is a left H-module algebra if there exists an action

H ⊗k A→ A, r ⊗ a 7→ r · a
such that

r · (ab) = (r1 · a)(r2 · b), r · 1 = ε(r)1, (rs) · a = r · (s · a) and 1 · a = a

for all r, s ∈ H and a, b ∈ A. Here we use the sumless Sweedler notation. There
is a similar notion of right H-module algebra, and the two notions coincide in the
case when H is commutative.
Whenever A is a left H-module algebra, define A#H := A⊗kH and write a#r for
the tensor a⊗ r in A#H. Then A#H becomes an associative k-algebra called the
smash product of A with H, with multiplication given by

(a#r)(b#s) = a(r1 · b)#r2s for all a, b ∈ A and r, s ∈ H.
This smash product contains A and H as k-subalgebras, and A is naturally a left
A#H-module via the rule

(a#r) · b = a(r · b) for all a, b ∈ A and r ∈ H.
Note that the subset of H-invariants in A, namely

AH := {a ∈ A : r · a = ε(r)a for all r ∈ H}
is always a k-subalgebra of A. We have the following well-known

Lemma. Let H be a Hopf algebra over k and let A be a left H-module algebra.
Then

(a) A is an A#H—AH-bimodule, and
(b) EndA#H A = (AH)op.

Proof. (a) The left regular representation of A on itself commutes with the right
regular representation, so we have to check that every r ∈ H acts on A by a right
AH -module endomorphism:

r · (ab) = (r · a)b for all r ∈ H, a ∈ A and b ∈ AH .
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Now r · (ab) = (r1 · a)(r2 · b) = (r1 · a)(ε(r2)b) = ((r1ε(r2)) · a)b. But r1ε(r2) = r by
the counit axiom in H. Therefore r · (ab) = (r · a)b as required.

(b) Let ϕ : A→ A be a left A#H-module endomorphism. Since ϕ is H-linear,

r · ϕ(1) = ϕ(r · 1) = ϕ(ε(r)1) = ε(r) · ϕ(1) for all r ∈ H,

which shows that ϕ(1) ∈ AH . Since ϕ is left A-linear,

ϕ(x) = ϕ(x1) = xϕ(1) for all x ∈ A

and therefore ϕ agrees with right muliplication by ϕ(1) ∈ AH . Hence the anti-
homomorphism AH → EndA#H A which sends r ∈ AH to right multiplication by r
is a bijection. �

2.2. Locally constant functions. Let G be a profinite group. Recall that a
function f : G→ k is locally constant if for all g ∈ G there is an open neighbourhood
U of g such that f is constant on U .

Definition. Let C∞ = C∞(G, k) denote the set of all locally constant functions
from G to k.

C∞ becomes a unital commutative k-algebra when equipped with pointwise mul-
tiplication of functions. Moreover it is a Hopf algebra over k, with comultiplication
∆, antipode S and counit ε given by the formulas

∆(f)(g, h) = f(gh), S(f)(g) = f(g−1) and ε(f) = f(1)

for all f ∈ C∞ and all g, h ∈ G.

2.3. G-graded algebras. We recall [7, Definition 2.5] for the convenience of the
reader.

Definition. Let G be a profinite group and let A be a k-algebra. We say that A
is G-graded if for each clopen subset U of G there exists a k-submodule AU of A
such that

(i) A = AU1 ⊕AU2 ⊕ · · · ⊕AUn if G = U1 ∪ · · · ∪ Un is an open partition of G,
(ii) AU 6 AV if U ⊆ V are clopen subsets of G,
(iii) AU ·AV ⊆ AUV if U, V are clopen subsets of G,
(iv) 1 ∈ AU whenever U is an open subgroup of G.

In this situation, [7, Proposition 2.5] asserts that for a profinite group G, a
k-algebra A is G-graded if and only if A is a C∞-module algebra.

For every open subgroup U of G, let UC∞ denote the k-subalgebra of functions
f ∈ C∞ that are constant on the left cosets gU of U in G. Then

C∞ =
⋃

U6oG

UC∞

and UC∞ is even a Hopf subalgebra of C∞ whenever U is normal, because it is
naturally isomorphic to the algebra of k-valued functions on the finite group G/U
in this case.

Proposition. Let G be a profinite group, let U be an open normal subgroup of G
and let A be a G-graded k-algebra. Then the algebra of UC∞-invariants of A is
precisely AU .
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Proof. The Hopf algebra UC∞ is spanned by the characteristic functions δgU of all
the cosets of U in G. By the construction given in the proof of [7, Proposition 2.5],
the action of UC∞ on A and the G-graded structure are related by

AgU = δgU ·A for all g ∈ G.

Now the δgU form a family of commuting idempotents in UC∞, and

ε(δgU ) = δgU (1) =

{
1 if g ∈ U
0 if g /∈ U

so that (δgU − ε(δgU ))δU = 0 for all g ∈ G. This implies that

AU ⊆ A
UC∞ .

On the other hand, let µ ∈ A be UC∞-invariant. Then

µ = (δU · µ) + (1− δU ) · µ = (δU · µ) + ε(1− δU )µ = δU · µ ∈ AU

as required. �

Corollary. The algebra of C∞-invariants in A is
⋂
U6oG

AU .

2.4. Completed group rings. Let kG denote the completed group ring of G with
coefficients in k:

kG := lim
←−

k[G/U ]

where the inverse limit is taken over all the open normal subgroups U of G.

Lemma. Let G be a profinite group and let S ⊆ k be a multiplicatively closed subset
consisting of non zero-divisors.

