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Abstract

We prove a result about the possible dimensions of modules over the
completed F, group algebra of a Heisenberg pro-p group that are not tor-
sion qua modules over the centre. We explain why this result is analogous
to a result of Bernstein for modules over Weyl algebras in characteristic
0.

1 Introduction

In this paper we study the representation theory of completed group algebras
of pro-p groups of finite rank. These are complete Noetherian local rings and
are of interest to number theorists who often call them Iwasawa algebras.

Finite rank pro-p groups can be thought of as p-adic Lie groups. The theory
of these was first developed by Lazard in [12]. A good modern account of this
can be found in [8] by Dixon, de Sautoy, Mann and Segal.

Completed group algebras have recently been studied from a representation
theoretic point of view by Venjakob. In [16] he showed that if a pro-p group
of finite rank has no p-torsion then its completed group algebra is Auslander
regular with the associated canonical dimension function of a module the same
as the Krull dimension of the associated graded module with respect to a natural
filtration. For a good introduction to the theory of Auslander regular rings see
Clark’s survey [7].

Ardakov has also looked at the representation theory of Iwasawa algebras.
In [1] he showed that if a pro-p group of finite rank is soluble then the Krull
dimension and the global dimension of its completed group algebra take the
same value, whereas if the group is associated to a split simple Lie algebra of
finite rank not of type sl, then the Krull dimension is strictly smaller than the
global dimension.

We start by studying the completed group algebras of abelian pro-p groups
of finite rank; we prove similar results to those of Bieri and Groves in [2] for the
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the usual group algebras of finitely generated abelian groups. Bieri and Groves
used geometric properties of an invariant ¥ first developed by Bieri and Strebel
in a series of papers including [3] and [4]. Whilst an analogue of X for abelian
pro-p groups was developed by King in his thesis [10], and this invariant does
have many of the properties one might hope for, it does not seem to have good
geometry. As a result we prove our results directly rather than going via such
an invariant.
We begin by proving

Theorem A. If G is a uniform pro-p group and M is a finitely generated
F, [[G]]-module with dg(M) < dim(Ggap) — ¢, then the set of H € Gg 1 such that
M is finitely generated over F,[[H]] is open and dense.

Here G is the unique maximal torsion free abelian quotient of G' and Gg ¢
is the Grassmannian variety consisting of isolated subgroups of G' of corank ¢
containing G, equipped with its natural topology. For the definition of other
terms see section 2.

This result enables us to prove our main theorem, a pro-p analogue of an
inequality due to Bernstein which puts a lower bound on the Gelfand-Kirillov
dimension of modules for Weyl algebras in characteristic 0.

Theorem B. If G is a Heisenberg pro-p group of rank 2r + 1 and centre Z,
and M is a finitely generated Fp[[G]]-module such that dg(M) < r, then

Annpp[[g]](M) NIk, [[Z]] # 0.

To see the analogy with Bernstein’s inequality for Weyl algebras notice that
if we localise F, [[G]] at the set F,[[Z]]\0 then the localisation of every module
of dimension smaller than r is 0. So there is a lower bound on the dimension of
modules that are not annihilated under this localisation.

Or put another way,

Corollary C. Suppose that G is a Heisenberg pro-p group of rank 2r + 1 with
centre Z and S is the central multiplicatively closed set F,[[Z]]\0O. Then for any
finitely generated module M over F,[[G]]ls and any finitely generated F,[[G]]-
submodule N of M with Ns = M we have dg(N) > r + 1.

Notice that this really is a direct analogue of Bernstein’s inequality as dg(N)
measures the growth rate of N with respect to its natural filtration. It seems
reasonable to also consider it as a measure of the growth rate of M — perhaps
one should take this to be smallest possible value as N varies amongst submod-
ules of the given type. Also whilst the number 7+ 1 is one bigger than we might
expect, we can explain this by noticing that we are measuring the growth rate
over the base field F, rather than over the whole of the ‘central’ subalgebra
grF,[[Z]] that is the true analogue of the base field of a Weyl algebra.

We also obtain,

Corollary D. If G is a Heisenberg pro-p group of rank 2r +1 and centre Z and
S is the central multiplicatively closed set F,[[Z]]\O then the global dimension of
the localisation Fp[[G]]s is r.

