1. BICOMMUTATIVE BIALGEBRAS

Throughout this note we fix a symmetric monoidal category (C, ®,7) where 7 is
the symmetry functor with 745 : AQ B - B A.

A bicommutative bialgebra in C is an object A in C, with functors ug : AQ A —
Ana:I > A Ay : A—- AR A, and €4 : A — I called multiplication, unit,
comultplication and counit respectively, satisfying certain axioms.

Given two bicommutative bialgebra objects A and B in C, we may give A ® B
the structure of a bicommutative bialgebra: pagp = (ua ® pp)(l1 ® T84 ® 1),
NAgB = 1A ® nB, AA®B = (1 RTAB ® 1)(AA ® AB); and €EARB — €A KR eER. In this
way we may make A®™ into a bicommutative bialgebra for each m > 2.

As a point of notation, we will write p” for the functor from A®™ — A, given
inductively by p% = na, and pt = p(l ® ), and A% for the functor from
A — A®" given inductively by A% = €4 and Aﬁ“ = A4(1 ® A%). Notice every
't and A7 is a bialgebra map.

Lemma 1. The monoidal subcategory of C whose objects are bicommutative bial-
gebra objects in C and whose morphisms are bialgebra bihomomorphisms may be
enriched over commutative monoids.

Proof. We first need to explain how to define an addition on the Hom sets. Sup-
pose A and B are bicommutative bialgebras, and suppose that f and g are two
morphisms from A to B. We define

f+g9=ps(f®g)As
For each Hom set the axioms for a commutative monoid now follow easily, but for
completeness: suppose f, g and h are in Hom(A, B)

(F+9)+h = p((ua(f®9)As) @h)As

= pup(pup®1)(f@®9®h)As(1® Ax)

= (1@ up)(f®9®h)(1®AA)AA

= f+g+h)
where the third equality follows from the coassociativity of A, and associativity of
B.

The zero map from A to B is the composite of the counit €4 and the unit np,

and

0+ f=pp(npea® f)Aa=pp(np ®1)(1® f)lea®1)An = f
where the last equality follows from the axioms for unit and counit.
The symmetry of + follows from the commutativity of B, and cocommutativity
of A: if 74 is the symmetry map A® A - A® A then
f+9=up(f®9)As=ppT(f®9)A4 = tp(g® f)TadA = (g f)Asa =g+ f

To complete the proof we need to check that the composition of morphisms gives
a monoid map Hom(B, C) x Hom(A, B) — Hom(A, C): suppose f1 and f, are in
Hom(B, () and g; and g are in Hom(A, B) then
f1(91+92) = fips(91®g2)Aa = po(f1®f1)(91®g2)Aa = po(frg1®fih1)Aa = figi+filu
and
(fitf2)g = pe(fi®f2) Apgr = pe(fi®f2)(91©91)A4 = po(fLa1®f291)Aa = f1g1+ f291.
O



From now on we will refer to this enriched category as Bialg. Notice that the
enriched structure makes Homgiaig(A, A) is a rig with identity id4 whenever A is
an object in Bialg. We will just write End(A) for this rig.

If R is a rig, we’ll write Bialg® for the category whose objects are pairs (A, ¢4)
with A an object in Bialg and ¢4 a morphism of rigs R — End(A), and such that
Hompg;y,r((4, ¢4), (B, ¢B)) is the set of morphisms f in Hompiaig(A, B) such that
foa = ¢pf. Since there is a unique map of rigs N — End(A) for each A € Bialg
that sends 1 to id4, Bialg" is just Bialg. In general Bialg® inherits a monoidal
structure from Bialg: (A, ¢4) ® (B,¢B) = (A® B,¢4 ® ¢B).

2. THE PROP Mat(R)

Suppose that R is a rig. Recall that the PROP Mat(R) is the monoidal category
enriched over commutative monoids whose objects are the natural numbers, with
tensor product given by addition, and whose morphisms Hom(m,n) are (m x n)
matrices with coefficients in R. Composition is given by usual matrix mulitplication
and the addition providing the enriched structure is given usual matrix addition.

If f and g are two matrices then f ® g is just given by the block matrix ({; 2)

It is easy to check that transposing matrices gives an self-inverse contravariant
enriched monoidal functor from Mat(R) to itself.

Notice that 0 is both an initial and terminal object in this category, as there is
precisely one matrix with n rows and no columns and its transpose is the unique
matrix with n columns and no rows. We’ll write 0™ for the former and 0,, for the
latter. We have identities such as 0,, = (01)®". The m X n matrix all of whose
entries are 0, which we’ll write 07, is just 0™ ® 0.

We will write EJ}"(r) for the m x n-matrix whose only entries are zero except
for an r in the ijth place. Alternatively we may describe this by the equation

- »
EZ"(r) =01 ®@r®0; "/,

where r is the 1 x 1 matrix whose only entry is . These matrices generate all the

morphisms in Mat(R) using the enriched structure.

