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1 Introduction

In [2] Bieri and Strebel defined a geometric invariant X for finitely generated
modules over the group algebras of finitely generated abelian groups. They
used this to define a criterion for when metabelian groups are finitely presented.
This invariant was further developed by Bieri, Strebel and Groves and has many
interesting applications. In [1] Bieri and Groves showed that when the group
algebra is defined over a Dedekind domain the complement of ¥ must be a closed
rational spherical polyhedral cone.

In [6] and [7] Brookes and Groves defined a similar invariant A for modules
over the crossed product of a division ring by a free finitely generated abelian
group. Such a crossed product is often known as the (co-ordinate ring of) the
non-commutative torus since in the special case where it is commutative it is
the coordinate ring of an algebraic torus. If in the commutative case we take the
complement of A and identify points that differ by a positive scalar multiple we
obtain ¥. Brookes and Groves were unable to prove that their invariant must
be a rational polyhedral cone, although using the methods of [1] they do prove
a weaker version of the result; they show that for any finitely generated module
M, A(M) must contain a rational polyhedral cone A*(M) of dimension equal
to the Gelfand—Kirillov dimension of M and moreover that the complement
A(M)\A*(M) must be contained inside a rational polyhedral cone of strictly
smaller dimension.

In [18] we proved that

Theorem A (Theorem A of [18]). If DA is a crossed product of a division
ring D by a free finitely generated abelian group A, then, for all finitely generated
D A-modules M, A(M) is a closed rational polyhedral cone in Hom(A,R).

Given a subset S of R” and a point z of S, the local cone of S at z is defined
as
LC,(S) ={y € R*|Fep > 0 s.t. Ye € (0,¢0] = + €y € S}.
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We say that a S is concave at x € S if the convex hull of the local cone of S at
z is a linear subspace of R". We say that S is totally concave if it is concave all
every point z € S.

In [18] we showed

Theorem B (Theorem B of [18]). If DA is a crossed product of a division
ring D by a free finitely generated abelian group A, then, for all finitely generated
D A-modules M and for each x € A(M)

LC(A(M)) = Agr* (M)).
for each natural x-filtration of M.

This means that if M is a module such that the Gelfand—Kirillov dimension
of M is equal to the Gelfand—Kirillov dimension of grX(M) for each x € A(M)
then A(M) is a homogeneous polyhedron and so A(M) = A*(M). We use this
idea to prove

Theorem C. If M is a finitely generated pure D A-module of dimension m then
A(M) is a closed totally concave homogeneous rational polyhedron of dimension
m.

This leads to a simplification of many of the results of Brookes and Groves in
[7], [8] and [9] since for pure modules we have A(M) = A*(M). It also provides
a genuinely new proof of this result in commutative case.

In addition, we can deduce Theorem B of [§] in a way that more closely
follows the proof of its commutative analogue by Bieri and Groves in [4] than
Brookes and Groves were able to provide.

In order to prove Theorem C we prove

Theorem D. Suppose DA be a crossed product of a division ring by a finitely
generated free abelian group. Then DA is Cohen—Macaulay; that is for all
finitely generated DA-modules M the sum of the Gelfand—Kirillov dimension
of M and the grade of M is equal to the Gelfand—Kirillov dimension of DA.

This theorem was independently proved by Ingalls in [13] for the special case
where D is an algebraically closed field that is central in DA. In that case he
was also able to describe which subrings that arise as subcrossed products of
DA for submoniods S of A are also Cohen—Macaulay; in particular he showed
that the result is the same as for the commutative case which was dealt with by
Hochster in [11]. It would be interesting to find out whether or not the same
holds in the greater generality we deal with here.

2 Preliminaries

We will say that a ring is Noetherian if it is both left and right Noetherian, i.e.
if every left/right ideal is finitely generated as a left /right ideal.
We say that a ring is a domain if it contains no zero-divisors, i.e. the product
of a pair of elements in the ring is zero only if one of the elements is zero.
Often we will state and prove a result for left modules that has an obvious
analogue for right modules and wvice versa. When the proof of the analogous
result is exactly similar we will often use it without comment.



2.1 Filtrations and Gradings

Suppose that D is a division ring. By a D-algebra we will mean a ring R
equipped with a ring homomorphism from D to R, giving R a natural left
D-module structure.

By an R-filtration of a D-algebra R, we will mean a set

{F.Rlu € B}
such that D C FyR, F,R C F,R whenever v < pu,

R=|JF.R

HER

and
F,RF,RCF, R

for each p,v € R. We will write Ff R for |, , F, R.
Given a filtered D-algebra R and a left R-module M, an R-filtration of M
is a set
{FuM]|p € B}

such that each F,M is a D-submodule of M, F,M C F, M whenever v < p,

M=|]JFM
HER

and
F,RFE,MCF, M

for each p,v € R Again we write Fj M for |, u FvM. When it will not cause
confusion as to which filtration we are referring, we will write My for Fj, M and
M for F, M.

We define the associated graded ring of an R-filtered ring R by

g’ (R) = @ F.R/F,R.