One might hope to extend Theorem B by proving a similar result for more
general nilpotent class 2 pro-p groups. The work of Brookes on crossed products
of fields by discrete abelian groups in [5] might lead us to make the following
conjecture:



Conjecture. Suppose that G is a uniform nilpotent class 2 pro-p group of finite
rank with centre Z. Let H be an abelian subgroup of G of maximal rank and
let k = dim(G) — dim(H). If M is a finitely generated T, [[G]]-module with
da(M) < k then AHHFP[[Z]] (M) #0.

Theorem A also has implications for certain homological properties of finitely
generated pro-p groups; we discuss these in [17].
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2 Preliminaries

2.1 Groups

Given a group G and elements g,h € G, we write [g,h] for g7'h~1gh. Then
given subgroups H,K < G we write [H, K] for the subgroup generated by
{[h,k]|h € H,k € K}. We also write G' for [G,G].

We say that a normal subgroup H of a group G is isolated in G if G/H is
torsion free. If H is any subgroup of G we write i(H) for the unique minimal
normal isolated subgroup of G that contains H.

If a group G acts on a set X we write Cg(X) for the subgroup of G that
fixes each element of X pointwise.

2.2 Pro-p groups

A profinite group is a compact Hausdorff topological group whose open sub-
groups form a base for the neighbourhoods of the identity.

A pro-p group is a profinite group in which every open normal subgroup has
index equal to a power of p, a prime.

A pro-p group is powerful if G/GP® is abelian, where e = 2 if p = 2 and
e = 1 otherwise.

A pro-p group G is finitely generated if it has a finite subset X such that the
closure of the subgroup generated by X is G. We call X a topological generating
set for G.

Given a profinite group G we set d(G) to be the minimal cardinality of a
topological generating set for G. We then define the rank of G to be

rk(G) = sup{d(H)|H is a closed subgroup of G}.

If G is a finitely generated powerful pro-p group then rk(G) = d(G) holds.
Given a pro-p group G the lower p-series of G is defined as follows: G1 = G
and for ¢ > 1

Gip1 = GG}, G]
A finitely generated powerful pro-p group is uniform if for each i

|Gi/Git1] = |G/Ghl-



We recall a useful result that occurs as Corollary 4.3 in [8]:

Lemma 2.1. Every pro-p group of finite rank has a characterstic open uniform
subgroup.

Given a pro-p group G of finite rank the dimension of G, dim(G) is defined
to be the rank of any open uniform subgroup of G. That this is well-defined is
the content of Lemma 4.6 of [8].

2.3 Completed group algebras

Given a uniform pro-p group G the completed group algebra of G over F, is

Q6 =F,[[G] = lm F,[G/N]
NG

We will write Jg for the kernel of the natural map Qg — F,.

A pro-p Qg-module is a pro-p group M that is an abstract Qg-module such
that the natural map M x Qg — M is continuous.

We now summarise some results of Chapter 8 of [18]:

Proposition 2.2. Suppose that G is a uniform pro-p group.
1. Qg is a complete Noetherian local domain with maximal ideal Jg.
2. The sequence (J&)n>0 is a filtration of Qq consisting of open ideals.

3. The associated graded ring of Qg with respect to this filtration, gr'c (Qg)
is a polynomial ring over F, in dim(G) variables.

4. FEvery finitely generated Qg-module M is a pro-p Qa-module.

5. If we filter any pro-p Qg-module M by (MJ%)n>0 then the filtration is
separated. The associated graded module gr's (M) is a gr’c (Qg)-module.

We finish this section by recalling a useful little lemma that connects the
question of whether a module is finitely generated with the question of whether
its associated graded module is finitely generated.

Lemma 2.3. Suppose that G is a uniform pro-p group and that M is a pro-
p Qg-module such that every open neighbourhood of 0 in M contains M JE
for sufficiently large n. Then M is a finitely generated Qg -module whenever
gr’/e (M) is a finitely generated gr'c (Qg)-module.

Proof. See the proof of Lemma 8.6.2 of [18] O

2.4 Global dimension and Ext

Given a ring R and an R-module M we define
Ej(M) = Exty(M, R)

Notice that, since R is an R-bimodule, if M is a left (right) R-module then
E% (M) is right (left) R-module. The grade of M, jr(M) is defined by

jr(M) = min{i > 0|E*(M) # 0}



or oo if no such ¢ exists. A ring R is said to satisfy Auslander’s condition if for
every Noetherian R-module M and every i > 0, every Noetherian submodule
of E*(M) has grade at least i. A ring with finite global dimension that satisfies
Auslander’s condition is said to be Auslander regular.