(a) kG is a G-graded k-algebra.
(b) The algebra of C∞-invariants in kG is k.
(c) The central localisation S−1kG of kG is a G-graded S−1k-algebra.
(d) The algebra of C∞-invariants in S−1kG is S−1k.

Proof. (a) This follows from [7, Lemma 2.9].
(b) For any open normal subgroup U of G let εU : kG� k[G/U ] be the natural

surjection. Let x ∈ kG\k; then by the definition of inverse limit, we can find some
open subgroup U of G such that the εU (x) /∈ εU (k). But εU (k) = εU (kU) so x /∈ kU .
Hence

⋂
U6oG

kU = k and we may apply Corollary 2.3.

(c) By (a) we can find we family ((kG)U ) (for U ranging over the clopen subsets
of G) of k-submodules of kG satisfying the conditions of the definition of a G-graded
k-algebra. Then the family (S−1(kG)U ) gives S−1kG the structure of a G-graded
k-algebra.

(d) In view of part (b), it is enough to prove that S−1kU ∩ kG = kU for every
open normal subgroup U of G. Suppose that s−1x ∈ kG for some s ∈ S and
x ∈ kU . Let y = δU · (s−1x) ∈ kU and z = (1− δU ) · s−1x ∈ (1− δU ) · kG so that
s−1x = y + z. Then x− sy ∈ kU and sz ∈ (1− δU ) · kG, so

x− sy = sz ∈ δU · kG ∩ (1− δU ) · kG = 0

and therefore s−1x = y ∈ kU as required. �
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3. The multiplication map KG⊗K D(G,K)1 → D(G,K) is injective

3.1. Compact p-adic analytic groups. Now let G be a compact p-adic analytic
group and let R be a complete discrete valuation ring of characteristic zero with a
residue field k of characteristic p. Fix a uniformiser π ∈ R and let K be the field
of fractions of R. We define the algebra of continuous K-valued distributions of G
to be the central localisation

KG := K ⊗R RG.

of the completed group ring RG. In this situation we may naturally form three
smash product algebras following §2.1:

• Ak = kG#C∞(G, k),
• AR = RG#C∞(G,R), and
• AK = KG#C∞(G,K).

Then AT naturally acts on TG for all T ∈ {K,R, k} by Lemma 2.4.

Theorem. (a) kG is a simple Ak-module.
(b) KG is a simple AK-module.

Proof. (a) Since Ak is generated by kG and C∞(G, k), an Ak-submodule of kG is
just a left ideal I of kG such that

C∞(G, k) · I ⊆ I.

By [7, Definition 2.6], we see that every open subgroup U of G controls I. Hence
Iχ, the controller subgroup of I, is trivial. Now [7, Theorem A] is also valid for left
ideals, and in our situation this implies that the left ideal I is generated as a left
ideal by its intersection with the ground field k. Therefore I = 0 or I = kG.

(b) Let I be a AK-submodule of KG. Then I ∩ RG is a AR-submodule of RG
and ((I ∩ RG) + πRG)/πRG is a Ak-submodule of kG. By part (a), we see that
either (I ∩ RG) + πRG = RG or (I ∩ RG) + πRG = πRG. In the first case, the
π-adic completeness of RG implies that I ∩ RG = RG and in the second case,
I ∩ RG ⊆ πRG. Thus in the first case I = KG. In the second case, since I = πI,
an easy induction shows that I ∩ RG ⊆ πnRG for all n > 0 and so I ∩ RG = 0,
therefore I = 0. �

3.2. Theorem. Let G be a compact p-adic analytic group and let KG → D be
a homomorphism of C∞(G,K)-module algebras. Let D1 denote the algebra of
C∞(G,K)-invariants in D. Then the multiplication map

KG⊗K D1 −→ D

is injective.

Proof. Let α1, · · · , αm ∈ KG be linearly independent over K and let t1, . . . , tm ∈
D1 be given such that

α1t1 + · · ·+ αmtm = 0

inside D. The AK-module KG is simple by Theorem 3.1(b) and its endomorphism
ring EndAK (KG) seen to be K by Lemma 2.1(b) and Lemma 2.4(d). It follows
that the αi are linearly independent over EndAK (KG), and so using the Jacobson
Density Theorem we can find ξ1, . . . , ξm ∈ AK such that

ξi(αj) = δij for all j = 1, . . . ,m.
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Now D is a left KG-module by left multiplication, and this action commutes with
right multiplication by D1. Consequently, D is an AK— D1-bimodule. Therefore

0 = ξi ·

 m∑
j=1

αjtj

 =

m∑
j=1

(ξi · αj)tj =

m∑
j=1

δijtj = ti

for all i = 1, . . . ,m. �

3.3. Locally analytic distribution algebras. Now suppose that L is a finite
extension of Qp that is contained in K and let M be a locally L-analytic manifold.
The space of K-valued L-analytic distributions D(M,K) on M is the strong dual
Can(M,K)′b of the space Can(M,K) of K-valued locally L-analytic functions on
M — see [32, §2].

When G is a locally L-analytic group, multiplication in the group G induces a
structure of a unital associative K-algebra on D(G,K) [32, Proposition 2.3]. This
algebra is called the algebra of K-valued locally L-analytic distributions on G.

Lemma. D(G,K) is a G-graded K-algebra, whenever G is compact.

Proof. Since G is a locally L-analytic group, every clopen subset U of G is a locally
L-analytic manifold, so we may set

D(G,K)U := D(U,K).

With this definition, parts (ii) and (iv) of Definition 2.3 are clear. We may assume
that all clopen subsets featuring in the statement of parts (i) and (iii) of the Defi-
nition are finite unions of cosets of a fixed open normal subgroup H of G. For each
g ∈ G let δg ∈ D(G,K) be the Dirac distribution. It was observed in the proof of
[32, Lemma 3.1] that

D(G,K) =
⊕

g∈G/H

δg ∗D(H,K).