HER
The multiplication in gr¥(R) is given on homogeneous elements by

(z1 + F} R)(x2 + FLR) =m0 + Ff ,,,

R

and extended linearly. Given z € R we write 0¥ (2) = z + F/ R € gr¥ (R), the
symbol of z, when = € F,R but = ¢ F;/R.

Similarly we define the associated graded module of an R-filtered R-module
M

g’ (M) = @ F,M/F}F M,
HER
and 0¥ (m) = m + FfM € gr¥ (M), the symbol of m, for m € F,M\F;}M.
This is naturally a grf (R) module with action on homogeneous elements given
by
(x—}—Flj'lR)(m—l—Flj;M)zm.m—kF"' M

pa1tpe
forx € Fy, R and m € F,,, M.



Given a monoid G and a ring R we say that R is G-graded if R decomposes
as a direct sum of additive subgroups

R=R,

zeG

with Ry R, C R, for all z,y € G.
Notice that the associated graded ring of an R-filtered D-algebra is R-graded
when we think of R as a monoid with its usual addition.

2.2 Gelfand—Kirillov dimension

Suppose that R is a finitely generated D-algebra with finite generating set X
such that Dz = zD for each z € X. We set V C R to be the D-vector space
spanned by X. Then we may define

dx (n) = dimp (Z V")
=0
We then define the GK-dimension of R over D by
GKD(R) = MIOgn dX (n)

The proof of Lemma 1.1 of [12] tells us that this definition is independent of the
choice of generating set X.

Similarly given a finitely generated left R-module M with finite generating
set F', we may define

dX,F(n) = dimD (Z VZF)
i=0
and the GK-dimension of M over D by
GKp(M) = limlog, dx,r(n)

again this is independent of the choice of F' and X by the proof of Lemma 1.1
of [12].

It is possible for the GK-dimension of a finitely generated algebra to be
infinite; consider the free associative algebra on two generators for example.
However in the rings we consider it always will be finite. For commutative
algebras it agrees with the usual dimension function.

2.3 Localisation

Given a domain R, we will say that a multiplicatively closed subset S of R
not containing zero is an Ore set in R if it satisfies both the left and right
Ore conditions, i.e. if given any pair of elements s € S and r € R there exist
elements s',s" € S and ', r" € R such that rs' = sr’ and s"'r = r''s.

Given an Ore set S in R we may form Rg, the localisation of R at S. Also,
in this case, given an R-module M we may construct the module of quotients
Ms = M ®g Rs. See Chapter 2 of [14] for more details.



2.4 Global dimension and Ext

Given a ring R and an R-module M, we may construct a projective resolution
of M as an R-module:

=P, 3Py =5 F—+M=0

The projective dimension of M, pd(M) is defined to be the smallest n such
that there is a projective resolution

0P, P13 =>F—->M=0

or oo if no such exists.
The global dimension of R is then defined to be

sup{pd(M)|M is an R-module}
Lemma 2.1. If S is an Ore set in R, then gldim(Rg) < gldim(R).
Proof. See Corollary 7.4.3 of [14]. O
Given a projective resolution of M as above we define
E4(M) = Extly(M, R)
to be the i*" homology group of the complex
0 —» Hompg(Py, R) - Homg(P;,R) — - -+ — Hompg(P;,R) — --- .

This definition is independent of the choice of resolution, see [17] for example.
Notice that, since R is an R-bimodule, if M is a left (right) R-module then
E% (M) is right (left) R-module.
Given a ring R and an R-module M, the grade of M, jr(M) is defined by

Jr(M) = min{i > 0| E*(M) # 0}

or oo if no such ¢ exists.

If R is a Noetherian ring with finite global dimension then for all non-zero
finitely generated R-modules M, jr(M) < gldim(R), see [10]. It is easy to see
in this case that E% (M) is zero for all i > gldim(R).

Also note that if R is Noetherian and M is a Noetherian R-module, then
M has a projective resolution consisting of Noetherian free modules. It follows
that E% (M) is also a Noetherian R-module, as it is a section of Hompg(P;, R)
for some finitely generated free module P;.

A finitely generated module M over a ring R is said to satisfy Auslander’s
condition if for every i > 0 and for every submodule N of E4(M) we have
Jr(N) > i.

A ring is said to be Auslander regular if it has finite global dimension and
all finitely generated modules satisfy Auslandder’s condition.

Lemma 2.2. A short exact sequence
0O->N—->M-—-L—->0
induces a long exact sequence

o= EEY(N) = Ei(L) —» E4(M) — EL(N) — - -



Proof. See Theorem 7.5 of [17] for example. O

Lemma 2.3. If R and M are Noetherian, and S is an Ore set in R, then
ER(M)s = Ey_(Ms) for each i.

