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Lecture 1

1. Introduction

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

One major goal of this course will be to understand how to go about classifying
all representations of a given (finite) group. For this we will need to be precise about
what it means for two representations to be the same as well as how representations
may decompose into smaller pieces.

We’ll also use Representation Theory to better understand groups themselves.
An example of the latter that we’ll see later in the course is the Burnside paqb-
theorem which tells us that the order of a finite simple group cannot have precisely
two distinct prime factors.

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k unless we say otherwise. This field k will
usually be algebraically closed and of characteristic zero, for example C, because
this is typically the easiest case. However there are rich theories for more general
fields and we will sometimes hint at them.

Given a vector space V , we define the general linear group of V

GL(V ) = Aut(V ) = {α : V → V | α linear and invertible}.

This is a group under composition of maps.
Because all our vector spaces are finite dimensional, there is an isomorphism

kd
∼−→ V for some d > 0.1 Here d is the isomorphism invariant of V called its

dimension. The choice of isomorphism determines a basis e1, . . . , ed for V .2 Then

GL(V ) ∼= {A ∈ Matd(k) | det(A) 6= 0}.

This isomorphism is given by the map that sends the linear map α to the matrix
A such that α(ei) =

∑
Ajiej .

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that α is an invertible if and only if detA 6= 0; and that the given map is a bijective
group homomorphism.

The choice of isomorphism kd
∼−→ V also induces a decomposition of V as a

direct sum of one-dimensional subspaces

V =

d⊕
i=1

kei.

This decomposition is not unique is general3 but the number of summands is always
dimV .

1In fact the set of such isomorphisms is in bjiection with GL(V ) so typically there are very
many such.

2Here ei is the image of the ith standard basis vector for kd under the isomorphism.
3that is it depends on the choice of basis up to rescaling the basis vectors so there is more than

one such decomposition if d > 1
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1.2. Group representations — definitions and examples. Recall that an ac-
tion of a group G on a set X is a function · : G × X → X; (g, x) 7→ g · x such
that

(i) e · x = x for all x ∈ X;
(ii) (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

Recall also that to define such an action is equivalent to defining a group ho-
momorphism ρ : G → S(X) where S(X) denotes the symmetric group on the set
X; that is the set of bijections from X to itself equipped with the binary operation
of composition of functions. The notions are seen to be equivalent by the formula
ρ(g)(x) = g · x for all g ∈ G and x ∈ X.

Definition. A representation ρ of a group G on a vector space V is a group
homomorphism ρ : G → GL(V ), the group of invertible linear transformations of
V .

By abuse of notation we will sometimes refer to the representation by ρ, some-
times by the pair (ρ, V ) and sometimes just by V with the ρ implied. This can
sometimes be confusing but we have to live with it.

Defining a representation of G on V corresponds to assigning a linear map
ρ(g) : V → V to each g ∈ G such that

(i) ρ(e) = idV ;
(ii) ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G;

(iii) ρ(g−1) = ρ(g)−1 for all g ∈ G.

Exercise. Show that, given condition (ii) holds, conditions (i) and (iii) are equivalent
to one another in the above. Show moreover that conditions (i) and (iii) can be
replaced by the condition that ρ(g) ∈ GL(V ) for all g ∈ G.

Given a basis for V a representation ρ is an assignment of a matrix ρ(g) to each
g ∈ G such that (i),(ii) and (iii) hold.

Definition. The degree of ρ or dimension of ρ is dimV .

Definition. We say a representation ρ is faithful if ker ρ = {e}.

Examples.

(1) Let G be any group and V = k. Then ρ : G → Aut(V ); g 7→ id is called the
trivial representation.

(2) Let G = C2 = {±1}, V = R2, then

ρ(1) =

(
1 0
0 1

)
; ρ(−1) =

(
−1 0
0 1

)
is a group rep of G on V .

(3) Let G = (Z,+), V a vector space, and ρ a representation of G on V . Then
necessarily ρ(0) = idV , and ρ(1) is some invertible linear map α on V . Now
ρ(2) = ρ(1 + 1) = ρ(1)2 = α2. Inductively we see ρ(n) = αn for all n > 0.
Finally ρ(−n) = (αn)−1 = (α−1)n. So ρ(n) = αn for all n ∈ Z.

Notice that conversely given any invertible linear map α : V → V we may
define a representation of G on V by ρ(n) = αn.

Thus we see that there is a 1-1 correspondence between representations of Z
and invertible linear transformations given by ρ 7→ ρ(1).
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(4) Let G = (Z/N,+), and ρ : G → GL(V ) a rep. As before we see ρ(n + NZ) =
ρ(1 + NZ)n for all n ∈ Z but now we have the additional constraint that
ρ(N +NZ) = ρ(0 +NZ) = idV .

Thus representations of Z/N correspond to invertible linear maps α such
that αN = idV . Of course any linear map such that αN = idV is invertible so
we may drop the word invertible from this correspondence.

(5) Let G = S3, the symmetric group of {1, 2, 3}, and V = R2. Take an equilateral
triangle in V centred on 0; thenG acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V . For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 2π/3.

Exercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g ∈ S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V .
Would the calculations be easier in a different basis?

Lecture 2

(6) Given a finite set X we may form the vector space kX of functions X to k with
basis 〈δx | x ∈ X〉 where δx(y) = δxy.4

Then an action of G on X induces a representation ρ : G → Aut(kX) by
(ρ(g)f)(x) = f(g−1 · x) called the permutation representation of G on X.

It is straightforward to verify that ρ(g) is linear and that ρ(e) = idkX . So to
check that ρ is a representation we must show that ρ(gh) = ρ(g)ρ(h) for each
g, h ∈ G.

For this observe that for each x ∈ X,

ρ(g)(ρ(h)f)(x) = (ρ(h)f)(g−1x) = f(h−1g−1x) = ρ(gh)f(x).

Notice that ρ(g)δx(y) = δx,g−1·y = δg·x,y so ρ(g)δx = δg·x. So by linearity
ρ(g)(

∑
x∈X λxδx) =

∑
λxδg·x.

(7) In particular if G is finite then the action of G on itself by left multiplication
induces the regular representation kG ofG. The regular representation is always
faithful because ρ(g)δe = δe implies that ge = e and so g = e.

(8) If ρ : G → GL(V ) is a representation of G then we can use ρ to define a
representation of G on V ∗

ρ∗(g)(θ)(v) = θ(ρ(g−1)v); ∀θ ∈ V ∗, v ∈ V.5

(9) More generally, if (ρ, V ), (ρ′,W ) are representations of G then (σ,Homk(V,W ))
defined by

σ(g)(α) = ρ′(g) ◦ α ◦ ρ(g−1); ∀g ∈ G and α ∈ Homk(V,W )

is a rep of G.
Note that if W = k is the trivial rep. this reduces to example 8.

4Each f ∈ kX can be written f =
∑
x∈X f(x)δx.

5ρ∗(g) can be viewed as the adjoint of ρ(g)−1; recall that with respect to a pair of dual bases

for V and V ∗ the matrix of adjoint of a linear map is the transpose of the matrix of the linear
map itself. So this is saying A 7→ (A−1)T is a homomorphism GLd(k)→ GLd(k).



REPRESENTATION THEORY 5

Exercise. Check the details.6 Moreover show that if V = kn and W = km with
the standard bases, so that Homk(V,W ) = Matm,n(k), then

σ(g)(A) = ρ′(g)Aρ(g)−1 for all A ∈ Matm,n(k) and g ∈ G.

(10) If ρ : G→ GL(V ) is a representation of G and θ : H → G is a group homomor-
phism then ρθ : H → GL(V ) is a representation of H. If H is a subgroup of G
and θ is inclusion we call this the restriction of ρ to H.

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Notice that if ρ : G → GL(V ) is a representation and ϕ : V → W is a vector
space isomorphism then we may define σ : G → GL(W ) by σ(g) = ϕ ◦ ρ(g) ◦ ϕ−1

and σ is also a representation.

Definition. We say that ρ : G → GL(V ) and σ : G → GL(W ) are isomorphic
representations if there is a linear isomorphism ϕ : V →W such that

σ(g) = ϕ ◦ ρ(g) ◦ ϕ−1 for all g ∈ G

i.e. if σ(g) ◦ ϕ = ϕ ◦ ρ(g). We say that ϕ intertwines ρ and σ.

Notice that idV intertwines ρ and ρ; if ϕ intertwines ρ and σ then ϕ−1 intertwines
σ and ρ; and if moreover ϕ′ intertwines σ and τ then ϕ′ϕ intertwines ρ and τ . Thus
isomorphism is an equivalence relation.

Since every vector space is isomorphic to kd for some d > 0, every representation
is isomorphic to a matrix representation G→ GLd(k).

If ρ, σ : G → GLd(k) are matrix representations of the same degree then an
intertwining map kd → kd is an invertible matrix P and the matrices of the reps
it intertwines are related by σ(g) = Pρ(g)P−1. Thus matrix representations are
isomorphic precisely if they represent the same family of linear maps with respect
to different bases.

Examples.

(1) IfG = {e} then a representation ofG is just a vector space and two vector spaces
are isomorphic as representations precisely if they have the same dimension.

(2) If G = Z then ρ : G → GL(V ) and σ : G → GL(W ) are isomorphic reps if
and only if there are bases of V and W such that ρ(1) and σ(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = C2 = {±1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X2 − 1 = (X − 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all ±1.

Exercise. Show that there are precisely n+ 1 isomorphism classes of represen-
tations of C2 of dimension n.

6This will also appear on Examples Sheet 1.
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(4) IfX,Y are finite sets with aG-action and f : X → Y is aG-equivariant bijection
i.e. f is a bijection such that g · f(x) = f(g · x) for all x ∈ X and g ∈ G, then
ϕ : kX → kY defined by ϕ(θ)(y) = θ(f−1y) intertwines kX and kY . (Note
that ϕ(δx) = δf(x))

Lecture 3

Definition. Suppose that ρ : G→ GL(V ) is a rep. We say that a k-linear subspace
W of V is G-invariant if ρ(g)(W ) ⊆W for all g ∈ G (ie ρ(g)(w) ∈W for all g ∈ G
and w ∈W ).

In that case we may define a representation ρW : G→ GL(W ) by

ρW (g)(w) = ρ(g)(w) for w ∈W.
We call (ρW ,W ) a subrepresentation of (ρ, V ).

We call a subrepresentation W of V proper if W 6= V and W 6= 0. We say that
V 6= 0 is irreducible or simple if it has no proper subreps.

Examples.

(1) Any one-dimensional representation of a group is irreducible.

(2) Suppose that ρ : C2 → GL2(k) is given by −1 7→
(
−1 0
0 1

)
(char k 6= 2).

Then ρ has precisely two proper subrepresentations spanned by

(
1
0

)
and

(
0
1

)
respectively.

Proof. It is easy to see that these two subspaces are G-invariant. Any proper
subrepresentation must be one dimensional and so by spanned by an eigenvector
of ρ(−1). But the eigenspaces of ρ(−1) are precisely those already described.

�

(3) If G is C2 then the only irreducible representations are one-dimensional.

Proof. Suppose ρ : G→ GL(V ) is an irreducible rep. The minimal polynomial
of ρ(−1) divides X2 − 1 = (X − 1)(X + 1). Thus ρ(−1) has an eigenvector v.
Now 0 6= 〈v〉 is a subrepresentation of V . Thus V = 〈v〉. �

Notice we’ve shown along the way that there are precisely two simple repre-
sentations of G (up to isomorphism) if k doesn’t have characteristic 2 and only
one if it does.

(4) If G = D6 then every irreducible complex representation has dimension at most
2.

Proof. Suppose ρ : G→ GL(V ) is an irreducible representation of G. Let r be
a non-trivial rotation and s a reflection in G so that r3 = e = s2, srs = r−1

and r and s generate G.
Since ρ(r)3 = ρ(r3) = idV , ρ(r) has a eigenvector v, say with eigenvalue λ

for some λ ∈ C such that λ3 = 1.7

Consider W := 〈v, ρ(s)v〉 6 V so dimW 6 2. Since

ρ(s)ρ(s)v = v

7This is the only point we use that k = C. In fact suffices that X3 − 1 completely factorises in
k.
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and
ρ(r)ρ(s)v = ρ(s)ρ(r)−1v = λ−1ρ(s)v,

W is G-invariant. Since V is irreducible, W = V . �

Exercise. Show that there are precisely three irreducible complex representa-
tions of D6 up to isomorphism, one of dimension 2 and two of dimension 1.
(Hint: We can split into cases depending on λ and whether ρ(s)(v) ∈ 〈v〉 or
ρ(s)(v) 6∈ 〈v〉).

Definition. If W is a subrep of a rep (ρ, V ) of G then we may define a quotient
representation ρV/W : G→ GL(V/W ) by

ρV/W (g)(v +W ) = ρ(g)(v) +W.

Since ρ(g)W ⊂W for all g ∈ G this is well-defined.

We’ll start dropping ρ now and write g for ρ(g) where it won’t cause confusion.

Definition. If (ρ, V ) and (ρ′,W ) are reps of G we say a linear map ϕ : V →W is
a G-linear map if ϕg = gϕ (ie ϕ ◦ ρ(g) = ρ′(g) ◦ ϕ) for all g ∈ G. We write

HomG(V,W ) = {ϕ ∈ Homk(V,W ) | ϕ is G-linear},
a k-vector subspace of Homk(V,W ).

Remarks.

(1) ϕ ∈ Homk(V,W ) is an intertwining map precisely if ϕ is a bijection and ϕ is in
HomG(V,W ).

(2) If W 6 V is a subrepresentation then the natural inclusion map ι : W → V ;
w 7→ w is in HomG(W,V ) and the natural projection map π : V → V/W ;
v 7→ v +W is in HomG(V, V/W ).

(3) Recall that Homk(V,W ) is aG-rep via (gϕ)(v) = g(ϕ(g−1v)) for ϕ ∈ Homk(V,W ),
g ∈ G and v ∈ V . Then ϕ ∈ HomG(V,W ) precisely if gϕ = ϕ for all g ∈ G.

Lemma. If U, V and W are representations of a group G with ϕ1 ∈ Homk(V,W )
and ϕ2 ∈ Homk(U, V ) then

g · (ϕ1 ◦ ϕ2) = (g · ϕ1) ◦ (g · ϕ2).

