REPRESENTATION THEORY

SIMON WADSLEY

CONTENTS

Lecture 1

1. Introduction
Lecture 2

Lecture 3

Lecture 4

2. Complete reducibility and Maschke’s Theorem
Lecture 5

Lecture 6

3. Schur’s Lemma
Lecture 7

4. Characters
Lecture 8

Lecture 9

Lecture 10

5. The character ring
Lecture 11

Lecture 12

Lecture 13

Lecture 14

6. Induction

Lecture 15

Lecture 16

Lecture 17

7. Arithmetic properties of characters
Lecture 18

Lecture 19

8. Topological groups
Lecture 20

Lecture 21

Lecture 22

9. Character table of GLo(F,)
Lecture 23

Lecture 24

© O NN

15
15
17
20
21
24
27
30
30
32
35
38
38
41
43
47
47
50
53
93
96
o8
61
62
64
67



2 SIMON WADSLEY

LECTURE 1
1. INTRODUCTION

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

One major goal of this course will be to understand how to go about classifying
all representations of a given (finite) group. For this we will need to be precise about
what it means for two representations to be the same as well as how representations
may decompose into smaller pieces.

We’ll also use Representation Theory to better understand groups themselves.
An example of the latter that we’ll see later in the course is the Burnside p®q°-
theorem which tells us that the order of a finite simple group cannot have precisely
two distinct prime factors.

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k unless we say otherwise. This field k& will
usually be algebraically closed and of characteristic zero, for example C, because
this is typically the easiest case. However there are rich theories for more general
fields and we will sometimes hint at them.

Given a vector space V', we define the general linear group of V

GL(V) = Aut(V) ={a: V = V | a linear and invertible}.

This is a group under composition of maps.

Because all our vector spaces are finite dimensional, there is an isomorphism
k¢ = V for some d > 0.! Here d is the isomorphism invariant of V called its
dimension. The choice of isomorphism determines a basis e1, ..., eq for V.2 Then

GL(V) = {A € Maty(k) | det(A) # 0}.

This isomorphism is given by the map that sends the linear map « to the matrix
A such that a(e;) =Y Ajie;.

Ezxercise. Check that this does indeed define an isomorphism of groups. ie check
that « is an invertible if and only if det A # 0; and that the given map is a bijective
group homomorphism.

The choice of isomorphism k¢ — V also induces a decomposition of V as a
direct sum of one-dimensional subspaces

d
V= @ ke;.
=1

This decomposition is not unique is general® but the number of summands is always
dim V.

Un fact the set of such isomorphisms is in bjiection with GL(V') so typically there are very
many such.

2Here ¢, is the image of the ith standard basis vector for k% under the isomorphism.

3that is it depends on the choice of basis up to rescaling the basis vectors so there is more than
one such decomposition if d > 1
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1.2. Group representations — definitions and examples. Recall that an ac-
tion of a group G on a set X is a function -: G x X — X;(g,z) — ¢ -« such
that

(i) e-z =z for all z € X

(ii) (gh)-x=g-(h-z) for all g,h € G and = € X.

Recall also that to define such an action is equivalent to defining a group ho-
momorphism p: G — S(X) where S(X) denotes the symmetric group on the set
X; that is the set of bijections from X to itself equipped with the binary operation
of composition of functions. The notions are seen to be equivalent by the formula
p(g)(x) =g-x forall g € G and z € X.

Definition. A representation p of a group G on a vector space V is a group
homomorphism p: G — GL(V), the group of invertible linear transformations of

V.

By abuse of notation we will sometimes refer to the representation by p, some-
times by the pair (p, V) and sometimes just by V with the p implied. This can
sometimes be confusing but we have to live with it.

Defining a representation of G on V corresponds to assigning a linear map
p(g): V = V to each g € G such that

(i) p(e) = idy;
(ii) p(gh) = p(g)p(h) for all g,h € G;
(iii) p(g~1t) = p(g)~* for all g € G.

FEzercise. Show that, given condition (ii) holds, conditions (i) and (iii) are equivalent
to one another in the above. Show moreover that conditions (i) and (iii) can be
replaced by the condition that p(g) € GL(V) for all g € G.

Given a basis for V' a representation p is an assignment of a matrix p(g) to each
g € G such that (i),(ii) and (iii) hold.

Definition. The degree of p or dimension of p is dim V.
Definition. We say a representation p is faithful if ker p = {e}.

FEzxzamples.

(1) Let G be any group and V = k. Then p: G — Aut(V);g — id is called the
trivial representation.
(2) Let G = Cy = {£1}, V = R?, then

p(1) = ((1) ?) 1p(—1) = (_01 ?)

is a group rep of G on V.

(3) Let G = (Z,+), V a vector space, and p a representation of G on V. Then
necessarily p(0) = idy, and p(1) is some invertible linear map « on V. Now
p(2) = p(1 +1) = p(1)? = % Inductively we see p(n) = a" for all n > 0.
Finally p(—n) = (a™)™! = (a=1)™. So p(n) = o™ for all n € Z.

Notice that conversely given any invertible linear map a: V — V we may
define a representation of G on V by p(n) = a™.

Thus we see that there is a 1-1 correspondence between representations of Z
and invertible linear transformations given by p — p(1).
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(4) Let G = (Z/N,+), and p: G — GL(V) a rep. As before we see p(n + NZ) =
p(l + NZ)" for all n € Z but now we have the additional constraint that
p(N + NZ)=p(0+ NZ) =idy.

Thus representations of Z/N correspond to invertible linear maps « such
that oV = idy. Of course any linear map such that oV = idy is invertible so
we may drop the word invertible from this correspondence.

(5) Let G = S3, the symmetric group of {1,2,3}, and V = R2. Take an equilateral
triangle in V' centred on 0; then G acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V. For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 27/3.

Ezercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g € S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V.
Would the calculations be easier in a different basis?

LECTURE 2

(6) Given a finite set X we may form the vector space kX of functions X to k with
basis (0, | # € X) where 0,(y) = 05"

Then an action of G on X induces a representation p: G — Aut(kX) by
(p(9)f)(@) = f(g~! - z) called the permutation representation of G on X.

It is straightforward to verify that p(g) is linear and that p(e) = idix. So to
check that p is a representation we must show that p(gh) = p(g)p(h) for each
g,h €G.

For this observe that for each z € X,

p(9)(p(h) ) (@) = (p(h) f) (g~ x) = fF(h g™ ) = p(gh) f(x).

Notice that p(9)de(y) = 0z, g-1.4y = 0g.z,y 50 p(g)dz = dg... So by linearity
P(9)(Xzex Aabz) = D Aabg.a-

(7) In particular if G is finite then the action of G on itself by left multiplication
induces the reqular representation kG of G. The regular representation is always
faithful because p(g)d. = 0. implies that ge = e and so g = e.

(8) If p: G — GL(V) is a representation of G then we can use p to define a
representation of G on V*

p*(9)(0)(v) = O(p(g~")v); Vo€V veV?

(9) More generally, if (p, V'), (p’, W) are representations of G then (o, Homy (V, W))
defined by

o(9)() = p'(g)oaop(g™"); Vg€ G and a € Homy(V, W)

is a rep of G.
Note that if W = k is the trivial rep. this reduces to example 8.

“Each f € kX can be written f = D eex f(@)oz.
5p*(g) can be viewed as the adjoint of p(g)~!; recall that with respect to a pair of dual bases
for V and V* the matrix of adjoint of a linear map is the transpose of the matrix of the linear

map itself. So this is saying A — (A~™1)7 is a homomorphism GLg4(k) — GLg(k).



REPRESENTATION THEORY 5

Erercise. Check the details.® Moreover show that if V = k™ and W = k™ with
the standard bases, so that Homy (V, W) = Mat,, ,(k), then

a(9)(A) = p'(g)Ap(g)~* for all A € Mat,y, (k) and g € G.

(10) If p: G — GL(V) is a representation of G and : H — G is a group homomor-
phism then pf: H — GL(V) is a representation of H. If H is a subgroup of G
and 6 is inclusion we call this the restriction of p to H.

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Notice that if p: G — GL(V) is a representation and ¢: V. — W is a vector
space isomorphism then we may define o: G — GL(W) by a(g) = w0 p(g) o p~*
and o is also a representation.

Definition. We say that p: G — GL(V) and 0: G — GL(W) are isomorphic
representations if there is a linear isomorphism ¢: V — W such that

a(g) =¢oplg)op ! forallge G
ie. if 0(g) o =@ op(g). We say that ¢ intertwines p and o.

Notice that idy intertwines p and p; if ¢ intertwines p and o then ¢~! intertwines

o and p; and if moreover ¢’ intertwines o and 7 then ¢’ intertwines p and 7. Thus
isomorphism is an equivalence relation.

Since every vector space is isomorphic to k% for some d > 0, every representation
is isomorphic to a matrix representation G — GLg(k).

If p,o: G — GL4(k) are matrix representations of the same degree then an
intertwining map k% — k¢ is an invertible matrix P and the matrices of the reps
it intertwines are related by o(g) = Pp(g)P~!. Thus matrix representations are
isomorphic precisely if they represent the same family of linear maps with respect
to different bases.

FEzxzamples.

(1) If G = {e} then arepresentation of G is just a vector space and two vector spaces
are isomorphic as representations precisely if they have the same dimension.

(2) If G = Z then p: G — GL(V) and 0: G — GL(W) are isomorphic reps if
and only if there are bases of V' and W such that p(1) and o(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Cy = {1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X? — 1 = (X — 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all +1.

Ezercise. Show that there are precisely n 4+ 1 isomorphism classes of represen-
tations of Cy of dimension n.

6This will also appear on Examples Sheet 1.
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(4) If X, Y are finite sets with a G-action and f: X — Y is a G-equivariant bijection
i.e. f is a bijection such that g- f(z) = f(g-x) for all x € X and g € G, then
¢: kX — kY defined by ¢(0)(y) = 0(f'y) intertwines kX and kY. (Note
that QD((SI) = 5]‘(1))

LECTURE 3

Definition. Suppose that p: G — GL(V) is arep. We say that a k-linear subspace
W of V is G-invariant if p(g)(W) C W for all g € G (ie p(g)(w) € W for all g € G
and w € W).

In that case we may define a representation py : G — GL(W) by

pw (9)(w) = p(g)(w) for w e W.

We call (pw, W) a subrepresentation of (p, V).
We call a subrepresentation W of V' proper if W £V and W # 0. We say that
V' £ 0 is irreducible or simple if it has no proper subreps.

FExamples.

(1) Any one-dimensional representation of a group is irreducible.

-1 O> (char & # 2).

(2) Suppose that p: Co — GLo(k) is given by —1 — 0 1

Then p has precisely two proper subrepresentations spanned by (é) and (?)

respectively.

Proof. Tt is easy to see that these two subspaces are G-invariant. Any proper
subrepresentation must be one dimensional and so by spanned by an eigenvector
of p(—1). But the eigenspaces of p(—1) are precisely those already described.

|

(3) If G is Cy then the only irreducible representations are one-dimensional.

Proof. Suppose p: G — GL(V) is an irreducible rep. The minimal polynomial
of p(—1) divides X2 —1 = (X — 1)(X + 1). Thus p(—1) has an eigenvector v.
Now 0 # (v) is a subrepresentation of V. Thus V = (v). O

Notice we’ve shown along the way that there are precisely two simple repre-
sentations of G (up to isomorphism) if £ doesn’t have characteristic 2 and only
one if it does.

(4) If G = Dg then every irreducible complex representation has dimension at most
2.

Proof. Suppose p: G — GL(V) is an irreducible representation of G. Let r be
a non-trivial rotation and s a reflection in G so that 3 = e = 52 1
and r and s generate G.

Since p(r)® = p(r®) = idy, p(r) has a eigenvector v, say with eigenvalue A
for some A € C such that A = 1.7

Consider W := (v, p(s)v) < V so dim W < 2. Since

, STs =17

p(s)p(s)v = v

"This is the only point we use that k = C. In fact suffices that X3 — 1 completely factorises in
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and
p(r)p(s)v = p(s)p(r)~'v = A""p(s)o,
W is G-invariant. Since V is irreducible, W = V. O

Ezercise. Show that there are precisely three irreducible complex representa-
tions of Dg up to isomorphism, one of dimension 2 and two of dimension 1.
(Hint: We can split into cases depending on A and whether p(s)(v) € (v) or

p(s)(v) & (v)).
Definition. If W is a subrep of a rep (p,V) of G then we may define a quotient
representation py w: G — GL(V/W) by
pviw(9) (v + W) = p(g)(v) + W.
Since p(g)W C W for all g € G this is well-defined.

We’ll start dropping p now and write g for p(g) where it won’t cause confusion.
Definition. If (p, V) and (p’, W) are reps of G we say a linear map ¢: V. — W is
a G-linear map if g = gy (ie o p(g) = p'(g) o p) for all g € G. We write

Homeg(V, W) = {¢ € Homy (V,W) | ¢ is G-linear},
a k-vector subspace of Homy (V, W).

Remarks.

(1) ¢ € Homy(V, W) is an intertwining map precisely if ¢ is a bijection and ¢ is in
Homg (V, W).

(2) If W < V is a subrepresentation then the natural inclusion map ¢: W — V;
w — w is in Homg(W,V) and the natural projection map w: V — V/W;
v v+ W is in Homg(V,V/W).

(3) Recall that Homy (V, W) is a G-rep via (g)(v) = g(p(g~1v)) for ¢ € Homy (V, W),
g € Gand v € V. Then ¢ € Homg(V, W) precisely if gpo = ¢ for all g € G.

Lemma. If U,V and W are representations of a group G with ¢1 € Homy(V, W)
and g € Homy (U, V) then
g-(props) =(g-p1)o(g-p2)
In particular
¢1 € Homg(V, W) = g-(p1092) =¢10(g-¢2),
w2 € Homg(U,V) = g-(p10p2) = (gow1)ops and
1 € Homg(V, W) and 3 € Homg(U,V) = ¢ 0 v3 € Homg (U, W).
Proof. With the notation in the statement we can compute
(g-p1)o(g-p2)=(90¢109 ) (gopaog™t) =g (p10¢p2)
All the other statements follow immediately. O
Lemma (First isomorphism theorem for representations). Suppose (p, V') and (p’', W)
are representations of G and ¢ € Homg(V, W) then

(i) ker ¢ is a subrepresentation of V;

(ii) Tm ¢ is a subrepresentation of W ;
(#ii) The linear isomorphism @: V/ker o — Im ¢ given by the first isomorphism of
vector spaces is an intertwining map. Thus V/ker ¢ = Im ¢ as representations

of G.
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Proof.

(i) if v € ker ¢ and g € G then p(gv) = gp(v) =0

(ii) if w = ¢(v) € Imp and g € G then gw = p(gv) € Im .

(iii) We know that the linear map ¢ induces a linear isomorphism

©: V/kerp — Imp;v + ker ¢ — (v)

then gp(v + ker @) = g(p(v)) = (gv) = P(gv + ker ¢) O
Proposition. Suppose p: G — GL(V) is a rep and W < V. Then the following
are equivalent:

(i) W is a subrepresentation;

(ii) there is a basis v1,...,vq of V such that vi,...,v, is a basis of W and the
matrices p(g) are all block upper triangular;
(iii) for every basis v1,...,vq of V such that vy, ..., v, is a basis of W the matrices

p(g) are all block upper triangular.

Proof. Think about it (see also Linear Algebra Examples Sheet 1 Q11 from Michael-
mas 2022). O
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LECTURE 4
2. COMPLETE REDUCIBILITY AND MASCHKE’S THEOREM

Question. When can a representation V of a group G be decomposed as a direct
sum of simple subrepresentations?
Ezxamples.

(1) If G = {e} the answer is always as noted in Lecture 1 since a simple subrep
is the same as a 1-dimensional subspace.

(2) Suppose G = Cy, V = R? and p(-1) = Bl (1) . We've seen that the

only irreducible subrepresentations are < <(1))> and < <(1)) > So
2 1 0
== ((0)) ()

is the only such decomposition in this case.
(3) Suppose G = (Z,+) and p: G — GLy(k) is the representation determined

by
=y 1)

then W = < <(1))> is the only proper G-invariant subspace so k2 cannot be

decomposed as a direct sum of irreducible subrepresentations — if it could
then p(1) would be diagonalisable.