Proof. Let --- — P, -+ P, 1 =& -+ — Py = M — 0 be a projective resolution
of M as an R-module consisting of finitely generated free modules. Then

-+ = (Pp)s = (Ppe1)s = - = (Po)s > Ms — 0

is a projective resolution of Mg as an Rg-module consisting of finitely generated
free Rg-modules. For each i, (Hompg(P;, R))s = Hompg,((FP;)s,Rs). Since
localisation is an exact functor the result follows. O

Lemma 2.4. Given a homomorphism R — S of Noetherian rings such that S is
both free as a left R-module and free as a right R-module and M is a Noetherian
right R-module then

EL(M ®g S) = S ®r EL(M)
for each i > 0.

Proof. Again, let --- - P, - P,_1 — --- = Py - M — 0 be a projective
resolution of M as an R-module consisting of finitely generated free modules.
Then

> P, ®rS > P_1®rS > - > P QrS—> MQ®grS

is a projective resolution of M ®g S as an S-module consisting of Noetherian
free modules since — ®g S is an exact functor.

For each i, Homg(P; ®g S,S) = S ®g Hompg(F;, R). The result follows as
S ®g — is an exact functor. O

2.5 DPolyhedral cones

We say a subset of R is a convex polyhedral cone if it can be written as the
intersection of finitely many closed or open linear half spaces in R®. The di-
mension of a convex polyhedral cone S is defined to be the dimension of the
subspace spanned by S and written dim(S). A convex polyhedral cone is said to
be rational if each of the half spaces have boundaries induced from a subspace
of Q.

A subset A of R is said to be a rational polyhedral cone if it can be written
as a finite union

A=SU---US

of rational convex polyhedral cones. The dimension of A, dim(A) is defined to
be max(dim(S;)).

Notice that if A is a polyhedral cone then at each point z € A, LC,(A) is
also a polyhedral cone of dimension at most dim(A). We say that a polyhedral
cone A is homogeneous if dim(LC,(A)) = dim(A) at each point z € A.



2.6 Crossed products

We say that a G-graded ring R is strongly G-graded if R,R, = R,, for all
z,y € G.

If G is a group with identity element e, then we say that a G-graded ring
is a crossed product of R, by G, written R.G, if R, contains a unit Z for each
x €.

Given a crossed product of a ring R by a group G a typical element o of RG
may be written uniquely as a finite sum

o= Zg_m
i

with r; non-zero elements of R, and g; distinct elements of G. The set {g;} is
called the support of a, and is written supp(a).

Given a subgroup H of G, RH = {a € RG|supp(a) C H} is a crossed
product of R by H. If H is normal in G then we may consider RG as a crossed
product of RH by G/H.

We now review some well known results about a particular sort of crossed
products. We suppose that DA is a crossed product of a division ring D by a
finitely generated free abelian group A.

Lemma 2.5. DA is a Noetherian domain. Its global dimension is at most

rk(A).

Proof. That DA is Noetherian follows from Theorem 1.5.12 of [14].

We may impose a total order on A compatible with the group structure.
Then given a pair of non-zero elements z,y in DA we see that the support of
the product of z and y contains the product of the maximal elements in their
respective supports; in particular zy is not zero, and DA is a domain.

The statement about global dimension follows from Corollary 7.5.6 of [14].
O

Given any crossed product of the form DA and any subgroup B of A we
will write Sp for the subset DB\0 of DA. The point of this definition is the
following lemma:

Lemma 2.6. If B is a subgroup of A then Sp is an Ore set in DA and DAg,
is a crossed product of DBg, by A/B.

Proof. Same as proof of Lemma 37.7 in [16]. O

We now recall the definition by Brookes and Groves of an invariant for
modules over rings of the form DA and some of their results.

Given an group homomorphism x from A to R we may define F)YDA to be
the D-linear span of {a € A|x(a) > p}. This defines an R-filtration of DA. We
call this the x-filtration of DA.

We say that an R-filtration {F, M} of a left DA-module M with respect to
the x-filtration of DA is a x-filtration of M.

A yfiltration {F,M} of a DA-module M is said to be trivial if M = F, M
for some p € R.

A x-filtration {F, M} of a DA-module M is said to be natural if there is a
finite generating set X of M such that F,M = FYDA.X for each u € R.



Definition. Given a DA-module M, let Ay(M) = A(M) be the subset of
Hom(A,R) such that x € A(M) precisely if there is a non-trivial x-filtration of
M or x =0.

Proposition 2.7 (Proposition 2.1 of [6]). Suppose that M is a left DA-
module with finite generating set X. The following are equivalent for x €
Hom(A4, R)\0.

1. x ¢ A(M);

2. the natural x-filtration of M given by F,M = FXDA.X is trivial;
3. M is generated by X over a Noetherian subring of F)DA;

4. M is generated by X over F{DA;

5. for each x € X, there exists a € DA such that a.x = 0 and o (a) = 1.

Lemma 2.8 (Corollary 2.2 of [6]). Suppose that
0O=+L—-+M-—=-N=0

is a short exact sequence of finitely generated D A-modules. Then
A(M) = A(L)UA(N)

Brookes and Groves showed in the remarks following Proposition 4.2 and in
Theorem 4.4 of [7] that the following is true:

Lemma 2.9. If M is a finitely generated D A-module then the following equali-
ties hold and we may call this dim s M or the dimension of M as a DA-module.