In particular

ϕ1 ∈ HomG(V,W ) =⇒ g · (ϕ1 ◦ ϕ2) = ϕ1 ◦ (g · ϕ2),

ϕ2 ∈ HomG(U, V ) =⇒ g · (ϕ1 ◦ ϕ2) = (g ◦ ϕ1) ◦ ϕ2 and

ϕ1 ∈ HomG(V,W ) and ϕ2 ∈ HomG(U, V ) =⇒ ϕ1 ◦ ϕ2 ∈ HomG(U,W ).

Proof. With the notation in the statement we can compute

(g · ϕ1) ◦ (g · ϕ2) = (g ◦ ϕ1 ◦ g−1)(g ◦ ϕ2 ◦ g−1) = g · (ϕ1 ◦ ϕ2).

All the other statements follow immediately. �

Lemma (First isomorphism theorem for representations). Suppose (ρ, V ) and (ρ′,W )
are representations of G and ϕ ∈ HomG(V,W ) then

(i) kerϕ is a subrepresentation of V ;
(ii) Imϕ is a subrepresentation of W ;

(iii) The linear isomorphism ϕ : V/ kerϕ→ Imϕ given by the first isomorphism of
vector spaces is an intertwining map. Thus V/ kerϕ ∼= Imϕ as representations
of G.
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Proof.
(i) if v ∈ kerϕ and g ∈ G then ϕ(gv) = gϕ(v) = 0
(ii) if w = ϕ(v) ∈ Imϕ and g ∈ G then gw = ϕ(gv) ∈ Imϕ.
(iii) We know that the linear map ϕ induces a linear isomorphism

ϕ : V/ kerϕ→ Imϕ; v + kerϕ 7→ ϕ(v)

then gϕ(v + kerϕ) = g(ϕ(v)) = ϕ(gv) = ϕ(gv + kerϕ) �

Proposition. Suppose ρ : G → GL(V ) is a rep and W 6 V . Then the following
are equivalent:

(i) W is a subrepresentation;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W and the

matrices ρ(g) are all block upper triangular;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W the matrices

ρ(g) are all block upper triangular.

Proof. Think about it (see also Linear Algebra Examples Sheet 1 Q11 from Michael-
mas 2022). �
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Lecture 4

2. Complete reducibility and Maschke’s Theorem

Question. When can a representation V of a group G be decomposed as a direct
sum of simple subrepresentations?

Examples.

(1) If G = {e} the answer is always as noted in Lecture 1 since a simple subrep
is the same as a 1-dimensional subspace.

(2) Suppose G = C2, V = R2 and ρ(−1) =

(
−1 0
0 1

)
. We’ve seen that the

only irreducible subrepresentations are

〈(
1
0

)〉
and

〈(
1
0

)〉
. So

R2 =

〈(
1
0

)〉
⊕
〈(

0
1

)〉
is the only such decomposition in this case.

(3) Suppose G = (Z,+) and ρ : G → GL2(k) is the representation determined
by

ρ(1) =

(
1 1
0 1

)
,

then W =

〈(
1
0

)〉
is the only proper G-invariant subspace so k2 cannot be

decomposed as a direct sum of irreducible subrepresentations — if it could
then ρ(1) would be diagonalisable.

Definition. We say a representation V is a direct sum of (Vi)
k
i=1 if each Vi is a

subrepresentation of V and V =
⊕k

i=1 Vi as vector spaces.8

Given a family of representations (ρi, Vi)
k
i=1 of G we may define a representation

of G on the vector space

V :=

k⊕
i=1

Vi := {(vi)ki=1 | vi ∈ Vi} with pointwise operations9

by

ρ(g)((vi)) = (ρi(g)vi).

We write (ρ, V ) =
⊕k

i=1(ρi, Vi) =
⊕
ρi =

⊕
Vi.

Examples.

(1) Suppose G acts on a finite set X and X may be written as the disjoint
union of two G-invariant subsets X1 and X2 (i.e. g · x ∈ Xi for all x ∈ Xi

and g ∈ G). Then kX ∼= kX1 ⊕ kX2 under f 7→ (f |X1 , f |X2).
Internally kX = {f | f(x) = 0 ∀x ∈ X2} ⊕ {f | f(x) = 0 ∀x ∈ X1}.

8i.e. V =
∑k
i=1 Vi and for each j = 1, . . . k, Vj ∩

∑
i 6=j Vi = 0 as in Linear Algebra Examples

Sheet 1 Q8 from Michaelmas 2022.
9the external direct sum of the Vi
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More generally if the G-action on X decomposes into orbits as a disjoint
union X =

⋃r
i=1Oi then

kX =

r⊕
i=1

1Oi(kX) ∼=
⊕

kOi.

where 1Oi : kX → kX is given by 1Oi(f)(x) =

{
f(x) x ∈ Oi
0 x 6∈ Oi.

These kOi are almost never irreducible as explained in the following
example.

(2) IfG acts transitively on a finite setX then U := {f ∈ kX |
∑
x∈X f(x) = 0}

and W := {f ∈ kX | f is constant} are subreps of kX.

Proof. If f ∈ U then for g ∈ G,∑
x∈X

(g · f)(x) =
∑
x∈X

f(g−1x) = 0

since x 7→ g−1x is a bijection X → X. Similarly if f ∈W ; f(x) = λ for all
x ∈ X then for g ∈ G, (g.f)(x) = f(g−1x) = λ for all x ∈ X. �

If k is characteristic 0 then kX = U ⊕ W . What happens if k has
characteristic p > 0?

Proposition. Suppose ρ : G→ GL(V ) is a rep. and V = U ⊕W as vector spaces.
Then the following are equivalent:

(i) V = U ⊕W as reps;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . vd

is a basis for W and the matrices ρ(g) are all block diagonal;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . , vd

is a basis for W the matrices ρ(g) are all block diagonal.

Proof. Think about it! �

But the following example provides a warning.

Example. ρ : C2 → GL2(R); −1 7→
(
−1 2
0 1

)
defines a representation (check). The

representation R2 breaks up as 〈e1〉 ⊕ 〈e1 + e2〉 as subreps even though the matrix
is upper triangular but not diagonal.

Definition. We say that a representation V of a group G is completely reducible
if V ∼= ⊕ri=1Vi for some irreducible representations V1, . . . , Vr of G.

We’ve seen by considering G = Z that it is not true that every representation of
every group G is completely reducible. However we’re going to prove the remarkable
fact that if G is a finite group and k has characteristic 0 then every representation
of G defined over k is completely reducible.

Lemma. Suppose that (ρ, V ) is a representation of a group G such that for every
pair W1,W2 of G-invariant subspaces of V such that W1 6 W2 6 V there is a
G-invariant complement to W1 in W2. Then V is completely reducible.
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Proof. By induction on dimV . If dimV = 0 or V is irreducible then the result
is clear. Otherwise V has a proper G-invariant subspace W . By the assumption
there is a G-invariant complement U of W in V and V ∼= U ⊕ W as G-reps.
Moreover dimU,dimW < dimV and U and W inherit the assumption on V . Thus
by induction there are simple representations U1, . . . , Ur such that U ∼= ⊕ri=1Ui and
W1, . . . ,Ws such that W ∼= ⊕sj=1Wj . Thus

V ∼=
r⊕
i=1

Ui ⊕
s⊕
j=1

Wj

is complete reducible. �

Recall, if V is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear form; i.e. (−,−) : V × V → C satisfying

(i) (a) (ax+ by, z) = a(x, z) + b(y, z) and
(b) (x, ay + bz) = a(x, y) + b(x, z) for a, b ∈ C, x, y, z ∈ V (sesquilinear);

(ii) (x, y) = (y, x) (Hermitian);10

(iii) (x, x) > 0 for all x ∈ V \{0} (positive definite).11

The standard inner product on Cn is given by

〈x, y〉 =

n∑
i=1

xiyi.

Recall also that the unitary group U(n) is the subgroup of GLn(C)

U(n) = {A ∈ GLn(C) : ATA = I}
= {A ∈ GLn(C : 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Cn}.

Definition. We say that a representation (ρ, V ) of a group G is unitary if there is
a basis for V so the corresponding map G→ GLn(C) has image inside U(n).

Lecture 5

Definition. A Hermitian inner product (−,−) on a representation V of G is G-
invariant if

(gx, gy) = (x, y) for all g ∈ G and x, y ∈ V ;

or, equivalently, if

(gx, gx) = (x, x) for all g ∈ G and x ∈ V.

Proposition. A representation (ρ, V ) of G is unitary if and only if V has a G-
invariant inner product.

Proof. If (ρ, V ) is unitary then let e1, . . . , en be a basis for V with respect to which
ρ(g) ∈ U(n) for all g ∈ G. Now n∑

i=1

λiei,

n∑
j=1

µjej

 =

n∑
i=1

λiµi

defines a G-invariant inner product on V .

10if (ii) holds then (i)(a) is equivalent to (i)(b).
11(ii) gives that (x, x) ∈ R.
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Conversely, if V has a G-invariant inner product (−,−) we can find an orthonor-
mal basis v1, . . . , vn for V with respect to (−,−).12 Then (−,−) corresponds to the
standard inner product with respect to this basis and so each ρ(g) is unitary with
respect to the basis. �

We note that it follows easily that subrepresentations of unitary representations
are unitary since a G-invariant inner product on the representation will restrict to
the subrepresentation.

Lemma. If (ρ, V ) is a unitary representation of a group G then every subrepre-
sentation W of V has a G-invariant complement. In particular V is completely
reducible.

Proof. Let (−,−) be a G-invariant inner product on V . Then

W⊥ := {v ∈ V : (v, w) = 0 for allw ∈W}

is a vector-space complement to W in V by standard linear algebra. Moreover if
g ∈ G, v ∈ W⊥ and w ∈ W . Then 〈gv, w〉 = 〈v, g−1w〉 = 0 since g−1w ∈ W . Thus
gv ∈W⊥ and W⊥ is a G-invariant complement. Complete reducibility follows from
a lemma from the last lecture. �

Theorem (Maschke’s Theorem). Let G be a finite group and (ρ, V ) a representa-
tion of G over a field k of characteristic zero. Suppose W 6 V is a G-invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V = U ⊕W . In particular V is completely reducible.

Key idea. If (ρ, V ) is a representation of a finite group G then for all v ∈ V∑
g∈G

g · v ∈ V G := {v ∈ V : g · v = v for all g ∈ G} 6 V.

Proof. If h ∈ G,

h ·

∑
g∈G

g · v

 =
∑
g∈G

(hg) · v =
∑
g′∈G

g′ · v

since h : G→ G; g 7→ hg is a permutation of G. �

Proposition (Weyl’s unitary trick). If V is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V . In particular
V is unitary and every G-invariant subspace has a G-invariant complement.

Proof. Pick any Hermitian inner product 〈−,−〉 on V (e.g. choose a basis e1, . . . , en
and take the standard inner product 〈

∑
λiei,

∑
µiei〉 =

∑
λiµi). Then define a

new inner product (−,−) on V via:

(x, y) :=
∑
g∈G
〈gx, gy〉.

12Choose any basis and then apply Gram-Schmidt.
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It is easy to see that (−,−) is a Hermitian inner product because 〈−,−〉 is. For
example if a, b ∈ C and x, y, z ∈ V , then

(x, ay + bz) =
∑
g∈G
〈gx, g(ay + bz)〉

=
∑
g∈G
〈gx, ag(y) + bg(z)〉

=
∑
g∈G

(a〈gx, gy〉+ b〈gx, gz〉)

= a(x, y) + b(z, y)

as required.
But now if h ∈ G and x, y ∈ V then

(hx, hy) =
∑
g∈G
〈ghx, ghy〉 =

∑
g′∈G
〈g′x, g′y〉

and so (−,−) is G-invariant. Complete reducibility now follows by a lemma proven
in the last lecture. �

Remark. The proof can be phrased as follows

(i) Herm(V ) := {Hermitian sesquilinear forms on V } is naturally an R-vector
space.

(ii) G → Aut(Herm(V )); g · (−,−)(x, y) := (g−1x, g−1y) defines an R-linear rep-
resentation of G.13

(iii) An R>0-linear combination of positive definite elements of Herm(V ) is positive
definite.

(iv) Given (i)-(iii) the key idea transforms any inner product into a G-invariant
inner product.

It follows that studying complex representations of a finite group is equivalent
to studying unitary, i.e. distance preserving, representations.

Corollary. Every finite subgroup G of GLn(C) is conjugate to a subgroup of U(n).

Proof. If G 6 GLn(C) the inclusion map ρ : G → GLn(C) is a representation. By
the unitary trick, ρ is a unitary representation i.e. there is P ∈ GLn(C) such that
PgP−1 ∈ U(n) for all g ∈ G. �

We now generalise our idea to general k of characteristic zero — one way to
explain our argument when the representation is unitary is that the orthogonal
projection map V →W is G-linear with kernel W⊥ a G-invariant complement.

Proof of Maschke’s Theorem. Idea: if π : V → V is a projection i.e. π2 = π then
V = Imπ ⊕ kerπ as vector spaces. If π is G-linear then kerπ and Imπ are both
G-invariant. So we pick a projection V → V with image W and average it.

13Added after lecture: a choice of basis v1, . . . , vn for V gives an identification of Herm(V ) with

Hermitian matrices in MatdimV,dimV (C), i.e. A such that A = AT where Aij = (vi, vj) and the

corresponding representation of G on these Hermitian matrices is given by g ·A = ρ(g−1)TAρ(g−1)

where ρ : G → GLdimV (C) is the matrix representation corresponding to V equipped with the

same basis. Note that g 7→ ρ(g−1)T is a homomorphism since g 7→ g−1 and X 7→ XT are both

antihomomorphisms; that is the second two reverse the order of operations so their composite,
the first, preserves it.
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Let π : V → V be any k-linear projection with π(w) = w for all w ∈ W and
Imπ = W .

Recall that Homk(V, V ) is a rep of G via (gϕ)(v) = gϕg−1v. Let πG : V → V be
defined by

πG :=
1

|G|
∑
g∈G

(gπ) ∈ HomG(V, V )

by the key idea. Moreover ImπG 6W since

(g · π)(v) = (g ◦ π ◦ g−1) · v ∈W
for all g ∈ G and v ∈ V . Also, for w ∈W ,

πG(w) =
1

|G|
∑
g∈G

g(π(g−1w)) =
1

|G|
∑
g∈G

gg−1(w) = w

since g−1w ∈W for all g ∈ G and w ∈W .
Thus πG is a G-invariant projection V → V with image W . So kerπG is the

required G-invariant complement to W . �

Remarks (on the Proof of Maschke’s Theorem).