Definition. We say a representation V is a direct sum of (V;)k_, if each V; is a

subrepresentation of V and V = @le V; as vector spaces.®

Given a family of representations (p;, V;)%_; of G we may define a representation
of G on the vector space

k
V= @ Vi := {(v;)E_, | v; € V;} with pointwise operations®
i=1

by

p(9)((vi)) = (pi(g)vi).
We write (p, V) = @i_y(pi, Vi) = @ pi = B Vi-
FEzxzamples.

(1) Suppose G acts on a finite set X and X may be written as the disjoint
union of two G-invariant subsets X; and X5 (i.e. g -z € X; for all z € X;
and g € G). Then kX = kX; @ kX, under f — (f|x,, flx,)-

Internally kX = {f | f(z) =0Vz e Xo} @& {f | f(z) =0Vz € X1}.

Sie. V=%,V and for each j =1,...k, V; N 3,,; Vi = 0 as in Linear Algebra Examples
Sheet 1 Q8 from Michaelmas 2022.
9%the external direct sum of the Vi
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More generally if the G-action on X decomposes into orbits as a disjoint
union X = (Ji_, O; then

kX = EB lo,(kX) = P kO;.

=1

€ O;
where 1o, : kX — kX is given by 1p,(f)(z) = f(r) =
0 x g Oi.
These kO; are almost never irreducible as explained in the following

example.
(2) If G acts transitively on a finite set X then U := {f € kX | >°__\ f(z) = 0}
and W :={f € kX | f is constant} are subreps of kX.

Proof. If f € U then for g € G,

Y (g-Hla)=) flg7tz) =0

reX rzeX
since x — g~ 'z is a bijection X — X. Similarly if f € W; f(z) = A for all
x € X then for g € G, (9.f)(z) = f(g7'z) = X for all x € X. O

If k is characteristic 0 then kX = U & W. What happens if k& has
characteristic p > 07

Proposition. Suppose p: G — GL(V) is a rep. and V =U & W as vector spaces.
Then the following are equivalent:

(i) V=U®@&W as reps;

(ii) there is a basis vy, ..., vq of V such thatvy,..., v, is a basis of U and vy41, ... vq
is a basis for W and the matrices p(g) are all block diagonal;
(i) for every basis v, ...,vq of V such thatvi,...,v, is a basis of U and vyy1,. .., 04

is a basis for W the matrices p(g) are all block diagonal.

Proof. Think about it! O

But the following example provides a warning.

-1 2
0 1
representation R? breaks up as (e1) @ (e; + e2) as subreps even though the matrix
is upper triangular but not diagonal.

Ezample. p: Cy — GLy(R); —1 — defines a representation (check). The

Definition. We say that a representation V of a group G is completely reducible
it V= @;_,V; for some irreducible representations Vi,...,V, of G.

We’ve seen by considering G = Z that it is not true that every representation of
every group G is completely reducible. However we’re going to prove the remarkable
fact that if G is a finite group and k has characteristic 0 then every representation
of G defined over k is completely reducible.

Lemma. Suppose that (p,V) is a representation of a group G such that for every
pair Wi, Wy of G-invariant subspaces of V' such that W1 < Wy < V there is a
G-invariant complement to Wy in Wy. Then V is completely reducible.
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Proof. By induction on dimV. If dimV = 0 or V is irreducible then the result
is clear. Otherwise V has a proper G-invariant subspace W. By the assumption
there is a G-invariant complement U of W in V and V =2 U @ W as G-reps.
Moreover dimU,dim W < dim V and U and W inherit the assumption on V. Thus
by induction there are simple representations Uy, ..., U, such that U = ®]_,U; and
Wi, ..., Ws such that W = &7_, W;. Thus

T S
v=@uedw,
i=1 j=1
is complete reducible. O
Recall, if V' is a complex vector space then a Hermitian inner product is a positive

definite Hermitian sesquilinear form; i.e. (—,—): V x V — C satisfying

(i) (a) (az + by, z) =a(x,z) +b(y,z) and

(b) (z,ay + bz) = a(z,y) + b(x, 2) for a,b € C, x,y,z € V (sesquilinear);
(ii) (z,vy) = (y,2) (Hermitian);°
(iii) (w,2) > 0 for all x € V\{0} (positive definite).!

The standard inner product on C" is given by

n
i=1

Recall also that the unitary group U(n) is the subgroup of GL,,(C)

Un) = {A€GL,(C): ATA=1}
= {AeGL,(C: (Ax, Ay) = (z,y) for all z,y € C"}.
Definition. We say that a representation (p, V') of a group G is unitary if there is
a basis for V so the corresponding map G — G L, (C) has image inside U(n).

LECTURE 5

Definition. A Hermitian inner product (—,—) on a representation V of G is G-
invariant if
(9z,9y) = (z,y) for all g € G and z,y € V;

or, equivalently, if
(9z,92) = (z,z) for all g € G and z € V.

Proposition. A representation (p, V) of G is unitary if and only if V has a G-
invartant inner product.

Proof. If (p, V) is unitary then let eq, ..., e, be a basis for V with respect to which
p(g) € U(n) for all g € G. Now

n n n .
Do ey mjes | = i
i=1 =1 i=1

defines a G-invariant inner product on V.

10if (ii) holds then (i)(a) is equivalent to (i)(b).
1L(ii) gives that (z,z) € R.
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Conversely, if V has a G-invariant inner product (—, —) we can find an orthonor-
mal basis v1, ..., v, for V with respect to (—, —).12 Then (—, —) corresponds to the
standard inner product with respect to this basis and so each p(g) is unitary with
respect to the basis. [

We note that it follows easily that subrepresentations of unitary representations
are unitary since a G-invariant inner product on the representation will restrict to
the subrepresentation.

Lemma. If (p,V) is a unitary representation of a group G then every subrepre-
sentation W of V' has a G-invariant complement. In particular V' is completely
reducible.

Proof. Let (—,—) be a G-invariant inner product on V. Then
Wt ={veV:(v,w) =0 for allw € W}

is a vector-space complement to W in V by standard linear algebra. Moreover if
g€ G, veWtand w e W. Then (gv,w) = (v,g  w) = 0 since g~ w € W. Thus
gv € Wt and W+ is a G-invariant complement. Complete reducibility follows from
a lemma from the last lecture. O

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V) a representa-
tion of G over a field k of characteristic zero. Suppose W < V' is a G-invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U @& W. In particular V is completely reducible.

Key idea. If (p,V) is a representation of a finite group G then for allv € V
ZQ'UEVG::{UEV:g-v:vforallgeG}gV.
geG

Proof. If h € G,

held gv]=> (hg)-v=> g-v

geG geG g'eCG
since h: G — G; g — hg is a permutation of G. O
Proposition (Weyl’s unitary trick). If V' is a complex representation of a finite

group G, then there is a G-invariant Hermitian inner product on V. In particular
V' is unitary and every G-invariant subspace has a G-invariant complement.

Proof. Pick any Hermitian inner product (—, —) on V' (e.g. choose a basis e1,..., e,
and take the standard inner product (> Ae;, > pie;) = > Aipt;). Then define a
new inner product (—, —) on V via:

(2,9) ==Y (g, gy).

geqG

12Choose any basis and then apply Gram-Schmidt.
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It is easy to see that (—,—) is a Hermitian inner product because (—,—) is. For
example if a,b € C and z,y,z € V, then

(w,ay+bz) = > (gz,9(ay +bz))
geG

= Z (97, ag(y) + bg(2))

geqG

— Z(a(gw,gy) + b{gz, g2))

geG
= a(z,y) +b(z,9)
as required.
But now if h € G and z,y € V then

(hx,hy) =Y _(ghw,ghy) = Y _ (g'z.g'y)
geG g'eG
and so (—, —) is G-invariant. Complete reducibility now follows by a lemma proven
in the last lecture. ]

Remark. The proof can be phrased as follows

(i) Herm(V) := {Hermitian sesquilinear forms on V'} is naturally an R-vector
space.

(i) G — Aut(Herm(V)); g - (—, —)(x,y) := (g~ 'z, g 'y) defines an R-linear rep-
resentation of G.'3

(iii) An R>C-linear combination of positive definite elements of Herm (V) is positive
definite.

(iv) Given (i)-(iii) the key idea transforms any inner product into a G-invariant
inner product.

It follows that studying complex representations of a finite group is equivalent
to studying unitary, i.e. distance preserving, representations.

Corollary. Every finite subgroup G of GL,(C) is conjugate to a subgroup of U(n).

Proof. If G < GL,(C) the inclusion map p: G — GL,(C) is a representation. By
the unitary trick, p is a unitary representation i.e. there is P € GL,(C) such that
PgP~! € U(n) for all g € G. O

We now generalise our idea to general k of characteristic zero — one way to
explain our argument when the representation is unitary is that the orthogonal
projection map V — W is G-linear with kernel W+ a G-invariant complement.

Proof of Maschke’s Theorem. Idea: if m: V — V is a projection i.e. 72 = 7 then

V = Imn @ ker m as vector spaces. If w is G-linear then ker m and Im 7 are both
G-invariant. So we pick a projection V' — V with image W and average it.

13Added after lecture: a choice of basis v1,...,Vn for V gives an identification of Herm(V') with
Hermitian matrices in Matdim v,dim v (C), i.e. A such that A = AT where A;; = (v;,v;) and the

corresponding representation of G on these Hermitian matrices is given by g- A = p(¢g=1)T Ap(g—1)
where p: G — GLgim v (C) is the matrix representation corresponding to V equipped with the

same basis. Note that g — p(¢g—1)T is a homomorphism since g + g~ and X + X7 are both
antihomomorphisms; that is the second two reverse the order of operations so their composite,
the first, preserves it.
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Let w: V — V be any k-linear projection with m(w) = w for all w € W and
Imm=W.

Recall that Homy (V, V) is a rep of G via (g¢)(v) = gpg~tv. Let 7%: V — V be
defined by

1
7% = el Z(gw) € Homg(V,V)
Gl 7=
by the key idea. Moreover Im 7& < W since
(g-m)(v)=(gomog ) -veW
for all g € G and v € V. Also, for w € W,

1 _ 1 _
w%(w) = @l > a(r(g ' w)) = al > g9 (w) =w
geG geG
since g~ 'w € W for all g € G and w € W.
Thus 7¢ is a G-invariant projection V' — V with image W. So ker 7% is the
required G-invariant complement to W. ([l

Remarks (on the Proof of Maschke’s Theorem).
(1) We can explicitly compute 7¢ and ker 7¢ given (p,V) and (7, W) via the

formula 1
¢ = Z g- .
Gl 7=
(2) Notice that we only used that char k¥ = 0 when we inverted |G|. So in fact we
only need that the characteristic of k& does not divide |G].
(3) As an extension of our key idea: for any G-rep V (with char k not dividing
|G|), the map
1
TV — Z g-v
Gl 7=
is a projection in Homg(V, V) with image V¢ := {v € V | g-v = v}. As a
foreshadowing of what is coming soon, notice that

dim V% = trr = l—él Z tr(g)
geG

since tr is linear and for w: V' — V any projection tr 7 = Im 7.



REPRESENTATION THEORY 15

LECTURE 6
3. SCHUR’S LEMMA
Recall that if V' is a vector space of dimension d then Aut(V) = GL4(k).
Theorem (Schur’s Lemma). Suppose that V and W are irreducible representations
of G over k. Then
(i) every element of Homg(V, W) is either O or an isomorphism;

(ii) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1.

In other words, when k is algebraically closed, irreducible representations are
rigid in the same sense that one-dimensional vector spaces are rigid since they have
the same automorphism group.

Proof. (i) Let ¢ be a non-zero G-linear map from V to W. Then kerp < V is a
G-invariant subspace of V. So as V is simple, ker ¢ = 0. Similarly 0 # Imyp < W
so Im ¢ = W since W is simple. Thus ¢ is an isomorphism by the first isomorphism
theorem.

(ii) Suppose ¢1,p2 € Homg(V,W) are non-zero. Then by (i) they are both
isomorphisms. Consider ¢ = @flcpg € Homg(V, V). Since k is algebraically closed
we may find A an eigenvalue of ¢ then ¢ — Aidy has non-zero G-invariant kernel
and so the map is zero. Thus <p1_1g02 = Aidy and @2 = Ay as required. O

Proposition. If V, Vi and Va5 are k-representations of G then

Homg(V, V1 @ V2) 2 Homeg(V, V1) @ Homg (V, V2)
and

Homg(Vi, @V, V) =2 Homg(V1, V) @ Homeg(Va, V).
Proof. There are natural G-linear inclusion maps

i Vi=>VieVsfori=1,2
that induce (by post-composition)
Homy(V,V;) — Homg (V, Vi @ V).

These together induce a linear isomorphism

Homy (V, V1) @ Homy (V, Vo) — Homyg (V, Vi & Vs)
given by

(f1, f2) = ufi + 2 fo.

Since ¢1, to are G-linear this is an intertwining map:

g (tifr+eaf2) =ulg- fr) +2(g- f2).

Since in general an intertwining map ¢: U — W between representations of G
induces an isomorphism of G-fixed points — g p(u) = p(u) if and only if g-u = u
for all g € G — and Homg (U, W) consists of the G-fixed points of Homy (U, W), it
follows that there is an induced isomorphism

Homg (V, V1) @ Homg (V, Vo) — Homeg(V, V1 @ V3)
as claimed.

Similarly the natural projection maps

771-:V169V2%V1-f0ri:1,2
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induce a G-linear isomorphism
Homy (V1,V) @ Homg (Va, V) — Homy (V4 @ Vo, V)
given by
(f1, f2) = fim1 + fame
and again it follows that there is an induced isomorphism

Homg(V4,V) @ Homg (Va, V) — Homg(Vh @ Vo, V)

as claimed. O
Corollary. If V=@, V; and W = i, W; then
Homg (V, W) = €5 @) Home (Vi, W;).
i=1 j=1

Proof. This follows from the Proposition by a straightforward induction argument.

O

Corollary. Suppose k is algebraically closed and

V%é;‘/}
i=1

is a decomposition of a representation of G over k into irreducible components.
Then for each irreducible representation W of G,

{i | V; 2 W}| = dim Homg (W, V) = dim Homg (V, W).
Proof. By the last result

Home (W, V) = @D Home (W, V;)
i=1
and so ,
dim Home(W, V) = >~ dim Homg (W, V).
=1
and similarly
Homg (V, W) = €D Home (V;, W)
=1
and so
dim Home(V, W) = > dim Home (V;, W).
i=1
Thus it suffices to show that
1 w2y

dim H W,V;) = dimH Vi,W) =
im Homg ( ) im Homg( ) {0 Wy

and this is precisely the statement of Schur’s Lemma when k is algebraically
closed.!* ]

1p question to ponder for those who like to think about such things: what can be said if k is
not algebraically closed?
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It follows that the number of times each simple representation occurs in a de-
composition of a representation as a direct sum of simple subrepresentations is
independent of the choice of decomposition. Important question: How can we
compute these numbers dim Homg (V, W)?1°

Corollary. (of Schur’s Lemma) Every irreducible complex representation of an
abelian group G is one-dimensional.

Proof. Let (p,V) be a complex irreducible representation of G. Since G is abelian,

p(g)p(h) = p(h)p(g) for all g,h € G
and so
p(g) € Homg(V, V) for each g € G.

Thus, since V is irreducible and C is algebraically closed, by Schur, each p(g) is a
scalar multiple of idy. It follows that for v € V non-zero, (v) is a subrep of V and
so V = (v) by irreducibility of V' again. In particular dim V' = 1. O

Corollary. (of Schur’s Lemma) If a finite group G has a faithful irreducible rep-
resentation over an algebraically closed field k then the centre of G, Z(QG) is cyclic.