GKdimp(M) = max{rk(B)|B < A and Mg, # 0}
= min{rk(B)|B < A and M is a f. 9. DB-module}.

This dimension is also equal to the dimension of the mazimal convex polyhedral
cone contained in A(M).

Lemma 2.10. If0 = L - M — N — 0 is a short exact sequence of finitely
generated D A-modules then

dimyg M = max{dim4 L,dim4 N}.
Proof. This follows from Lemmas 2.8 and 2.9. |

We say that a finitely generated DA-module M is pure if every non-zero
submodule has the same dimension.

Lemma 2.11. If M is a pure D A-module of dimension m and B is an isolated
subgroup of A such that M is finitely generated over DB then M is pure as a
D B-module of dimension m.



Proof. First note that it suffices to prove the result in the case where A/B is
infinite cyclic since we may then complete by induction.

Let N be a critical DB-submodule of M. By Lemma 2.4 of [7] either N.DA
N ®pp DA or dimy N.DA = dimg N. Since M is a Noetherian D B-module
and N.DA is a submodule of M the former cannot hold and so dimg(N) =
dim4(N.DA) = dim4 (M), since M is a pure D A-module.

We have now proved that every critical DB-submodule of M has dimension
dim 4 (M). But also dimp (M) has dimension m by Lemma 2.7 of [7]. The result
follows. O

We say that M is critical if every proper quotient has strictly smaller di-
mension.

Notice that every non-zero submodule of a critical module is critical with
the same dimension.

Given a subgroup B of A we write wg = 7g for the restriction map from
Hom(A4,R) to Hom(B, R).

3 The Cohen—Macaulay condition

Recall that given a ring R and an R-module M we write E%L(M) to denote
Exts(M, R) and jgr(M) to denote the grade of M, that is the least i such that
(M) # 0.

An algebra R is said to be Cohen—Macaulay if for all finitely generated non-
zero R-modules M,

jr(M) + GKdim(M) = GKdim(R)

In this section we let DA be a crossed product of a division ring D by a
finitely generated free abelian group A. We aim to prove that DA is Cohen—
Macaulay.

We begin with the following Lemma:

Lemma 3.1. If M is a non-zero finitely generated D A-module, then
jpa(M) + dimy (M) < rk(A).

Proof. Lemma, 2.9 tells us that there exists an isolated B < A such that Mg, #
0 and rk(B) = dim4(M). Let S = Sp.

Now, by Lemma 2.3 jpa(M) < jipays(Ms). A remark in section 2.4
tells us that jpa)s(Ms) < gldim((DA)s). Finally, Lemma 2.6 tells us that
gldim((DA)s) < rk(A/B) = rk(A4) — rk(B). O

Lemma 3.2. If M is a non-zero finitely generated D A-module, then
dim 4 (E% 4 (M)) < min{dim(M),rk(A4) — i}
for 0 < i <rk(A).
Proof. Suppose B < A is an isolated subgroup such that
rk(B) > min{rk(A) —i,dim4(M)}.

Let S = Sp. There are now two cases.



Firstly, if rk(B) > rk(A) — i then gldim((DA)s) < rk(A4/B) < i and so
EL (M) =0.
Secondly, if rk(B) > dim4(M) then Lemma 2.9 tells us that Mg = 0 and
Lemma 2.3 gives ' ’
Epa(M)s = E(pay,(Ms) =0

The result. now follows by applying Lemma, 2.9 with the finitely generated D A-
module E}, 4 (M) in the place of M. O

Next we prove a technical result that will be used later.

Lemma 3.3. If B < A with A/B = Z and N is a finitely generated right
D B-module, then every non-zero D A-submodule of N @ pg DA has dimension
at least 1.

Proof. Lemma 2.9 tells us that it is sufficient to prove that if C' is a complement
to Bin Aand 0 #x2 € N®pp DA then 2.DC = DC.
Now if 0 #x € N @pp DA, we may write it uniquely as

m:ZniQ@Ei

i€Z

with n; € N and C = (< ¢) > and at least one n; # 0.
Then if z. > A\;& = 0 with at least one ); # 0 we have

Yy = Z ni/\g-i) et =0
i,j€Z

where )\gi)éi = &')\;. Now if i, j are maximal such that n; # 0 and \; # 0, the
&7 coefficient of y is ni/\gi) # 0, a contradiction. So z.DC = DC. O

Theorem 3.4. DA is Cohen—Macaulay.

Proof. We prove this by induction on rk(A).

Due to Lemma 3.1 the result is trivial for rk(4) < 1 as if rk(4) = 1 then
only torsion modules can have dimension 0 and these must have grade at least
1 since Hompa (M, DA) = 0.

Suppose that A is a minimal counterexample.

By symmetry it is enough to prove the result for right modules. So we
pick M a finitely generated right D A-module of maximal dimension such that
jpa(M) + dima (M) < rk(A). We let m = dima(M) and k = rk(4) — m.
Clearly m < rk(A).