(1) We can explicitly compute πG and kerπG given (ρ, V ) and (π,W ) via the
formula

πG =
1

|G|
∑
g∈G

g · π.

(2) Notice that we only used that char k = 0 when we inverted |G|. So in fact we
only need that the characteristic of k does not divide |G|.

(3) As an extension of our key idea: for any G-rep V (with char k not dividing
|G|), the map

π : v 7→ 1

|G|
∑
g∈G

g · v

is a projection in HomG(V, V ) with image V G := {v ∈ V | g · v = v}. As a
foreshadowing of what is coming soon, notice that

dimV G = trπ =
1

|G|
∑
g∈G

tr(g)

since tr is linear and for π : V → V any projection trπ = Imπ.
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Lecture 6

3. Schur’s Lemma

Recall that if V is a vector space of dimension d then Aut(V ) ∼= GLd(k).

Theorem (Schur’s Lemma). Suppose that V and W are irreducible representations
of G over k. Then

(i) every element of HomG(V,W ) is either 0 or an isomorphism;
(ii) if k is algebraically closed then dimk HomG(V,W ) is either 0 or 1.

In other words, when k is algebraically closed, irreducible representations are
rigid in the same sense that one-dimensional vector spaces are rigid since they have
the same automorphism group.

Proof. (i) Let ϕ be a non-zero G-linear map from V to W . Then kerϕ � V is a
G-invariant subspace of V . So as V is simple, kerϕ = 0. Similarly 0 6= Imϕ 6 W
so Imϕ = W since W is simple. Thus ϕ is an isomorphism by the first isomorphism
theorem.

(ii) Suppose ϕ1, ϕ2 ∈ HomG(V,W ) are non-zero. Then by (i) they are both
isomorphisms. Consider ϕ = ϕ−1

1 ϕ2 ∈ HomG(V, V ). Since k is algebraically closed
we may find λ an eigenvalue of ϕ then ϕ − λ idV has non-zero G-invariant kernel
and so the map is zero. Thus ϕ−1

1 ϕ2 = λ idV and ϕ2 = λϕ1 as required. �

Proposition. If V, V1 and V2 are k-representations of G then

HomG(V, V1 ⊕ V2) ∼= HomG(V, V1)⊕HomG(V, V2)

and
HomG(V1,⊕V2, V ) ∼= HomG(V1, V )⊕HomG(V2, V ).

Proof. There are natural G-linear inclusion maps

ιi : Vi → V1 ⊕ V2 for i = 1, 2

that induce (by post-composition)

Homk(V, Vi)→ Homk(V, V1 ⊕ V2).

These together induce a linear isomorphism

Homk(V, V1)⊕Homk(V, V2)→ Homk(V, V1 ⊕ V2)

given by
(f1, f2) 7→ ι1f1 + ι2f2.

Since ι1, ι2 are G-linear this is an intertwining map:

g · (ι1f1 + ι2f2) = ι1(g · f1) + ι2(g · f2).

Since in general an intertwining map ϕ : U → W between representations of G
induces an isomorphism of G-fixed points — g ·ϕ(u) = ϕ(u) if and only if g · u = u
for all g ∈ G — and HomG(U,W ) consists of the G-fixed points of Homk(U,W ), it
follows that there is an induced isomorphism

HomG(V, V1)⊕HomG(V, V2)→ HomG(V, V1 ⊕ V2)

as claimed.
Similarly the natural projection maps

πi : V1 ⊕ V2 → Vi for i = 1, 2
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induce a G-linear isomorphism

Homk(V1, V )⊕Homk(V2, V )→ Homk(V1 ⊕ V2, V )

given by

(f1, f2) 7→ f1π1 + f2π2

and again it follows that there is an induced isomorphism

HomG(V1, V )⊕HomG(V2, V )→ HomG(V1 ⊕ V2, V )

as claimed. �

Corollary. If V ∼=
⊕r

i=1 Vi and W ∼=
⊕s

j=1Wj then

HomG(V,W ) ∼=
r⊕
i=1

s⊕
j=1

HomG(Vi,Wj).

Proof. This follows from the Proposition by a straightforward induction argument.
�

Corollary. Suppose k is algebraically closed and

V ∼=
r⊕
i=1

Vi

is a decomposition of a representation of G over k into irreducible components.
Then for each irreducible representation W of G,

|{i | Vi ∼= W}| = dim HomG(W,V ) = dim HomG(V,W ).

Proof. By the last result

HomG(W,V ) =

r⊕
i=1

HomG(W,Vi)

and so

dim HomG(W,V ) =

r∑
i=1

dim HomG(W,Vi).

and similarly

HomG(V,W ) =

r⊕
i=1

HomG(Vi,W )

and so

dim HomG(V,W ) =

r∑
i=1

dim HomG(Vi,W ).

Thus it suffices to show that

dim HomG(W,Vi) = dim HomG(Vi,W ) =

{
1 if W ∼= Vi

0 if W 6∼= Vi

and this is precisely the statement of Schur’s Lemma when k is algebraically
closed.14 �

14A question to ponder for those who like to think about such things: what can be said if k is
not algebraically closed?
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It follows that the number of times each simple representation occurs in a de-
composition of a representation as a direct sum of simple subrepresentations is
independent of the choice of decomposition. Important question: How can we
compute these numbers dim HomG(V,W )?15

Corollary. (of Schur’s Lemma) Every irreducible complex representation of an
abelian group G is one-dimensional.

Proof. Let (ρ, V ) be a complex irreducible representation of G. Since G is abelian,

ρ(g)ρ(h) = ρ(h)ρ(g) for all g, h ∈ G

and so

ρ(g) ∈ HomG(V, V ) for each g ∈ G.

Thus, since V is irreducible and C is algebraically closed, by Schur, each ρ(g) is a
scalar multiple of idV . It follows that for v ∈ V non-zero, 〈v〉 is a subrep of V and
so V = 〈v〉 by irreducibility of V again. In particular dimV = 1. �

Corollary. (of Schur’s Lemma) If a finite group G has a faithful irreducible rep-
resentation over an algebraically closed field k then the centre of G, Z(G) is cyclic.

Proof. Let (ρ, V ) be a faithful irreducible representation of G, and let z ∈ Z(G).
Since gz = zg for all g ∈ G, ρ(z) ∈ HomG(V, V ). Thus, since V is irreducible and
k is algebraically closed, by Schur, ρ(z) = λz idV , say, with λz ∈ k.

Moreover for z1, z2 in Z(G),

ρ(z1z2) = ρ(z1)ρ(z2) and so λz1z2 = λz1λz2 .

Since also, λe = 1,

Z(G)→ k×; z 7→ λz

is a representation of Z(G) that is faithful since V is faithful. In particular Z(G)
is isomorphic to a finite subgroup of k×. But every such subgroup is cyclic. �

Examples. We can list all the irreducible complex representations of C4 and C2×C2

G = C4 = 〈x〉. G = C2 × C2 = 〈x, y〉.
1 x x2 x3

ρ1 1 1 1 1
ρ2 1 i −1 −i
ρ3 1 −1 1 1
ρ4 1 −i −1 i

1 x y xy
ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 1 −1 −1
ρ4 1 −1 −1 1

Lecture 7

Proposition. Every finite abelian group G has precisely |G| complex irreducible
representations.

15We saw in our remarks on the proof of Maschke’s Theorem that if k denotes the trivial

representation then dim HomG(k, V ) = dimV G = 1
|G|
∑
g∈G tr ρ(g) when k has characteristic

zero.
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Proof. Let ρ be an irreducible complex rep of G. By the last corollary, dim ρ = 1.
So ρ : G→ C× is a group homomorphism.

If G = H ×K decomposes as a direct product of its subgroups H and K then
there is a 1-1 correspondence

Hom(G,C×)
∼←→ Hom(H,C×)×Hom(K,C×)

given by restriction ϕ 7→ (ϕ|H , ϕ|K).16

Since G is a finite abelian group G ∼= Cn1 × · · · ×Cnr some n1, . . . , nr. Thus by
an induction argument on r we may reduce to the case G = Cn = 〈x〉 is cyclic.

Now ρ is determined by ρ(x) and ρ(x)n = 1 so ρ(x) must be an nth root of unity.
Moreover for each 0 6 j < n we can define the representation

ρj(x
m) = e

2πijm
n for each m ∈ Z

giving the required set of n representations. �

Lemma. If (ρ1, V1) and (ρ2, V2) are non-isomorphic one-dimensional representa-
tions of a finite group G then

∑
g∈G ρ1(g−1)ρ2(g) = 0. 17

Proof. We’ve seen that Homk(V1, V2) is a representation of G under

g · ϕ = ρ2(g)ϕρ1(g−1).

Moreover
∑
g∈G g · ϕ ∈ HomG(V1, V2) = 0 by Schur. Pick an isomorphism ϕ ∈

Homk(V1, V2). Then

0 =
∑
g∈G

ρ2(g)ϕρ1(g−1) =

∑
g∈G

ρ1(g−1)ρ2(g)

ϕ.

Since ϕ is injective this suffices. �

If V is a representation of a group G that is completely reducible and W is
any irreducible representation of G then the W -isotypic component of V is the
smallest subrepresentation of V containing all simple subrepresentations isomorphic
to W . This exists since if (Vi)i∈I are subrepresentations of V containing all simple
subrepresentations isomorphic to W then so is

⋂
i∈I Vi.

18

We say that V has a unique isotypical decomposition if V is the direct sum of
its W -isotypic components as W varies over all simple representations of V (up to
isomorphism).

Corollary. Suppose G is a finite abelian group then every complex representation
V of G has a unique isotypical decomposition.

Proof. For each homomorphism θi : G → C× (i = 1, . . . , |G|) we can define Wi to
be the subspace of V defined by

Wi = {v ∈ V | ρ(g)v = θi(g)v for all g ∈ G},
the θi-isotypic component of V .

Since V is completely reducible and every irreducible rep of G is one dimensional
V =

∑
Wi. We need to show that

∑
wi = 0 with each wi ∈Wi implies wi = 0 for

all i.

16This crucially uses that C× is abelian.
17We note in passing that if k = C then ρ(g−1) = ρ(g) since ρ(g)o(g) = 1.
18It can also be realised as the vector space sum of all subrepresentations isomorphic to W .
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But
∑
wi = 0 with wi in Wi certainly implies 0 = ρ(g)

∑
wi =

∑
θi(g)wi. By

the last Lemma it follows that for each j,

0 =
∑
i

∑
g∈G

θj(g
−1)θi(g)

wi =
∑
g∈G

θj(g
−1)θj(g)wj = |G|wj .

Thus wj = 0.19 �

You will extend this result to all finite groups on Example Sheet 2.

19If you inspect the proof you’ll see we only really use k is algebraically closed and |G| 6= 0 ∈ k.
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4. Characters

Summary so far. We want to classify all representations of groups G. We’ve seen
that if G is finite and k has characteristic zero then every representation V decom-
poses as V ∼=

⊕
niVi with Vi irreducible and pairwise non-isomorphic and ni > 0.

Moreover if k is also algebraically closed, we’ve seen that ni = dim HomG(Vi, V ).
Our next goals are to classify all irreducible representations of a finite group and

understand how to compute the ni given V . We’re going to do this using character
theory.

4.1. Definitions.

Definition. Given a representation ρ : G → GL(V ), the character of ρ is the
function χ = χρ = χV : G→ k given by g 7→ tr ρ(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X−1AX) = tr(AXX−1) = tr(A)]. By the same argument we also
see that isomorphic representations have the same character.

Example. Let G = D6 = 〈s, t | s2 = 1, t3 = 1, sts−1 = t−1〉, the dihedral group of
order 6. This acts on R2 by symmetries of the triangle; with t acting by rotation
by 2π/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form sti) will act by a matrix with eigenvalues ±1. Thus χ(sti) = 0
for all i. The eigenvalues of each non-trivial rotation must be non-real cube roots

of unity and sum to a real number. Thus ρ(t) = ρ(t2) = e
2πi
3 + e−

2πi
3 = −1 and

ρ(1) = 1 + 1 = 2.

Proposition. Let (ρ, V ) be a rep of G with character χ

(i) χ(e) = dimV ;
(ii) χ(g) = χ(hgh−1) for all g, h ∈ G;

(iii) If χ′ is the character of (ρ′, V ′) then χ+ χ′ is the character of V ⊕ V ′.
(iv) If V is unitary20 then χ(g−1) = χ(g) for all g ∈ G;

Proof.
(i) χ(e) = tr idV = dimV .
(ii) ρ(hgh−1) = ρ(h)ρ(g)ρ(h)−1. Thus ρ(hgh−1) and ρ(g) are conjugate and so

have the same trace.
(iii) is clear.
(iv) By choosing a basis we may view ρ as a homomorphism G→ U(n). Then

ρ(g−1) = ρ(g)−1 = ρ(g)T

and so tr ρ(g−1) = tr ρ(g) for all g ∈ G since trace is invariant under taking trans-
poses. �

The proposition tells us that the character of ρ contains very little data; an
element of k for each conjugacy class in G. The extraordinary thing that we will
see is that, at least when G is finite and k = C, it contains all we need to know to
reconstruct ρ up to isomorphism.

Definition. We say a function f : G → k is a class function if f(hgh−1) = f(g)
for all g, h ∈ G. We’ll write CG for the k-vector space of class functions on G.

20For example whenever G is finite and k = C by Weyl’s unitary trick.
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Notice that if O1, . . . ,Or is a list of the conjugacy classes of G then the indicator
functions 1Oi : G→ C given by

1Oi(g) =

{
1 if g ∈ Oi
0 if g 6∈ Oi

form a basis for CG. In particular dim CG is the number of conjugacy classes in G.

Lecture 8

4.2. Orthogonality of characters. We’ll now assume that G is a finite group
and k = C unless we say otherwise. 21

Recall that CG = {f : G→ C : f(hgh−1) = f(g) for all g, h ∈ G} 6 CG and CG
has a basis consisting of indicator functions 1Oi where O1, . . . ,Or are the conjugacy
classes in G.

We can make CG into a Hermitian inner product space by defining

〈f1, f2〉G :=
1

|G|
∑
g∈G

f1(g)f2(g).