Lemma 2.4. If R and M are Noetherian, and S is an Ore set in R, then
EL(M)s = Ey (Ms) for each i.

Proof. Let ---— P, - P,_1 = --- = Py =& M — 0 be a projective resolution
of M as an R-module consisting of Noetherian modules. Then

"_)(Pn)S_)(Pnfl)S_)"'_)(PO)S_)MS_)O

is a projective resolution of Mg as an Rg-module consisting of Noetherian Rg-
modules. For each i, (Hompg(P;, R))s = Hompg,((P;)s,Rs). Since localisation
is an exact functor the result follows. ([

Lemma 2.5 ((Remark 6.4 of [16])). If R is a Noetherian ring and M is a
finitely generated R-module of projective dimension n then E%(M) # 0.

It follows easily from this lemma if a Noetherian ring with finite global
dimension, then the global dimension is precisely

sup{n|E"(M) # 0 and M is an R-module}.

2.5 Gelfand-Kirillov dimension

Suppose that R is an F,-algebra with finite generating set X. Set V' C R to be
the F,-vector space spanned by X. Then we may define

dx (n) = dimg, (Z V’)
We then define the GK-dimension of R by
GKdim(R) = limlog,, dx (n).

Lemma 1.1 of [11] tells us that this definition is independent of the choice of
generating set X.

Similarly given a finitely generated left R-module M with finite generating
set F', we may define

dXF dlml[: <ZV F)

and the GK-dimension of M by
GKdim(M) = limlog,, dx r(n).

Again this is independent of the choice of F' and X by Lemma 1.1 of [11].

If G is a uniform pro-p group, we define the dimension of a finitely gener-
ated Qg-module to be the GK-dimension of the associated graded module with
respect to the Jg-adic filtration. i.e.

da(M) = GKdim(gr(M)).

We recall that because gr(Q¢) is a finitely generated commutative ring dg (M)
is also equal to the Krull dimension of gr(M) as a gr(Q2g)-module.



Lemma 2.6 ((Theorem 3.21 of [16])). If G is a uniform pro-p group then
Qg is Auslander regular. Moreover if M is a finitely generated Qg-module, then

Jjag (M) + dg(M) = dim(G).

3 Grassmannians in uniform pro-p groups

We begin with a very useful lemma, the first part of which seems to be due to
Brumer in [6] in a more general settting.

Lemma 3.1. If G is a uniform pro-p group of with normal subgroup H and M
s a finitely generated Qg-module, then M is a finitely generated Qg-module if
and only if M/M Jg is a finite dimensional vector space over F,. Moreover in
this case dg(M) = dg(M).

Proof. Since Qi /Jug = F,, M is a finitely generated Qg-module implies that
M /M Jg is a finite dimensional F,-vector space.

Conversely, suppose that M /M Jg is a finite dimensional F,-vector space.
Since the natural map M/MJy x J&/Jett — MJR /M JE" is onto, gr/= (M)
is a finitely generated gr’# (Q)-module. It follows by Theorem 2.3 that M is
a finitely generated Qp-module.

Now if these conditions hold then the Qg-module M /M Jg is Artinian and
so satisfies (M /M Jy)JE = 0 for some positive integer k, since Jg is the Ja-
cobson radical of Qg. So MJE C MJy C MJg and thus, since JyJg =
JoJmu, MJZF < MJ% < MJg for each n > 1. Now

dimp, (M/MJE) < dimg, (M/MJ) < dimg, (M/MJIZF).
But,
da(M) = limlog,, dimg, (M /M J) = limlog,, dims, (M /M JZF)
and dg (M) = limlog,, dimg, (M /M J%). The result follows. O

Our goal for this section is to prove for abelian G that finitely generated Q¢-
modules M are actually finitely generated over ‘most’ subgroups of dimension
dg(M). For modules of grade 1 and 2 this is essentially the content of Lemmas
1 and 2 of [9].

We begin by defining a topology on the set of isolated subgroups of a given
dimension.

Definition 3.2. Given a free abelian pro-p group A of finite rank and i <
dim(A), define the Grassmann space Ga; = {B < A|A/B = Z!}.