We now aim to prove that for each i < k, that if E% , (M) # 0 then
dima(EL 4(M)) = 0. Suppose that B < A is isolated and has rank 1, and
S = Sp. By Lemma 2.9, it is enough to show that E% ,(M) must be DB-
torsion for any such B.

By Lemma 2.9, GKdimpp,(Mg) < m — 1, since if C/B < A/B with Mg
not torsion over DBg(C'/B) then M is not torsion over DC.

By the induction hypothesis on rk(A),

Jjpas (Ms) =rk(A/B) — GKdimpp, (Ms) > (tk(4) —=1) = (m —1) = k.
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It follows that if i < k then E},, (Ms) is zero. But by Lemma 2.3 we have

(Epa(M))s = Epa, (Ms)

and so E4 ,(M)s = 0. Thus E% 4 (M) is DB-torsion as required.

Since dimy (M) < rk(A), Lemma 2.9 ensures that there exists B < A with
A/B 22 7 such that M is finitely generated as a DB-module. Write N for M
considered as a D B-module.

The map N @ pg DA — M ; n ® a — na induces a short exact sequence

0—-L—>N®pgDA—->M—0
Since dim4(N ®pp DA) =m + 1 >m and
dimy (N @ pp DA) = max{dim4(M),dim4(L)}

by Lemma 2.10, we have dim4(L) = m + 1. The maximality of the dimension
of M as a counterexample implies that

jpa(L) = rk(4) — dima (L) =rk(4) = (m+1) =k -1

and similarly that jpa(N @ pg DA) =k — 1.
For i < k — 1 there is an exact sequence

E5A(L) = Ep (M) = Ep 4 (N ®pp DA)

and E% 4 (L) = 0.
Fori<k—1, EH,(N ®pg DA) =0, and so E}, ,(M) = 0.
For i = k — 1, using Lemma 2.4, the exact sequence becomes

0— EX (M) — DA®pp E&G (N).

We have already shown that dima (E%!(M)) = 0. By the left module version
of Lemma 3.3 every non-zero submodule of DA ® pp E¥ 2} (N) has dimension
at least 1. Tt follows that E% (M) = 0, and jpa(M) > k, a contradiction. [

Corollary 3.5. DA is Auslander regular.

Proof. Let M be a finitely generated DA-module and let ¢ > 0. By Lemma
3.2, dimy (B4 ,(M)) < 1k(A4) — i and so dimy(N) < rk(A) — i for each DA-
submodule N of E% ,(M). It now follows from Theorem 3.4 that jpa(N) > i
as required. O

4 Ext and A(M)

We now aim to produce another condition for when x ¢ A to go along with
those found in Proposition 2.7. We begin by making a definition.

Definition. If x € Hom(A,R) we define
S=8,={a€eDAlc" (a) =1}
where o (o) denotes the symbol of a with respect to the x-filtration FX defined

i section 2.6

11



The following lemma was proved in [7] in the case when yx is discrete. Here
we extend that result with a broadly similar proof.

Lemma 4.1. For all x € Hom(A,R), S, is an Ore set.

Proof. Firstly note that given non-zero a, f € DA, ¥ (af) = o (a)o™™ (B)
so S is multiplicatively closed.

Now observe that S C Ff DA, and that it is sufficient to prove that S is an
Ore set in the ring Fi*DA since it is invariant under conjugation by the units
in A C DA.

Now let s € S and r € FfDA. Write X = supp(s) Usupp(r) a finite set and
let R be the ring generated by D and X.

By McConnell’s extension of the Hilbert basis theorem, Theorem 1.4.5 of
[14], R is a Noetherian subring of F*'DA. Also R contains both s and r.

Let T=SNR,and set I =T — 1, an ideal in R. As R is Noetherian I
has a finite generating set Y say. We let Z = J,cy supp(y). Then Z C I since
I is a homogeneous ideal in R with respect to the natural grading by monoid
generated by X. Indeed Z is itself a finite generating set for I as an ideal in R.

Given z € Z, ZR = RZ. It follows by Proposition 4.2.6 of [14] that I has the
Artin-Rees Property. Now Proposition 4.2.9 of [14] tells us that T is a Ore set
in R. Since s € T C S, and r € R C FFDA it follows that S is a right Ore set
in FXDA. O

Now we may strengthen Proposition 2.7 to include the statement that y &
A(M) if and only if Ms_= 0 as the latter is plainly equivalent to condition (5).

This enables us to connect the homological results of the previous section
with A.

Firstly,

Proposition 4.2. If M is a finitely generated D A-module then

rk(A)
AM) = | AEHA(M))

=0

Proof. By Lemma 2.1, for each x € Hom(A, R), the global dimension of DAg,
is at most the global dimension of DA which in turn is at most the rank of
A by Lemma 2.5. So by a remark in section 2.4 we have Mg # 0 if and
only if E}, As, (Ms,) # 0 for some i < rk(A). Thus Lemma 2.3 tells us that

Ms, # 0if and only if Ef ,(M)s, # 0 for some i < rk(A). The result follows
immediately. O

This provides a kind of filtration of A as dim 4 (F*(M)) < rk A—i by Lemma
3.2.
Notice that it follows from this that dim A(E’DDX(M) (M)) = dim4(M).