This even defines an Hermitian inner product on CG which then restricts to CG.
The functions 1Oi are pairwise orthogonal and

〈1Oi ,1Oi〉G =
|Oi|
|G|

=
1

|CG(xi)|
for any xi ∈ Oi.

Thus if x1, . . . , xr are representatives of O1, . . . ,Or respectively, then we can
write for f1, f2 ∈ CG

〈f1, f2〉G =

r∑
i=1

1

|CG(xi)|
f1(xi)f2(xi).

Example. G = D6 = 〈s, t | s2 = t3 = e, sts = t−1〉 has conjugacy classes
{e}, {t, t−1}, {s, st, st2} and

〈f1, f2〉G =
1

6
f1(e)f2(e) +

1

2
f1(s)f2(s) +

1

3
f1(t)f2(t).

Morever if C is the trivial representation of D6 and V is the natural representation
of degree 2 then

χC = 1G and χV (e) = 2, χV (s) = 0 and χV (t) = −1

so

〈χC, χC〉G =
1

6
+

1

2
+

1

3
= 1

〈χV , χV 〉G =
4

6
+

0

2
+

1

3
= 1

〈χC, χV 〉G =
2

6
+

0

2
+
−1

3
= 0

21If k = k has characteristic zero the main results are all essentially true but the story needs
to be told slightly differently.
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Theorem (Orthogonality of characters). If V and W are complex irreducible rep-
resentations of a finite group G then

〈χV , χW 〉G =

{
1 if V ∼= W

0 otherwise.

This should remind you of Schur’s Lemma and in fact the similarity is no coin-
cidence. It is a corollary of Schur. Before we prove it we need a couple of lemmas.

Lemma. If V and W are (unitary) representations of G then

χHomk(V,W )(g) = χV (g)χW (g)

for each g ∈ G.

Proof. Given g ∈ G we may choose bases v1, . . . , vn for V and w1, . . . , wm for W
such that gvi = λivi and gwj = µjwj for some λ1, . . . , λn, µ1, . . . , µm ∈ C. Then the
functions αij(vk) = δjkwi extend to linear maps that form a basis for Homk(V,W )22

and

(g · αij)(vk) = g · (αij(g−1 · vk)) = δjkλ
−1
k µiwi

thus g · αij = λ−1
j µiαij and

χHom(V,W )(g) =
∑
i,j

λ−1
j µi = χV (g−1)χW (g) = χV (g)χW (g)

as claimed. �

Lemma. If U is a representation of G then

dimUG =
1

|G|
∑
g∈G

χU (g) = 〈1, χU 〉.

Proof. We’ve seen previously that π : U → U ; π(u) = 1
|G|
∑
g∈G gu defines a pro-

jection from U onto UG. Thus

dimUG = trπ =
1

|G|
∑
g∈G

tr g =
1

|G|
∑
g∈G

χU (g) = 〈1G, χU 〉

as required. �

We can use these two lemmas to prove the following.

Proposition. If V and W are representations of G then

dim HomG(V,W ) = 〈χV , χW 〉.

Proof. By the lemmas

dim HomG(V,W ) = 〈1, χV χW 〉

=
1

|G|
∑
g∈G

χV (g)χW (g)

= 〈χV , χW 〉G
as required. �

22αij is represented by the matrix with a 1 in entry ij and 0s elsewhere with respect to the

given bases since vj maps to wi and all other vk map to 0
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Corollary (Orthogonality of characters). If V and W are irreducible representa-
tions of G then

〈χV , χW 〉G =

{
1 if V ∼= W

0 otherwise.

In particular if χV = χW then V ∼= W .

Proof. Apply the Proposition and Schur’s Lemma, noting that if χV = χW , with
V and W irreducible, then dim HomG(V,W ) = 〈χV , χV 〉G > 0 and so V ∼= W . �

Corollary. If (ρ, V ) is a representation of G then

V ∼=
⊕

W irred
rep of G/∼

〈χW , χρ〉GW.

In particular if σ is another representation with χρ = χσ then σ ∼= ρ.

Proof. By Machke’s Theorem there are non-negative integers nW such that

V ∼=
⊕

W irred
rep of G/∼

nWW.

Moreover we’ve seen that nW = dim HomG(W,V ) and dim HomG(W,V ) = 〈χW , χρ〉G
by the Proposition so the first part follows.

Since ⊕
W irred

rep of G/∼

〈χW , χρ〉GW

only depend on χρ the second part follows. �

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1 7→ idC2 and 1 7→
(

1 1
0 1

)
are not isomorphic but have the same trace. Indeed

they both have trivial subrepresentations with trivial quotient. The slogan might
be ‘Characters can’t see gluing data.’

Corollary. If ρ is a complex representation of G with character χ then ρ is irre-
ducible if and only if 〈χ, χ〉G = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that 〈χ, χ〉G = 1. Then we may write
χ =

∑
nWχW for some non-negative integers nW . By orthogonality of characters

1 = 〈χ, χ〉 =
∑
n2
W . Thus χ = χW for some W and ρ is irreducible. �

This is a good way of calcuating whether a representation is irreducible.

Example.
Consider the action of D6 on C2 by extending the symmetries of a triangle.

χ(1) = 2, χ(s) = χ(st) = χ(st2) = 0, and χ(t) = χ(t2) = −1. Now

〈χ, χ〉 =
1

6
(22 + 3 · 02 + 2 · (−1)2) = 1

so this rep is irreducible. Of course we had already established this by hand in (an
exercise in) Lecture 3.
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Theorem (The character table is square). The irreducible characters of a finite
group G form a orthonormal basis for the space of class functions CG with respect
to 〈f1, f2〉G = 1

|G|
∑
g∈G f1(g)f2(g).

Proof. We already know that the irreducible characters form an orthonormal set.
So it remains to show that they span CG.

Let I = 〈χ1, . . . , χr〉 be the C-linear span of the irreducible characters. We need
to show that

I⊥ := {f ∈ CG : 〈f, χi〉G = 0 for i = 1, . . . r} = 0.

Lecture 9

Suppose f ∈ CG. For each representation (ρ, V ) of G we may define a linear map

ϕ = ϕf,V ∈ Homk(V, V ) by ϕ = 1
|G|
∑
g∈G f(g)ρ(g).

Now,

ρ(h)−1ϕρ(h) =
1

|G|
∑
g∈G

f(g)ρ(h−1gh) =
1

|G|
∑
g′∈G

f(g′)ρ(g′) = ϕ

since f is a class function and G→ G; g 7→ hgh−1 is a bijection, and we see that in
fact ϕf,V ∈ HomG(V, V ).

Moreover, if V is an irreducible representation then ϕf,V = λ idV for some λ ∈ C
by Schur’s Lemma. If additionally f ∈ I⊥ then

λ dimV = trϕf,V = 〈f, χV 〉 = 0

so ϕf,V = 0.
But every representation breaks up as a direct sum of irreducible representations

V =
⊕
Vi and ϕf,V breaks up as

⊕
ϕf,Vi . So ϕf,V = 0 whenever f ∈ I⊥ and V is

a representation of G.
But now if we take V to be the regular representation CG then

0 = ϕf,CGδe = |G|−1
∑
g∈G

f(g)δg = |G|−1f.

Thus f = 0. �

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Notation. For g ∈ G we’ll write

[g]G := {xgx−1 : x ∈ G}

for the conjugacy class containing g.

Corollary. For each g ∈ G, χ(g) is real for every character χ if and only if
[g]G = [g−1]G.

Proof. Since χ(g−1) = χ(g), χ(g) ∈ R if and only if χ(g) = χ(g−1).
Since the irreducible characters span the space of class functions, χ(g) = χ(g−1)

for every character χ if and only if f(g) = f(g−1) for every f ∈ CG.
Since 1[g]G is a class function, this last is equivalent to [g] = [g−1]G as required.

�
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4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, [g1]G, . . . , [gr]G (by convention always g1 = e); we then list the irreducible
characters χ1, . . . , χr (by convention χ1 = χC the character of the trivial rep; then
we write the matrix

e g2 · · · gi · · · gr
χ1 1 1 · · · 1 · · · 1
...

...
χj · · · · · · · · · χj(gi) · · · · · ·
...

...

χr
...

We sometimes write the size of the conjugacy class [gi]G above gi and sometimes
|CG(gi)|.23

Examples.

(1) C3 = 〈x〉 and let ω = e
2πi
3 so ω2 = ω.

e x x2

χ1 1 1 1
χ2 1 ω ω
χ3 1 ω ω

Notice that the rows are indeed pairwise orthogonal with respect to 〈−,−〉G.
The columns are too with respect to the standard inner product in this case.

(2) S3

There are three conjugacy classes {e}, {(12), (23), (13)} and {(123), (132)}.
Thus there are also three irreducible representations. We know that the triv-
ial representation has character 1G for all g ∈ G. We also know another 1-
dimensional representation ε : S3 → {±1} given by g 7→ 1 if g is even and
g 7→ −1 if g is odd.

To compute the character χ of the last representation we may use orthogo-
nality of characters. Let χ(e) = a, χ((12)) = b and χ((123)) = c (a, b and c are
each real since each g in S3 is conjugate to its inverse). We know that

0 = 〈1, χ〉 =
1

6
(a+ 3b+ 2c),

0 = 〈ε, χ〉 =
1

6
(a− 3b+ 2c) and

1 = 〈χ, χ〉 =
1

6
(a2 + 3b2 + 2c2).

Thus we see quickly that b = 0, a + 2c = 0 and a2 + 2c2 = 6. We also know
that a is a positive integer. Thus a = 2 and c = −1.

23Recall that |[g]G||CG(g)| = |G| by the orbit-stabiliser theorem.
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|CS3(g)|| 1 3 2
g e (12) (123)
1 1 1 1
ε 1 −1 1
χ 2 0 −1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

Once again the columns are orthogonal with respect to the standard inner
product. If we compute their length we get:

12 + 12 + 22 = 6 = |CS3(e)|
12 + (−1)2 + 02 = 2 = |CS3

((12))|
12 + 12 + (−1)2 = 3 = |CS3((123))|.

This is an instance of a more general phenomenon.

Proposition (Column Orthogonality). If G is a finite group and χ1, . . . , χr is a
complete list of the irreducible characters of G then for each g, h ∈ G,

r∑
i=1

χi(g)χi(h) =

{
0 if [g]G 6= [h]G

|CG(g)| if [g]G = [h]G.

In particular
r∑
i=1

(dimVi)
2 =

r∑
i=1

χi(e)
2 = |G|.

Proof. Let X be the character table thought of as a matrix; Xij = χi(gj) and let
D be the diagonal matrix with entries Dii = |CG(gi)|.

Orthogonality of characters tell us that

〈χi, χj〉G =
∑
k

|CG(gk)|−1XikXjk = δij

ie XD−1XT = I.
Since X is square and invertible and D is real we may rewrite this as

D−1X
T

= X−1.

Thus X
T
X = D. That is ∑

k

χk(gi)χk(gj) = δij |CG(gi)|

as required. �

4.4. Permuation representations. Recall that if X is a finite set with G-action
then CX = {f : X → C} is a representation of G via gf(x) = f(g−1x) for all
f ∈ CX, g ∈ G and x ∈ X or equivalently g · δx = δg·x for all g ∈ G and x ∈ X.

Lemma. If χ is the character of CX then χ(g) = |{x ∈ X | gx = x}|

Proof. If X = {x1, . . . , xd} and gxi = xj then gδxi = δxj so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely
if xi = xj . �
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Lecture 10

Corollary. If V1, . . . , Vr is a complete list of irreducible reps of a finite group G
then the regular representation decomposes as

CG ∼=
r⊕
i=1

(dimVi)Vi.

In particular every irreducible representation is isomorphic to a subrepresenta-
tion of the regular representation and

|G| =
∑

(dimVi)
2.

Proof. We need to prove dim HomG(Vi,CG) = dimVi for i = 1, . . . , r. But

dim HomG(Vi,CG) = 〈χVi , χCG〉G

=
1

|G|
∑
g∈G

χVi(g)χCG(g)

= dimVi

since χCG(g) =

{
|G| g = e

0 g 6= e
and χVi = dimVi. �

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action. Then 〈1, χCX〉G is the number of orbits of G on X.

Proof.

|G|〈1, χCX〉G =
∑
g∈G

χCX(g)

=
∑
g∈G
|{x ∈ X | gx = x}

= |{(g, x) ∈ G×X | gx = x}|
=

∑
x∈X
|{g ∈ G | gx = x}

=
∑
x∈X
|StabG(x)|

So

〈1, χCG〉G =
∑
x∈X

1

|OrbG(x)|
(by the Orbit-Stabiliser Theorem)

=
∑

orbits
Oi

(∑
x∈Oi

1

|Oi|

)

= number of orbits

as required. �

Note that if X =
⋃t
i=1Oi is the orbit decomposition of X then we saw before

that CX =
⊕t

i=1COi so Burnside’s Lemma says that each COi contains precisely
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one copy of the trivial representation C when it is decomposed as a direct sum of
irreducible representations — the span of the constant function.

If X and Y are two sets with a G-action we may view X × Y as a set with a
G-action via (g, (x, y)) 7→ (gx, gy) for all g ∈ G, x ∈ X and y ∈ Y .

Lemma. If X and Y are both finite sets with G-action then

χCX×Y = χCX · χCY .

Proof. Since

{(x, y) ∈ X × Y : g · (x, y) = (x, y)} = {x ∈ X : g · x = x} × {y ∈ Y : g · y = y}

this follows from the lemma that computes characters of permutation representa-
tions in terms of fixed points. �

Corollary. If G is a finite group and X and Y are finite sets with a G-action then
〈χCX , χCY 〉G is the number of G-orbits on X × Y .

Proof. 〈χX , χY 〉G = 1
|G|
∑
g∈G χX(g)χY (g) = 〈1, χX×Y 〉G and the result follows

from Burnside’s Lemma. �

Remark. If X is any set with a G-action with |X| > 1 then {(x, x)|x ∈ X} ⊂ X×X
is G-stable and so is the complement {(x, y) ∈ X ×X | x 6= y}. Moreover both are
non-empty.

Definition. We say that G acts 2-transitively on X if X has at least 2 elements
and for all x1, x2, y1, y2 ∈ X with x1 6= y1 and x2 6= y2 there is g ∈ G such that
g · x1 = x2 and g · y1 = y2.24 Equivalently G has only two orbits on X ×X.