Proof. Let (p, V) be a faithful irreducible representation of G, and let z € Z(G).
Since gz = zg for all g € G, p(z) € Homg(V, V). Thus, since V is irreducible and
k is algebraically closed, by Schur, p(z) = A, idy, say, with A, € k.
Moreover for z1, z3 in Z(G),
p(z172) = ple1)p(22) and 50 Aeyy = Aoy Ay
Since also, A\, = 1,
Z(G) = k™ 529 A,

is a representation of Z(G) that is faithful since V is faithful. In particular Z(QG)
is isomorphic to a finite subgroup of £*. But every such subgroup is cyclic. O

Examples. We can list all the irreducible complex representations of Cy and Ca x Cs

G:C4:<.’L'>. G:CQX02:<LL',y>.

‘ 1 r x2 23 ‘ 1 T Yy xy

p |1 1 1 1 p1 |1 1 1 1

p2 |1 i —1 —1 p2 |1 —1 1 -1

ps |1 —1 1 1 p3 |1 1 -1 -1

pe |1 —1 —1 ) pe |1 -1 —1 1
LECTURE 7

Proposition. FEvery finite abelian group G has precisely |G| complex irreducible
representations.

15We saw in our remarks on the proof of Maschke’s Theorem that if k& denotes the trivial
representation then dim Homg(k,V) = dim V& = ‘%‘ deg tr p(g) when k has characteristic

zZero.
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Proof. Let p be an irreducible complex rep of G. By the last corollary, dim p = 1.
So p: G — C* is a group homomorphism.

If G = H x K decomposes as a direct product of its subgroups H and K then
there is a 1-1 correspondence

Hom (G, C*) +~ Hom(H,C*) x Hom(K,C*)

given by restriction ¢ — (¢|g, ¢|x).1°
Since G is a finite abelian group G = C,, X --- x C,,,. some nq,...,n,. Thus by
an induction argument on r we may reduce to the case G = C,, = (z) is cyclic.
Now p is determined by p(z) and p(z)™ = 1 so p(x) must be an nth root of unity.
Moreover for each 0 < j < n we can define the representation

2mijm

pij(™)=e 7 foreach meZ

giving the required set of n representations. O

Lemma. If (p1,V1) and (p2,V2) are non-isomorphic one-dimensional representa-
tions of a finite group G then ) g p1(g Y pa(g) =0. 17

Proof. We've seen that Homy (V7, V3) is a representation of G under

g9 =p2(9)ep1(g™).
Moreover degg - ¢ € Homg(Vy, V) = 0 by Schur. Pick an isomorphism ¢ €
Homy (V1, Va). Then

0= Z p2(9)ppr1(g™") = Z p1(g7 " p2(9) | .

geG geG

Since ¢ is injective this suffices. O

If V is a representation of a group G that is completely reducible and W is
any irreducible representation of G then the W-isotypic component of V is the
smallest subrepresentation of V' containing all simple subrepresentations isomorphic
to W. This exists since if (V;);c; are subrepresentations of V' containing all simple
subrepresentations isomorphic to W then so is (,.; V;.18

We say that V has a unique isotypical decomposition if V is the direct sum of
its W-isotypic components as W varies over all simple representations of V' (up to
isomorphism).

Corollary. Suppose G is a finite abelian group then every complex representation
V' of G has a unique isotypical decomposition.

Proof. For each homomorphism 6;: G — C* (i = 1,...,|G|) we can define W; to
be the subspace of V' defined by

W; ={veV|plg)v=>0;(g)v for all g € G},

the 6;-isotypic component of V.

Since V is completely reducible and every irreducible rep of G is one dimensional
V =>"W,;. We need to show that > w; = 0 with each w; € W; implies w; = 0 for
all 7.

16T his crucially uses that C* is abelian.
17We note in passing that if k = C then p(g™1) = p(g) since p(g)°9) = 1.
181t can also be realised as the vector space sum of all subrepresentations isomorphic to W.
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But > w; = 0 with w; in W; certainly implies 0 = p(g) > w; = > 0;(g)w;. By
the last Lemma it follows that for each j,

0=> | D 0;(g10:(a) | wi = 0;(g7)0;(9)w; = |Gluw;.

7 geG geG
Thus w; = 0.19 O

You will extend this result to all finite groups on Example Sheet 2.

19r¢ you inspect the proof you’ll see we only really use k is algebraically closed and |G| # 0 € k.
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4. CHARACTERS

Summary so far. We want to classify all representations of groups G. We’ve seen
that if G is finite and k has characteristic zero then every representation V' decom-
poses as V = @ n;V; with V; irreducible and pairwise non-isomorphic and n; > 0.
Moreover if k is also algebraically closed, we've seen that n; = dim Homg (V;, V).

Our next goals are to classify all irreducible representations of a finite group and
understand how to compute the n; given V. We’re going to do this using character
theory.

4.1. Definitions.

Definition. Given a representation p: G — GL(V), the character of p is the
function x = x, = xv: G — k given by g — tr p(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X1AX) = tr(AX X ~!) = tr(A)]. By the same argument we also
see that isomorphic representations have the same character.

Example. Let G = Dg = (s,t | s> = 1,3 = 1,sts™! = t71), the dihedral group of
order 6. This acts on R? by symmetries of the triangle; with ¢ acting by rotation
by 27/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form st*) will act by a matrix with eigenvalues 1. Thus x(st’) = 0
for all 4. The eigenvalues of each non-trivial rotation must be non-real cube roots
of unity and sum to a real number. Thus p(t) = p(t2) = e + e 5 = —1 and
p(ly=1+1=2.
Proposition. Let (p,V) be a rep of G with character x

(i) x(e) =dimV;

(ii) x(g9) = x(hgh™1) for all g,h € G;

(iii) If X' is the character of (p', V') then x + X' is the character of V& V'.

(iv) If V is unitary®® then x(g~') = x(g) for all g € G;

Proof.

(i) x(e) =tridy = dim V.

(i) p(hgh™1) = p(h)p(g)p(h)~t. Thus p(hgh~!) and p(g) are conjugate and so
have the same trace.

(iii) is clear.

(iv) By choosing a basis we may view p as a homomorphism G — U(n). Then

plg™) = plg)™" = p(g)"
and so tr p(g~—1) = trp(g) for all g € G since trace is invariant under taking trans-
poses. ([l

The proposition tells us that the character of p contains very little data; an
element of k£ for each conjugacy class in G. The extraordinary thing that we will
see is that, at least when G is finite and k = C, it contains all we need to know to
reconstruct p up to isomorphism.

Definition. We say a function f: G — k is a class function if f(hgh™!) = f(g)
for all g,h € G. We’ll write Cg for the k-vector space of class functions on G.

20For example whenever @ is finite and k = C by Weyl’s unitary trick.
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Notice that if Oy, ..., O, is a list of the conjugacy classes of G then the indicator
functions 1, : G — C given by

1 ()7 1 ifgeO;
o\ =0 itg g0,

form a basis for Cg. In particular dim C¢ is the number of conjugacy classes in G.

LECTURE 8

4.2. Orthogonality of characters. We'll now assume that G is a finite group
and k = C unless we say otherwise. 2!

Recall that Cg = {f : G — C: f(hgh™') = f(g) for all g,h € G} < CG and Cg
has a basis consisting of indicator functions 1o, where Oy, ..., O, are the conjugacy
classes in G.

We can make C¢ into a Hermitian inner product space by defining

(f1, f2)a : el g%éfl

This even defines an Hermitian inner product on CG which then restricts to Cg.
The functions 1, are pairwise orthogonal and

_ G 1
1o,, 10, ——— for any z; € O;.
Howlo)s = el = ate o
Thus if x1,...,x, are representatives of Oy,...,O, respectively, then we can

write for f1, fo € Cg

(fi, fo)a = Z; mfl(xi)fz(%)

Example. G = Dg = (s,t | s> = t3 = e,sts = t~!) has conjugacy classes
{e}, {t,t71}, {s, st, st?} and

(1. f2)0 = GROS() + SR () + 5 HOf(0).

Morever if C is the trivial representation of Dg and V is the natural representation
of degree 2 then

xc = lg and xv(e) = 2,xv(s) =0 and xv(t) = -1

SO
1 1 1

—4+24+Z =1
(xc, xc)a 6+2+3

XV7XVG—6 B 3

2 0 -1

xv)e=c gt = 0
(xc, xv)a st2T3

211f k = % has characteristic zero the main results are all essentially true but the story needs
to be told slightly differently.
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Theorem (Orthogonality of characters). If V and W are complex irreducible rep-
resentations of a finite group G then

1 ifv=w

0 otherwise.

xv,xw)a = {

This should remind you of Schur’s Lemma and in fact the similarity is no coin-
cidence. It is a corollary of Schur. Before we prove it we need a couple of lemmas.

Lemma. IfV and W are (unitary) representations of G then

Xtomx (v,w)(9) = xv (9)xw(9)
for each g € G.

Proof. Given g € G we may choose bases vy,...,v, for V and wy,...,w,, for W
such that gv; = A\jv; and gw; = pjyw, for some Ay, ..., Ay, pt1,. .., o € C. Then the
functions a;(vy) = §;,w; extend to linear maps that form a basis for Homy,(V, Ww)%2
and

—1

(9- Oéij)(“k) =g (O[ij(g ) = jk)\lzllliwi

thus g - ay; = )\j_luiaij and

Xitom(v.w) (9) = D5 i = xv (9™ xw(9) = xv (9)xw (9)

as claimed. O

Lemma. If U is a representation of G then

. 1
dim U< = @ > xulg) = (1,xv)-
geG

Proof. We've seen previously that 7: U — U; n(u) = ﬁ deggu defines a pro-

jection from U onto US. Thus

_ 1 1
dlmUG:trﬂ:@ E trg:@ E xu(9) = (1g, xv)
geG geG

as required. O
We can use these two lemmas to prove the following.
Proposition. If V and W are representations of G then
dim Home(V, W) = (xv, xw)-
Proof. By the lemmas
dimHomeg(V, W) = (1, Xvxw)
- ‘é' 3w 9)vw(9)

geq
= (xv,xw)c
as required. ([l

22a¢j is represented by the matrix with a 1 in entry ij and Os elsewhere with respect to the
given bases since v; maps to w; and all other vy map to 0
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Corollary (Orthogonality of characters). If V' and W are irreducible representa-
tions of G then

( Vo = 1 fvew

Xvoxwie = 0 otherwise.
In particular if xy = xw then V= W.
Proof. Apply the Proposition and Schur’s Lemma, noting that if xyy = xw, with
V and W irreducible, then dim Homg(V, W) = (xv,xv)e >0 and so V=W. O

Corollary. If (p,V) is a representation of G then

Ve B owsxe)aW.

w irred
rep of G/~

In particular if o is another representation with x, = X then o = p.
Proof. By Machke’s Theorem there are non-negative integers ny, such that

ve P W

w irred
rep of G/~

Moreover we’ve seen that ny = dim Homg (W, V') and dimHomg(W, V) = (xw, X,)c
by the Proposition so the first part follows.

Since
@ (xws xp)aW
w irred
rep of G/~
only depend on Y, the second part follows. O

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1 1 . .
0 1) e not isomorphic but have the same trace. Indeed
they both have trivial subrepresentations with trivial quotient. The slogan might
be ‘Characters can’t see gluing data.’

1+ idc2 and 1 —

Corollary. If p is a complex representation of G with character x then p is irre-
ducible if and only if (x,x)c = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that {x, x)c = 1. Then we may write
X = Y nwxw for some non-negative integers ny,. By orthogonality of characters
1={(x,x) =Y. n%,. Thus x = xw for some W and p is irreducible. O

This is a good way of calcuating whether a representation is irreducible.

Example.
Consider the action of Dg on C? by extending the symmetries of a triangle.

x(1) =2, x(s) = x(st) = x(st?) = 0, and x(t) = x(t*) = —1. Now
6x) = é(22+3~02+2.(71)2) =1

so this rep is irreducible. Of course we had already established this by hand in (an
exercise in) Lecture 3.
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Theorem (The character table is square). The irreducible characters of a finite
group G form a orthonormal basis for the space of class functions Cg with respect

to (f1. fo)a = &1 Lgea 1(9)f2(9)-

Proof. We already know that the irreducible characters form an orthonormal set.
So it remains to show that they span Cg.

Let I = {(x1,...,Xr) be the C-linear span of the irreducible characters. We need
to show that

It :={feCs: (fixi)a=0fori=1,...r} =0.

LECTURE 9

Suppose f € Cq. For each representation (p, V') of G we may define a linear map

¢ =gpv € Homy(V,V) by ¢ = &7 3 e F(9)n(9)-
Now,

p(h) " op(h) = ﬁ > flg)p(h~ gh) = ﬁ > Flgeld) =

geG 9'eG

since f is a class function and G — G; g+ hgh~! is a bijection, and we see that in
fact v € Homg(V,V).

Moreover, if V' is an irreducible representation then ¢y = Aidy for some A € C
by Schur’s Lemma. If additionally f € I then

AdimV =trypry = (f,xv) =0

so wry =0.

But every representation breaks up as a direct sum of irreducible representations
V =@V; and ¢y breaks up as @ ¢y.v,. So ¢fv =0 whenever f € It and V is
a representation of G.

But now if we take V to be the regular representation CG then

0=scade = |G| Z f(9)dy =|GI71f.
geG
Thus f = 0. (]

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Notation. For g € G we’ll write
9l = {zga™" 12 € G}
for the conjugacy class containing g.

Corollary. For each g € G, x(g) is real for every character x if and only if
l9le = o7 ']e-

Proof. Since x(g7 %) = x(g), x(9) € R if and only if x(g) = x(g71).
Since the irreducible characters span the space of class functions, x(g) = x(g~?%)
for every character y if and only if f(g) = f(g~!) for every f € Cq.
Since 1y, is a class function, this last is equivalent to [g] = [¢7 '] as required.
O

dla
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4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes

of G, [g1]a,---,[9r]c (by convention always g1 = e); we then list the irreducible
characters 1, ..., X, (by convention x; = xc the character of the trivial rep; then
we write the matrix
e g2 co gi e gr
1| 1 1 ... 1 1
Xi | e e Xj(gi)

Xr

We sometimes write the size of the conjugacy class [¢g;]¢ above g; and sometimes
|Ca(g:)]-*°

FEzxzamples.

27

(1) C3 = (z) and let w =e75 so w? = .

]

e ¢ x
x1]1 1 1
x2 |1l w w
X3 1 @ w
Notice that the rows are indeed pairwise orthogonal with respect to (—, —)¢.
The columns are too with respect to the standard inner product in this case.

(2) S5
There are three conjugacy classes {e}, {(12),(23), (13)} and {(123), (132)}.
Thus there are also three irreducible representations. We know that the triv-
ial representation has character 14 for all ¢ € G. We also know another 1-
dimensional representation e: S3 — {£1} given by g — 1 if g is even and
g — —1if g is odd.
To compute the character y of the last representation we may use orthogo-
nality of characters. Let x(e) = a, x((12)) = b and x((123)) = ¢ (a, b and ¢ are
each real since each g in S5 is conjugate to its inverse). We know that

1
0=(1L,x) = 6(a+3b+26),
0=(e,x) = %(a —3b+ 2¢) and

1
g(a2 + 3b% + 2¢2).

H
I
=
<
I

Thus we see quickly that b = 0, a + 2c = 0 and a? + 2¢? = 6. We also know
that a is a positive integer. Thus a =2 and ¢ = —1.

23Recall that |[g]c||Ca(g)| = |G| by the orbit-stabiliser theorem.
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sl |1 3 2
g e (12) (123)
1 1 1 1
€ 1 -1 1
x |2 0 -1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

Once again the columns are orthogonal with respect to the standard inner
product. If we compute their length we get:

17+ 12 4+22 =6 = [Cg,(e)|
12+ (=1)* +0° =2 = |Cs, ((12))]
17+ 12+ (—1)® = 3 = |Cs, ((123))].
This is an instance of a more general phenomenon.