Theorem 4.3. If M is a finitely generated critical D A-module then A(M) =
A (Ef‘JA(M)) and A(N) = A(M) for all non-zero submodules N of M.
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Proof. Let j = jpa(M). Proposition 2.5 of [5], tells us that as DA is Auslander
regular there is an exact sequence

0= M = E} 4 (B4 (M) Q=0

with jpa(Q) > j + 2.
So using Proposition 4.2 and Lemma 2.8 we deduce that

A(Ep4(M)) C AM) C A(E] 4 (Ep 4 (M) C A(E 4 (M)

and we get equalities throughout.

Now if 0 # N < M, then dim4(M/N) < dima (M) and Theorem 3.4 tells
us that jpa(M/N) > j. So the long exact sequence, Lemma 2.2, implies that
E}, ,(M) embeds into EY, ,(N). Lemma 2.8 therefore gives

A(N) C A(M) = A(ES, ,(M)) C A(E 4(N)) = A(N)
and equalities hold throughout. O

We now show that Eﬁ’j(*)(—) provides a kind of duality between right
D A-module and left D A-modules.

Definition. A critical composition series for a D A-module M of length n is a
chain of submodules

O=Mo<My<My<---<M,=M

such that M;/M;_1 is critical with dim 4 (M;/M;_1) < dim4(M;11/M;) for each
7.

Lemma 4.4. Every DA-module M has a critical composition series.

Proof. By Proposition 2.5 of [7] every finitely generated D A-module has a crit-
ical submodule. We construct a critical composition series for M by letting
M;/M;_; be a maximal critical submodule of M /M;_1 of minimal dimension for
i > 1. The process must stop as M is Noetherian. We claim that at each stage
every non-zero submodule of M /M; has dimension at least d := dim 4 (M;/M;_1)
SO we may continue.

To prove our claim we suppose that N/M; is a non-zero submodule of M /M;
with dim4(N/M;) < d. By Lemma 2.10 dim4(N/M;_1) = d. We aim to show
that N/M;_; is critical of dimension d contradicting the maximality of M;.
To that end suppose that L/M;_; is a non-zero submodule of N/M;_; with
dim4(N/L) = d. Then as

dima(N/(M; + L)) < dima(N/M;) < d

and
dim4(N/L) = max{dim4 (N/(L + M;)),dim4((L + M;)/L)

we must have dim(M;/(L N M;)) = dima((L + M;)/L) = d. Since M;/M;_;
is critical of dimension d we can deduce that L N M; = M;_; and so L/M;_;
embeds in N/M; but has strictly bigger dimension, a contradiction. O

Definition. We say that a submodule N of a module M is essential in M if
for every non-zero submodule L of M we have LN N # 0.
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Notice that if M is a critical module then any non-zero submodule is es-
sential in M. Since if N and L are two non-zero submodules of M with trivial
intersection then L is isomorphic to a submodule of M /N but has strictly bigger
dimension.

Definition. We say two modules My and M, are similar if they have non-zero
essential submodules N1 and Ny respectively such that N1 =2 Ns.

Lemma 4.5. Any two critical composition series for M have equal length. In-
deed, up to permutation their composition factors must be similar.

Proof. This is identical to the proof of Proposition 6.2.21 of [14]. O
Definition. Given any finitely generated DA-module M, there is a unique
largest submodule N with dima(N) < dima(M). M/N is pure and we de-

fine the length of M, I(M), to be the length of a critical composition series for
M/N.

Lemma 4.6. If0 > N - M — L — 0 is exzact then

1. If dim4(N) = dimy (L) = dima (M) then [(M) = I(N) + I(L);
2. if dimg(N) < dimg (L) = dima (M) then (M) = I(L);
3. if dima(L) < dim4(N) = dimu (M) then [(M) = I(N).
Proof. This is straightforward. O

Proposition 4.7. For all finitely generated D A-modules,
1(M) = 1B ().

Proof. Let j = jpa(M). By Proposition 2.5 of [5] we know that there is an
exact sequence

0= N—= M- EL,(ELy(M) = Q—0
with dim4(N) < dimy (M) and dima(Q) < dim4(M). So Lemma 4.6 tells us
that [(M) = I(ED 4(Epa(M))).
It now suffices to prove that I(E3, ,(M)) > (M) for all finitely generated
left or right modules M.
We prove this by induction on [(M).

If I(M) =1 the result is clear since every module has length at least one.
Otherwise, there is an exact sequence

O->N—->M-—>L—-0

with dim4(N) = dim4(M) = dima(L). It follows from Lemma 2.2 that there
is an exact sequence

0= Ep 4 (L) = Ep 4 (M) — B} 4 (N) = E5f (L)
By Lemma 3.2 and the remark following Proposition 4.2,
dima(Bpy (L)) < tk(4) = j = dima(Ep4(N)),
and we deduce from Lemma 4.6 and the induction hypothesis that

WE 4(M)) = (B} 4 (L)) + I(EH 4(N)) > U(L) + U(N) = I(M).