Example. The natural action of Sn on {1, . . . , n} is 2-transitive whenever n > 2.

By the Corollary if G acts 2-transitively on X then 〈χCX , χCX〉 = 2. Thus if
CX ∼=

∑
niVi with Vi irreducible and pairwise non-isomorphic then

∑
n2
i = 2 and

so CX has two non-isomorphic irreducible summands — explicitly these are the set
of constant functions and the set V =

{
f ∈ CX :

∑
x∈X f(x) = 0

}
. Then χV is an

irreducible character with

χV (g) = (number of fixed points of g on X)− 1.

Exercise. If G = GL2(Fp) then decompose the permutation rep of G coming from
the action of G on Fp ∪ {∞} by Möbius transformations.

Examples.

(1) G = S4: the character table is as follows

|CG(xi)| 24 8 3 4 4
|Oi| 1 3 8 6 6
xi e (12)(34) (123) (12) (1234)
1 1 1 1 1 1
ε 1 1 1 −1 −1
χ3 3 −1 0 1 −1
χ4 3 −1 0 −1 1
χ5 2 2 −1 0 0

24i.e. g · (x1, y1) = (x2, y2).
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Proof. The trivial 1 and sign ε characters may be constructed in the same way
as for S3.

By our discussion above

χC{1,2,3,4} = 1 + χV

for some irreducible representation V of dimension 3 and we may define χ3

to be χV . Its values χ3(g) are (number of fixed points of g) − 1 and can be
computed directly to be the claimed values.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation θ
and an irreducible representation ρ we may form another irreducible representa-
tion θ⊗ρ by θ⊗ρ(g) = θ(g)ρ(g). It is not hard to see that χθ⊗ρ(g) = θ(g)χρ(g).
Thus we get another irreducible character εχ3 that we compute by multiplying
characters and may set this to be χ4.

We can then complete the character table using column orthogonality: We
note that 24 = 12 + 12 + 32 + 32 + χ5(e)2 thus χ5(e) = 2. Then using∑5

1 χi(1)χi(g) = 0 we can construct the remaining values in the table. �

(2) G = A4. Each irreducible representation of S4 may be restricted to A4 and its
character values on elements of A4 will be unchanged. In this way we get three
characters of A4: 1, ψ2 = χ3|A4

and ψ3 = χ5|A4
. Of course 1 is irreducible

since it has dimension 1. Computing

〈ψ2, ψ2〉A4
=

1

12
(32 + 3(−1)2 + 8(02) = 1

we see ψ2 also remains irreducible.25 However

〈ψ3, ψ3〉 =
1

12
(22 + 3(22) + 8(−1)2) = 2

so ψ3 breaks up into two non-isomorphic irreducible reps of A4.

Exercise. Use this information to construct the whole character table of A4.

25Note that the conjugacy class of (123) in S4 breaks into two classes of size 4 in A4 but that
doesn’t matter for this calculation since ψ2 takes the same value on these two classes.
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5. The character ring

We’ve seen already that algebraic structure on CG for a finite group G is a
shadow of representation theoretic information: if V1 and V2 are representations
that χV1⊕V2 = χV1 +χV2 , χ0 = 0, dim HomG(V1, V2) = 〈χ1, χ2〉. An alternative way
of viewing this is that the category of representations is a model for the algebraic
structure on CG.

We’ve seen that χCX×Y = χCX · χCY . We’ve also seen that when θ and ρ are
representations with dim θ = 1 there is a representation θ ⊗ ρ such that χθ⊗ρ =
χθ · χρ. We want to generalise these i.e. given any representations ρ1, ρ2 build a
representation ρ1 ⊗ ρ2 such that χρ1⊗ρ2 = χρ1 · χρ2 .

Lecture 11

5.1. Tensor products. Suppose that V and W are vector spaces over a field k,
with bases v1, . . . , vm and w1, . . . , wn respectively. We may view V ⊕W either as
the vector space with basis v1, . . . , vm, w1, . . . , wn (so dimV ⊕W = dimV +dimW )
or more abstractly as the vector space of pairs (v, w) with v ∈ V and w ∈ W and
pointwise operations.

Definition. The tensor product V ⊗W of V and W is the k-vector space with
basis given by symbols vi ⊗ wj for 1 6 i 6 m and 1 6 j 6 n and so

dimV ⊗W = dimV · dimW.

Example. If X and Y are sets then kX⊗kY has basis δx⊗δy for x ∈ X and y ∈ Y .
Notice that

αX×Y : kX ⊗ kY → kX × Y ; δx ⊗ δy → δ(x,y)

defines an isomorphism.

Notation. If v =
∑
λivi ∈ V and w =

∑
µjwj ∈W ,

v ⊗ w : =
∑
i,j

λiµj(vi ⊗ wj) ∈ V ⊗W.

For example αX×Y (f ⊗ g)(x, y) = f(x)g(y).
Note that, in general, not every element of V ⊗W may be written in the form

v⊗w (eg v1⊗w1 + v2⊗w2). The smallest number of summands that are required
is known as the rank of the tensor.

Lemma. The map V ×W → V ⊗W given by (v, w) 7→ v ⊗ w is bilinear.

Proof. We should prove that if x, x1, x2 ∈ V and y, y1, y2 ∈W and ν1, ν2 ∈ k then

x⊗ (ν1y1 + ν2y2) = ν1(x⊗ y1) + ν2(x⊗ y2)

and

(ν1x1 + ν2x2)⊗ y = ν1(x1 ⊗ y) + ν2(x2 ⊗ y).

We’ll just do the first; the second follows by symmetry.
Write x =

∑
i λivi, yk =

∑
j µ

k
jwj for k = 1, 2. Then

x⊗ (ν1y1 + ν2y2) =
∑
i,j

λi(ν1µ
1
j + ν2µ

2
j )vi ⊗ wj
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and

ν1(x⊗ y1) + ν2(x⊗ y2) = ν1

∑
i,j

λiµ
1
j (vi ⊗ wj)

+ ν2

∑
i,j

λiµ
2
j (vi ⊗ wj)

 .

These are equal. �

Exercise. Show that given vector spaces U, V and W there is a 1−1 correspondence

{linear maps V ⊗W → U} −→ {bilinear maps V ×W → U}

given by precomposition with the bilinear map (v, w)→ v ⊗ w above.

Lemma. If x1, . . . , xm is any basis of V and y1, . . . , yn is any basis of W then
xi ⊗ yj for 1 6 i 6 m and 1 6 j 6 n is a basis for V ⊗W . Thus the definition of
V ⊗W does not depend on the choice of bases.

Proof. It suffices to prove that the set {xi ⊗ yj} spans V ⊗W since it has size mn.
But if vi =

∑
r Arixr and wj =

∑
sBsjys then vi ⊗ wj =

∑
r,sAriBsjxr ⊗ ys. �

Remark (for enthusiastists). In fact we could have defined V ⊗W in a basis inde-
pendent way in the first place: let F be the (infinite dimensional) vector space with
basis 〈v ⊗ w | v ∈ V,w ∈W 〉; and R be the subspace generated by

x⊗ (ν1y1 + ν2y2)− ν1(x⊗ y1)− ν2(x⊗ y2)

and

(ν1x1 + ν2x2)⊗ y − ν1(x1 ⊗ y)− ν2(x2 ⊗ y)

for all x, x1, x2 ∈ V , y, y1, y2 ∈W and ν1, ν2 ∈ k; then V ⊗W ∼= F/R naturally.

Exercise. Show that for vector spaces U, V and W there is a natural (basis inde-
pendent) isomorphism

(U ⊕ V )⊗W → (U ⊗W )⊕ (V ⊗W ).

Definition. Suppose that V and W are vector spaces with bases v1, . . . , vm and
w1, . . . , wn and ϕ : V → V and ψ : W → W are linear maps. We can define
ϕ⊗ ψ : V ⊗W → V ⊗W as follows:

(ϕ⊗ ψ)(vi ⊗ wj) = ϕ(vi)⊗ ψ(wj).

Example. If ϕ is represented by the matrix Aij and ψ is represented by the matrix
Bij and we order the basis vi ⊗ wj lexicographically (ie v1 ⊗ w1, v1 ⊗ w2, . . . , v1 ⊗
wn, v2 ⊗ w1, . . . , vm ⊗ wn) then ϕ⊗ ψ is represented by the block matrixA11B A12B · · ·

A21B A22B · · ·
...

...
. . .


since

(ϕ⊗ ψ)(vi ⊗ wj) =

(∑
k

Akivk

)
⊗

(∑
l

Bljwl

)
=
∑
k,l

AkiBlj(vk ⊗ wl).

Lemma. The linear map ϕ⊗ ψ does not depend on the choice of bases.
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Proof. It suffices to show that for any v ∈ V and w ∈W ,

(ϕ⊗ ψ)(v ⊗ w) = ϕ(v)⊗ ψ(w).

Writing v =
∑
λivi and w =

∑
µjwj we see

(ϕ⊗ ψ)(v ⊗ w) =
∑
i,j

λiµjϕ(vi)⊗ ψ(wj) = ϕ(v)⊗ ψ(w)

as required. �

Remark. The proof really just says V ×W → V ⊗W defined by (v, w) 7→ ϕ(v)⊗ψ(w)
is bilinear and ϕ⊗ ψ is its correspondent in the bijection

{linear maps V ⊗W → V ⊗W} → {bilinear maps V ×W → V ⊗W}

from earlier.

Lemma. Suppose that ϕ,ϕ1, ϕ2 ∈ Homk(V, V ) and ψ,ψ1, ψ2 ∈ Homk(W,W )

(i) (ϕ1ϕ2)⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2) ∈ Homk(V ⊗W,V ⊗W );
(ii) idV ⊗ idW = idV⊗W ; and

(iii) tr(ϕ⊗ ψ) = trϕ · trψ.

Proof. Given v ∈ V , w ∈W we can use the previous lemma to compute

(ϕ1ϕ2)⊗ (ψ1ψ2)(v ⊗ w) = ϕ1ϕ2(v)⊗ ψ1ψ2(w) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)(v ⊗ w).

Since elements of the form v⊗w span V ⊗W and all maps are linear it follows that

(ϕ1ϕ2)⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)

as required.
(ii) is clear.
(iii) For the formula relating traces it suffices to stare at the example above:

tr

A11B A12B · · ·
A21B A22B · · ·

...
...

. . .

 =
∑
i,j

BiiAjj = trA trB.

�

Definition. Given two representation (ρ, V ) and (σ,W ) of a group G we can define
the representation (ρ⊗ σ, V ⊗W ) by (ρ⊗ σ)(g) = ρ(g)⊗ σ(g).

Note that (ρ⊗σ, V ⊗W ) is a representation of G by parts (i) and (ii) of the last
lemma. Moreover χρ⊗σ = χρ · χσ by part (iii).

Lecture 12

Remarks.

(1) Tensor product of representations defined above is consistent with our ear-
lier notion when one of the representations is one-dimensional.

(2) If X,Y are finite sets with G-action it is easy to verify that the isomorphism
of vector spaces

αX×Y : kX ⊗ kY ∼= kX × Y ; δx ⊗ δy → δ(x,y)

is an isomorphism of representations of G.
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Definition. The character ring R(G) of a group G is defined by

R(G) := {χ1 − χ2 | χ1, χ2 are characters of reps of G} ⊂ CG.

• Since χV1⊕V2
= χV1

+ χV2
, R(G) is an additive subgroup of CG.

• Since 1G is a character R(G) has the multiplicative unit of CG.
• Since χV1⊗V2 = χV1 · χV2 , R(G) is closed under multiplication.

Thus R(G) forms a (commutative) subring of CG.
If (ρ, V ) is a representation of G and (σ,W ) is a representation of another group

H then
ρ⊗ σ : G×H → GL(V ⊗W ); (g, h) 7→ ρ(g)⊗ σ(h)

defines a representation of G×H by parts (i) and (ii) of the last lemma. Part (iii)
of the lemma gives that

(χV ⊗ χW )(g, h) : = χV⊗W (g, h) = χV (g)χW (h).

Thus
R(G)×R(H)→ R(G×H); (χV , χW ) 7→ χV⊗W

defines a Z-bilinear map.
The construction of V ⊗W as a representation of G last time, in the case G = H,

comes from restricting this construction along the homomorphism

G→ G×G; g 7→ (g, g).

Proposition. Suppose G and H are finite groups, (ρ1, V1), . . . , (ρr, Vr) are all the
simple complex representations of G and (σ1,W1), . . . , (σs,Ws) are all the simple
complex representations of H.

For each 1 6 i 6 r and 1 6 j 6 s, (ρi ⊗ σj , Vi ⊗Wj) is an irreducible complex
representation of G × H. Moreover, all the irreducible representations of G × H
arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let χ1, . . . , χr be the characters of V1, . . . , Vr and ψ1, . . . , ψs the characters
of W1, . . . ,Ws.

The character of Vi ⊗Wj is χi ⊗ ψj : (g, h) 7→ χi(g)ψj(h). Then

〈χi ⊗ ψj , χk ⊗ ψl〉G×H = 〈χi, χk〉G〈ψj , ψl〉H = δikδjl.

So the χi ⊗ ψj are irreducible and pairwise distinct.
Now∑
i,j

(dimVi ⊗Wj)
2

=

(∑
i

(dimVi)
2

)∑
j

(dimWj)
2

 = |G|||H| = |G×H|

so we must have them all.26 �

Question. If V and W are irreducible as representations of G then can V ⊗W be
irreducible as a representation of G?

We’ve seen the answer is yes is one of V and W is one-dimensional but it is not
usually true.

26We could complete the proof by instead considering conjugacy classes in G×H to show that
dim CG×H = dim CG · dim CH .
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Example. G = S3

1 3 2
e (12) (123)

1 1 1 1
ε 1 −1 1
V 2 0 −1

Clearly, 1 ⊗W = W always. ε ⊗ ε = 1, ε ⊗ V = V and V ⊗ V has character χ2

given by χ2(1) = 4, χ2(12) = 0 and χ2(123) = 1. Thus χ2 decomposes as 1 + ε+χ.

In general if χ1, . . . , χr are the irreducible characters then for all 1 6 i, j 6 r,

χiχj =

r∑
k=1

aki,jχk

with aki,j ∈ N0 and these numbers aki,j completely determine the structure of R(G)

as a ring since R(G) =
⊕r

i=1 Zχi as an additive group.
In fact V ⊗ V, V ⊗ V ⊗ V, . . . are never irreducible if dimV > 1. However

considering them can help us build new irreducible representations.