Proposition (Column Orthogonality). If G is a finite group and X1,...,Xr S @
complete list of the irreducible characters of G then for each g,h € G,

o]0 if lgla # [Ma
;X1(g)’“h)‘{|ca<g>| if 9l = M-

In particular
> [@imVi)? = xi(e)* = [Gl.
i=1 i=1

Proof. Let X be the character table thought of as a matrix; X;; = x;(g;) and let
D be the diagonal matrix with entries D;; = |Cq(g;)|-
Orthogonality of characters tell us that

(xinxi)e = Y 1Calgi)| ™ XinXjk = 655
o

ie XD 1XT =1.
Since X is square and invertible and D is real we may rewrite this as
DX =X
Thus X' X = D. That is
ZXk(gi)Xk(gj) = 0ij|Cc(g:)]

k

as required. (I

4.4. Permuation representations. Recall that if X is a finite set with G-action
then CX = {f: X — C} is a representation of G via gf(z) = f(g ') for all
fe€CX,ge Gandzx € X or equivalently g - 6, = dg4. for all g € G and z € X.

Lemma. If y is the character of CX then x(g) = |{z € X | gz = z}|

Proof. If X = {x1,...,zq4} and gz; = x; then gd,, = 0, so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely
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LECTURE 10

Corollary. If Vq,..., V. is a complete list of irreducible reps of a finite group G
then the regular representation decomposes as

CG = P (dim V;)V;
1=1

In particular every irreducible representation is isomorphic to a subrepresenta-
tion of the regular representation and

G| = (dim V;)*.
Proof. We need to prove dim Homg(V;,CG) = dimV; for i = 1,...,r. But
dim Homg (V;, CG) = <XV7X(CG>

= \G| ZXV 9)xcal(g

geG
= dimV;

G| g=e
0 gFe

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action. Then (1, xcx ) is the number of orbits of G on X.

Proof.

since xca(g) = { and Yy, = dim V. O

Gl(1,xex)e = Y xex(9)

geG

= YlreX|g=uz}

geqG
= Hlg,2) e Gx X | gz ==z}

= > HgeGlgr=a}

zeX
= Z | Stabg ()
zeX
So
(L, xca)e = Z |Orb (by the Orbit-Stabiliser Theorem)
OI‘bitS (wEO )
= number of orbits
as required. ([l

Note that if X = Ule O; is the orbit decomposition of X then we saw before
that CX = @E:l CO; so Burnside’s Lemma says that each CO; contains precisely
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one copy of the trivial representation C when it is decomposed as a direct sum of
irreducible representations — the span of the constant function.

If X and Y are two sets with a G-action we may view X X Y as a set with a
G-action via (g, (z,9)) — (gx,gy) forall g€ G,z € X and y € Y.

Lemma. If X and Y are both finite sets with G-action then

XCXxY = XCX * XCY -

Proof. Since

{(z.y) eXxY:g-(zy)=(vy)t={reX:go=a}x{yeY g -y=y}

this follows from the lemma that computes characters of permutation representa-
tions in terms of fixed points. (I

Corollary. If G is a finite group and X andY are finite sets with a G-action then
(xcx, xcy ) is the number of G-orbits on X x Y.

Proof. (xx,xv)ac = \%”dea xx(9)xy(g9) = (1, xxxv)c and the result follows
from Burnside’s Lemma. U

Remark. If X is any set with a G-action with |X| > 1 then {(z,z)|z € X} C X x X
is G-stable and so is the complement {(z,y) € X x X |  # y}. Moreover both are
non-empty.

Definition. We say that G acts 2-transitively on X if X has at least 2 elements
and for all z1,29,y1,y2 € X with x1 # y; and z2 # yo there is g € G such that
g-x1 =29 and g -y = y2.2* Equivalently G has only two orbits on X x X.

Ezample. The natural action of S, on {1,...,n} is 2-transitive whenever n > 2.

By the Corollary if G acts 2-transitively on X then (xcx,xcx) = 2. Thus if
CX 22> n,;V; with V; irreducible and pairwise non-isomorphic then > n? = 2 and
so CX has two non-isomorphic irreducible summands — explicitly these are the set
of constant functions and the set V = {f € CX: Y _y f(z) =0}. Then xv is an
irreducible character with

Xv (g) = (number of fixed points of g on X) — 1.

Ezxercise. If G = GLy(F,) then decompose the permutation rep of G coming from
the action of G on F, U {oco} by Mébius transformations.

FEzxzamples.
(1) G = S4: the character table is as follows
|Cq(z;)| | 24 8 3 4 4
|O;] 1 3 8 6 6
2 e (12)(34) (123) (12) (1234)
1 1 1 1 1
€ 1 1 1 -1 -1
Y3 3 -1 0 1 1
Ya 3 -1 0o -1 1
s 2 2 1 0 0

Hie. g-(z1,11) = (22, y2).
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Proof. The trivial 1 and sign e characters may be constructed in the same way
as for Ss.
By our discussion above

Xc{1,2,34y =1+ xv
for some irreducible representation V' of dimension 3 and we may define x3
to be xy. Its values ys3(g) are (number of fixed points of g) — 1 and can be
computed directly to be the claimed values.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation 6
and an irreducible representation p we may form another irreducible representa-
tion 0®p by 0®p(g) = 0(g)p(g). It is not hard to see that xge,(9) = 0(9)x,(9)-
Thus we get another irreducible character exs that we compute by multiplying
characters and may set this to be x4.

We can then complete the character table using column orthogonality: We
note that 24 = 12 + 12 4+ 32 + 32 + xs5(e)? thus ys(e) = 2. Then using
Z? Xi(1)xi(g) = 0 we can construct the remaining values in the table. O

(2) G = A4. Each irreducible representation of Sy may be restricted to A4 and its
character values on elements of A, will be unchanged. In this way we get three
characters of A4: 1, ¥3 = x3|a, and 93 = xs5]a,. Of course 1 is irreducible
since it has dimension 1. Computing

1
(2, ¥2) 4, = 15 (3% +3(=1)" +8(0%) =1
we see 1o also remains irreducible.?® However
1
(s, 5) = 75(22 +3(2%) +8(1)?) = 2
so 13 breaks up into two non-isomorphic irreducible reps of Ay.

FEzxercise. Use this information to construct the whole character table of Ay.

25Note that the conjugacy class of (123) in S4 breaks into two classes of size 4 in A4 but that
doesn’t matter for this calculation since 12 takes the same value on these two classes.
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5. THE CHARACTER RING

We've seen already that algebraic structure on Cg for a finite group G is a
shadow of representation theoretic information: if V; and V5 are representations
that xv,¢v, = Xvi +Xvas Xo = 0, dim Homg (Vy, V2) = (x1, x2). An alternative way
of viewing this is that the category of representations is a model for the algebraic
structure on Cg.

We've seen that xcxxy = Xcx - Xcy. We've also seen that when 6 and p are
representations with dim¢ = 1 there is a representation 6 ® p such that xeg, =
Xo - Xp- We want to generalise these i.e. given any representations py, p2 build a
representation p; ® pa such that X, @p, = Xp1 * Xps-

LECTURE 11

5.1. Tensor products. Suppose that V and W are vector spaces over a field k,
with bases v1,...,v,, and wy,...,w, respectively. We may view V & W either as
the vector space with basis v1, ..., Um, w1, ..., w, (S0 diM VAW = dim V +dim W)
or more abstractly as the vector space of pairs (v, w) with v € V and w € W and
pointwise operations.

Definition. The tensor product V@ W of V and W is the k-vector space with
basis given by symbols v; ® w; for 1 <¢ < mand 1 < j < n and so

dimV W =dimV - dim W.

Ezxample. If X and Y are sets then kX ® kY has basis 0, ®d, forx € X andy € Y.
Notice that
axxy kX QkKY - kX xY; Ox ®(Sy — 6(1,3;)

defines an isomorphism.
Notation. Ifv=> Nv; €V andw =) pjw; € W,
VRQWw: = Z)\iuj(m@wj) ceVew
,J

For example axxy (f ® g)(x,y) = f(z)g(y).
Note that, in general, not every element of V' ® W may be written in the form

vRw (eg v1 ® w1 + vo @ we). The smallest number of summands that are required
is known as the rank of the tensor.

Lemma. The map VxW =V @ W given by (v,w) — v ® w is bilinear.
Proof. We should prove that if x,z1,22 € V and y,y1,y2 € W and vy, € k then
T ® (Y1 + 12y2) = vi(z @ y1) + va(T @ ya)

and
(@) +1212) @Yy = 11(21 @ Y) + v2(22 @ Y).

We'll just do the first; the second follows by symmetry.
Write z = >, \ivi, Y = Zj ,u;?wj for K =1,2. Then

T ® (Y1 + v2y2) = Z Xi(vipg + vapf v ® w;
4.3
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and

vz @y) +ra(z®yr) = Z)\l,u] (v ®w;) | + 1o Z)\iuf(vi®wj)

1,9 1,3
These are equal. O
Ezxercise. Show that given vector spaces U,V and W there is a 1 — 1 correspondence
{linear maps V@ W — U} — {bilinear maps V x W — U}
given by precomposition with the bilinear map (v, w) — v ® w above.

Lemma. If zq,...,2,, ts any basis of V and y1,...,yn is any basis of W then
z;Qy; for L<i<m and 1 < j < nisabasis for V@ W. Thus the definition of
V @ W does not depend on the choice of bases.

Proof. Tt suffices to prove that the set {z; ® y;} spans V ® W since it has size mn.
But if v; =), Ariz, and w; = Y, Bsjys then v; ® w; = Zm A;Bgjzr @y, O

Remark (for enthusiastists). In fact we could have defined V' ® W in a basis inde-
pendent way in the first place: let F' be the (infinite dimensional) vector space with
basis (v@w | v € V;w € W); and R be the subspace generated by

T @ (1y1 + 12y2) — vi(x @ Y1) — v2(T @ Yo)
and

(121 +1222) @Y — v1(21 ®Y) — v2(T2 ® Y)
for all z, 21,29 € V, y,y1,y2 € W and vq,vs € k; then V @ W = F/R naturally.

Ezercise. Show that for vector spaces U,V and W there is a natural (basis inde-
pendent) isomorphism

UaeV) W s (UW)a (Ve Ww).

Definition. Suppose that V and W are vector spaces with bases vy,...,v, and
Wwi,...,w, and @: V. — V and ¢: W — W are linear maps. We can define
pRY: VW — VW as follows:

(P @) (vi @ wy) = (i) @ P(wy).

Ezample. If ¢ is represented by the matrix A;; and ® is represented by the matrix
B;; and we order the basis v; ® w; lexicographically (ie v1 ® w1,v1 @ wa,...,v1 @
Wy, Vg @ W1, ..., Uy ® wy) then ¢ ® 1 is represented by the block matrix

A B AxB

since
(¢ ® ) (v; ® wy) (Z Akz”k) ® <Z Bljwl> = Z AiBij (v ® wy).
7 Kl

Lemma. The linear map ¢ @ ¥ does not depend on the choice of bases.
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Proof. 1t suffices to show that for any v € V and w € W,
(P @Y)(v@w) = p(v) @ p(w).
Writing v = >~ A\v; and w =) pjw; we see
(p@v)(v@w) =Y Aipjp(vi) @ P(w;) = ¢(v) @ (w)
,J
as required. O

Remark. The proof really just says VxW — VW defined by (v, w) — ¢(v)@1(w)
is bilinear and ¢ ® v is its correspondent in the bijection

{linear maps V@ W — V ® W} — {bilinear maps Vx W — V @ W}
from earlier.

Lemma. Suppose that ¢, @1, 02 € Homg(V,V) and 1, 11,19 € Homy (W, W)

(i) (p192) ® (Y11h2) = (g1 @ Y1) (2 @ P2) € Homy(V @ W,V @ W);
(’LZ) idy ®idy = idV®W,‘ and
(i11) tr(p @) =tre-try.

Proof. Given v € V, w € W we can use the previous lemma to compute

(P192) @ (Y1902) (v @ W) = P12(v) ®@ Y19ha(w) = (p1 @ Y1) (P2 @ P2)(v @ W).

Since elements of the form v ® w span V ® W and all maps are linear it follows that

(P12) @ (Y19h2) = (1 @ V1) (P2 @ P2)

as required.
(ii) is clear.
(iii) For the formula relating traces it suffices to stare at the example above:
AnB  ApB
tr AQlB AQQB T == Z B“‘Ajj =trAtrB.
: : - i.j

O

Definition. Given two representation (p, V') and (o, W) of a group G we can define
the representation (p® o,V @ W) by (p® 0)(g9) = p(g) ® a(g).

Note that (p® o,V @ W) is a representation of G by parts (i) and (ii) of the last
lemma. Moreover X,zs = X, - Xo by part (iii).

LECTURE 12

Remarks.

(1) Tensor product of representations defined above is consistent with our ear-
lier notion when one of the representations is one-dimensional.

(2) If X,Y are finite sets with G-action it is easy to verify that the isomorphism
of vector spaces

axxy kX QkY 2 kX x Y; O ®(5y — 6(x,y)

is an isomorphism of representations of G.
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Definition. The character ring R(G) of a group G is defined by
R(G) :={x1 — x2 | x1, x2 are characters of reps of G} C C¢.

e Since Xv,ev, = Xv; + Xva, R(G) is an additive subgroup of Cg.
e Since 1¢ is a character R(G) has the multiplicative unit of C¢.
e Since Xv v, = XW; * XVa, R(G) is closed under multiplication.
Thus R(G) forms a (commutative) subring of Cg.
If (p, V) is a representation of G and (o, W) is a representation of another group
H then
p®o:GxH—=GLVeW); (g,h)— plg)®@a(h)
defines a representation of G' x H by parts (i) and (ii) of the last lemma. Part (iii)
of the lemma gives that

v @ xw)(g, h): = xvew(g,h) = xv(g)xw(h).
Thus
R(G) X R(H) — R(G X H), (XVaXW) = XVew
defines a Z-bilinear map.
The construction of V®W as a representation of GG last time, in the case G = H,
comes from restricting this construction along the homomorphism

G—>GxG; g—(9,9).

Proposition. Suppose G and H are finite groups, (p1,V1), ..., (pr, Vi) are all the
simple complex representations of G and (o1, Wh),...,(0s,Ws) are all the simple
complex representations of H.

Foreach1<i<randl <j<s, (pi®o0;, V@ Wj) is an irreducible complex
representation of G X H. Moreover, all the irreducible representations of G x H
arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let x1,..., X, be the characters of Vq,...,V, and v1,...,%s the characters
ole,...,WS.
The character of V; @ Wj is x; ® ¥;: (g, h) = x:i(g)¥;(h). Then

(Xi @ U5, Xk @Ui)axa = X, Xk) (¥, Vi) 5 = 0idji.

So the x; ® 9, are irreducible and pairwise distinct.
Now

J

> (dimV; @ W;)* = (Z(dimw)2> > @mW;)? | =|G|[|H| = |G x H|

%7 A

so we must have them all.?% O

Question. If V and W are irreducible as representations of G then can V ® W be
irreducible as a representation of G?7

We’ve seen the answer is yes is one of V and W is one-dimensional but it is not
usually true.

26We could complete the proof by instead considering conjugacy classes in G X H to show that
dimCgxg = dimCq - dimCpy.
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FEzxample. G = S3

1 3 2

e (12) (123)
11 1 1
el1 -1 1
viz o -1

Clearly, 1@ W = W always. e®e=1,e¢®V =V and V ® V has character x?
given by x2(1) = 4, x?(12) = 0 and x?(123) = 1. Thus x? decomposes as 1+ ¢+ x.

In general if x1,..., X, are the irreducible characters then for all 1 < 1,7 <r

T
XiXj = ) a5 Xk
k=1

with af ; € Ny and these numbers af ; completely determine the structure of R(G)

as a ring since R(G) = @;_, Zx; as an additive group.
In fact V@ V.,V ® V ® V,... are never irreducible if dimV > 1. However
considering them can help us build new irreducible representations.