14



We see in particular from this that the correspondance M < ngf) (M)
defines a bijection between simple left D A-modules of minimal dimension and
simple right D A-modules of minimal dimension.

5 Homogeneity of A(M)

In this section we explain how to prove Theorem C. We adopt the following
strategy: to prove that a polyhedron A is homogeneous is to prove that at each
point x € A, dim LC,(A) = dim A. If A is a closed rational polyhedron then
it is the closure of its rational points. It follows that in this case it suffices
to prove dim LC;(A) = dim A for each rational point in A. By Theorems
A and B this reduces us to proving that dim4(grX(M)) = dim4 (M) for each
rational character x € A(M). By Theorem 3.4 this is equivalent to proving that
jpa(grX(M)) = jpa(M) for each rational character x € A(M). Once we have
proved the polyhedron is homogeneous we can slightly strengthen a projection
result of Brookes and Groves and then use it to prove that A is totally concave.
We quote a result of Bjork and Ekstrom:

Proposition 5.1 (Corollary 5.8 of [5]). Let R be a filtered ring whose Rees
ring is left and right Noetherian and such that R and its associated graded ring
are both Auslander regular. If M is a pure R-module with a good filtration whose
associated graded module is non-zero, then jr(gr(M)) = jr(M).

This is the result we need but we must spend some time interpreting it in
our language before we can apply it.

By afiltered ring Bjork and Ekstrém mean a Z-filtered ring which, practically
speaking, coincides with our notion of R-filtered ring in the case where Flf R=
F,R for each p € Z; except for the fact that their filtrations also go in the
opposite direction to ours — that is they insist that F, R C F,R whenever
p < v. This latter problem can be dealt with by simple re-indexing and is not
at all serious.

The Rees ring R of a Z-filtered ring R is the subring of R[t,t '] given by

R =P F,Rt".

neZ

If x is a rational character then for our purposes we do not lose generality
by assuming that x(A) = Z. In this case it is not difficult to see to that the
Rees ring of FXDA is Noetherian since

FxDA = D(kery)[t™', (at)*"]

where a € A is chosen such that x(a) = 1.

For the filtrations that we are interested in D A is isomorphic to its associated
graded ring and so these rings are Auslander regular by Corollary 3.5.

By a pure module Bjérk and Ekstrém mean a module M such that each
non-zero submodule M’ of M satisfies jr(M') = jr(M). By Theorem 3.4 this
coincides with our definition of pure for D A-modules.

It now just remains to point out that by Remark 4.13 of [5] that, for x
rational, a natural y-filtration is always good.
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At last we can see that Proposition 5.1 tells us precisely what we wanted
to know, namely that for rational characters dim 4(grX(M)) = dim4(M). This
completes the proof of

Theorem 5.2. If M is a pure finitely generated D A-module of dimension m,
then A(M) is a closed homogeneous rational polyhedral cone of dimension m.

It now just requires a little work to complete the proof of Theorem C.

Lemma 5.3. Let M be a finitely generated critical D A-module and let B be
a subgroup of A. Then for any critical DB-submodule N of M of minimal
dimension we have

Proof. Just run the proof of Theorem 5.5 of [7] remembering that A*(N) =
A(N) and A*(M) = A(M). O

Theorem 5.4. If M is a finitely generated pure D A-module of dimension m
then A(M) is a closed totally concave homogeneous rational polyhedron of di-
mension m.

Proof. We have already proved everything except that A(M) is totally concave.

Recall Theorem B, that is that for each x € A(M) we have LC, (A(M)) =
A(grXM). Since grX M is a finitely generated D A-module it is sufficient to prove
that the convex hull of A(N) is a linear subspace of Hom(A, R) for all finitely
generated D A-modules N.

Let N be any finitely generated DA-module. Suppose that X is the linear
subspace of Hom(A4, R) spanned by A(N) and that A C X is the convex hull
of A(N) in Hom(A,R). If A were contained in a closed halfspace of X then as
A(N) is a rational polyhedral cone it is also contained in a rational half space
of X, that is a half space of the form

H = {x € X|x(a) > 0} for some a € A.

Now suppose that N’ is a composition factor in a critical composition series for
N and let L be a critical D < a > submodule of N’ of minimal dimension. By
Lemma 5.3, m<o>(A(N')) = A(L), but

T<a>(A(N')) C meas(A(N)) C RZC

and so A(L) C R2%. Tt follows that A(L) = 0 and so that 7.4~ (A(N')) = 0.
Now A(N) is the union of A(N') as N' ranges over all the composition factors
in the critical composition series for N, s0 <4~ (A(N)) =0, and A(N) C {x €
X|x(a) = 0} a proper subspace of X, contradicting the definition of X. O

6 Rigidity of A(M)

In this section we show how the ideas of Bieri and Groves in [4] can be used to
produce an alternative proof of Theorem B of [8]

If DA is a crossed product of a division ring D by a finitely generated free
abelian group A we say a D A-module M is impervious if it contains no non-zero
submodule of the form N ® pp DA for B a subgroup of A of infinite index.
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Recall that two D A-modules are said to be similar if they have isomorphic
essential submodules or, equivalently, if they have isomorphic injective hulls.
We will write [M] for the equivalence class containing M.