3. ALGEBRAS OVER Mat(R)
Our goal now is the following theorem:

Theorem. If R is a rig then Mat(R) is the PROP for bicommutative bialgebras A
equipped a map of rigs R — End(A).

We prove this theorem by constructing mutually inverse functors between the
relevant categories.
Firstly we show

Lemma 2. If A is a bicommutative bialgebra and ¢ : R — End(A) a map of
rigs, then there is a unique strict monoidal functor Fa enriched over commutative
moniods from Mat(R) to Bialg such that

(1) A=Fa(1)

(2) pa=Fa((11):2 > 1)

(8) na =Fa(0:0—>1)

(4) Aa=Fa((11)t:1 - 2)

(5) €A :FA(O 11 —)0)



(6) &(r) = Fa(r :1— 1) for eachr € R.

Proof. Because F4 is a strict monoidal functor with F4(1) = A, F4(n) is necessarily
A®" for every n.

We begin by defining F4 on Hom(n,1) for each n. If (r;) is an (1 x n) matrix
with entries in R we set Fa(r;) = p%(¢(r1) ®---® ¢(ry,)). Notice that in particular
Fa(r:1—1)is just ¢(r), Fa(0:0—=1) =n4 and F4(11:2 — 1) is just pa all as
required. We need the maps F4(r;) to be bialgebra maps, but this is true because
they are defined by composing bialgebra maps.

Now suppose that (r;;) is any (m x n) matrix with entries in R. We define
Fy(rij) = (Fa(rin) ® --- ® Fo(rim))AYs.. This time it may be easily seen that
Fa(0:1—0) =€4 and Fa((11)! : 1 — 2) = A4 as required. As before all these
maps Fa(r;;) are bialgebra maps because they are a composite of such.

We need to check that F' as defined is an enriched functor. First, we check that
Fu(rij + sij) = Fa(rij) + Fa(si;) for every pair of R-valued (m x n) matrices (r;;)
and (s;;). As before we begin by considering the case m = 1, suppressing the second
index as we may:

Fa(ri+si) = pi(d(r +s1)® '®¢(7‘n+8n))
= pi(e(r1) + ¢(s1)) @ -+ (¢(rn) + ¢(5n)))
ni((pa(o (7‘1)®¢(81)) 4)® - ® (pa(@(rn) @ ¢(sn))A4))
i
i

PAnE" (B(r1) ® (1) ® --- @ P(ra) ® ¢(s,))AF"
(aen(p(r1) @ - ® ¢(rn) @ P(51) ® -+ - ® P(8n)) A pon
pa(pi(d(r) ® - @ ¢(rn)) @ pi(d(s1) ® - @ ¢(sn))) Aaen
= FA(Ti)JrFA(Si)

Now we consider the general case:
Fa(rij +si5) = (Falra +sil) @+ @ Fa(rim + 8im)) Al en
= ((Falria) + Fa(sa)) ® -+ @ (Fa(rim) + Fa(sim))) A en

= <® pA(Fa(ri) ® FA(Sik))AA®"> Allen

k=1

= ftaem ((@ FA(Tik)> Algn ® <® FA(Sjk)) Af’j@n) A jgn
k=1

k=1
= paem(Fa(rij) ® Fa(sij))Axen
= FA(TZ'J')+FA(S,']')

We can now complete the existence part of the proof by showing that Fs is a
functor i.e. that F4 preserves composition. Because we have already checked that
F4 preserves the enriched structure it suffices to check this on matrices of the form
E7I"(r) since these generate all matrices under +

But it is easy to check that F4(E{7(r)) is the map € 40;-1 ® ¢(r) ® € g4on—i. Then
we see that

FA(E5"(r)) = nasi-1 ® €40i-1 @ ¢(r) @ €gom—i @ Naon-i.

7

Now if we take two matrices of this form that compose it is easy to see that Fy
preserves their composition.



For uniqueness, we have already observed that F4 is uniquely determined on
objects by the conditions given. Because we are insisting F4 be enriched over
commutative monoids, to show F)4 is uniquely determined on morphims it suffices
to check that this is so for matrices with at most one non-zero entry. But the
monoidal structure forces Fa(E[}"(r) to be the same as

Fa(0i2)) ® Fa(r) ® Fo(0'7)).
But F4(07) is required to be € 40n» ® ngem. O
It is now easy to prove the following propostion

Proposition. Suppose that R is a rig. There is a functor F from Bialg? to the
category of algebras over the PROP Mat(R) such that

(1) A=F((A,¢4))(1)

(2) pa=F((4¢4))((11):2 > 1)

(3) na =F((A4,64))(0:0—1)

(4) Aa=F((4,¢4))((11)":1 > 2)

(5) ea=F((4,64))(0:1—0)

(6) da(r) =F({(A,04))(r:1— 1) for each r € R.