5.2. Symmetic and Exterior Powers. For any vector space V', define
oc=0y: VRV ->VeVbyovew)—weuvfor all v,w e V.
Ezercise. Check this does uniquely define a linear map. Hint: Show that (v, w) —
w ® v is a bilinear map.
Notice that 02 = id and so, if chark # 2, o decomposes V ® V into two
eigenspaces:
S?V:={acV®V|oa=a}
AV :={acV®V]|oa=—a}.
In fact this is the isotypical decomposition of V' ® V as a rep of Cs.
Lemma. Suppose vi,...,vy is a basis for V.
(i) S*V has a basis vivj = 1(v; @ v; +v; @v;) for 1 <i < j
(ii) A2V has a basis v; Avj := 3 (v; ® v; —v; @ ;) for 1 i<
Thus dim S?V = im(m + 1) and dim A%V = Im(m —1).
Proof. Tt is easy to check that the union of the two claimed bases span V ® V' and

have m?2 elements so form a basis. Moreover v;v; do all live in S2V and the v; A U;
do all live in A?V. Everything follows.?" O

27

N

<m.
j<m.28

Proposition. Let (p,V) be a representation of G.
(i) VoV = S?V @& A%V as representations of G.
(i3) for g € G such that p(g) is diagonalisable.>
1

xs2v(9) = 5(x(9)* + x(4%))
1
xazv(9) = 5(x(9)* = x(g%)).
27vivj = v;v; if we allow 5 > j
28v,~ Av; = —v; Av; if we allow 4 > j. In particular v; Av; =0

29For an alternative argument use Ex Sheet 2 Q11.
30This condition is merely for computational convenience.
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Proof. For (i) we need to show that if a € V ® V and oy (a) = Aa for A = £1 then
ovpvev(g)(a) = Apvev(g)(a) for each g € G. For this it suffices to prove that
og=go (ieoc € Homg(Ve@V,V®V)). But coglv@w) =guw®gv =goo(v@w).

To compute (ii) it suffices to prove one or the other since the sum of the right-
hand-sides is x(9)? = xvev. Let v1,..., v, be a basis of eigenvectors for p(g) with
eigenvalues A1, ..., A\p. Then g(vv;) = (MNA))vv;.

Thus
X(9)7+X(9%) = QA7+ 3 AT =23 AiAj

i<]
whereas Xs2v(9) = >_;<; Aidj. O

Ezercise. Prove directly the formula for y a2y .

LECTURE 13

Example. Sy
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
€ 1 1 1 -1 -1
xs |3 -1 0 1 1
exs |3 -1 0 -1 1
X5 2 2 -1 0 0
X3 |9 1 0 1 1
() |3 3 0 3 -1
S%x3 | 6 2 0 2 0
A%xs |3 -1 0 -1 1

Thus S%x3 = x5 + x3 + 1 and A%y3 = eys. Notice that given 1 and e and x3
we could’ve constructed the remaining two irreducible characters using S?y3 and
A2X3.

More generally, for any vector space V we may consider V" =V ® --- @ V.
Then for any w € S,, we can define a linear map o(w): V" — V& by
O'(W)Z V1 & - Up = Vy—1(1) @+ Vy—1(n)
for vi,...,v, € V.

Ezercise. Show that this defines a representation of S,, on V®" and that if V is a
representation of G then the G-action and the S,,-action on V®" commute.

Let’s suppose for now that k has characteristic 0. Thus we can decompose V"
as a rep of S, and each isotypical component will be a G-invariant subspace of
V®"_ In particular we can make the following definition.

Definition. Suppose that V is a vector space we define

(i) the n'™ symmetric power of V to be
SV :={a e V®" | o(w)(a) =aforallw e S,}

and
(ii) the n'* exterior (or alternating) power of V to be

A"V :={a e V®" | o(w)(a) = e(w)a for all w € S,,}.
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Note that, for n > 3,
S"VaAV ={acV® |o(w)(a) =aforallwe A,} C VO™

We also define the following notation for vy,...,v, € V,

1
V1 Up ::E Z vw(1)®~~~®vw(n)€S"V

T wes,
and
1
VLA AUy = ] Z (W) V(1) @+ @ Vy(ny € A"V.
: wEeSy,
Ezercise. Show that if vy,...,v4 is a basis for V' then
{vi, i, |1<i <0 < < d}

is a basis for S™V and
{1)2‘1/\“-/\’Uin‘1<i1<-~-<in<d}

is a basis for A"V. Hence given g € G acting diagonalisably on V', compute the
character values xgny (g) and xany (g) in terms of the eigenvalues of g on V.

For any vector space V, A VY =k and A"V =0 if n > dim V.

Ezercise. Show that if (p, V) is a representation of G then the representation of G
on AMMVY =~ [k is given by g + det p(g); ie the dim V" exterior power of V is
isomorphic to det p.

We may stick these vector spaces together to form algebras.
Definition. Given a vector space V we may define the tensor algebra of V,
TV = @@()V@"

(where V®° = k). Then TV is a (non-commutative) graded ring with the product
of v @+ ®@uv, €VE and w1 @ -+ - ® wy € V&S given by

VIR QU Quw @ @uws € VIS,
with graded quotient rings the symmetric algebra of V,

SV =TV/(z@y—-yz|z,ycV),
and the exterior algebra of V,

AV =TV/(z@y+yoz|z,yeV).

One can show that SV = ®n>0 S™V under 1 ® -+ ® &, — x1---x, and
AV = @R2OA”V under £1 ® - Q@ xp > X1 A+ A Xy

Now SV is a commutative ring and AV is graded-commutative; that isif z € A"V
and y € AV then z Ay = (—1)"y A z.
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5.3. Duality. Recall that Cg has the x-operation given by f*(g) = f(g~'). This
also restricts to R(G).

Recall that if G is group and (p,V) is a representation of G then the dual
representation (p*,V*) of G is given by

(p*(9)0)(v) = 0(p(g~")v)
fordeV*, geGandveV.

Lemma. v« = (xv)*.

Proof. If p(g) is represented by a matrix A with respect to a basis vy,...,v4 for V
and €1, ...,€q is the dual basis for V*. Then p(g) " 'v; = > (A7) iv;.

Thus (p (g)ex) () = e (32;(A1)j00;) = (A1) and s0

P (@en = (A e
i.e. p*(g) is represented by (A~1)T with respect to the dual basis. Taking traces
gives the result. U

Definition. We say that V' is self-dual if V=2 V* as representations of G.

When G is finite and k = C, V is self-dual if and only if xv (g) € R for all g € G;
since this is equivalent to xy« = xv.

Examples.

(1) G=C3 = (z)and V = C. If pis given by p(z) = w = 5" then p*(z) =w? =@
and V is not self-dual.

(2) G =S, since g is always conjugate to its inverse in S,,, x* = x always and so
every representation is self-dual.

(3) Permutation representations CX are always self-dual.

We’ve now got a number of ways to build representations of a group G:
e permutation representations coming from group actions;
via representations of a group H and a group homomorphism G — H (e.g.
restriction);
tensor products;
symmetric and exterior powers;
decomposition of these into irreducible components;
character theoretically using orthogonality of characters.

We're now going to discuss one more way related to restriction.
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LECTURE 14
6. INDUCTION

6.1. Construction. Suppose that H is a subgroup of G. Restriction makes rep-
resentations of G into representations of H. We would like a way of building
representations of G from representations of H.

Recall that [g]g denotes the conjugacy class of g € G. So 1 G — k given by

gla -+

1 (2) 1 if x is conjugate to ¢g in G
) =
lsle 0 otherwise

is in Cg.
We note that for g € G,

l9lc! =97, since (zgz™") ™' =ag ta 7,

and so
(Lglo)™ = Lig-1)6-
If H < G then [g]g N H is a union of H-conjugacy classes
l9lc NH = U [
[MeCldle
S0
r:Cq = Cus f = flu
is a well-defined linear map with

T(l[g]c) = Z 1[h]H-

[(PlaCldlc

Since for every finite group G, (f1, f2)a = ﬁ > _gec 11(9)f2(g) defines a non-
degenerate bilinear form on C¢, the map r has an adjoint r* characterised by

(r(f1), fa)yu = (f1,7"(f2))q for f1 € Cq, f2 € Cq.

In particular for f € Cq,

(Ao (N = r(Ugala) = Y e f(h).

(M Cldle

On the other hand,

Thus, by comparing these we see that

P Calg)
(1) D) = 3 i

[A]

Since gz = y~lgy if and only if zy~! € Cg(g) we can rewrite this as

. C, 1 o _
FDe = S M'J(,%m]mf(hmef (" ga)
heHN[g]C z€G
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where

(g) = {f(g) for ge H

~]o otherwise.
Question. Is r*(R(H)) C R(G)?
Suppose that x is a C-character of H and % is an irreducible C-character of G.
Then
(¥, 7" (X))a = (r(¥), x)r € No

by orthogonality of characters, since r(¢) is a character of H.
So writing Irr(G) to denote the set of irreducible C-characters of G

(2) ) =Y, @lmx)ad
Yelrr(G)

is even a character in R(G). The formula (2) is only useful for actually computing
r*(x) if we already understand Irr(G). Since our purpose will often be to use Irr(H)
to understand Irr(G), the formula (1) will typically prove more useful.

Ezample. G = S3 and H = A3z = {1,(123),(132)}.
If f € Cy then

P (f)(e) = 5 7le) = 2f (o),
P (1)((12)) = 0, and
P (7)((128)) = 5 £((123) + 5 7((132) = F(128)) + F((132))
Thus

Az |1 (123) (132) Ss |1 (12) (123)
x1 |1 1 1 r*(x1) | 2 0 2
x2 |1 w w? r*(xz2) | 2 0 -1
x3 |1 w? w r*(xs) | 2 0 -1

So r*(x1) = 1+e€ and r*(x2) = r*(x3) is the 2-dimensional irreducible character
Xxv of S3 consistent with the formula (2) since
145 = €las = x1
and
(xv)las = X2 + Xs-
Note that if x is an irreducible character of H then r*(x) may be an irreducible
character of G but need not be so. Also note that 7*(x)(e) = %x(e) always.

We’d like to build a representation of G with character r*(x) given a represen-
tation W of H with character x.
Suppose that X is a finite set and W is a k-vector space. We may define

FXW)={f:G—>W}
the k-vector space of functions X to W with pointwise operations. In particular
F(X, k) =kX.
We can compute dim F(X, W) = | X|dim W since if wy, ..., wq is a basis for W
then (0,w; : x € X,1 < i< d) is a basis for F(X,W).
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If K is a group, X has a K-action and W is a representation of K then F(X, W)
can be viewed as a representation of K via

(k- f)(x) =kf(k~'z) forall f € F(X,W), k€ K,z € X.

For example if W = k is the trivial representation of K then F(X,W) = kX as
representations of K.

Now we consider a special case of this construction. Suppose H < G are finite
groups. Then G can be viewed as a set with G x H-action via

(g9,h) -z = gxh™* for all g,z € G,h € H.
If W is a representation of H then it can be viewed as a representaion of G x H via
(g,h) -w=hwforall ge G,he HyweW.
Now F(G,W) is a representation of G x H via
((g,h) - f)(x) =h- f(g~ xh) for (g,h) € G x H,x € G, f € F(G,W).

Using this (G, W) can be viewed as a representation of G and of H by restriction
along the respective natural maps G — G x {ey} and H — {ec} x H.
Now

FGW)H = {feF(GW):(e,h)-f=fforalheH}
= {feF(GW): f(zh)=h""f(z) forall h € H,z € G}

is a G-invariant subspace of F(G, W) since the G and H actions commute; if
(e,h)- f= ffor h € H, then for g € G,

(e,h)(g,e)f = (gae)(eah)f = (gve).ﬁ

For example if k is the trivial representation of W then F(G, k) = kG/H as
representations of G.

Definition. Suppose that H is a subgroup of a finite group G and W is a repre-
sentation of H. We define the induced representation to be

d$ W = F(G, W)
as a representation of G.

Lemma. dim Indg W = % dim W

Proof. Let X = G/H be the set of left cosets of H in G and let x1,...,7q/m| be
left coset representatives then

0: F(G, W) — F(X, W)
given by
0(f)(x:H) = f(z;) for f € F(G,W)*
is a k-linear map with inverse given by
(1) (z;h) = h™ (x;) for I € F(X,W) and h € H.

Now the result follows from an earlier computation of dim F(X, W). O

If V is a representation of G, we’ll write Resfl V for the representation of H
obtained by restriction.
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Theorem (Frobenius reciprocity). Let V' be a representation of G, and W a rep-
resentation of H, then

Home(V, Ind$ W) = Homp (Res$ V, W).

LECTURE 15
Corollary. If k = C then
<XV7XIndg whe = (Xvlm, xw)u
In particular Xiae w = 1" (xw ).
Proof of Frobenius Reciprocity. We’ll prove that
Homy (V, W) = Homg(V, F(G,W))

as representations of H and then deduce the result by taking H-invariants.
Here the action of H on the RHS is via

(h-0)(v) =h-6(v) for all 8 € Homg(V, F(G,W)),v €V and h € H.
so that Homg(V, F(G, W) = Homg (V, F(G, W)H) = Homg(V,Ind W). Note
that this means that
(3) (h-0)(v)(x) = h (8(v)(zh)) = W(O(h~ z"v)(e)) for all 2 € G
since 6 is G-invariant.
We can define a linear map
¥: Homg(V, F(G,W)) — Homy (V, W)
by
(0)(v) = 0(v)(e)
and claim that ¥ is an H-intertwining map. First we compute for h € H and
0 € Homg (V, F(G,W)),

(h- W) () = h(WO(R " v)
h (O(h™"v)(e))
= (h-0)(v)(e) by (3)
= U(h-0)(v)

Thus it remains to prove that ¥ is an isomorphism.
Given ¢ € Homy(V, W) we can define o € Homy(V, Hom(G,W)) by

wa(v)(z) = p(z~ ) for v € Vand z € G.
Then for all x,g € G and v € V
va(gv)(z) = e(a™ gv) = pa(v)(g™'2) = (9 ¢c(v))()
ie. pg € Homg(V,Hom(G, W)). We can compute
V(pa)(v) = pa(v)(e) = ¢(v)
for ¢ € Homy(V,W) and v € V and
V(0)c(v)(z) = ¥(0)(z ™ v) = 0z~ v)(e) = 27 0(v)(e) = O(v)(x)

for # € Homg(V, F(G,W)), x € G and v € V. Thus ¢ — g is an inverse to
v, ]
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Remark. We could’ve computed XIndG W directly and shown that it is equal to

r*(xw). Frobenius reciprocity would then follow in the case k = C. However our
proof works for all fields k and gives us more information about the nature of an
isomorphism.

6.2. Mackey Theory. This is the study of representations like Res% Ind% W for
H, K subgroups of G and W a representation of H. We can (and will) use it to
characterise when Ind$ W is irreducible.

If H, K are subgroups of G then H x K acts on G via

(h,k)-g=kgh™!
An orbit of this action is called a double coset we write
KgH :={kgh | ke K,h € H}
for the orbit containing g.

Definition. K\G/H := {KgH | g € G} is the set of double cosets.

The double cosets partition G.

Given any representation (p, W) of H and g € G, we can define (9p,9 W) to be
the representation of YH := gHg~! < G on W given by (9p)(ghg™') = p(h) for
he H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W s a representation of H then

Res% Ind§ W = @ Ind® , ;; Res, & 9W.
gEK\G/H
Note that

Ind$ W F(G,w)H

= F [T E&eHwW

KgHeK\G/H

@ F(KgH, W) as reps of K.
KgHeK\G/H

1%

Thus it suffices to show that for each g,
F(KgH, W)™ = F(K W) 0K
as representations of K. We defer the proof of this to the next lecture.

Corollary (Character version of Mackey’s Restriction Formula). If x is a character
of a representation of H then

Res% Ind$ x = Z Ind%; Ak X
KgHEK\G/H

where 9x is the class function on 9H N K given by Ix(x) = x(g~txg).
FEzxercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a
representation of H, then Indg W is irreducible if and only if
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(i) W is irreducible and

(ii) for each g € G\H, the two representations Resyih, ; IW and Resty g W of
H N9 H have no irreducible factors in common.

Proof.
Frob. recip.
< Ind$ xw,Ind% xw)e = (xw,Res% nd$ xw)u
Mackey
= Z xw, IndgmH ReSiIIfng IXw)n
geH\G/H
Frob. recip.

H IH
E <ReSHn9H XW7ReSHﬂ9HgXW>HF‘|-‘7H
geEH\G/H

So Ind$ W is irreducible precisely if

Z (Rest o xw Resjq%gH Ixw)anem = 1.
geEH\G/H

The term corresponding to the coset HeH = H is {(xw, xw)m which is at least 1
and equal to 1 precisely if W is irreducible. The other terms are all > 0 and are
zero precisely if condition (ii) of the statement holds. O

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
Indg W is irreducible if and only if Ixw # xw for all g € G\H.