Given a DA-module M we define Fys(A) for the subgroup of A consisting
of those a in A such that M has an essential submodule N that is D{a)-torsion.
This group depends only on the similarity class of M.

Given a ring automorphism v of DA and a DA-module M we may define a
new DA-module yM, by composing the action of DA on M with v. We define
the stabiliser of [M], Stabp4([M]) to be the subgroup of Aut(DA) consisting
of those v such that [M] = [yM].

An automorphism of DA induces an automorphism of A that leaves Fps(A)
invariant.

Theorem 6.1 (Theorem B of [8]). Let M be a finitely generated impervious
DA-module. Then Stabpy(pa)[M] has finite image in Aut(A/Fp(A)).

We begin by recalling a lemma from [4] that will prove to be useful.

Lemma 6.2 (Lemma 5.3 of [4]). Let V be an n-dimensional vector space over
Q and € a finite family of n — 1-dimensional subspaces. If € has the property
that it contains complements to every one dimensional subspace L <V, then V
is spanned by the 1-dimensional subspaces of the form XyN---NX,_1, X; € €.

We now prove Theorem 6.1 in the case where M is a uniform module; that
is where that every non-zero submodule of M is essential in M.

Proposition 6.3. If M is a finitely generated impervious uniform D A-module.
Then Stabpuypa)[M] has finite image in Aut(A/Far(A)).

Proof. Suppose that N and N’ are critical DA-submodules of M. Then as
N N N’ is a non-zero submodule of N and of N’ we have by Lemma 4.3

A(N) = A(NNN') = AN').

So we may define A®¢(M) = A(N). Tt is easy to see that A™¢(M) depends
only on the similarity class of M and so if v € Stabauypa)[M] then the auto-
morphism induced on Hom(A4,R) leaves A = A"¢(M) invariant. Notice also
that Fn(A) = Fu(A) since M is uniform.

Now the Bergman carrier €(A) of A is defined to be the uniquely determined
finite set of rational subspaces X < Hom(A,R) such that [J{X|X € €(A)}
contains A and is minimal with respect to that property. Since, by Theorem
C, A(N) is a homogeneous polyhedral cone, the dimension of each X € €(A) is
the dimension of N, m say.

By Lemma 2.5 of [8] the intersection ({X|X € €(A)} = 0, since N is
impervious and critical. Moreover, by Lemma 2.4 of [8] the span of [J{X|X €
€(A)} is ker mry (4). As Stabayugpa)([M]) fixes A it acts on the finite set €(A)
and so has a subgroup of finite index G, say, that fixes each of the elements
of €(A) pointwise. If we can show that the 1-dimensional spaces that occur as
intersections of spaces in €(A) span ker mx, (4) then G must fix ker x4y =
Hom(A/Fa(A)) pointwise and the result will follow.

Now suppose that L is a 1-dimensional rational subspace of some X €
¢(A) C Hom(A4,R). Then there is a subgroup B of A such that A/B = Z
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and L is the kernel of 7. By Lemma 5.3, mg(A) = A(N') for some critical
D B-submodule of N and so is a homogeneous totally concave polyhedral cone.
Ifdimmg(A) =m—1then L CY for each Y € €(A). But that would mean
that L lies in the intersection {Y|Y € €(A)}, a contradiction.
So dim7g(A) = m. As wg(A) is homogeneous and dim7g(X) = m — 1,
it follows that mp(X) is contained in g (Y") for some ¥ € €(A) with X #Y.
Thus X CY + L and so X = (Y N X) & L. It follows that the set

Cx ={XNY|X £Y € €(A)}

of rational subspaces of the rational space X has the property that every rational
line in X has a complement in €x. So by Lemma, 6.2 we have that X is spanned
by 1-dimensional intersections of subspaces in the Bergman carrier of X. Since
this holds for each X € €(A) we have that all these 1-dimensional spaces span
the kernel of 7z, (4) as required. O

We now complete the proof of Theorem 6.1.

Proof. Suppose that M is not a uniform module. Then there is an essential
submodule of M isomorphic to N = My @ - -- @ M}, with each M; a uniform
DA-module. Then [M] = [N]. Now {A°"¢(M), ..., A" (M})} is an invariant
of [M]. Tt follows that the image of Stabayuy(pa)([M]) in Aut(A) acts on this
finite set and so has a subgroup G of finite index that fixes each of the elements
Acore(M;). By Proposition 6.3 the image of G in Aut(A)/Fp; (A) is finite for
each i. So the image of G in the direct product of all these groups is finite. If H
is the kernel of this last map then it has finite index in G and the image of H
in Aut(A)/Fum(A) is trivial since Fpr(A) = (| Fu; (A). The result follows. O
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