Since B € G4, is the kernel of a continuous map from A to Z;', and points

are closed in Z;,, Ga,; consists of closed subgroups of A. Recall that A,, = AP”
since A is abelian.

Definition 3.3. Given B,C € Ga,; let
di(B, C) = p_ Sup{n|BAn:CA"}‘

Lemma 3.4. (Ga,d;) is a metric space.



Proof. Since B,C € G4 ; are closed in A, if B # C then there is an n such that
BA, # CA,.
Suppose that B,C,D € Ga,;. If BA,, # DA,, then BA,, # CA, or CA, #
DA,. So
di(B, D) < max(di(B, C),di(C, D)).

Given B € Ga,;, we will write

Bn(B) = {C€Ga;ldi(B,C)<p™"}
= {C S gA,z'|JOQA +J4, 04 =J024 + JA"QA}

and
Bl (B) = {C € Gai|lJcQa + T} = JpQa + T34 }.

Notice that {B,(B)|B € Ga,,n € N} and {B],(B)|B € Ga,,n € N} each
form a base for the topology on G4 ; induced by the metric since the two chains
of ideals {J4,Q4} and {J%} are cofinal (see Lemma 7.1 of [8]).

Remark 3.5. If A is a free abelian pro-p group of rank n then there is a natural
correspondence between G4 ; and the p-adic Grassmann manifold of n—1i dimen-
sional Q) -subspaces of Q). Moreover this correspondence is a homeomorphism.
The reader may prefer to view the topology in this way.

Lemma 3.6. If M is an Qa-module, then for each i < dim(A), the set of
B € Ga,; such that M is finitely generated over Qg is open.

Proof. Suppose that B € G4; and that M is a finitely generated {2p-module.
It is sufficient to prove that there is a k such that M is finitely generated as an
Qc-module for each C € Bj,(B).

Now as M is finitely generated over Qp, M/M Jg has finite F,-dimension
and so there is a k such that MJ% C MJg. So MJ% C MJg + MJkH! =
MJc + MJET for each C € B, (B). It follows inductively that MJ% C

MJc + MJf‘Jr" for alln > 0. As M J¢ is closed in M,

Mo = (\(MJc+ MJIE™)
n>0

and so MJ% C M Jc for each such C. We may now use Lemma 3.1 to deduce
that M is finitely generated over ¢. O

Lemma 3.7. If M is a finitely generated torsion Q4-module, then the set of
B € Ga,1 such that M is finitely generated over Qp is dense in Ga,1.

Proof. The case dim(A) = 1 is easy so we assume that dim(A) > 2. Suppose
for contradiction that the result does not hold, so thereisa B € G4; and k € N
such that for all C' € By(B), M is not finitely generated over Q¢. Lemma 3.1
tells us that for each such C, M/MJc is not finite dimensional over F,. But
Qa/Jcf2a = Qyu ¢ is such that every proper quotient is finite dimensional and
so M/MJc is not a torsion Q4/JcQa-module. So Anng,,.(M/MJc) = 0.
Hence Anng, (M/MJc) C JoQa, and Anng, (M) C Jcf4.



Now,

ﬂ Jcfla C n ﬂ JoQa

CeBk(B) DeGp,1 \ ceBy(B)
D<C
As {C € By(B)|D < C} is infinite for each D € Gp1, and the image of
Jof24 in the local domain QA/D is a height 1 prime for each D € Gp 1,

(| JoQu = JpQa.
CEB,(B)
D<C

By a similar argument,

ﬂ JDQA= ﬂ JEQA;

DegGg,i Ee€gn,it1

for each ¢ < dim(B) — 1.
It follows that
(N JeQu =0,
CeBy(B)

our desired contradiction. O

Lemma 3.8. Suppose that M is a finitely generated Qa-module and da(M) <
dim(A) —t. The set of B € Ga+ with M finitely generated as an Qp-module is
dense.

Proof. We prove this by induction on ¢. The case ¢t = 1 is Lemma 3.7.