Proof. Since H is normal, gHg~! = H for all ¢ € G. Moreover W is irreducible
since W is irreducible.
So by Mackey’s irreducibility criterion, Indg W irreducible precisely if W 22 9W
for all g € G\H. This last is equivalent to xw # 9xw as required.
O

Ezxzamples.

(1) H = (r) & C,, the rotations in G = Da,. The irreducible characters x of H
are all of the form x(r7) = e . We see that Ind$; y is irreducible if and only
if x(r7) # x(r~7) for some j. This is equivalent to y not being real valued.

(2) G=S, and H=A,. If g € S, is a cycle type that splits into two conjugacy
classes in A,, and x is an irreducible character of A,, that takes different values
of the two classes then Indg X is irreducible.

LECTURE 16

Recall that if W is a representation of H and H, K are subgroups of G and g € G
then

F(KgH,W)Y! = {f: KgH — W | f(zh) = h='f(z) for all z € KgH,h € H}
with K-action given by
(k- f)(z) = f(k'2) for all k € K and z € KgH.

We reduced the proof of Mackey’s Decomposition Theorem to the following
Lemma.
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Lemma. There is an isomorphism of representations of K
F(KgH, W) =~ F(K IWw)EN"H,
Proof. Let ©: F(KgH,W)H — F(K,9W) be defined by
O(f)(k) = f(kg).
If k' € K then
(K- ©(f))(k) = f(k'"kg) = (k' - f)(kg) = O(K' - f)(k)

and so © is K-linear.
If ghg~' € K for some h € H,

O(f)(kghg™") = f(kgh)

= p(h™") f(kg)

= (“p)(ghg™ ") ' O(f) (k)
Thus Im© < F(K,IW)KNH,

We try to define an inverse to ©. Let
U F(K,9W)EH  F(KgH, W)H
be given by
U(f)(kgh) = p(h)~* f(k)
If kyghy = koghs then ky 'ky = ghohi'g™' € KN9H. So
flka) = flla(ky k)™
= 9p(ghahitg™")f (k1)

plhahi ") f (k1)

Thus
p(h2) ™ f(k2) = p(h1) ™" f (k1)
and U(f) is well-defined.
Moreover for f € F(K,9W)KNH,
OU(f)(k) = ¥(f)(kg) = [ (k),
and for f € F(KgH,W)H |

VO(f)(kgh) = p(h™")O(f)(k)

I
)
~

7
—
—
~
—
>~
)
N—

Thus ¥ is inverse to ©. ]
6.3. Frobenius groups.

Theorem. (Frobenius 1901) Let G be a finite group acting transitively on a set X.
If each g € G\{e} fizes at most one element of X then

K={1}U{geG|gx#x foralzecX}
is a normal subgroup of G of order |X|.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with 1 < |X| < |G| such that each g € G\{e} fixes at most one = € X.
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FEzxzamples.

(1) G = Dy, with n odd acting naturally on the vertices of an n-gon. The reflection
fix precisely one vertex and the non-trivial rotations fix no vertices.

(2) G = {(g l;) |a,b€IE‘p,a7$0} acting on X = {(316) xer} by matrix

multiplication.

It follows that no Frobenius group can be simple. The normal subgroup K is
called the Frobenius kernel and any of the groups Stabg(z) for z € X is called
a Frobenius complement. No proof of the theorem is known that does not use
representation theory.

Proof of Theorem. For x € X, let H = Stabg(x) so |G| = |X||H| by the orbit-
stabiliser theorem.
By hypothesis if g € G\H then

gHg™' N H = Stabg(gx) N Stabg(z) = {e}.3!
Thus
() [Ugeq 9H9™"| = U ex Staba(z)| = (|H] = 1)|X| + 1;
(ii) If hy, ho € H then [h1]g = [he]y if and only if [hi]g = [he]g; and
(ili) Cg(h) =Cyg(h) fore#he H
By (i) |K| = [{e} U (IGN\U,ex Staba(2)) | = [H||X| - (|H| - 1)|X| = |X] as
required.
We must show that K <G. Our strategy will be to prove that it is the kernel of

some representation of G.
If x is a character of H we can compute Indg X:

Ca(9)|
Indf = 1)l o,
H-=9|G
X|x(e) ifg=e
= {x(h)  iflgle = [hlo # {e} by (ii) and (i)
0 if g € K\{e}.
Suppose now that Irr(H) = {x1,...,xr} and let
0; = Ind%, x; + xi(e)1g — xi(e)Ind% 157 € R(G) fori=1,...,r
SO
xi(e) ifg=e
0i(9) = { xi(h) if [glc = [hla
xi(e) ifge K
If 6; were a character then the corresponding representation would have ker-

nel containing K. Since #; € R(G) we can write it as a Z-linear combination of
irreducible characters 6; = > n;;, say, for ¢; € Irr(G) and n; € Z.

3174 s straightforward to verify that a group is Frobenius if and only if there is a non-trivial
proper subgroup H of G such that gHg~™' N H = {e} for all g € G\H. To go one way take
X = G/H, to go the other take H = Stabg(x) for some = € X.
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Now we can compute

1 2
(0:,0i)c = @ Z 10:(9)]

geG

1

e S X+ xile)
heH\{e} keK

|X] (Z )
=1~ |Xi(h)|

Gl \ier
= (Xi» Xi)g = 1.

But on the other hand it must be " n?. Thus 6; is +¢ for some character 1 of G.
Since 6;(e) > 0 it must actually be an irreducible character.

To finish we write 6 = > xi(e)6; and so 0(h) = >._, xi(e)xi(h) = 0 for h €
H\{e} by column orthogonality, and 8(k) = > x;(e)? = |H| for k € K. Thus
K = ker 0 is a normal subgroup of G. (]

In his thesis John Thompson proved, amongst other things, that the Frobenius
kernel must be the direct product of its Sylow subgroups.
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LECTURE 17
7. ARITHMETIC PROPERTIES OF CHARACTERS

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous p®q®-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We'll continue with our assumption that £ = C and also assume that our groups
are finite.

7.1. Arithmetic results. We’ll need to quote some results about arithmetic with-
out proof; proofs should be provided in the Number Fields course (or in one later
case Galois Theory).

Definition. z € C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring O of C. (see Groups, Rings and
Modules 2023 Examples Sheet 4 Q13)

Fact 2 Any subring of C that is finitely generated as an abelian group is contained
in O. (see Groups, Rings and Modules 2023 Examples Sheet 4 Q13)

Fact 3 If x € QN O then x € Z. (see Numbers and Sets 2021 Example Sheet 3

Q12)
Lemma. If x is the character of G, then x takes values in O.

Proof. We know that x(g) is a sum of n*" roots of unity for n = |G|. Each n'" root
of unity is by defintion a root of X™ — 1 and so an algebraic integer. The lemma
follows from Fact 1. O

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication. This makes kG into a commutative ring.
But more usefully for our immediate purposes we have the convolution product

(ffa)(9) =Y filgz)fale™) = Y file

zeG z,yeq
Y=g

that makes kG into a (typically) non-commutative ring. With this product
691 692 = 69192 for all 91,92 € G

and so we may rephrase the multiplication as

> Agdy (Z uh5h> =3 | D Agpn | Ok

geG heG keG \gh=k

From now on this will be the product we have in mind when we think of kG as a
ring.
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Notice that a (finitely generated) kG-module is the ‘same’ as a representation of
G: given a representation (p, V') of G we can make it into a kG-module via

fo=">" f9)p(g) ().
geG

for f € kG and v € V. Conversely, given a finitely generated kG-module M we
can view M as a representation of G via p(g)(m) = dgm. Moreover G-linear maps
correspond to kG-module homomorphisms under this correspondence.

Ezercise. Suppose that kX is a permutation representation of G. Calculate the
action of f € kG on kX under this correspondence.

It will prove useful understand the centre Z(kG) of kG; that is the subring of
f € kG such that fh = hf for all h € kG. This is because for every f € Z(kG)
then Y f(g)p(g) € Homg(V,V) for every representation (p, V) of G.

Lemma. Suppose that f € kG. Then f is in Z(kG) if and only if f is in Cq, the
set of class functions on G. In particular dimy Z(kG) is the number of conjugacy
classes in G.

Proof. Suppose f € kG. Notice that fh = hf for all h € kG if and only if
fog = dgf for all g € G: the forward direction is clear and for the backward
direction if fd, = d4f for all g € G then

fh=">" fh(g)dy =" h(g)dyf = hf.

9eG geG
But 0, f = fd, if and only if d,fd,-1+ = f and
(69f34-1)(x) = (34f)(xg) = f(g™ zg).
So if f € Z(kG) if and ouly if f € Cg as required. O

Remark. The multiplication on Z(kG) is not the same as the multiplication on Cg
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Given g € G define the class sum

C[g]c(x) — {1 U [g]G

0 z¢[ge.
Then if [g1]¢ = {e},...,[9r]c¢ are all the conjugacy classes of G, write
C; = C[gi]c fori=1,...r

We called C; = 1[4,), before but have changed notation to remind ourselves that
the multiplication is not pointwise. C1, ..., C, form a basis for Z(kG).

Proposition. There are non-negative integers aﬁj such that C;C; =Y, aéjC’l for
i, 5,0 €{1,...,r}. Indeed

al; = {(z,y) € lgile % [gla | 2y = ai}.-

The al,

; are called the structure constants for Z(kG).
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Proof. Since Z(kG) is a ring, we can certainly write C;C; = ZaﬁjC’l for some
aéj € k.
However, we can explicitly compute

aj; = (C:iCy)g) = Y Cilx)Ciy) = {(z.y) € laile x lgle | 2y = @i}

z,yeG
TY=4gi

as claimed. 0

Suppose now that (p, V') is an irreducible representation of G. Then if z € Z(kG)
we’ve seen that z: V — V given by 2v =3 - 2(g9)p(g)v € Home(V, V).

By Schur’s Lemma it follows that z acts by a scalar A\, € k on V. In this way
we get a k-algebra homomorphism w,: Z(kG) — k;z — ..

Taking traces we see that

dimV - A, =Y 2(9)xv(9).

geG
So
N xlgi),
@ w,(C) = Nl

We now see that w, only depends on x, (and so on the isomorphism class of p)
and we write w, = w,.
Lemma. The values w, (C;) are in O

Note this isn’t a priori obvious since ﬁ will not be an algebraic integer for

x(e) # 1.

Proof. Since w, is an algebra homomorphism Z(kG) — k,
(5) Wy (Ci)wy (Cy) = Zaiij(cl)~
!

So the subring of C generated by w, (C;) for i = 1,...,r is a finitely generated
abelian group spanned by w, (C1),...,wy(Cy). The result follows from Fact 2
above. O

Lemma.
ol — |G| x(9:)x(95)x(g; ")
Y Ca(9)l|Ca(g5)] x(e) '

In particular the aéj are determined by the character table.

x€Irr(G)

Proof. By (4) and (5), for each irreducible character x,

X(gi)H i] |X(gj)|[ } | = l X(gl)l[ l]G|

G gjlGl = Qij
(o) 19l oy Tl = 2 )
Multiplying both sides by %@, using |[g]g] = % for all ¢ € G, and

summing over x € Irr(G) we obtain

el X(90X(9)x(9m") _ N~ @y o
CG(gi)|CG(gj)|X€%:(G) x(e) —§|CG(QZ)|X€§G)X(91)X(%)— "

by column orthogonality. [
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LECTURE 18
7.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides

G-

Proof. Let x be the character of V. We’ll show that (—l € ONQ = Z by Fact 3
from §7.1.

ZX

QEG

—Z jlladalx(ax(e; b

= ZwX(C

But O forms a ring (by Fact 1 in §7.1) and each w, (C;) and each x(g; ') is in O
G|

SO 3 (ey is in O N Q as required. (I
FEzxzamples.

(1) If G is a p-group and y is an irreducible character then x(e) is always a
power of p. In particular if |G| = p? then, since Zx x(e)? = p?, every
irreducible rep is 1-dimensional and so G is abelian.

(2) If G= A, or S,, and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (p,V) is an irreducible representation then dim 'V
divides |G/ Z(G)]|.

You could compare this with ||g]¢| = IC‘ (lg)l divides |G/Z(G)|.

Proof. It Z = Z(G) then, by Schur’s Lemma, the image of p|z: Z — GL(V) is
contained in k* idy; p(z) = A, idy for z € Z, say.
For each m > 2, consider the irreducible representation of G™ given by
pEm: G™ — GL(V®™).

If 2= (21,...,2m) € Z™ then z acts on V™ via [[i2; A.,id = Ay ., id. Thus if
[11" zi = 1 then z € ker p®™.

Let
m
Z'={(z1,- . zm) € 2™ | [z = 1}
i=1
so |Z'| = |Z|™~L. We may view p®™ as a degree (dim V)™ irreducible representa-
tion of G™/Z'.
Since |G™/Z'| = |G|™/|Z|™~! we can use the previous theorem to deduce that

(dim V)™ divides |G|™/|Z|™ L.
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Suppose that p is a prime such that p® divides dimV. Then p*™ divides
|G/Z|™|Z|. By taking m to be large, in particular so that p™ does not divide
|Z|, we see that p® divides |G/Z|. Thus dim V divides |G/Z| as claimed. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.

If |G| is even then G has an element x of order 2. By example sheet 2 Q2
for every irreducible x, x(x) = x(e) mod 4. So if x(e) = 2 then x(x) = +2, and
p(x) = £I. Thus p(x) € Z(p(Q)), a contradiction since G is non-abelian simple. [

Remark. In 1963 Feit and Thompson published a 255 page paper proving that there
is no non-abelian simple group of odd order.

7.4. Burnside’s p®¢” Theorem.

Lemma. Suppose a € O\0 is of the form a = =37 X; with X = 1 for all i.
Then |af = 1.32

Sketch proof (non-examinable). By assumption o € Q(e) where € = 2™/,

Let G = Gal(Q(e)/Q). It is known that {8 € Q(¢) | o(8) = B for all 0 € G} = Q.

Consider N(a) := [[,eg0o(a). Since N(a) is fixed by every element of G,
N(a) € Q. Moreover N(«) € O since the Galois conjugates of a root of an in-
teger polynomial is a root of the same polynomial. Thus N(«) € Z.

But for each 0 € G, |o(a)| = |£ > o()\;)| < 1. Thus N(a) = £1, and || =1 as

required. [l

Lemma. Suppose x is an irreducible character of G, and g € G such that x(e) and
llglc| are coprime. Then |x(g)| = x(e) or 0.

Note if x = xv this is saying that under the given hypothesis either g acts as a
scalar on V33 or x(g) = 0.

Proof. By Bezout, we can find a,b € Z such that ax(e) + b|[g]g| = 1. Define

x(9) x(9)
o= =ax(g)+b G
X© (9) X(e)lH |
Then, since x(g) is a sum of |G|th roots of unity, « satisfies the conditions of the
previous lemma (or is zero) and so this lemma follows. (]

Proposition. If G is a non-abelian finite group with an element g # e such that
llg]c| has prime power order then G is not simple.

Proof. Suppose for contradiction that G is simple and has an element g € G\{e}
such that |[g]g| = p" for some prime p.

If x is a non-trivial irreducible character of G then |x(g)| < x(1) since otherwise
p(g) is a scalar matrix and so lies in Z(p(G)) = Z(G).

32 6. all the A; are equal.

and so p(g) € Z(p(G))



52 SIMON WADSLEY

Thus by the last lemma, for every non-trivial irreducible character, either p
divides x(e) or |x(g)] =0 . By column orthogonality,

0= > x(e)xlg).

x€lrr(G)

Thus _71 =2z %X(g) € ONQ. That is % in Z giving the desired contradiction.
(I

Theorem (Burnside (1904)). Let p,q be primes and G a group of order p®q® with
a,b non-negative integers such that a + b > 2, then G is not simple.