Part (i) follows immediately, and part (iii) follows since D(H,K) is a subalgebra of
G which is stable under conjugation by each δg inside D(G,K). �

Corollary. Let G be a compact L-analytic group. Then

(a) D(G,K) is a C∞-module algebra.
(b) The algebra of invariants under this action is precisely

D(G,K)1 :=
⋂

H6oG

D(H,K).

(c) The natural map KG⊗K D(G,K)1 → D(G,K) is injective.
(d) Let gK := K ⊗L L(G). Then the natural map

KG⊗K U(gK)→ D(G,K)

is also injective.

Proof. (a) Apply Lemma 3.3 together with [7, Proposition 2.5].
(b) Apply part (a) together with Corollary 2.3.
(c) This follows from Theorem 3.2.
(d) It was observed in [32, §2] that U(gK) is contained in D(H,K) for every

open subgroup H of G; therefore U(gK) ⊆ D(G,K)1. Now apply part (c). �
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We remark that it follows from the work of Kohlhaase [21, Proposition 1.2.8]
that the image of U(gK) is in fact dense in D(G,K)1. It is the hyper-enveloping
algebra or Arens-Michael envelope of U(gK) in the sense of Schmidt [30].

4. Affinoid enveloping algebras and Verma modules

4.1. The adjoint action of G(R) on U(g). Let G be a connected, simply-
connected, split semisimple, affine algebraic group scheme over R with Lie algebra
g. The Lie algebra g is a G-module via the adjoint action; see [20, II.1.12(1), I.7.18].
In particular, the group of R-points G(R) of G acts on g by Lie algebra automor-
phisms, and therefore by functoriality on U(g) by R-algebra automorphisms. This
action preserves the natural PBW-filtration

0 ⊂ F0U(g) ⊂ F1U(g) ⊂ · · ·
on U(g). Let Φ be the root system of G relative to a fixed split maximal torus T,
and let xα : Ga → G and eα = (dxα)(1) ∈ g be the root homomorphism and root
vector corresponding to the root α ∈ Φ, respectively.

Lemma. Let r ∈ R, α ∈ Φ.

(a) For every G-module M , each divided power
emα
m! preserves M .

(b) For all b ∈ U(g) there exists i > 1 such that ad(reα)i

i! · b = 0.

(c) xα(r) · a =
∑∞
m=0

ad(reα)m

m! (a) for all a ∈ U(g).

Proof. (a) We may view M as a Ga-module by restriction via xα. Hence it is a
module over the distribution algebra Dist(Ga) of the additive group Ga, by [20,
I.7.11]. It is known [20, I.7.3, I.7.8] that this distribution algebra has a basis
consisting of the divided powers of the generator of Lie(Ga).

(b) U(g) is a G-module so ad(reα)i

i! (b) lies in U(g) by part (a). Now [g, FjU(g)] ⊆
Fj−1U(g) for all j > 0, so if b ∈ Fi−1U(g) for some i > 1 then ad(reα)i(b) = 0.
The result follows because U(g) has no R-torsion.

(c) This follows from the definitions — see [20, I.2.8(1), I.7.12]. Note that the
right hand side of the equation makes sense by part (b). �

4.2. Deformations and π-adic completions. Recall [3, §3.5] that a deformable
R-algebra is a positively Z-filtered R-algebra A such that F0A is an R-subalgebra
of A and grA is a flat R-module. A morphism of deformable R-algebras is an
R-linear filtered ring homomorphism. Let A be a deformable R-algebra. Its n-th
deformation is the R-subalgebra

An :=
∑
i>0

πinFiA ⊆ A.

An becomes a deformable R-algebra when we equip An with the subspace filtration
arising from the given filtration on A, and multiplication by πin on graded pieces
of degree i extends to a natural isomorphism of graded R-algebras

grA
∼=−→ grAn

by [3, Lemma 3.5]. The assignment A 7→ An is functorial in A. Â := lim
←−

A/πaA will

denote the π-adic completion of A. Recall almost commutative affinoid K-algebras
from [3, §3.8]. Such an algebra B has a double associated graded ring Gr(B); when

B = Ân,K := Ân ⊗R K
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for some deformable R-algebra A, [3, Corollary 3.7] tells us that Gr(B) can be
computed as follows:

Gr(B) = Gr(Ân,K) ∼= grA/π grA.

We fix the deformation parameter n in what follows.

4.3. Semisimple affinoid enveloping algebras. The enveloping algebra U(g)
has associated graded ring grU(g) = S(g) and is therefore deformable. For each
n > 0, the semisimple affinoid enveloping algebra

̂U(g)n,K

is almost commutative affinoid, and its double associated graded ring is

Gr( ̂U(g)n,K) ∼= S(gk).

By functoriality, the adjoint action of G(R) on U(g) from §4.1 extends to each
̂U(g)n,K . This action preserves the double filtration on ̂U(g)n,K and induces an

action of G(R) on Gr( ̂U(g)n,K) ∼= S(gk), which factors through G(k).

Proposition. Let r ∈ R, α ∈ Φ and a ∈ ̂U(g)n,K . Then the series∑
m>0

ad(reα)m

m!
(a)

converges in ̂U(g)n,K to xα(r) · a.

Proof. Without loss of generality, we may assume that a ∈ Û(g)n. Let D :=

ad(reα), viewed as a derivation of ̂U(g)n,K and let N > 0 be given. Then there

exists b ∈ U(g)n such that a ≡ b mod πN Û(g)n. Now Di

i! (b) = 0 for some i > 1

by Lemma 4.1(b). Since U(g)n is also a G-module, Di

i! preserves πNU(g)n and

therefore also πN Û(g)n by Lemma 4.1(a). Thus for all N > 0 there exists i > 1
such that

Di

i!
(a) ∈ πN Û(g)n.