Suppose that B € G4+ and pick C > B with C' € G4,—1. By the induction
hypothesis, every open ball around C contains a subgroup D of A such that M
is finitely generated over (2p. In other words, for each positive integer k, there is
a D € Bi(C) such that M is finitely generated over . Observe, using Lemma
3.1, that dp(M) = da(M) < dim(D) and so M is Qp-torsion. It follows from
Lemma 3.7 that the set of E € Gp,; such that M is finitely generated over Qf is
dense in Gp 1. So it suffices to show that U = By(B)NGp,1 is a non-empty open
subset of Gp,1 since then it must contain a subgroup F' of A with M finitely
generated over Qp.

That U is open follows by seeing that the restriction of the metric on G4,
to Gp,1 is just the usual metric on Gp ;.

Without loss of generality, we may assume that A has topological generators
{ai1,...,a,}, B is the closed subgroup of A generated by {ai,...,an—¢}, C =
<A1, ,0p—t+1 >and D =<a; +€1,...,an—t41 + €n—ty1 > with ¢; € Ay, for
each i. It follows that < a1 + €1,...,a,_¢ + €,_¢ > liesin U. O

Definition 3.9. Given G a finitely generated pro-p group let Gop = G/i(G")
where i(G") is the isolator of G' in G, and let w be the natural projection of G
onto Gap. We set G = {m~'(B)|B € Gg,, ¢} for t < dim(Gap) and give it the
induced metric.

The following theorem should be compared with Lemma 5.1 of [2].



Theorem 3.10. If G is a uniform pro-p group of finite rank, and M is a finitely
generated Qg-module with dg(M) < dim(Gap) —t, then the set of H € Gg ;. such
that M is finitely generated over Qg is open and dense.

Proof. Notice, using Lemma 3.1, that if G’ < H < G then M is finitely gen-
erated over Q if and and only M/M J;qr) is finitely generated over Qg sq)
and that dg g (M/MJyq) < dg(M). The result now follows by Lemmas
3.6 and 3.8. O

4 Representations of Heisenberg groups

Recall that e = 2 if p = 2 and e = 1 otherwise.

Definition 4.1. We say that a torsion-free pro-p group G of rank 2r + 1 is
o Heisenberg pro-p group if it has centre Z isomorphic to Z, and G' C zr°,
Notice that a Heisenberg pro-p group is necessarily uniform.

Our goal for the rest of the paper is to understand the finitely generated
modules for Heisenberg pro-p groups. Before we do that we make our work
easier with the following definition:

Definition 4.2. We say that o Heisenberg pro-p group is clean if it has a topo-
logical generating set {x1,...,%r, Y1, ,Yr, 2} such that Z =<z >, [z;,y;] =
27" for each i, and [z;,x;] = [zi,y;] = 1 for each pair of distinct i and j.

We now show that, provided we don’t mind passing to finite index subgroups,
restricting our attention to clean Heisenberg groups doesn’t do us any harm.

Lemma 4.3. Every Heisenberg pro-p group contains a clean Heisenberg sub-
group of finite index.

Proof. Suppose that G is a Heisenberg pro-p group. There is a non-degenerate
alternating Z,-bilinear form

G/Z X G/Z — Z]_+e
(9Z,hZ) ~ |g,h]

so we may choose a topological generating set {z1,...,Zp,¥1,...,Yr, 2} such
that [z;,y;] = 22%"" for each i and [z;, ;] = [x;,,] = 1 for each distinct pair
i,j, where \; € Zf and n; € N.

By replacing each z; by xj ' we may assume that A; = 1 for each i. Sim-
ilarly by passing to the subgroup of finite index topologically generated by
{mfk_n',yi,zﬂ < i < r} where k = maxi<;<,{n;} we may assume that n; = k
for each i.

Finally passing to the subgroup topologically generated by {z;, y;, z”k_l} we
obtain a clean Heisenberg subgroup of G of finite index. O

The point of the definition of clean is that it enables us to prove Proposition
4.6. The following two lemmas are merely tools to that end.

Lemma 4.4. Let G be a clean Heisenberg group. For each g € G\ZG2 and
each z € Zyn . there exists § € G, such that [g,0] = z.



Proof. Fix g € G\ZG,. Notice that for each k € N there is a map

Grt1 = Zhyiqe; Y — [gay]'

The definition of a clean Heisenberg group ensures that this map is onto; in
effect we have a Z-bilinear form Z2" x Z2" — 7, given on a basis by

[z, z;] for 1 <id,j<r
[mzay]] for 1 S Z;J -r S r
[zi,y;]for 1 <i—r,j<r
[yi,y;] forr+1 <14, <2r

< ej, e >=

?

i.e. it is represented by the matrix p¢J where

0 I
=( 5 %)

and we are asserting that given elements x € Z2"\pZ2" and X € p**+¢Z,, there
is an element y € kaf,T such that < x,y >= A. This is follows from simple
computation. O

Lemma 4.5. Let G be a clean Heisenberg group. If g € G\ZG2 and € € Gy,
then Cg(ge) C Cg(9)Gn.