5.2. Symmetic and Exterior Powers. For any vector space V , define

σ = σV : V ⊗ V → V ⊗ V by σ(v ⊗ w) 7→ w ⊗ v for all v, w ∈ V.
Exercise. Check this does uniquely define a linear map. Hint: Show that (v, w) 7→
w ⊗ v is a bilinear map.

Notice that σ2 = id and so, if chark 6= 2, σ decomposes V ⊗ V into two
eigenspaces:

S2V := {a ∈ V ⊗ V | σa = a}
Λ2V := {a ∈ V ⊗ V | σa = −a}.

In fact this is the isotypical decomposition of V ⊗ V as a rep of C2.

Lemma. Suppose v1, . . . , vm is a basis for V .

(i) S2V has a basis vivj := 1
2 (vi ⊗ vj + vj ⊗ vi) for 1 6 i 6 j 6 m. 27

(ii) Λ2V has a basis vi ∧ vj := 1
2 (vi ⊗ vj − vj ⊗ vi) for 1 6 i < j 6 m.28

Thus dimS2V = 1
2m(m+ 1) and dim Λ2V = 1

2m(m− 1).

Proof. It is easy to check that the union of the two claimed bases span V ⊗ V and
have m2 elements so form a basis. Moreover vivj do all live in S2V and the vi ∧ vj
do all live in Λ2V . Everything follows.29 �

Proposition. Let (ρ, V ) be a representation of G.

(i) V ⊗ V = S2V ⊕ Λ2V as representations of G.
(ii) for g ∈ G such that ρ(g) is diagonalisable.30

χS2V (g) =
1

2
(χ(g)2 + χ(g2))

χΛ2V (g) =
1

2
(χ(g)2 − χ(g2)).

27vivj = vjvi if we allow i > j
28vi ∧ vj = −vj ∧ vi if we allow i > j. In particular vi ∧ vi = 0
29For an alternative argument use Ex Sheet 2 Q11.
30This condition is merely for computational convenience.
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Proof. For (i) we need to show that if a ∈ V ⊗ V and σV (a) = λa for λ = ±1 then
σV ρV⊗V (g)(a) = λρV⊗V (g)(a) for each g ∈ G. For this it suffices to prove that
σg = gσ (ie σ ∈ HomG(V ⊗V, V ⊗V )). But σ ◦ g(v⊗w) = gw⊗ gv = g ◦σ(v⊗w).

To compute (ii) it suffices to prove one or the other since the sum of the right-
hand-sides is χ(g)2 = χV⊗V . Let v1, . . . , vm be a basis of eigenvectors for ρ(g) with
eigenvalues λ1, . . . , λm. Then g(vivj) = (λiλj)vivj .

Thus

χ(g)2 + χ(g2) = (
∑
i

λi)
2 +

∑
i

λ2
i = 2

∑
i6j

λiλj

whereas χS2V (g) =
∑
i6j λiλj. �

Exercise. Prove directly the formula for χΛ2V .

Lecture 13

Example. S4

e (12)(34) (123) (12) (1234)
1 1 1 1 1 1
ε 1 1 1 −1 −1
χ3 3 −1 0 1 −1
εχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0
χ2

3 9 1 0 1 1
χ3(g2) 3 3 0 3 −1
S2χ3 6 2 0 2 0
Λ2χ3 3 −1 0 −1 1

Thus S2χ3 = χ5 + χ3 + 1 and Λ2χ3 = εχ3. Notice that given 1 and ε and χ3

we could’ve constructed the remaining two irreducible characters using S2χ3 and
Λ2χ3.

More generally, for any vector space V we may consider V ⊗n = V ⊗ · · · ⊗ V .
Then for any ω ∈ Sn we can define a linear map σ(ω) : V ⊗n → V ⊗n by

σ(ω) : v1 ⊗ · · · vn 7→ vω−1(1) ⊗ · · · vω−1(n)

for v1, . . . , vn ∈ V.

Exercise. Show that this defines a representation of Sn on V ⊗n and that if V is a
representation of G then the G-action and the Sn-action on V ⊗n commute.

Let’s suppose for now that k has characteristic 0. Thus we can decompose V ⊗n

as a rep of Sn and each isotypical component will be a G-invariant subspace of
V ⊗n. In particular we can make the following definition.

Definition. Suppose that V is a vector space we define

(i) the nth symmetric power of V to be

SnV := {a ∈ V ⊗n | σ(ω)(a) = a for all ω ∈ Sn}

and
(ii) the nth exterior (or alternating) power of V to be

ΛnV := {a ∈ V ⊗n | σ(ω)(a) = ε(ω)a for all ω ∈ Sn}.
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Note that, for n > 3,

SnV ⊕ ΛnV = {a ∈ V ⊗n | σ(ω)(a) = a for all ω ∈ An} ( V ⊗n.

We also define the following notation for v1, . . . , vn ∈ V ,

v1 · · · vn :=
1

n!

∑
ω∈Sn

vω(1) ⊗ · · · ⊗ vω(n) ∈ SnV

and

v1 ∧ · · · ∧ vn :=
1

n!

∑
ω∈Sn

ε(ω)vω(1) ⊗ · · · ⊗ vω(n) ∈ ΛnV.

Exercise. Show that if v1, . . . , vd is a basis for V then

{vi1 · · · vin | 1 6 i1 6 · · · 6 in 6 d}

is a basis for SnV and

{vi1 ∧ · · · ∧ vin | 1 6 i1 < · · · < in 6 d}

is a basis for ΛnV . Hence given g ∈ G acting diagonalisably on V , compute the
character values χSnV (g) and χΛnV (g) in terms of the eigenvalues of g on V .

For any vector space V , ΛdimV V ∼= k and ΛnV = 0 if n > dimV .

Exercise. Show that if (ρ, V ) is a representation of G then the representation of G
on ΛdimV V ∼= k is given by g 7→ det ρ(g); ie the dimV th exterior power of V is
isomorphic to det ρ.

We may stick these vector spaces together to form algebras.

Definition. Given a vector space V we may define the tensor algebra of V ,

TV := ⊕n>0V
⊗n

(where V ⊗0 = k). Then TV is a (non-commutative) graded ring with the product
of v1 ⊗ · · · ⊗ vr ∈ V ⊗r and w1 ⊗ · · · ⊗ ws ∈ V ⊗s given by

v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · · ⊗ ws ∈ V ⊗r+s.

with graded quotient rings the symmetric algebra of V ,

SV := TV/(x⊗ y − y ⊗ x | x, y ∈ V ),

and the exterior algebra of V ,

ΛV := TV/(x⊗ y + y ⊗ x | x, y ∈ V ).

One can show that SV ∼=
⊕

n>0 S
nV under x1 ⊗ · · · ⊗ xn 7→ x1 · · ·xn and

ΛV ∼=
⊕

n>0 ΛnV under x1 ⊗ · · · ⊗ xn 7→ x1 ∧ · · · ∧ xn.
Now SV is a commutative ring and ΛV is graded-commutative; that is if x ∈ ΛrV

and y ∈ ΛsV then x ∧ y = (−1)rsy ∧ x.
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5.3. Duality. Recall that CG has the ∗-operation given by f∗(g) = f(g−1). This
also restricts to R(G).

Recall that if G is group and (ρ, V ) is a representation of G then the dual
representation (ρ∗, V ∗) of G is given by

(ρ∗(g)θ)(v) = θ(ρ(g−1)v)

for θ ∈ V ∗, g ∈ G and v ∈ V .

Lemma. χV ∗ = (χV )∗.

Proof. If ρ(g) is represented by a matrix A with respect to a basis v1, . . . , vd for V
and ε1, . . . , εd is the dual basis for V ∗. Then ρ(g)−1vi =

∑
(A−1)jivj .

Thus (ρ∗(g)εk)(vi) = εk

(∑
j(A
−1)jivj

)
= (A−1)ki and so

ρ∗(g)εk =
∑
i

(A−1)Tikεi

i.e. ρ∗(g) is represented by (A−1)T with respect to the dual basis. Taking traces
gives the result. �

Definition. We say that V is self-dual if V ∼= V ∗ as representations of G.

When G is finite and k = C, V is self-dual if and only if χV (g) ∈ R for all g ∈ G;
since this is equivalent to χV ∗ = χV .

Examples.

(1) G = C3 = 〈x〉 and V = C. If ρ is given by ρ(x) = ω = e
2πi
3 then ρ∗(x) = ω2 = ω

and V is not self-dual.
(2) G = Sn: since g is always conjugate to its inverse in Sn, χ∗ = χ always and so

every representation is self-dual.
(3) Permutation representations CX are always self-dual.

We’ve now got a number of ways to build representations of a group G:

• permutation representations coming from group actions;
• via representations of a group H and a group homomorphism G→ H (e.g.

restriction);
• tensor products;
• symmetric and exterior powers;
• decomposition of these into irreducible components;
• character theoretically using orthogonality of characters.

We’re now going to discuss one more way related to restriction.
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Lecture 14

6. Induction

6.1. Construction. Suppose that H is a subgroup of G. Restriction makes rep-
resentations of G into representations of H. We would like a way of building
representations of G from representations of H.

Recall that [g]G denotes the conjugacy class of g ∈ G. So 1[g]G : G→ k given by

1[g]G(x) =

{
1 if x is conjugate to g in G

0 otherwise

is in CG.
We note that for g ∈ G,

[g]−1
G = [g−1]G, since (xgx−1)−1 = xg−1x−1,

and so

(1[g]G)∗ = 1[g−1]G .

If H 6 G then [g]G ∩H is a union of H-conjugacy classes

[g]G ∩H =
⋃

[h]H⊆[g]G

[h]H

so

r : CG → CH ; f 7→ f |H
is a well-defined linear map with

r(1[g]G) =
∑

[h]H⊆[g]G

1[h]H .

Since for every finite group G, 〈f1, f2〉G = 1
|G|
∑
g∈G f

∗
1 (g)f2(g) defines a non-

degenerate bilinear form on CG, the map r has an adjoint r∗ characterised by

〈r(f1), f2〉H = 〈f1, r
∗(f2)〉G for f1 ∈ CG, f2 ∈ CH .

In particular for f ∈ CH ,

〈1[g−1]G , r
∗(f)〉G = 〈r(1[g−1 ]G), f〉H =

∑
[h]H⊆[g]G

1

|CH(h)|
f(h).

On the other hand,

〈1[g−1]G , r
∗(f)〉G =

1

|G|
∑
x∈[g]G

r∗(f)(x) =
1

|CG(g)|
r∗(f)(g).

Thus, by comparing these we see that

r∗(f)(g) =
∑

[h]H⊆[g]G

|CG(g)|
|CH(h)|

f(h).(1)

Since x−1gx = y−1gy if and only if xy−1 ∈ CG(g) we can rewrite this as

r∗(f)(g) =
∑

h∈H∩[g]G

|CG(g)|
|CH(h)||[h]H |

f(h) =
1

|H|
∑
x∈G

f◦(x−1gx)
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where

f◦(g) =

{
f(g) for g ∈ H
0 otherwise.

Question. Is r∗(R(H)) ⊆ R(G)?

Suppose that χ is a C-character of H and ψ is an irreducible C-character of G.
Then

〈ψ, r∗(χ)〉G = 〈r(ψ), χ〉H ∈ N0

by orthogonality of characters, since r(ψ) is a character of H.
So writing Irr(G) to denote the set of irreducible C-characters of G

r∗(χ) =
∑

ψ∈Irr(G)

〈ψ|H , χ〉Hψ(2)

is even a character in R(G). The formula (2) is only useful for actually computing
r∗(χ) if we already understand Irr(G). Since our purpose will often be to use Irr(H)
to understand Irr(G), the formula (1) will typically prove more useful.

Example. G = S3 and H = A3 = {1, (123), (132)}.
If f ∈ CH then

r∗(f)(e) =
6

3
f(e) = 2f(e),

r∗(f)((12)) = 0, and

r∗(f)((123)) =
3

3
f((123)) +

3

3
f((132)) = f((123)) + f((132)).

Thus
A3 1 (123) (132)
χ1 1 1 1
χ2 1 w w2

χ3 1 w2 w

S3 1 (12) (123)
r∗(χ1) 2 0 2
r∗(χ2) 2 0 −1
r∗(χ3) 2 0 −1

So r∗(χ1) = 1+ ε and r∗(χ2) = r∗(χ3) is the 2-dimensional irreducible character
χV of S3 consistent with the formula (2) since

1|A3
= ε|A3

= χ1

and

(χV )|A3 = χ2 + χ3.

Note that if χ is an irreducible character of H then r∗(χ) may be an irreducible

character of G but need not be so. Also note that r∗(χ)(e) = |G|
|H|χ(e) always.

We’d like to build a representation of G with character r∗(χ) given a represen-
tation W of H with character χ.

Suppose that X is a finite set and W is a k-vector space. We may define

F(X,W ) := {f : G→W}

the k-vector space of functions X to W with pointwise operations. In particular
F(X, k) = kX.

We can compute dimF(X,W ) = |X|dimW since if w1, . . . , wd is a basis for W
then (δxwi : x ∈ X, 1 6 i 6 d) is a basis for F(X,W ).
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If K is a group, X has a K-action and W is a representation of K then F(X,W )
can be viewed as a representation of K via

(k · f)(x) = kf(k−1x) for all f ∈ F(X,W ), k ∈ K,x ∈ X.

For example if W = k is the trivial representation of K then F(X,W ) = kX as
representations of K.

Now we consider a special case of this construction. Suppose H 6 G are finite
groups. Then G can be viewed as a set with G×H-action via

(g, h) · x = gxh−1 for all g, x ∈ G, h ∈ H.

If W is a representation of H then it can be viewed as a representaion of G×H via

(g, h) · w = hw for all g ∈ G, h ∈ H,w ∈W.

Now F(G,W ) is a representation of G×H via

((g, h) · f) (x) = h · f(g−1xh) for (g, h) ∈ G×H,x ∈ G, f ∈ F(G,W ).

Using this F(G,W ) can be viewed as a representation of G and of H by restriction
along the respective natural maps G→ G× {eH} and H → {eG} ×H.