Hence Di

i! (a) → 0 as i → ∞ inside Û(g)n, and therefore the series
∑∞
m=0

Dm

m! (a)

converges to an element eD(a) of Û(g)n, say. This defines an R-linear endomor-

phism a 7→ eD(a) of Û(g)n, which agrees with the action of xα(r) on its dense
subalgebra U(g)n by Lemma 4.1(c). �

Corollary. (a) Every two-sided ideal I of ̂U(g)n,K is preserved by G(R).

(b) Every central element z of ̂U(g)n,K is fixed by G(R).

Proof. Since the ring R is local, the Chevalley group G(R) is generated by elements
of the form xα(r) (where r ∈ R and α ∈ Φ) by a result of Abe [1, Proposition 1.6].
Fix r ∈ R and α ∈ Φ.

(a) Let a ∈ I. Since I is a two-sided ideal,
∑N
m=0

ad(reα)m

m! (a) ∈ I for all N > 0.
This sequence of elements converges to xα(r) ·a by the proposition, so xα(r) ·a ∈ I
because I is closed by [22, Corollary I.5.5].

(b) By the proposition, we have xα(r) · z =
∑∞
m=0

ad(reα)m

m! (z) = z because
[reα, z] = 0 by assumption. �
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4.4. The centre of ̂U(g)n,K . The ring of invariants U(g)G of U(g) under the ad-
joint action of G is a deformable R-algebra, and it was shown in [3, Proposition

9.3(a)] that the completion of its n-th deformation ̂U(g)Gn,K is contained in the cen-

tre Z
(

̂U(g)n,K

)
of ̂U(g)n,K . We can now prove Theorem C from the Introduction.

Theorem. We have Z
(

̂U(g)n,K

)
= ̂U(g)Gn,K .

Proof. By base-changing to the completion of the maximal unramified extension
of K, we may assume that the residue field k of R is algebraically closed. Let

z ∈ Z
(
Û(g)n

)
. Then z is fixed by the action of G(R) by Corollary 4.3(b), so the

symbol gr z̄ of the image z̄ of z in gr0
̂U(g)n,K is fixed by the induced action of

G(R) on Gr( ̂U(g)n,K) ∼= S(gk), which is just the adjoint action of G(k) on S(gk).
Since the group Gk is reduced and k is algebraically closed, it follows from [20,
Remark I.2.8] that gr z̄ ∈ S(gk)Gk . Therefore

Gr( ̂U(g)Gn,K) ⊆ Gr(Z( ̂U(g)n,K)) ⊆ S(gk)Gk .

It was shown in the proof of [3, Theorem 6.10] that the identification of Gr( ̂U(g)n,K)

with S(gk) maps Gr( ̂U(g)Gn,K) onto S(gk)Gk . Therefore the two inclusions displayed
above are equalities and the result follows. �

4.5. Affinoid Verma modules. Let T ⊂ B be a split maximal torus in G con-
tained in a Borel subgroup B. We will view the unipotent radical N of B as being
generated by the negative roots of the adjoint action of T on G, and let N+ be the
unipotent radical of the opposite Borel B+ containing T. Let t, b, n, n+ and b+ be
the corresponding Lie algebras, so that we have the root space decomposition

g = n⊕ t⊕ n+.

Let λ : πnt → R be an R-linear character. View λ as a character of πnb+

by pulling back along the surjection πnb+ � πnt with kernel πnn+, and let Kλ

be the corresponding one-dimensional module over the affinoid enveloping algebra
̂U(b+)n,K .

Definition. The affinoid Verma module with highest weight λ is

V̂ λ := ̂U(g)n,K ⊗ ̂U(b+)n,K
Kλ.

We will compute the annihilator of this affinoid Verma module in ̂U(g)n,K . To

do this, we will first need to understand its characteristic variety Ch(V̂ λ). Recall
from [3, Definition 3.3] that this is an algebraic subset of the prime spectrum of the

polynomial algebra Gr( ̂U(g)n,K) = S(gk).

Lemma. Ch(V̂ λ) = (b+
k )⊥.

Proof. Let λ̄ : b+
k → k be defined by λ̄(x̄) = λ(πnx) for any x ∈ b+, and let kλ̄

denote the corresponding S(b+
k )-module. Then there is a natural double filtration

on V̂ λ such that
Gr(V̂ λ) = S(gk)⊗S(b+

k ) kλ̄.

The support of this graded module inside SpecS(gk) is (b+
k )⊥ by definition. �
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4.6. The annihilator of an affinoid Verma module. It is well known that the
centre Z(gK) of U(gK) acts on the classical Verma module V λ := U(gK)⊗U(b+

K)Kλ

by a character χλ : Z(gK) → K; see [12, Proposition 7.4.4]. Since V λ is dense in

V̂ λ, the action Z(gK) on V̂ λ also factors through χλ.
In [3, §9.8] we defined the nilpotent cone in g∗ to be the set of zeros N ∗ of

Gk-invariant polynomials in S(gk) = O(g∗k) with no constant term:

N ∗ = V (S(gk)Gk
+ ).

After the next preliminary result, we will be able to compute the annihilator of

V̂ λ and thereby prove a precise affinoid analogue of [12, Theorem 8.4.3].

Lemma. Suppose that k is algebraically closed, and p is very good for G. Then

(a) the ideal Gr(kerχλ · ̂U(g)n,K) equals S(gk)Gk
+ · S(gk).