Proof. Suppose that h € Cg(ge). As [h,ge] = [h,€][h, g]¢, we get [h,g] € Znie-
Using Lemma 4.4 we may find § € G,, such that [g,8] = [g,h]~!. Tt follows that
hd € Ca(g). [l

Proposition 4.6. Let G be a clean Heisenberg group and let (—)* : Ga.r» = Ga.r
such that if H € Gg,», HX = Cg(H). Then (=) is an isometry.

Proof. Supppose B, C are in G, and d.(B,C) = p~™. Pick a finite topological
generating set {g1,...,9r, 2} for B with z € Z, then

B+ = [ Colgs)-

1<i<lr

By Lemma 4.5, if €; € G, then Cg(gi€;) C Cg(gi)Gn, so Ca(C) C Ca(B)G,.
It follows by symmetry that Cg(C)G,, = C(B)G,, and so (—)* is a contraction
mapping. But (—)*+ =id so (=)' is an isometry as asserted. O

Now we are ready to prove our first important result: that for a Heisenberg
group all Noetherian modules of sufficiently small dimension have non-trivial
annihilator.

We remark at this point that (non-trivial) general results of this form are
still out of reach. For example, for Qgr,(z,) it is not even known whether or
not the only Noetherian modules with non-trivial annihilator are those of finite
dimension over [F,.

Theorem 4.7. Let G be a Heisenberg pro-p group and let M be o finitely gen-
erated module over Qg such that dg(M) < r then Anng, (M) # 0.

10



Proof. Firstly suppose that H be a clean Heisenberg subgroup of G of finite
index. Notice that dg(M) = dg(M), by Lemma 3.1, and Anng, (M) C
Anng, (M). Consequently, it suffices to prove the result when G is clean. We
suppose now that this is the case.

Let S; be the set of H € Gg,r such that M is finitely generated over Qg,
and Sy be the set of H € Gg,, such that M is finitely generated over Q..

By Theorem 3.10 and Lemma 4.6, S; and S are open and dense in Gg ,
and so have non-empty intersection.

Now, if H € S; then M is a torsion 2-module since M is finitely generated
and dg(M) < dim(H). Also, if H is in Sy then M is finitely generated over
its endomorphism ring as an Qg-module, Endg,, (M), since Qg1 acts on M by
Qg-endomorphisms. Now for H in the intersection S; N Ss, let X be a finite
generating set for M over Endg,, (M). Then Anng, (M) = [, x anng, (z) # 0,
because Qg has no non-trival zero divisors. O

Remark 4.8. This result is best possible. For example, if we take an abelian
subgroup A that trivially intersects Z, then the Qg-module obtained by inducing
the trivial Qa-module to Qg has dimension r + 1 and can be shown to have
trivial annihilator.

Our next goal is to prove that when G is a Heisenberg pro-p group, any
non-zero ideal in Qg must meet Q4. This result should be compared with a
theorem for discrete group algebras which states that any non-zero ideal in the
group algebra of a finitely generated torsion free nilpotent group must intersect
the centre of the group algebra non-trivially, see section 11.4 of [14] for example
for a stronger formulation of this result. It would be nice to prove an exact
analogue here for all nilpotent uniform pro-p groups but at present we can only
handle Heisenberg groups. Before we prove the result we give a preparatory
lemma.

Notice first that if H is a normal subgroup of G then G acts on the set of
ideals of Qg by conjugation.

Lemma 4.9. Suppose that G is a Heisenberg pro-p group and H is an isolated
subgroup of G properly containing Z. Whenever I is a non-zero prime ideal of
Qp with finite G-orbit, the set of K/Z € QH/Z,I such that I N Qx # 0 contains
an open and dense subset of Gg/z,1 .