Now

F(G,W )H = {f ∈ F(G,W ) : (e, h) · f = f for all h ∈ H}
=

{
f ∈ F(G,W ) : f(xh) = h−1f(x) for all h ∈ H,x ∈ G

}
is a G-invariant subspace of F(G,W ) since the G and H actions commute; if

(e, h) · f = f for h ∈ H, then for g ∈ G,

(e, h)(g, e)f = (g, e)(e, h)f = (g, e)f.

For example if k is the trivial representation of W then F(G, k)H ∼= kG/H as
representations of G.

Definition. Suppose that H is a subgroup of a finite group G and W is a repre-
sentation of H. We define the induced representation to be

IndGHW := F(G,W )H

as a representation of G.

Lemma. dim IndGHW = |G|
|H| dimW

Proof. Let X = G/H be the set of left cosets of H in G and let x1, . . . , x|G/H| be
left coset representatives then

θ : F(G,W )H → F(X,W )

given by

θ(f)(xiH) = f(xi) for f ∈ F(G,W )H

is a k-linear map with inverse given by

ϕ(l)(xih) = h−1l(xi) for l ∈ F(X,W ) and h ∈ H.

Now the result follows from an earlier computation of dimF(X,W ). �

If V is a representation of G, we’ll write ResGH V for the representation of H
obtained by restriction.
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Theorem (Frobenius reciprocity). Let V be a representation of G, and W a rep-
resentation of H, then

HomG(V, IndGHW ) ∼= HomH(ResGH V,W ).

Lecture 15

Corollary. If k = C then

〈χV , χIndGHW 〉G = 〈χV |H , χW 〉H .

In particular χIndGHW = r∗(χW ).

Proof of Frobenius Reciprocity. We’ll prove that

Homk(V,W ) ∼= HomG(V,F(G,W ))

as representations of H and then deduce the result by taking H-invariants.
Here the action of H on the RHS is via

(h · θ)(v) = h · θ(v) for all θ ∈ HomG(V,F(G,W )), v ∈ V and h ∈ H.

so that HomG(V,F(G,W ))H = HomG(V,F(G,W )H) = HomG(V, IndHHW ). Note
that this means that

(3) (h · θ)(v)(x) = h (θ(v)(xh)) = h(θ(h−1x−1v)(e)) for all x ∈ G
since θ is G-invariant.

We can define a linear map

Ψ: HomG(V,F(G,W ))→ Homk(V,W )

by

Ψ(θ)(v) = θ(v)(e)

and claim that Ψ is an H-intertwining map. First we compute for h ∈ H and
θ ∈ HomG(V,F(G,W )),

(h ·Ψ(θ))(v) = h(Ψ(θ(h−1v))

= h
(
θ(h−1v)(e)

)
= (h · θ)(v)(e) by (3)

= Ψ(h · θ)(v)

Thus it remains to prove that Ψ is an isomorphism.
Given ϕ ∈ Homk(V,W ) we can define ϕG ∈ Homk(V,Hom(G,W )) by

ϕG(v)(x) = ϕ(x−1v) for v ∈ V and x ∈ G.
Then for all x, g ∈ G and v ∈ V

ϕG(gv)(x) = ϕ(x−1gv) = ϕG(v)(g−1x) = (g · ϕG(v))(x)

i.e. ϕG ∈ HomG(V,Hom(G,W )). We can compute

Ψ(ϕG)(v) = ϕG(v)(e) = ϕ(v)

for ϕ ∈ Homk(V,W ) and v ∈ V and

Ψ(θ)G(v)(x) = Ψ(θ)(x−1v) = θ(x−1v)(e) = x−1θ(v)(e) = θ(v)(x)

for θ ∈ HomG(V,F(G,W )), x ∈ G and v ∈ V . Thus ϕ 7→ ϕG is an inverse to
Ψ. �
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Remark. We could’ve computed χIndGHW directly and shown that it is equal to

r∗(χW ). Frobenius reciprocity would then follow in the case k = C. However our
proof works for all fields k and gives us more information about the nature of an
isomorphism.

6.2. Mackey Theory. This is the study of representations like ResGK IndGHW for
H,K subgroups of G and W a representation of H. We can (and will) use it to

characterise when IndGHW is irreducible.
If H,K are subgroups of G then H ×K acts on G via

(h, k) · g = kgh−1

An orbit of this action is called a double coset we write

KgH := {kgh | k ∈ K,h ∈ H}
for the orbit containing g.

Definition. K\G/H := {KgH | g ∈ G} is the set of double cosets.

The double cosets partition G.
Given any representation (ρ,W ) of H and g ∈ G, we can define (gρ,gW ) to be

the representation of gH := gHg−1 6 G on W given by (gρ)(ghg−1) = ρ(h) for
h ∈ H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

ResGK IndGHW
∼=

⊕
g∈K\G/H

IndKK∩gH Res
gH
gH∩K

gW.

Note that

IndGHW = F(G,W )H

= F

 ∐
KgH∈K\G/H

KgH,W

H

∼=
⊕

KgH∈K\G/H

F(KgH,W )H as reps of K.

Thus it suffices to show that for each g,

F(KgH,W )H ∼= F(K, gW )
gH∩K

as representations of K. We defer the proof of this to the next lecture.

Corollary (Character version of Mackey’s Restriction Formula). If χ is a character
of a representation of H then

ResGK IndGH χ =
∑

KgH∈K\G/H

IndKgH∩K
gχ.

where gχ is the class function on gH ∩K given by gχ(x) = χ(g−1xg).

Exercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a

representation of H, then IndGHW is irreducible if and only if
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(i) W is irreducible and

(ii) for each g ∈ G\H, the two representations Res
gH
H∩gH

gW and ResHgH∩HW of
H ∩g H have no irreducible factors in common.

Proof.

< IndGH χW , IndGH χW 〉G
Frob. recip.

= 〈χW ,ResGH IndGH χW 〉H
Mackey

=
∑

g∈H\G/H

〈χW , IndHH∩gH Res
gH
H∩gH

gχW 〉H

Frob. recip.
=

∑
g∈H\G/H

〈ResHH∩gH χW ,Res
gH
H∩gH

gχW 〉H∩gH

So IndGHW is irreducible precisely if∑
g∈H\G/H

〈ResHH∩gH χW ,Res
gH
H∩gH

gχW 〉H∩gH = 1.

The term corresponding to the coset HeH = H is 〈χW , χW 〉H which is at least 1
and equal to 1 precisely if W is irreducible. The other terms are all > 0 and are
zero precisely if condition (ii) of the statement holds. �

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
IndGHW is irreducible if and only if gχW 6= χW for all g ∈ G\H.

Proof. Since H is normal, gHg−1 = H for all g ∈ G. Moreover gW is irreducible
since W is irreducible.

So by Mackey’s irreducibility criterion, IndGHW irreducible precisely if W 6∼= gW
for all g ∈ G\H. This last is equivalent to χW 6= gχW as required.

�

Examples.
(1) H = 〈r〉 ∼= Cn, the rotations in G = D2n. The irreducible characters χ of H

are all of the form χ(rj) = e
2πijk
n . We see that IndGH χ is irreducible if and only

if χ(rj) 6= χ(r−j) for some j. This is equivalent to χ not being real valued.
(2) G = Sn and H = An. If g ∈ Sn is a cycle type that splits into two conjugacy

classes in An and χ is an irreducible character of An that takes different values
of the two classes then IndGH χ is irreducible.

Lecture 16

Recall that if W is a representation of H and H,K are subgroups of G and g ∈ G
then

F(KgH,W )H = {f : KgH →W | f(xh) = h−1f(x) for all x ∈ KgH, h ∈ H}

with K-action given by

(k · f)(x) = f(k−1x) for all k ∈ K and x ∈ KgH.

We reduced the proof of Mackey’s Decomposition Theorem to the following
Lemma.
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Lemma. There is an isomorphism of representations of K

F(KgH,W )H ∼= F(K, gW )K∩
gH .

Proof. Let Θ: F(KgH,W )H → F(K, gW ) be defined by

Θ(f)(k) = f(kg).

If k′ ∈ K then

(k′ ·Θ(f))(k) = f(k′−1kg) = (k′ · f)(kg) = Θ(k′ · f)(k)

and so Θ is K-linear.
If ghg−1 ∈ K for some h ∈ H,

Θ(f)(kghg−1) = f(kgh)

= ρ(h−1)f(kg)

= (gρ)(ghg−1)−1Θ(f)(k)

Thus Im Θ 6 F(K, gW )K∩
gH .

We try to define an inverse to Θ. Let

Ψ: F(K, gW )K∩
gH → F(KgH,W )H

be given by

Ψ(f)(kgh) = ρ(h)−1f(k)

If k1gh1 = k2gh2 then k−1
2 k1 = gh2h

−1
1 g−1 ∈ K ∩ gH. So

f(k2) = f(k1(k−1
2 k1)−1)

= gρ(gh2h
−1
1 g−1)f(k1)

= ρ(h2h
−1
1 )f(k1)

Thus

ρ(h2)−1f(k2) = ρ(h1)−1f(k1)

and Ψ(f) is well-defined.
Moreover for f ∈ F(K, gW )K∩

gH ,

ΘΨ(f)(k) = Ψ(f)(kg) = f(k),

and for f ∈ F(KgH,W )H ,

ΨΘ(f)(kgh) = ρ(h−1)Θ(f)(k)

= ρ(h−1)f(kg)

= f(kgh).

Thus Ψ is inverse to Θ. �

6.3. Frobenius groups.

Theorem. (Frobenius 1901) Let G be a finite group acting transitively on a set X.
If each g ∈ G\{e} fixes at most one element of X then

K = {1} ∪ {g ∈ G | gx 6= x for all x ∈ X}
is a normal subgroup of G of order |X|.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with 1 < |X| < |G| such that each g ∈ G\{e} fixes at most one x ∈ X.
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Examples.

(1) G = D2n with n odd acting naturally on the vertices of an n-gon. The reflection
fix precisely one vertex and the non-trivial rotations fix no vertices.

(2) G =

{(
a b
0 1

)
| a, b ∈ Fp, a 6= 0

}
acting on X =

{(
x
1

)
| x ∈ Fp

}
by matrix

multiplication.

It follows that no Frobenius group can be simple. The normal subgroup K is
called the Frobenius kernel and any of the groups StabG(x) for x ∈ X is called
a Frobenius complement. No proof of the theorem is known that does not use
representation theory.

Proof of Theorem. For x ∈ X, let H = StabG(x) so |G| = |X||H| by the orbit-
stabiliser theorem.

By hypothesis if g ∈ G\H then

gHg−1 ∩H = StabG(gx) ∩ StabG(x) = {e}.31

Thus

(i) |
⋃
g∈G gHg

−1| = |
⋃
x∈X StabG(x)| = (|H| − 1)|X|+ 1;

(ii) If h1, h2 ∈ H then [h1]H = [h2]H if and only if [h1]G = [h2]G; and
(iii) CG(h) = CH(h) for e 6= h ∈ H
By (i) |K| = |{e} ∪

(
|G|\

⋃
x∈X StabG(x)

)
| = |H||X| − (|H| − 1)|X| = |X| as

required.
We must show that K /G. Our strategy will be to prove that it is the kernel of

some representation of G.
If χ is a character of H we can compute IndGH χ:

IndGH χ(g) =
∑

[h]H⊆[g]G

|CG(g)|
|CH(h)|

χ(h)

=


|X|χ(e) if g = e

χ(h) if [g]G = [h]G 6= {e} by (ii) and (iii)

0 if g ∈ K\{e}.

Suppose now that Irr(H) = {χ1, . . . , χr} and let

θi = IndGH χi + χi(e)1G − χi(e) IndGH 1H ∈ R(G) for i = 1, . . . , r

so

θi(g) =


χi(e) if g = e

χi(h) if [g]G = [h]G

χi(e) if g ∈ K
If θi were a character then the corresponding representation would have ker-

nel containing K. Since θi ∈ R(G) we can write it as a Z-linear combination of
irreducible characters θi =

∑
niψi, say, for ψi ∈ Irr(G) and ni ∈ Z.

31It is straightforward to verify that a group is Frobenius if and only if there is a non-trivial

proper subgroup H of G such that gHg−1 ∩ H = {e} for all g ∈ G\H. To go one way take
X = G/H, to go the other take H = StabG(x) for some x ∈ X.
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Now we can compute

〈θi, θi〉G =
1

|G|
∑
g∈G
|θi(g)|2

=
1

|G|

 ∑
h∈H\{e}

|X||χi(h)|2 +
∑
k∈K

χi(e)
2


=
|X|
|G|

(∑
h∈H

|χi(h)|2
)

= 〈χi, χi〉H = 1.

But on the other hand it must be
∑
n2
i . Thus θi is ±ψ for some character ψ of G.

Since θi(e) > 0 it must actually be an irreducible character.
To finish we write θ =

∑
χi(e)θi and so θ(h) =

∑r
i=1 χi(e)χi(h) = 0 for h ∈

H\{e} by column orthogonality, and θ(k) =
∑
χi(e)

2 = |H| for k ∈ K. Thus
K = ker θ is a normal subgroup of G. �

In his thesis John Thompson proved, amongst other things, that the Frobenius
kernel must be the direct product of its Sylow subgroups.
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Lecture 17

7. Arithmetic properties of characters

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous paqb-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We’ll continue with our assumption that k = C and also assume that our groups
are finite.

7.1. Arithmetic results. We’ll need to quote some results about arithmetic with-
out proof; proofs should be provided in the Number Fields course (or in one later
case Galois Theory).

Definition. x ∈ C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring O of C. (see Groups, Rings and
Modules 2023 Examples Sheet 4 Q13)

Fact 2 Any subring of C that is finitely generated as an abelian group is contained
in O. (see Groups, Rings and Modules 2023 Examples Sheet 4 Q13)

Fact 3 If x ∈ Q ∩ O then x ∈ Z. (see Numbers and Sets 2021 Example Sheet 3
Q12)

Lemma. If χ is the character of G, then χ takes values in O.

Proof. We know that χ(g) is a sum of nth roots of unity for n = |G|. Each nth root
of unity is by defintion a root of Xn − 1 and so an algebraic integer. The lemma
follows from Fact 1. �

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication. This makes kG into a commutative ring.
But more usefully for our immediate purposes we have the convolution product

(f1f2)(g) :=
∑
x∈G

f1(gx)f2(x−1) =
∑
x,y∈G
xy=g

f1(x)f2(y)

that makes kG into a (typically) non-commutative ring. With this product

δg1δg2 = δg1g2 for all g1, g2 ∈ G

and so we may rephrase the multiplication as∑
g∈G

λgδg

(∑
h∈G

µhδh

)
=
∑
k∈G

∑
gh=k

λgµh

 δk.