(b) This ideal is prime.
(c) If G := G(k) then G · (b+

k )⊥ is Zariski dense in N ∗.

Proof. Part (a) follows from [3, Theorem 6.10], and part (b) follows from the proof
of [11, Proposition 3.4.1]. In the proof of [11, Proposition 3.4.1] it was also shown
that under our hypotheses, the natural action map G ×B (b+

k )⊥ → N ∗ induces

an isomorphism O(N ∗) → O(G ×B (b+
k )⊥), and is therefore dominant. Part (c)

follows. �

Theorem. If p is very good for G, then the annihilator of V̂ λ inside ̂U(g)n,K is
generated by kerχλ.

Proof. Let Iλ be the annihilator of V̂ λ inside Un := ̂U(g)n,K and let Jλ = kerχλ ·Un.
Then Jλ ⊆ Iλ by the remarks made at the start of §4.6. By base-changing to
the completion of the maximal unramified extension of K, we may assume that
the residue field k of R is algebraically closed. This allows us to identify the
characteristic varieties of finitely generated Un-modules with their corresponding
sets of k-points.

Since Jλ ⊆ Iλ, the characteristic variety Ch(Un/Iλ) is contained in Ch (Un/Jλ),
which equals N ∗ by part (a) of the lemma.

The two-sided ideal Iλ is G(R)-stable by Corollary 4.3(a), so Ch(Un/Iλ) is stable

under the adjoint action of G := G(k) on g∗k. Also Iλ annihilates V̂ λ, so Ch(Un/Iλ)

contains Ch(V̂ λ) which is equal to (b+
k )⊥ by Lemma 4.5. Therefore Ch(Un/Iλ)

contains G · (b+
k )⊥ which is Zariski dense in N ∗ by part (c) of the lemma. Since

Ch(Un/Iλ) is closed, we deduce that Ch(Un/Iλ) = N ∗ = Ch(Un/Jλ). Hence

Gr(Jλ) ⊆ Gr(Iλ) ⊆
√

Gr(Iλ) =
√

Gr(Jλ) = Gr(Jλ)

because Gr(Jλ) is prime by part (b) of the lemma. The result follows. �

4.7. The action of Û(t)n,K on affinoid Verma modules. In §5 we will need the
following elementary result about the analytic density of certain infinite discrete
subsets in affinoid polydiscs.

Lemma. Let A1, A2, . . . , A` be infinite subsets of R and suppose that an element
f in the Tate algebra K〈x1, . . . , x`〉 vanishes on A1 ×A2 × · · · ×A`. Then f = 0.



12 KONSTANTIN ARDAKOV AND SIMON WADSLEY

Proof. Proceed by induction on `. The case when ` = 0 is vacuous so we may
assume that ` > 1. For every y ∈ A` let gy(x1, . . . , x`−1) := f(x1, . . . , x`−1, y) ∈
K〈x1, . . . , x`−1〉. Then gy vanishes on A1×A2×· · ·×A`−1 so by induction, gy = 0
for all y ∈ A`. Therefore x` − y divides f for all y ∈ A`.

Now K〈x1, . . . , x`〉 is a Noetherian unique factorisation domain by [15, Theorem
3.2.1], and as y ranges over A`, the x` − y form a collection of infinitely many
distinct irreducible elements of K〈x1, . . . , x`〉. Therefore f = 0. �

Now consider the action of Û(t)n,K on the affinoid Verma module V̂ λ from §4.5.

Let vλ ∈ V̂ λ be a highest weight vector, let α1, · · · , αm ∈ t∗K be the positive roots
corresponding to the adjoint action of t on n+ and choose a generator fi ∈ n for the

−αi-root R-submodule of n. Write fβ := fβ1

1 fβ2

2 · · · fβmm ∈ U(n) for any β ∈ Nm.
It is easy to see that

h · fβvλ = (λ−
m∑
j=1

βjαj)(h)fβvλ for all h ∈ t.

Thus fβvλ spans a one-dimensional U(t)K-submodule of U(nK) · vλ ⊂ V̂ λ, so Kfβ

is actually a Û(t)n,K-module where tK acts via the character λ−
∑m
j=1 βjαj ∈ t∗K .

In particular, we see that U(nK) · vλ is a locally finite Û(t)n,K-module.

Proposition. The action of Û(t)n,K on U(nK) · vλ is faithful.

Proof. Let α1, . . . , α` be the simple roots, let h1, . . . , h` ∈ t be the corresponding
coroots and let ω1, . . . , ω` ∈ t∗K be the corresponding system of fundamental weights,
so that ωi(hj) = δij for all i, j = 1, . . . , `. By [18, §13.1], we may use the Cartan
matrix C = (〈αi, αj〉) associated to the root system of gK to express the simple
roots in terms of the fundamental weights:

αj =
∑̀
k=1

Cjkωk for all j = 1, . . . , `.

Let C∗ denote the adjugate matrix of C and let d := detC; it then follows that

dωi =
∑̀
j=1

C∗ijαj for all i = 1, . . . , `.

All entries of C∗ are known to be non-negative integers; see either [18, §13.2, Table
1] or [23]. Therefore for each µ ∈ N`,

∑̀
i=1

µidωi =
∑̀
j=1

(∑̀
i=1

µiC
∗
ij

)
αj

is a linear combination of α1, . . . , α` with non-negative integer coefficients. We now
observe that for any µ ∈ Nd, tK acts on the vector

eµ :=
∏̀
j=1

f
∑`
i=1 µiC

∗
ij

j vλ ∈ U(nK) · vλ
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via the character

λ−
∑̀
j=1

(∑̀
i=1

µiC
∗
ij

)
αj = λ−

∑̀
i=1

µidωi.