Proof. Without loss of generality b > 0. Let @ be a Sylow-g-subgroup of GG. Since
Z(Q) # 1 we can find e # g € Z(Q). Then ¢® divides |Cg(g)|, so the conjugacy
class containing g has order p” for some 0 < r < a. The theorem now follows
immediately from the Proposition. ([l

Remarks.

(1) It follows that every group of order p®q” is soluble. That is, there is a chain
of subgroups G = Go =2 G1 > -+ 2 G, = {e} with G;11 normal in G; and
G;/Gi+1 abelian for all i.

(2) Note that |As| = 2%-3-5 so the order of a simple group can have precisely
3 prime factors.

(3) The first purely group theoretic proof of the p®q®-theorem appeared in 1972.
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LECTURE 19
8. TOPOLOGICAL GROUPS
In this section k will be C always.

8.1. Defintions and examples.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G x G — G;(g,h) — gh and the inverse map
G — G; g+ g~ are continuous maps.

Ezxamples.

(1) GL,(C) with the subspace topology from Mat,, ((C) ~ C" since

(AB)ij =Y _ AyBy; and A" =
k

= ot AadJA
More generally GL(V) for V' a vector space over C, where GL(V) is given the
the topology that makes an isomorphism GL(V) — GL,(C) given by choosing
a basis a homeomorphism. Since

GL,(C) = GL,(C); A P~1AP

is a homeomorphism for every P € GL,(C), this topology does not depend on
the choice of basis.

(2) G finite — with the discrete topology — since all maps G xG — G and G — G
are continuous.

(3) O(n) ={A € GL,(R) | ATA=1}; SO(n) ={A € O(n) |det A= 1}.

(4) U(n) = {A € GL,(C) | ATA = I}; SU(n) = {A € U(n) | det A = 1}. Note
that

Ul)=8'"={zeC:|z|] =1}
(5) *G profinite such as Z,, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism p: G — GL(V).

Remarks.

(1) If X is a topological space then a: X — GL,(C) is continuous if and only if
the maps & — «;;(2) = a(x);; are continuous for all ¢, 5.

(2) If G is a (finite) group with the discrete topology. Then continuous function
G — X just means function G — X.

8.2. Compact Groups. Our most powerful idea for studying representations of
finite groups was averaging over the group; that is the operation ﬁ > gec- When
considering more general topological groups we should replace Y by [.
Definition. For G a topological group and C(G,R) = {f G — R | f is continuous},
alinear map [, : C(G,R) = R (we write [, f = [,f(g) dg) is called a Haar integral
if
(i) Jo1=1(so [, is normalised so total volume is 1);
i) [ f(zg) dg = |, fl9)dg = [ f(gx)dg for all z € G (so [, is translation
invariant).?

34For example f(zg) means the continuous function G — R given by g — f(zg) and
fG f(xzg) dg means the value of fG evaluated at this function.
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(iii) [, f = 0if f(g) >0 for all g € G (positivity).
FEzxzamples.

(1) If G finite, then [, f = ﬁ > gec f(9)-
2) G =S5, [, f =& [Z7f(e?)de.

27 Jo

Note that, for any R-vector space V, f ¢ induces a linear map also written

/ :C(G,) V)=V
G
under the natural identification V' — V** for § € V*, f € C(G,V),

e(Lf)=lﬁqw»®.

More concretely, if vy, ..., v, is a basis for V then f € C(G,V) is uniquely of the
form

f=Y"fwi with f1,..., fo € C(G,R)
=1

L5

This map is also translation invariant and sends a constant function to its unique
value.

Moreover if a: V' — W is a linear map and f € C(G, V) then o ([, f) = [ (af).
In particular if V' is a C-vector space then V' — V; v — v is R-linear and so fG is
C-linear.

and

Theorem. If G is a compact Hausdorff group, then there is a unique Haar integral
on G.

Proof. Omitted (|

All the examples of topological groups from last time are compact Hausdorff
except GL,(C) which is not compact. We’ll follow standard practice and write
‘compact group’ to mean ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (p, V) is unitary.

Proof. Same as for finite groups: let (—, —) be any inner product on V', then

WWZLWWW@W®

is the required G-invariant inner product since, for x € G and for v,w € V,
(Pl plaw) = [ (plaa)o. plaa)) dg = (v.0).

Checking that (—, —) is an inner product is straightforward using that f ¢ 18 C-linear
together with its positivity. O

Remark. Tt follows that every compact subgroup of GL, (C) is conjugate to a sub-
group of U(n).
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Corollary. All representations of a compact group are completely reducible.

If p: G = GL(V) is a representation then y, := tr p is a continuous class function
since each p(g);; is continuous.

Lemma. If U is a representation of G then

dim U¢ :/ XU-
G

Proof. Let w: U — U be defined by m = fG pu € Homy (U, U). If = € G then

pu(z)m = pu(z) (/G pu(9) dy) = /GpU(afg) dg=m

since [ is translation invariant. Thus Im7 < U G.

If w € U then
W(“)Z/(;PU(Q)(U)dQZLMZu.

Thus 7 is a projection onto U® and

dimUG:trﬂ':tr</ PU)Z/XU~ O
G G

We can use the Haar integral to put an inner product on the space Cg of (con-
tinuous)>® class functions:

U F) = /G 7@/ (g) dg.

Corollary (Orthogonality of Characters). If G is a compact group and V and W
are irreducible reps of G then
1 fv=w

<XV7XW> = {0 ifV W,

Proof. Same as for finite groups:

(xv,xw) = /GXV(g)va(g) dg

:AXHomk(V,W)
= dim Homg (V, W).

Then apply Schur’s Lemma.
Note along the way we require that yy(¢~!) = xv(g) which follows from the
fact that V is unitary. O

It is also possible to make sense of ‘the characters are a basis for the space of
(square integrable) class functions’ but this requires a little knowledge of Hilbert
spaces.

350r better still square integrable
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LECTURE 20

8.3. A worked example: S'. We want to understand representations of S'. Since

2T
Foo = [ f(e) a0
2m Jo
is a Haar integral they are all completely reducible so it suffices to understand
irreducible representations. By Schur’s Lemma all such representations have degree
1 and by Weyl’s unitary trick they all have image in S'; that is they are continuous
group homomorphisms S! — S'. Since

R — Stz 27

induces an isomorphism of topological groups R/Z 3 51,36 there is a 1-1 corre-
spondence between representations of S' and continuous group homomorphisms
R — S! with kernel containing Z.

Fact. If f: R — S' is any continuous function with f(0) = 1 then there is a unique
continuous function a: R — R such that a(0) = 0 and f(z) = e?m(®) 37

Sketch proof of Fact: locally a(x) = 2%” log f(x) and we can choose the branches
of log to make the pieces glue together continuously.

Lemma. If : (R,+) — S' is a continuous group homomorphism then there is a
continuous homomorphism : R — R such that 0(z) = e2™ (@) for all € R.

Proof. The fact gives a unique continuous function v satisfying the defining equa-
tion and ¢(0) = 0. We must show 1 is a group homomorphism. To this end, let A
be the continuous function R? — R given by

Aa,b) == (a +b) —(a) — p(b).
Since e2™A@b) = g(a 4 b)A(a)"10(b) "' = 1, A only takes values in Z. Thus as R?

is connected, A is constant. Since A(0,0) = 0 we see that A = 0 and so ¢ is a
group homomorphism. ([

Lemma. If ¢: (R,+) — (R, +) is a continuous group homomorphism then there
is some X € R such that ¢(x) = Az for all © € R.

Proof. Let A = 1(1). Since v is a group homomorphism, ¥(n) = An for all n € Z.
Then my(n/m) = (n) = An and so (n/m) = An/m. That is ¢(z) = Az for all
z € Q. But Q is dense in R and % is continuous so ¥ (x) = Az for all z € R. |

Theorem. Every irreducible representation of S* has degree 1 and is of the form
z +— 2" for somen € Z.

Proof. We've seem that if p: S1 — GLy4(C) is an irreducible representation then
d =1 and p(S*) < S. Moreover p induces a continuous homomorphism 6: R — S*
via 0(z) = p(e2™i®).

By the last two Lemmas, there is A € R such that

0(z) = ™ for all z € R.
Since §(1) = 1, A € Z and p(e?™®) = ¥ for all z € R. O

366 a group isomorphism that is also a homeomorphism.

37In the language of algebraic topology R — S1; & + €27 is a covering map and so paths in
S1 lift uniquely to paths in R after choosing the lift of the starting point. In fact R is the universal
cover of S! via this map.
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The theorem tell us that the ‘character table’ of S has rows ¥, indexed by Z
with x,, (%) = ™m0 38

Notation. Let

Zlz, 271 := {Z anz" | an € Zo with Z lan| < oo}

neZ nez

Now if V is any rep of S' then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character yy = > a, 2" lies in Z[z, 27|
with all a,, > 0 and  a,, = dim V. Thus Z[z, 2] is the character ring of S*.

As usual a,, is the number of copies of p,,: z +— 2" in the decomposition of V' as
a direct sum of simple subrepresentations. Thus, by orthogonality of characters,?
we can compute

1 o 7 —1in
an = (Xn,XV)s1 = 7/ xv(e?)e™ " dg
™ Jo
and

) 1 27 . ) .
619 _ - 6z¢ e*”l(b d 6”7'6.
xv(e”) Z(Qﬂ/o xv (') ¢
nez
So Fourier decomposition gives the decomposition of xy into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S! can
be uniformly approximated by a finite C-linear combination of the .
Moreover the y,, form a complete orthonormal set in the Hilbert space

2m
L*(SY) = {f: St —C ’/ |£(e9)]? df exists and is ﬁnite} / ~
0

of square-integrable complex-valued functions on S'. That is every f € L?(S') has
a unique series expansion

) 1 2 )

0N 60 —inb / inf

1) =% (5 [ s ao) e
nez

converging with respect to the norm ||f]|> = -- f27r|f(ei9)\2 dé.

27 JO
We can phrase this as

L2(Sl) = @CXn4O
neEZ
which is an analogue of
CG= P @mV)v
Velrr(G)

for finite groups.*!

38As an aside the unitary irreducible characters of Z are indexed by S! giving a duality between

Z and St.

39;

in this case this simply says (Xn,Xm)g1 = 27 (m—n)ib qg = On,m

1
— 27 Jo

4OEB is supposed to mean a completed direct sum or more precisely a direct sum in the category
of Hilbert spaces.

4ot the Peter-Weyl theorem.
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8.4. Second worked example: SU(2).
Recall that SU(2) = {A € GL2(C) | ATA=1,det A =1}.
If A= (a b) € SU(2) then since det A =1, A~ = ( d _b).
c d —c a
Thus d = @ and ¢ = —b. Moreover a@ + bb = 1. In this way we see that

- {(5 )

which is homeomorphic to §% ¢ R* = C2.
More precisely if

H:=R-SU?2) = {(_Zw Z")

then ||A||> = det A defines a norm on H = R* and SU(2) is the unit sphere in H. If
A€ SU(2) and X € H then || XA = ||AX]| = || X]| since ||A]| = 1. So, SU(2) acts
by isometries on H on both the left and the right and, after normalisation, usual
integration of functions on S? defines a Haar integral on SU(2). i.e.

1
f=5=51[ f
/SU(2) 272 Jgs

Here 272 is the volume of S? in R* with respect to the usual measure.
We now try to compute the conjugacy classes in SU(2).

Definition. Let T = {<a 0 >

a,b € C and |a|* + [b]* = 1}

w,z € C} C My(C)

0 a!

aESl}%Sl.

Proposition.
(i) Every conjugacy class O in SU(2) contains an element of T
(ii) More precisely. if O is a conjugacy class then ONT = {t,t~1} for somet € T
and t = t=1 if and only if t = £I when O = {t}.
(iii) There is a bijection
{conjugacy classes in SU(2)} — [-1,1]
given by [Alsy(2) — 5 tr A.

LECTURE 21

Proof. (i) Every unitary matrix has an orthonormal basis of eigenvectors. That is,
if A € SU(2), there is a unitary matrix P such that PAP~! is diagonal. Then if

Q= 7P PTIAP = Q' AQ € Tie [Alsy2 NT # 0.

(ii) If £1 € O the result is clear.

[tlsue) = {gtg™" | g € SU(2)}.
But s = (_01 (1)) € SU(2) and sts™! =t~ forall t € T so [t]gyeyNT D {t, t7'}.

Conversely, if ' € ONT then ¢’ and ¢ must have the same eigenvalues since they
are conjugate. This suffices to see that ¢’ € {t*!'}.

(iii) To see the given function is injective, suppose that %trA = %tr B. Then
since det A = det B = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.
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i0
To see that it is surjective notice that % tr (eo

has image [—1, 1] the given function is surjective. O

eoig) = cosf. Sincecos: R — R

Corollary. A (continuous) class function f: SU(2) — C is determined by its
-1
restriction to T and f|r is even ie f<(8 z91)> = f (<ZO g)) for all

z € §t.42 O
Notation. Let
Zlz, 27 = {f €Zlz 27" f(2) = f(z71)}
= {Zanz":anGZ, Gpn = a_yp for allnEZ}.

Lemma. If x is a character of a representation of SU(2) then x|r € Z[z, z71]".

Proof. If V is a representation of SU(2) then ResiU(z) V' is a representation of T'
and YResy v 18 the restriction of xy to T'. Since every character of T is in Z|z, 2_1]43
and x|r is even we’re done. (]

It follows that R(SU(2)) < Z[z,271¢". In fact we’ll see that we have equality.

Let’s write O, = {A € SU(2) | 1 tr A = z} for « € [-1,1]. We’ve proven that
the O, are the conjugacy classes in SU(2). Clearly O; = {I} and O_; = {-TI}.
For —1 < x < 1 there is some 6 € (0, 7) such that cos = = then

o{(5 )

since Rea = x = cosf. That is O, is a 2-sphere of radius |sin6|.
Thus if f is a class-function on SU(2), since f is constant on each Ocosg,

1 T ) 1 2 )
/ flg)dg = / f(e®)drsin®0dd = — [ f(e?)sin® A d6.
SU(2) 0

2
2m T Jo

(Ima)? + [b|*> = sin? @ }

Note this is normalised correctly, since % f02 "sin?0df = 1.

8.5. Representations of SU(2).
Let V,, be the complex vector space of homogeneous polynomials in two variables
z,y. So dimV,, =n + 1. Then GL3(C) acts on V,, via

pn: GLo(C) — GL(V,)

given by
a b
pn <<C d)) fz,y) = faz + cy, bz + dy).
ie.
a b\\ i i j
pl\ (. 4) )=V = (az+cy)'(br+dy).
FEzxzamples.

Vo = C has the trivial action.

0
21

2\We'll write f(z) for f ((;

43As T = S, For the same reason we also know the coefficients a, in X|Resp v (2) = 2 anz™

)) identifying T with S1.

are non-negative.
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V4 = C? is the standard representation of GL(C?) on C? with basis z, y.
Vo = C? has basis 22, 2y, y? then

b a? ab b?
02 ((CCL d)) = | 2ac ad+bc 2bd
c? cd d?

In general V,, & S™V] as representations of GLs(C).

Since SU(2) is a subgroup of GL2(C) we can view V,, as a representation of
SU(2) by restriction. In fact as we’ll see, the V,, are precisely the irreducible reps
of SU(2) (up to isomorphism).

Let’s compute the character xv;, |7 of (pn, Vi):

o (5 ) @ = oy = sy

z

So for each 0 < j < n, Cxfy™ 7 a T-subrepresentation with character z2/~" and
n+1l _ ,—(n+1)
o ((g 91)) = A = T ey Y
z z—z
Theorem. V,, is irreducible as a reperesentation of SU(2).

Proof. Let 0 # W < V,, be a SU(2)-invariant subspace. We want to show that
W =1V,.
W is T-invariant so as ResiU(Z) Vo = @;:0 Cady™~7 is a direct sum of non-
isomorphic representations of T',
(6) W has as a basis a subset of {z7y" ™7 |0 < j < n}.
Thus z7y™ 7 € W for some 0 < j < n. Since
1 /1 1\ ;.. 1 . .
— 2y" = —(rz—-y)l(z+y)" ) eW
(4 1) e = St
so by (6) we can deduce that 2™ € W. Repeating the same calculation for j = n,
we see that (z +y)™ € W and so, by (6) again, x'y™~* € W for all i.
Thus W =V,,. O

Ezxercise. Alternative proof:

1 (27 [ e(m+D)if _ o—(n+1)if 2 '
XV, xv. ) su(2) = */ ( - ) sin?6df = 1.
0

T ett _ o—ib

Theorem. FEvery irreducible representation of SU(2) is isomorphic to V,, for some
n > 0.