Proof. We let X =) e 19, a non-zero G-invariant ideal in Qg since Qg has
no non-trivial zero-divisors. Notice that every minimal prime ideal above X is
of the form 79 for some g € G. Since Jz g is a height 1 prime ideal there are
now two cases: firstly X = I = JzQp:; secondly the image of X of X in Q H/Z
is a non-zero ideal. In the first case the result is trivial since every K € Gz,
satisfies the required property so we assume from now on that we are in the
second case.

Now Thegrem 3.10 guarantees that the set of subgroups K/Z € G /7,1 such
that Qp/z/X is finitely generated over Qg7 is open and dense so it suffices to
prove that for each such K, X N Qx # 0. Suppose we have such a K. Using
Lemma 3.1 we see that Qg /X is a finitely generated Qx-module. It follows
that there is an h € H\K and that there are ag, ..., a, € Qk not all zero such
that Y"1 a;ht € X. Suppose that n is minimal subject to this.

11



As the alternating bilinear form in Lemma 4.4 is non-degenerate, we have
dim(Cq(H)/Z)+dim(H/Z) = dim(G/Z) for all isolated Z < H < G so we may
pick g € Co(K)\Cq(H). Then if n >0

0# (Z a;h')? — [h",g](z a;h') € X,
i=0 =0

contrary to the minimality of n. It follows that n = 0 and so 0 # ag € X N Qx
as required. O

We now prove Theorem A.

Theorem 4.10. Suppose that G is a Heisenberg pro-p group with centre Z and
0£I<1Qg. ThenINQz #0.

Proof. Let H be a minimal isolated subgroup of G containing Z such that
Ig .= INQy # 0. Suppose that H # Z. Because Iy is a G-invariant ideal, G
acts on the (finite) set {Py, ..., Py} of minimal primes above Iy. Using Lemma
4.9 we may find K/Z € Gp/z, such that P; N Qg # 0 for each 1 <i < k. Since
(P, ---P,)N C Iy for sufficiently large N, it follows that Ix = Iz N Qx # 0
contradicting the minimality of H. It follows that H = Z as required. O

The following theorem that combines Theorem B and Corollary D of the
introduction is an analogue of the Bernstein inequality for the representations
of Weyl algebras.

Corollary 4.11. If G is a Heisenberg pro-p group of rank 2r + 1 with centre Z
and M is a finitely generated module over Qg such that dg(M) < r, then

AIlIlQG (M) NQy 75 0.
Moreover if S = Qz\0 then gldim((Qg)s) =7

Proof. By Lemma 4.3 G contains a clean Heisenberg pro-p group H of finite
index. Now M is a finitely generated Qg-module with dg(M) = dg(M) so
Theorem 4.7 tells us that Anng, (M) # 0. It follows from Theorem 4.10 that
Anng,, (M) N Qzry #0. Now Qz(my C Q7 and the first part follows.

Now let A be a maximal abelian subgroup of G disjoint from Z, so A = Zj,
If M is the left Qg-module taken by inducing the trivial Q4-module to G, so
M = Qg/QcJ4 and Ef (M) = Qg/JaQg. By Lemma 2.4 E, | (Ms) &
EGo(M)s # 0 and so gldim((R2g)s) > r.

The global dimension of (2g)s is certainly finite since it is a localisation
of a ring of finite global dimension. It follows that we may find N a finitely
generated (2g)s-module such that pd(N) = gldim((Qg)s) = n. There is a
finitely generated Qg-module M such that Mg = N. By Lemmas 2.5 and
2.4 we have 0 # Efg, (N) = Eg(M)s. But by Lemma 2.6, if n > r then
dg(EG,(M)) < r+1 and so, by the first part, Eg_ (M) is Qz-torsion, a con-
tradiction. So we have n < r as required. O

We finish by making clear the analogy between this result and Bernstein’s
inequality for Weyl algebras by restating and proving Corollary C:
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Corollary 4.12. Suppose that G is a Heisenberg pro-p group of rank 2r + 1
with centre Z and S is the central multiplicatively closed set Qz\0. Then for
any finitely generated module M over (Qg)s and any finitely generated Qg-
submodule N of M with Ng = M we have dg(N) > r + 1.

Proof. Let M and N be as in the statement. Let j be the grade of M as a
(Qg)s-module. By 4.11 we see that j < r. Since E}_(N)s = E, , (M),

(Qa)s
we may deduce that jo,(N) < j. Recalling Lemma 2.6 we easily obtain the
result. O
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