Because our group G is simply connected, the coroots hi span t over R and therefore

we may identify the affinoid enveloping algebra Û(t)n,K with the Tate algebra

K〈πnh1, . . . , π
nh`〉. Consider the isomorphism K〈x1, . . . , x`〉

∼=−→ Û(t)n,K which
sends xi to λ(πnhi)− πnhi. Viewing U(nK) · vλ as a K〈x1, . . . , x`〉-module via this
isomorphism and remembering that ωi(hj) = δij , we can calculate that

xj · eµ = dπnµjeµ for all j = 1, . . . , ` and µ ∈ Nd.

Therefore for every f ∈ K〈x1, . . . , xn〉 and µ ∈ Nd we have

f · eµ = f(dπnµ1, . . . , dπ
nµ`)eµ.

We may now apply the lemma with each Aj being the infinite subset dπnN of R to
deduce that if f ∈ K〈x1, . . . , x`〉 kills every eµ, then f = 0. The result follows. �

4.8. The Cartan involution. Recall [20, §II.1.4] that for each element w of the
Weyl group W of G we can find a representative ẇ ∈ G(R) of w ∈ W which
normalises T(R). By [20, §II.1.4(4)], these elements permute the root subgroups of
G according to the action of W on the root system Φ. If w0 ∈ W is the longest
element, then it follows that

ẇ0 · b+ = b and ẇ0 · b = b+

in the adjoint action of G(R) on g.

Proposition. ẇ0 ·Ann ̂U(b+)n,K
(V̂ λ) = Ann ̂U(b)n,K

(V̂ λ).

Proof. By Theorem 4.6, I := Ann ̂U(g)n,K
(V̂ λ) is generated by kerχλ which is fixed

by the adjoint action of G(R) on ̂U(g)n,K . Therefore ẇ0 · I = I, so

ẇ0 ·Ann ̂U(b+)n,K
(V̂ λ) = ẇ0 · I ∩ ẇ0 · ̂U(b+)n,K = I ∩ ̂U(b)n,K = Ann ̂U(b)n,K

(V̂ λ)

as required. �

5. Faithfulness of affinoid Verma modules over Iwasawa algebras

5.1. L-uniform groups. Throughout §5 we will assume that p is an odd prime,
and that L is a finite extension of Qp contained in K; we have the corresponding
chain of inclusions of discrete valuation rings:

Zp ⊆ OL ⊆ R.

Following Orlik and Strauch [27, Remark 2.2.5(ii)], we say that a uniform pro-p
group G is L-uniform if G is locally L-analytic, and the Lie algebra LG is an OL-
submodule of the L-Lie algebra L(G). The (modified) isomorphism of categories
G 7→ 1

pLG between uniform pro-p groups and finite rank torsion-free Zp-Lie algebras

from [13, Theorem 9.10] induces a one-to-one correspondence between L-uniform
groups and torsion-free OL-Lie algebras of finite rank.
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Let G be an L-uniform group. In §5.1, §5.2 and §5.3 we will suspend the notation
from §4 and temporarily use the letter g to denote the R-Lie algebra associated with
G, defined as follows:

g := R⊗OL
1

p
LG.

This extends [3, Definition 10.2] to arbitrary finite extensions L of Qp. Recall that
the algebra D(G,K) of K-valued locally L-analytic distributions from §3.3 is a
Frechet-Stein algebra by [33, Theorem 5.1], and therefore we have at our disposal
the K-Banach space completions Dr(G,K) for each real number 1/p 6 r < 1. The
abbreviation

Û(g)K := Û(g)0,K

will also be used throughout §5.

5.2. The distribution algebra D1/p(G,K). We begin by recording the following
extension of [5, Theorem 5.1.4] and [31, Proposition 6.10] to arbitrary complete
discrete valuation fields K of mixed characteristic and arbitrary L-uniform groups
in the language of locally analytic distribution algebras.

Lemma. Let g be the R-Lie algebra associated with the L-uniform group G. Then
there is a natural isomorphism of K-Banach algebras

D1/p(G,K)
∼=−→ Û(g)K .

Proof. Suppose first that L = Qp. Let | · | : K → R be the norm which induces the
topology on K, normalised by |p| = 1/p. Let g1, . . . , gd be a minimal topological
generating set for G, let bi = gi − 1 ∈ K[G] and write |α| = α1 + · · ·+ αd for each
α ∈ Nd. It follows from [33, §4] that the distribution algebra D1/p(G,K) consists
of all formal power series λ =

∑
α∈Nd λαbα in b1, . . . , bd such that

||λ||1/p := sup
α∈Nd

|dα|(1/p)|α|

is finite. As a consequence of Cohen’s Structure Theorem for complete local domains
[24, Corollary 28.P.2], we can find an unramified field extension K ′ of Qp inside K
such thatK/K ′ is finite. LetR′ be the ring of integers ofK ′ and let g′ = R′⊗Zp

1
pLG.

Then we have a commutative diagram

K ⊗K′ D1/p(G,K
′) //

��

K ⊗K′ Û(g′)K′

��
D1/p(G,K) // Û(g)K

where the vertical maps are induced by multiplication inside D(G,K) and Û(g)K
and the horizontal maps are induced by the inclusion of G into the groups of units

of Û(g′)K′ and Û(g)K , respectively.
Because K ′ is unramified over Qp, it follows from [3, Theorem 10.4] that the top

arrow is an isomorphism. The arrow on the right is a bijection by [3, Lemma 3.9(c)],
and arrow on the left can be seen to be a bijection from the explicit description
of elements in D1/p(G,K) as power series in the b1, . . . , bd satisfying the particular
convergence condition stated above. The result follows in the case where L = Qp.
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Returning to the general case, let G0 be the uniform pro-p group G viewed as
a locally Qp-analytic group, and let g0 := 1

pR ⊗Zp LG. Then there are natural

surjections of algebras U(g0) � U(g) and D1/p(G,K) � D1/p(G0,K), and it
follows from [29, Lemma 5.1] that

D1/p(G,K) ∼= U(g)⊗U(g0) D1/p(G0,K).