Proof. Let V be an irreducible representation of SU(2) so xy € Z[z,z71].

Now xo = Lx1 = z4+ 21, x2 =22+ 1+ 272%,.... Thus xy = >, \ix; for
some A1,..., A\, € Z.

Now by orthogonality of characters

1 ifv=y

A= i xvlsue) = {O otherwise.

Since xy # 0 there is some ¢ such that \; =1 and V 2 V. O
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We also want to understand ® for representations of SU(2). Recall that if G is
a group and V, W are representations of G then xvew = XvXw.
Let’s compute some examples for SU(2):

XViev: (Z) = (Z + Z_1)2 = 22 +1+ Z_2 +1= Xva + XV,
and
Xvaovi (2) = (2 + 14272 (2427 =22 + 2242271+ 27% = xuy + xwi-
LECTURE 22

Proposition (Clebsch—Gordan rule). Forn,m € N,
Vn ® Vm = n+m @ Vn+m72 @ e @ ‘/‘n_mH_Q EB ‘/‘n_ml

Proof. Without loss of generality, n > m. Then

ZnJrl _ anfl

(Xn - xm)(2) = I E— ("2 2T

Zn+m+172j o Zf(n+m+172j)

M-

1

- z—z"
Jj=0
m
=) Xntm-2;(2)
Jj=0
as required. 0

8.6. Representations of SO(3).

Proposition. The action by conjugation of SU(2) on the three-dimensional normed
R-vector space of 2 x 2 C-matrices

(% )arams)
with || Al|? = det A induces an isomorphism of topological groups
SU(2)/{£I} 3 SO(3).
Proof. See Example Sheet 4 Q4.4 g

Corollary. Every irreducible representation of SO(3) is of the form Va, for some
n > 0.

Proof. Tt follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that —I acts trivially. But
it is easy to verify that —I acts on V,, as (—1)" O

441f you get stuck then consult my notes from 2012 for some hints.
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9. CHARACTER TABLE OF GLy(F,)

9.1. F,. Let p > 2 be a prime, ¢ = p® a power of p for some a > 0, and F, be the
field with ¢ elements. We know that F; = C;_;.

Notice that Fy — F 52— 22 is a group homomorphism with kernel 1. Thus
half the elements of F* are squares and half are not. Moreover z 27 isa group
homomorphism that sends squares to 1 and non-squares to —1.

Let € € F be a fixed non-square, so T = —1, and let

Fo2 :={a+bVe|a,beF,},
the field extension of F, with ¢* elements under the obvious operations.

Every element of IF, has a square root in IF 2 since if A is non-square then /e = p
is a square, and (y/eu)? = A. It follows by completing the square that every
quadratic polynomial in F, factorizes in F.

Notice that (a 4 by/€)? = a? + ble"= /e = (a — by/€).*> Thus the roots of an
irreducible quadratic over F, are of the form A, .46

2

9.2. GLy(F,) and its conjugacy classes. We want to compute the character
table of the group

G = GLy(F,) = {(‘CL Z)

The order of G is the number of bases for F7 over F,. This is (¢> —1)(¢* — ¢).

First, we compute the conjugacy classes in G. We know from linear algebra
(rational canonical form) that 2 x 2-matrices are determined by their minimal poly-
nomials up to conjugation. By Cayley-Hamilton each element A of GL(F,) has
minimal polynomial m 4(X) of degree at most 2 and m4(0) # 0.

There are four cases.
Case 1: ma = X — A for some A € F. Then A = Al. So Cg(A) = G, and

[Ale| = {ATH =1.
There are ¢ — 1 such classes corresponding the possible choices of A.

Case 2: my = (X — \)? for some A € FY so [A]g = [(A 1)] . Now
G

a,b,c,d € Fy and ad—bc#O}.

0 A
ca((5 1)) ={(6 &) |evernazol
) gl = =0 Da oy ),

(¢—=1)g
There are ¢ — 1 such classes.
Case 3: ma = (X — \)(X — p) for some distinct A, u € F*. Then

=00 W= 16 3L,
(o ) -{G 2)

45Gince p | (#)fori=1,...,q—1
46 15 A9 should be viewed as an analogue of complex conjugation.

Moreover

a,dEIFqX} =:T.
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% (¢— )¢~ 1)
q\q — q —
Al = 21—

There are (q;l) corresponding to each possible choice of the pair {\, u}.
Case 4: m4(X) is irreducible over F, of degree 2 so
ma(X) = (X —a)(X —af) e Fp[X]
= (X?—(a+a))X +a?h
(X% — (tr A)X + det A)
for some & = X\ + py/e with A, p € Fy, p # 0. Then

=[G D)= 1C ),

since both these matrices have trace 2\ = o + ¢ and determinant

A+ Ver)(A = Vep) = aa.

A oeu\\  Jfa eb
o0 0) =10 9)
If a® = €b? then € is a square or a =b = 0. So |K| = ¢?> — 1 and so
q(g—1)(¢*> = 1)
A = - - ]. .
[A]cl £ 1 qlg—1)
There are ¢(g — 1)/2 such classes corresponding to the choices of the pair {«, a?}.
In summary

=q(q+1).

a® — eb? 750} = K.

Representative A Ce I[4]¢] No of such classes
(3 2) G 1 g—1
G () avarn| e
G | 7| ey (3
%) K | -1 ©

The groups T and K are both mazimal tori. That is they are maximal subgroups
of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension of F,. T is called split and K is called

non-split.
Some other important subgroups of G are

Z:={M\ | X€F,*}

which is the subgroup of scalar matrices (the centre);

e 1 Dler)

a Sylow p-subgroup of G; and

B:_{(g Z) ‘bEIFq,a,dGIFqX}
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a Borel subgroup of G. Then N is normal in B and
B/IN=ZT2F; xFf=Cy 1 xCyy.

9.3. The character table of B.

LECTURE 23

Let’s warm ourselves up by computing the character table of B.

Recall
B= {<g 2) :be]Fq,a,dGIFqX}

N::{(é ;’) :bqu}quazaLgaﬁq).

The conjugacy classes in B are

and

Representative | Cp | No of elts | No of such classes
(())\ g) B 1 q—1
(())\ }\) ZN q—1 q—1
G || ¢ | @e-2

Moreover B/N = T = Fx x FX. So if ©, := {reps 0: F* — C*}, then 0, is a
cyclic group of order ¢ — 1 under pointwise operations. Moreover, for each pair
0,¢ € ©4, we have a 1-dimensional representation of B (factoring through B/N)

given by
we (5 5)) oo

giving (¢ — 1)? 1-dimensional reps.
Suppose v: (Fy, +) — C* is a degree 1 representation and 6 € ©,, we can define

b
a 1-dimensional representation of ZN =2 F; x Fy; (g ) + (a,a=1b) by
a

mo (5 1)) =tlantan.

Now ZN < B so by Mackey’s irreducibility criterion Indg N Po.~ is irreducible if

1
and only if 9pg  # pg - for all g € ZN. Since {tA = <O ?\) ‘ NS ]qu} is a family
of left coset reps of ZN in B and

("*po.) ((g Z)) = poy ((g Aab>> = 0(a)y(a""\b),

X pg., = pp, if and only if v(a~'Ab) = y(a~'b) for all b € F,,.
The latter is equivalent to y((A—1)b) =1 for all b € F i.e. either A =1 or v = 1p,.
So Ind% po.~ is irreducible if and only if v # 1f,.
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Now since

mdZy ()= 3 B12:10]

olzacis €7V )]
We see that

TndZ po., ((g 2)) — (g - 1OV,

iy, ((3 1)) = 3 o010

bEF, >

=000 | D) | -6

beF,
=0(N)(q(Lr, V)F, — 1)
—0(A) if 7 # 1,

(¢—1)(\) ify =1,

A0
()

Let pgp := IndgN po~ for v # 1p, noting that this does not then depend on 7.
Then each pyg is irreducible by the discussion above and we have (¢ — 1) irreducible
representations of degree ¢ — 1. Thus the character table of B is

(0 2) 1636w
6NGN) | 8NGO | 6N e(k)
(¢- 16N | —60) | 0

X0,¢
e

Remarks.

(1) The 0 in the bottom right corner appears in ¢ — 1 rows and (¢ — 1)(q¢ — 2)
columns. But they are forced to be 0 by a Lemma in §7.4 since the order of
these conjugacy classes are all ¢, the degree of the irreducible representations
are all (¢ — 1) which is coprime to ¢, and these elements can’t act by scalars
because the representations are faithful and the elements are not in the centre.

(2) BZx{(g 11’)

So Example Sheet 3 Q10, together with our construction of irreducible repre-
sentations of a direct product as the tensor product of the irreducible represen-
tations of the factors, tells us that we should expect to be able to construct all
the irreducible representation of B in the manner that we have done so.

acFybe Fq} and the second factor is a Frobenius group.

9.4. The character table of G. Asdet: G — F,” is a surjective group homomor-
phism, for each § € ©, we have a 1-dimensional representation of G' via xg := fodet
giving ¢ — 1 representations of degree 1.

Next we’ll do some induction from B. Writing s = ((1) (1)> we see that

(6 a) G 1) -0 ")
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and these elements are all distinct. Hence BsN contains ¢|B| elements so must be
G\B.*" Thus BsN = BsB and B\G/B has two elements G = B[] BsB (this is
called Bruhat decomposition).

By the proof of Mackey’s irreducibility criterion if x is a character of B then

(Ind% x, Ind% x)¢ = (x, X) B + (Reshr. 5 X, Res g 5 *X) pres

5 a b 1 d 0
0 d “\b a
so BN B =T and

(Ind% x, Ind% X} = (x, X)B + (X|7, *X|7)T

(6 a) =6 2)

Thus Wy ¢ = Indg Xo0,¢ is irreducible for § # ¢ € ©,. These are called principal
series representations.
We can also compute that Wy ¢ has two irreducible factors and

Now

where

1
<Indgua,lnd§ue>c=l+m @1 | =1+(¢-1) =q.
AEF

Now for any character x of B

Indf x(9) = > |g§i;||x(b)~

[blsClgla
A0
0

) = (3 )
) (6 )

) (6 (e ) =
i 7)

Notice that Wp,4 = Wy 9 so we get (45 ")principal series representations.
We also notice that Wy g = x9 ® W71 and

Wi1=Ind§1=CG/B
is a permutation representation. Thus Wj ; decomposes as 1 & V3 with V3 an
irreducible representation of degree q. This representation is known as the Steinberg
representation. Then Wy g = x9 @ Vy with Vy = x9 ® V4 is also irreducible of degree
q a twisted Steinberg.
We have explicitly constructed (¢—1)+ (5") +(g—1) irreducible representations
i.e. not just their characters. We have (‘2’) characters to go. It will turn out that

So

>

>
o

—

=

o,

Qw

=
TN TN TN
TN TN TN

S >

> =

o
=

= (q
= X
= X
= 0.

4TAs |G| = (¢ +1)|B].
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they are indexed by pairs {¢, ©?} degree 1 representations of K such that ¢ # p?
but we won’t we able to explicitly construct the representations.

LECTURE 24

So far we have

# classes g—1 q—1 (%31 (3)
A0 Al A0 A€l
G 1G] Gu |G [pome
X6 0(N)? 0(\)? 0(A)0(k) 0N — ep?) q—1
Vo go(N)? 0 0(A)0(k) 0N —ep®) | q—1
Woo | (a+1)8N)S(A) | O(N)o(A) | 0(A)d() + ¢(A)6(1) 0 (31
It follows from calculations from last time that
. A0
(¢+1)(¢—1)0(N) if [glc = [(0 A)]
G
Ind7 po(g) K/\ 1)]
—o() if [g)o: =
“ 0 A,

0 otherwise

and that (Ind$ ju9, Ind$ pg)e = q.
Our next strategy is to induce characters from K. The map F,2 — M3(F,) given

by
A e
A+ /e h

A
is an isomorphism of rings F,» — K U {0} and we will identify these. Notice that
A0
]F;< corresponds to Z < K with (0 A) = \. Moreover

A€ I (A —en
w o N) o \=p A
since (A + /ep)? = (A — Vep).
We want to understand IndIG( o for a character ¢ of K. First we understand the
double cosets K'\G/K and then we can apply Mackey to compute (Ind% ¢, Ind% ¢) .

Note that for k € K and g € G, kgK = gK if and only if g~tkg € K. Since
[klcNK = {k, k9} we see that this is in turn equivalent to g~ 'kg € {k, k9}. Writing

1
t= ( 0 ) we can compute that

0 -1
1 (A eu A —€l
1 —
! (u /\)t_<—u A)

so kgK = gK if and only if g~tkg = k or (tg) " ‘k(tg) = k.

Furthermore since
(()\ e,u)) G ifu=0
Cq = .
wooA K if p#0,
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we see that kgK = gK if and only if either gK € {K,tK} or k € Z. Tt follows that

IK9K|={

K]

[K||K/Z|

ifge KUtK

Since |K||K/Z| = (¢* — 1)(q + 1), there are

Gl -2[K| _|G/K[-2 q(g—1)—2

otherwise.

[K||K/z]

double cosets of size |K||K/Z|.
Now KN'K = K and for g € G\KUtK, K N9K = Stabg(gK) = Z so by

Mackey

|K/Z|

q+1

(Ind$ ¢, md§ p)e = (v, V) x + (@, ')k +

2

:q72

(elz,%|z)z

geK\G/K\{K tK}

Since 9|z = p|z for all g € G and ‘¢ = @9,

(Ind ¢, Ind§ ¢)e = {

q—1
q

if o # 7
if o = 1.

Suppose now that ¢: K — C* is a 1-dimensional character of K. Then

q(q — )p(N)
o) + ()

Indf ¢(g) =

0

We can thus compute

(0t 10§ ) = 2 3 (6 = DINala ~ DY)

if [glc = [N for A € F

if [g]a = [a]g for o € F2\F, and

otherwise.

rez

= (q— 1)(0,Res ¢)z

Thus Indg 1o and Ind?( ¢ have many factors in common when ¢|; = 6.
Now, for each ¢ such that ¢ # @9 then our calculations tell us that if 3, =
Ind§ |y — md$ ¢ € R(G) then

(BpsBora=q—2(g—1) +(g—1)=1.

Since also f,(1) = ¢ —1 > 0 it follows that S5, is an irreducible character. Since

By = By, 7 = p and He:p=p?} =q—1 we get (‘1271)2& = (9) characters
in this way and the character table of GL2(F,) is complete.

# classes g—1 g—1 (qgl) )
A0 Al A0
rep (O /\> (O /\) (0 M) a, ol # of reps
X6 0(N)? 0(\)? O(A)6(1) 0(a?t) g—1
1) gf(N)? 0 O(N)0(1) —0(a?™) q—1
Wos | (@+1)0(N)o(A) | 0(N)p(A) | 0(N)d(k) + ¢(A)0() 0 (31
Be (@=Den) | —p() 0 —(p+e9@) | (9
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The representations corresponding to the 3, known as discrete series representa-
tions have not been computed explicitly. Drinfeld found these representations in
l-adic étale cohomology groups of an algebraic curve X over F,. These cohomology
groups should be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne and Lusztig for all finite groups of Lie type.

This construction also enables us to compute the character table of PGLo(F,) :=
GLy(F,)/Z(GLy(Fy)) as its irreducible representations are the irreducible represen-
tations of GLy(Fy) such that the scalar matrices act trivially. i.e. the xg and Vj
such that 62 = 1, the Wy p-1 such that 62 # 1 and the 3, such that ¢|z = 17 i.e.
@It =1 as well as 97 # 1.

We can also then compute the character table of PSLy(F,) = SLao(Fy)/Z(SLa(Fy))
which has index 2 in PGLy(F,) by restriction. These groups are all simple when
q > 5 and this can be seen from the character table.