Proof. By lemma 2 there is a unique way to define F on objects subject to the
given conditions.

Suppose that f : (4, ¢4) = (B, ¢p) is a morphism in Bialg®. We must define a
natural transformation F(f) from F(A, ¢4) to F(B, ¢p). To this end, let F(f)(n) =
f®" for each n. We need to show that F(f)(m)F(4)(X) = F(B)(X)F(f)(n) for
each m®n matrix X with coefficients in R. Because of the enriched structure on the
functors F(A4, ¢4) and F(B, ¢p), it suffices to check this for matrices with precisely
one non-zero entry. For (1 x 1)-matrices this is just the fact that fo4 = ¢pf. It
is also true when m or n is 0 since F((4,¢4))(0) is both an intial and terminal
object. Since each matrix with one non-zero entry is a tensor product of matrices
of these types we are done. |

Next we want,

Lemma 3. If R is a rig and F : Mat(R) — C is an algebra over the PROP Mat(R)
then (A = F(1),¢4) is in Bialg® with pq = F((11) : 2 = 1)), na = F(0: 0 — 1),
Ap=F((11):1—52),ea=F(0:1—>0, and ¢pa(r) = F(r : 1 = 1). Finally, F
1s necessarily an enriched functor.

Proof. First we show This makes (A, pua,m4) is a commutative monoid:
Associativity follows from

1 10 011
1 1)(0 ! 1):(1 1 )=( 1)(1 ! 0),
commutativity from
01
(1 1)(1 0):(1 0,
and the unit axiom from

@ y(§)-m=a ()
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That (A, A4, €ea) does form a cocommutative coalgebra follows from what has gone
before and the fact observed previously that the transpose map from Mat(R) to
itself is a contravariant functor that is self-inverse.

Next we must check that the algebra and coalgebra structures are compatible.
It suffices to check that A 4 is an algebra map and the counit respects the algebra
structure. The first follows from the matrix equations

e v=01)=6101)

and the latter from the fact that 0 is a terminal object in
is a map of rigs we notice
1\ /» O
(1) o)

To finish, we need to show that F' is an enriched functor: suppose X and Y are
m x n matrices in Mat(R). We want F(X +Y) = paem (F(X)®F(Y))A gex. This
follows from the matrix equations

1) (3 y) (3)

where I, is the (n x n) identity matrix.

o O

1
1
0
0
M

AN =

at(R). To see that ¢4

O

Proposition. Suppose that R is a rig. There is a functor G from the category of
algebras over the PROP Mat(R) to Bialg® such that

(1) G(F : Mat(R) — ) = (F(1), F(Homyay(my (1, 1)))

(2) pewr) = GF)((11):2 > 1)

(3) nar) =GF)(0:0—=1)

(4) Aawry = GF)((11) 11 2)

(5) €G(F) = G(F)(O 1= 0)

Proof. Lemma 3 shows that our definition makes sense on objects. We need to
define G on morphisms. Suppose F' and G are two algebras over Mat R, and © is a
natural transformation from F' to G. Then O(1) is a map f from F(1) to G(1) such
that if X is an (m X n) matrix with coeffecients in R then f®"F(X) = G(X)f®™.

This condition for (1 x 1)-matrices says precisely that f commutes with the maps
R — End(A) and R — End(B). Then the condition for the matrix (11) implies
that f is an algebra map, and for (11)? that it is an coalgebra map. O

We are now ready to complete the proof of our theorem:

Proof. We have constructed a functor F from BialgR to algebras over Mat R and
a functor G in the opposite direction. It is clear from the construction that these
functors are mutual inverses, that is they define an isomorphism of categories. O

Corollary. The category of algebras over Mat(N) is the category of bicommutative
bialgebras.

|
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Corollary. The category of algebras over Mat(Z) is the category of bicommutative
Hopf algebras.

Proof. It follows from the theorem that we must show that a bicommutive Hopf
algebra is just a bicommutative bialgebra A equipped with a map of rigs ¢4 : Z —
A.

It is easy to see that such a bialgebra must be a bicommutative Hopf algebra
with antipode ¢(—1) since the condition ¢(0) = ¢(1) + ¢(—1) translates as

NA€EA = ,uA(idA ®¢(—1))AA

which is half of the axiom for the antipode. The other half is just encoded by
6(0) = ¢(=1) + 9(1).

To finish, we must see that if A is a bicommutative Hopf algebra with antipode
S then ¢(—1) = S extends uniquely to a map of rigs Z — End(A). It is clear
that we must define ¢(0) = 0, ¢(n) = ida +¢(n — 1) and ¢(—n) = S + ¢(—n + 1)
inductively for each postive integer n. This will define an additive homomorphism
of commutative monoids, since we have already checked that S +id4 = 0 is the
antipode axiom.

That ¢ is a homomorphism of rigs now follows from the distributive law for rigs
and the fact the S2 =id4 since A is a bicommutative Hopf algebra. O