Therefore by the first part of this proof we obtain

D1/p(G,K) ∼= U(g)⊗U(g0) Û(g0)K .

Now the algebra on the right hand side is isomorphic to Û(g)K by [10, §3.2.3(iii)]
because U(g0) is Noetherian. �

5.3. A general faithfulness result. Let G be an L-uniform group with associated
R-Lie algebra g. The following result will be our main engine for establishing the
faithfulness of modules over the Iwasawa algebra KG.

Theorem. Let N and H be L-uniform subgroups of G with associated R-Lie alge-

bras n and h such that g = n⊕ h. Let V be a Û(g)K-module and suppose that there

is v ∈ V such that v is a free generator of V as a Û(n)K-module by restriction and
U(nK)v is a faithful, locally finite RH-module again by restriction. Then V is a
faithful KG-module.

Proof. Let r and d be the ranks of n and g as R-modules, respectively. Choose an
R-basis {x1, . . . , xd} for g such that {x1, . . . , xr} is an R-basis for n.

Let l = [L : Qp]; then G,N and H have dimensions dl, rl and (d−r)l respectively
when viewed as uniform pro-p groups. We may choose a minimal topological gen-
erating set {g1, . . . , gdl} for G such that g1, . . . , grl and grl+1, . . . , gdl topologically
generate N and H, respectively. Write bi = gi − 1 ∈ KG for each i = 1, . . . , ld.

Suppose that ζ ∈ AnnRG(V ). It suffices to prove that ζ = 0. We may write
ζ =

∑
α∈Ndl λαbα with λα ∈ R. Collecting terms together we can then rewrite this

as ζ =
∑
α∈Nrl b

αζα for some ζα ∈ RH.
Now given w ∈ U(nK)v, RHw ⊂ U(nK)v is finitely generated over R by assump-

tion. Thus there is a natural number t such that we can write

ζα · w =
∑
β∈Nr

µαβx
β · v

for some µαβ ∈ K with µαβ = 0 for |β| > t and all α. Furthermore, we may assume
that µαβ is uniformly bounded in α and β. Thus

0 = ζ · w =
∑
α∈Nrl

bαζα · w =
∑

α∈Nrl,β∈Nr
µαβbαxβ · v.

But
∑

α∈Nrl,β∈Nr
µαβbαxβ ∈ Û(n)K and ann

Û(n)K
(v) = 0 by assumption, so in fact

∑
α∈Nrl,β∈Nr

µαβbαxβ = 0.

The multiplication map KN⊗KU(nK)→ D(N,K) is injective by Corollary 3.3(d).

Since D(N,K) contained in D1/p(N,K) which is isomorphic to Û(n)K by Lemma
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5.2, the multiplication map KN ⊗K U(nK)→ Û(n)K is also injective, and so∑
β∈Nr

∑
α∈Nrl

µαβbα ⊗ xβ = 0.

Therefore
∑
α∈Nrl µ

α
βbα = 0 ∈ KN for each β because the xβ are linearly indepen-

dent over K. It follows that µαβ = 0 for each pair α, β, and hence ζα ·w = 0 for each

α. As this last equality is independent of the choice of w ∈ U(nK)v, we deduce
that ζα ∈ AnnRH(U(n)v) = 0 for each α and hence ζ =

∑
α∈Nrl b

αζα = 0. �

5.4. Congruence kernels. We now assume that the L-uniform group G and the
R-algebraic group G from §4.1 satisfy the following conditions:

• G is simply connected,
• the Lie algebra g of G and the Lie algebra LG of G satisfy png = 1

pR⊗OLLG
for some integer n > 0,
• p is a very good prime for G in the sense of [3, §6.8].

For example, for every integer n > 0, G could be the congruence kernel

G = ker(G(OL)→ G(OL/pn+1OL)).

As in §4.5, we let t, b, n and b+ denote the Lie algebras of T, B, N and B+ of G
respectively and note that because these groups are defined over OL we can find
L-uniform subgroups T,B,N and B+ whose respective associated R-Lie algebras
are pnt, pnb, pnn and pnb+.

Theorem. The affinoid Verma module V̂ λ is faithful as a KG-module for every
R-linear character λ : pnt→ R.

Proof. Since pnn is a complement to pnb+ in png, V̂ λ is a free ̂U(pnn)K-module

of rank 1 generated by the highest weight vector v ∈ V̂ λ. The dense submodule

U(nK) · v of V̂ λ is locally finite as a b+
K-module; this implies that it is also a locally

finite RB+-submodule of V̂ λ. In particular, it is a locally finite RT -module.

Since RT is a subring of ̂U(pnt)K , Proposition 4.7 implies that the action of RT

on U(nK) · v is faithful. Since pnb = pnn⊕ pnt, V̂ λ is faithful as a RB-module by
Theorem 5.3.

Proposition 4.8 now implies that V̂ λ is also faithful as a RB+-module, so its
submodule U(nK) · v is also faithful over RB+. Since png = pnn⊕ pnb+, invoking

Theorem 5.3 again gives that V̂ λ is faithful as a KG-module, as required. �

5.5. Verma modules for congruence kernels. For each locally L-analytic char-
acter θ : B+ → 1 + pR, the contragredient of the natural 1-dimensional representa-
tion given by θ induces a continuous 1-dimensional D(B+,K)-module Kθ via [32,
Corollary 3.4]. We may view Kθ as a KB+-module by restriction recovering the
original 1-dimensional representation. That is b ·x = θ(b)x for b ∈ B+ and x ∈ Kθ.

By instead restricting along the inclusion U(b+
K)→ D(B+,K) we may view Kθ

as a representation λ of the K-Lie algebra b+
K . We can compute that for b ∈ B+,

log b ∈ pn+1b+ acts by log θ(b) ∈ pR. Thus λ may be viewed as an R-linear
character pnb+ → R.

Conversely, each R-linear map λ : pnb+ → R induces a locally L-analytic homo-
morphism θ : B+ → 1 + pR via the rule

b 7→ exp(λ(log b)) for all b ∈ B+.
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Definition. Let θ : B+ → 1 + pR be a locally L-analytic group homomorphism.
The Verma module for the Iwasawa algebra KG with highest weight θ is

Mθ = KG⊗KB+ Kθ

where Kθ is the one-dimensional KB+-module K with B+-action given by θ.

Lemma. Let λ : pnb+ → R be the R-linear character of pnb+ corresponding to a
locally L-analytic group homomorphism θ : B+ → 1+pR. Then the KG-submodule

of V̂ λ generated by the highest weight vector vλ is naturally isomorphic to Mθ.

Proof. By construction, B+ acts on vλ ∈ V̂ λ via θ. Sending the highest weight

vector mθ ∈Mθ to vλ therefore induces a KG-module homomorphism Mθ −→ V̂ λ,
which fits into the following commutative diagram:

KN //

��

̂U(pnn)K

��
Mθ //

V̂ λ.

Here the vertical arrows are bijections that send x ∈ KN to xmθ and y ∈ ̂U(pnn)K

to yvλ, respectively. The top arrow is the natural inclusion of KN into ̂U(pnn)K ,

so Mθ −→ V̂ λ is injective. The result follows. �

Corollary. Mθ is a faithful KG-module.

Proof. The commutative diagram in the proof of the lemma shows that the image

of Mθ is dense in V̂ λ. Now if an element of KG kills Mθ, then it must annihilate

all of V̂ λ by continuity, and is therefore zero by Theorem 5.4. �

5.6. Finite normal subgroups. Before we can give a proof of Theorem A, we
will need to understand better the finite normal subgroups of open subgroups of
G(OL).

Proposition. Let G be an open subgroup of G(OL) and let F be a finite normal
subgroup of G. Then F is central in G(OL).

Proof. Choose a torsion-free open subgroup N of G which is normal in G(OL), for
example a congruence kernel of G(OL). Then [N,F ] 6 N ∩ F = 1 because N and
F are both normal in G and because N is torsion-free, so F centralises N . Because
OL is local, G(OL) is generated as an abstract group by the elements of the form
xα(r) from §4 for α ∈ Φ and r ∈ OL by [1, Proposition 1.6], so it will be sufficient
to show that F commutes with each xα(r).

Fix g ∈ F , α ∈ Φ and r ∈ OL, let x := xα(r) and note that g commutes with
xt where t is the index of N in G(OL). Choose a faithful algebraic representation
ρ : G(L) → GLm(L) for some m > 1, let u1 = ρ(x) and u2 = ρ(gxg−1). Then u1

and u2 are unipotent by [19, Theorem 15.4(c)] and ut1 = ut2 because g commutes
with xt. Now log and exp give well-defined bijections between unipotent matrices
in GLm(L) and nilpotent matrices in Mm(L), so

u1 = exp

(
1

t
log(ut1)

)
= exp

(
1

t
log(ut2)

)
= u2.

Therefore x = gxg−1 because ρ is faithful. �
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5.7. Proof of Theorem A. By continuity, we can find an open subgroup H of
B+ which is mapped into 1+pR by θ. Choose n large enough so that G contains an
open normal L-uniform subgroup Gn with associated R-Lie algebra png and such
that H contains an open L-uniform subgroup B+

n with associated R-Lie algebra
pnb+. Let θn be the restriction of θ to B+

n . Then since B+
n = B+ ∩Gn,

Mθn = KGn ⊗KB+
n
Kθn ⊆ KG⊗KB+ Kθ.

Writing I := AnnKG(KG⊗KB+ Kθ) and applying Corollary 5.5 gives

I ∩KGn ⊆ AnnKGnM
θn = 0.

Let F be a finite normal subgroup of G. Then F is central in G(OL) by Proposition
5.6, so F is also central in G. But G has trivial centre by assumption so F is trivial.
Therefore KG is a prime ring by [9, Theorem A].

Next, KG is a crossed product of KGn with the finite group G/Gn. By [25,
Theorem 2.1.15], S := KGn\{0} is an Ore set in the Noetherian domain KGn. It
is stable under conjugation by G, so by [28, Lemma 37.7] it is also an Ore set in
the larger ring KG and there is a crossed product decomposition

S−1KG = (S−1KGn) ∗ (G/Gn).

Here S−1KGn is the quotient division ring of fractions of KGn; thus S−1KG is an
Artinian ring because the group G/Gn is finite. Every regular element in KG stays
regular in KGn and therefore becomes invertible in S−1KG by [25, Proposition
3.1.1]; hence S−1KG is the classical Artinian ring of quotients of KG.

Since I ∩KGn = 0, the intersection I ∩ S is empty and therefore the two-sided
ideal S−1I of S−1KG is proper. Now KG is prime, so S−1KG is a prime Artinian
ring and is therefore simple. Therefore S−1I = 0 and I = 0. �
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