From now on this will be the product we have in mind when we think of kG as a
ring.
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Notice that a (finitely generated) kG-module is the ‘same’ as a representation of
G: given a representation (ρ, V ) of G we can make it into a kG-module via

fv =
∑
g∈G

f(g)ρ(g)(v).

for f ∈ kG and v ∈ V . Conversely, given a finitely generated kG-module M we
can view M as a representation of G via ρ(g)(m) = δgm. Moreover G-linear maps
correspond to kG-module homomorphisms under this correspondence.

Exercise. Suppose that kX is a permutation representation of G. Calculate the
action of f ∈ kG on kX under this correspondence.

It will prove useful understand the centre Z(kG) of kG; that is the subring of
f ∈ kG such that fh = hf for all h ∈ kG. This is because for every f ∈ Z(kG)
then

∑
f(g)ρ(g) ∈ HomG(V, V ) for every representation (ρ, V ) of G.

Lemma. Suppose that f ∈ kG. Then f is in Z(kG) if and only if f is in CG, the
set of class functions on G. In particular dimk Z(kG) is the number of conjugacy
classes in G.

Proof. Suppose f ∈ kG. Notice that fh = hf for all h ∈ kG if and only if
fδg = δgf for all g ∈ G: the forward direction is clear and for the backward
direction if fδg = δgf for all g ∈ G then

fh =
∑
g∈G

fh(g)δg =
∑
g∈G

h(g)δgf = hf.

But δgf = fδg if and only if δgfδg−1 = f and

(δgfδg−1)(x) = (δgf)(xg) = f(g−1xg).

So if f ∈ Z(kG) if and only if f ∈ CG as required. �

Remark. The multiplication on Z(kG) is not the same as the multiplication on CG
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Given g ∈ G define the class sum

C[g]G(x) =

{
1 x ∈ [g]G

0 x 6∈ [g]G.
.

Then if [g1]G = {e}, . . . , [gr]G are all the conjugacy classes of G, write

Ci = C[gi]G for i = 1, . . . r.

We called Ci = 1[gi]G before but have changed notation to remind ourselves that
the multiplication is not pointwise. C1, . . . , Cr form a basis for Z(kG).

Proposition. There are non-negative integers alij such that CiCj =
∑
k a

l
ijCl for

i, j, l ∈ {1, . . . , r}. Indeed

alij = |{(x, y) ∈ [gi]G × [gj ]G | xy = gl}| .

The alij are called the structure constants for Z(kG).
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Proof. Since Z(kG) is a ring, we can certainly write CiCj =
∑
alijCl for some

alij ∈ k.
However, we can explicitly compute

alij = (CiCj)(gl) =
∑
x,y∈G
xy=gl

Ci(x)Cj(y) = |{(x, y) ∈ [gi]G × [gj ]G | xy = gl}|

as claimed. �

Suppose now that (ρ, V ) is an irreducible representation of G. Then if z ∈ Z(kG)
we’ve seen that z : V → V given by zv =

∑
g∈G z(g)ρ(g)v ∈ HomG(V, V ).

By Schur’s Lemma it follows that z acts by a scalar λz ∈ k on V . In this way
we get a k-algebra homomorphism wρ : Z(kG)→ k; z 7→ λz.

Taking traces we see that

dimV · λz =
∑
g∈G

z(g)χV (g).

So

(4) wρ(Ci) =
χ(gi)

χ(e)
|[gi]G|.

We now see that wρ only depends on χρ (and so on the isomorphism class of ρ)
and we write wχ = wρ.

Lemma. The values wχ(Ci) are in O

Note this isn’t a priori obvious since 1
χ(e) will not be an algebraic integer for

χ(e) 6= 1.

Proof. Since wχ is an algebra homomorphism Z(kG)→ k,

(5) wχ(Ci)wχ(Cj) =
∑
l

alijwχ(Cl).

So the subring of C generated by wχ(Ci) for i = 1, . . . , r is a finitely generated
abelian group spanned by wχ(C1), . . . , wχ(Cr). The result follows from Fact 2
above. �

Lemma.

alij =
|G|

|CG(gi)||CG(gj)|
∑

χ∈Irr(G)

χ(gi)χ(gj)χ(g−1
l )

χ(e)
.

In particular the alij are determined by the character table.

Proof. By (4) and (5), for each irreducible character χ,

χ(gi)

χ(e)
|[gi]G|

χ(gj)

χ(e)
|[gj ]G| =

r∑
l=1

alij
χ(gl)

χ(e)
|[gl]G|

Multiplying both sides by
χ(e)χ(g−1

m )
|G| , using |[g]G| = |G|

|CG(g)| for all g ∈ G, and

summing over χ ∈ Irr(G) we obtain

|G|
|CG(gi)||CG(gj)|

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(g−1
m )

χ(e)
=

r∑
l=1

alij
|CG(gl)|

∑
χ∈Irr(G)

χ(gl)χ(g−1
m ) = amij

by column orthogonality. �
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Lecture 18

7.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides
|G|.

Proof. Let χ be the character of V . We’ll show that |G|
χ(e) ∈ O ∩ Q = Z by Fact 3

from §7.1.

|G|
χ(e)

=
1

χ(e)

∑
g∈G

χ(g)χ(g−1)

=

r∑
i=1

1

χ(e)
|[gi]G|χ(gi)χ(g−1

i )

=

r∑
i=1

wχ(Ci)χ(g−1
i )

But O forms a ring (by Fact 1 in §7.1) and each wχ(Ci) and each χ(g−1
i ) is in O

so |G|
χ(e) is in O ∩Q as required. �

Examples.

(1) If G is a p-group and χ is an irreducible character then χ(e) is always a
power of p. In particular if |G| = p2 then, since

∑
χ χ(e)2 = p2, every

irreducible rep is 1-dimensional and so G is abelian.
(2) If G = An or Sn and p > n is a prime, then p cannot divide the dimension

of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (ρ, V ) is an irreducible representation then dimV
divides |G/Z(G)|.

You could compare this with ||g]G| = |G|
|CG(g)| divides |G/Z(G)|.

Proof. If Z = Z(G) then, by Schur’s Lemma, the image of ρ|Z : Z → GL(V ) is
contained in k× idV ; ρ(z) = λz idV for z ∈ Z, say.

For each m > 2, consider the irreducible representation of Gm given by

ρ⊗m : Gm → GL(V ⊗m).

If z = (z1, . . . , zm) ∈ Zm then z acts on V ⊗m via
∏m
i=1 λzi id = λ∏m

1 zi id. Thus if∏m
1 zi = 1 then z ∈ ker ρ⊗m.
Let

Z ′ = {(z1, . . . , zm) ∈ Zm |
m∏
i=1

zi = 1}

so |Z ′| = |Z|m−1. We may view ρ⊗m as a degree (dimV )m irreducible representa-
tion of Gm/Z ′.

Since |Gm/Z ′| = |G|m/|Z|m−1 we can use the previous theorem to deduce that
(dimV )m divides |G|m/|Z|m−1.
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Suppose that p is a prime such that pa divides dimV . Then pam divides
|G/Z|m|Z|. By taking m to be large, in particular so that pm does not divide
|Z|, we see that pa divides |G/Z|. Thus dimV divides |G/Z| as claimed. �

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.
If |G| is even then G has an element x of order 2. By example sheet 2 Q2,

for every irreducible χ, χ(x) ≡ χ(e) mod 4. So if χ(e) = 2 then χ(x) = ±2, and
ρ(x) = ±I. Thus ρ(x) ∈ Z(ρ(G)), a contradiction since G is non-abelian simple. �

Remark. In 1963 Feit and Thompson published a 255 page paper proving that there
is no non-abelian simple group of odd order.

7.4. Burnside’s paqb Theorem.

Lemma. Suppose α ∈ O\0 is of the form α = 1
m

∑m
i=1 λi with λni = 1 for all i.

Then |α| = 1.32

Sketch proof (non-examinable). By assumption α ∈ Q(ε) where ε = e2πi/n.
Let G = Gal(Q(ε)/Q). It is known that {β ∈ Q(ε) | σ(β) = β for all σ ∈ G} = Q.
Consider N(α) :=

∏
σ∈G σ(α). Since N(α) is fixed by every element of G,

N(α) ∈ Q. Moreover N(α) ∈ O since the Galois conjugates of a root of an in-
teger polynomial is a root of the same polynomial. Thus N(α) ∈ Z.

But for each σ ∈ G, |σ(α)| = | 1
m

∑
σ(λi)| 6 1. Thus N(α) = ±1, and |α| = 1 as

required. �

Lemma. Suppose χ is an irreducible character of G, and g ∈ G such that χ(e) and
|[g]G| are coprime. Then |χ(g)| = χ(e) or 0.

Note if χ = χV this is saying that under the given hypothesis either g acts as a
scalar on V 33 or χ(g) = 0.

Proof. By Bezout, we can find a, b ∈ Z such that aχ(e) + b|[g]G| = 1. Define

α :=
χ(g)

χ(e)
= aχ(g) + b

χ(g)

χ(e)
|[g]G|

Then, since χ(g) is a sum of |G|th roots of unity, α satisfies the conditions of the
previous lemma (or is zero) and so this lemma follows. �

Proposition. If G is a non-abelian finite group with an element g 6= e such that
|[g]G| has prime power order then G is not simple.

Proof. Suppose for contradiction that G is simple and has an element g ∈ G\{e}
such that |[g]G| = pr for some prime p.

If χ is a non-trivial irreducible character of G then |χ(g)| < χ(1) since otherwise
ρ(g) is a scalar matrix and so lies in Z(ρ(G)) ∼= Z(G).

32i.e. all the λi are equal.
33and so ρ(g) ∈ Z(ρ(G))
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Thus by the last lemma, for every non-trivial irreducible character, either p
divides χ(e) or |χ(g)| = 0 . By column orthogonality,

0 =
∑

χ∈Irr(G)

χ(e)χ(g).

Thus −1
p =

∑
χ6=1

χ(e)
p χ(g) ∈ O∩Q. That is 1

p in Z giving the desired contradiction.

�

Theorem (Burnside (1904)). Let p, q be primes and G a group of order paqb with
a, b non-negative integers such that a+ b > 2, then G is not simple.

Proof. Without loss of generality b > 0. Let Q be a Sylow-q-subgroup of G. Since
Z(Q) 6= 1 we can find e 6= g ∈ Z(Q). Then qb divides |CG(g)|, so the conjugacy
class containing g has order pr for some 0 6 r 6 a. The theorem now follows
immediately from the Proposition. �

Remarks.

(1) It follows that every group of order paqb is soluble. That is, there is a chain
of subgroups G = G0 > G1 > · · · > Gr = {e} with Gi+1 normal in Gi and
Gi/Gi+1 abelian for all i.

(2) Note that |A5| = 22 · 3 · 5 so the order of a simple group can have precisely
3 prime factors.

(3) The first purely group theoretic proof of the paqb-theorem appeared in 1972.
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Lecture 19

8. Topological groups

In this section k will be C always.

8.1. Defintions and examples.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G × G → G; (g, h) 7→ gh and the inverse map
G→ G; g 7→ g−1 are continuous maps.

Examples.

(1) GLn(C) with the subspace topology from Matn(C) ∼= Cn2

since

(AB)ij =
∑
k

AikBki and A−1 =
1

detA
adjA.

More generally GL(V ) for V a vector space over C, where GL(V ) is given the
the topology that makes an isomorphism GL(V )→ GLn(C) given by choosing
a basis a homeomorphism. Since

GLn(C)→ GLn(C);A 7→ P−1AP

is a homeomorphism for every P ∈ GLn(C), this topology does not depend on
the choice of basis.

(2) G finite — with the discrete topology — since all maps G×G→ G and G→ G
are continuous.

(3) O(n) = {A ∈ GLn(R) | ATA = I}; SO(n) = {A ∈ O(n) | detA = 1}.
(4) U(n) = {A ∈ GLn(C) | ATA = I}; SU(n) = {A ∈ U(n) | detA = 1}. Note

that
U(1) = S1 = {z ∈ C : |z| = 1}.

(5) *G profinite such as Zp, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism ρ : G→ GL(V ).

Remarks.

(1) If X is a topological space then α : X → GLn(C) is continuous if and only if
the maps x 7→ αij(x) = α(x)ij are continuous for all i, j.

(2) If G is a (finite) group with the discrete topology. Then continuous function
G→ X just means function G→ X.

8.2. Compact Groups. Our most powerful idea for studying representations of
finite groups was averaging over the group; that is the operation 1

|G|
∑
g∈G. When

considering more general topological groups we should replace
∑

by
∫

.

Definition. ForG a topological group and C(G,R) = {f : G→ R | f is continuous},
a linear map

∫
G

: C(G,R)→ R (we write
∫
G
f =

∫
G
f(g) dg) is called a Haar integral

if

(i)
∫
G

1 = 1 (so
∫
G

is normalised so total volume is 1);

(ii)
∫
G
f(xg) dg =

∫
G
f(g) dg =

∫
G
f(gx) dg for all x ∈ G (so

∫
G

is translation

invariant).34

34For example f(xg) means the continuous function G → R given by g 7→ f(xg) and∫
G f(xg) dg means the value of

∫
G evaluated at this function.
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(iii)
∫
G
f > 0 if f(g) > 0 for all g ∈ G (positivity).

Examples.

(1) If G finite, then
∫
G
f = 1

|G|
∑
g∈G f(g).

(2) If G = S1,
∫
G
f = 1

2π

∫ 2π

0
f(eiθ) dθ.

Note that, for any R-vector space V ,
∫
G

induces a linear map also written∫
G

: C(G,V )→ V :

under the natural identification V → V ∗∗ for θ ∈ V ∗, f ∈ C(G,V ),

θ

(∫
G

f

)
=

∫
G

θ(f(g)) dg.

More concretely, if v1, . . . , vn is a basis for V then f ∈ C(G,V ) is uniquely of the
form

f =

n∑
i=1

fivi with f1, . . . , fn ∈ C(G,R)

and ∫
G

f =

n∑
i=1

(∫
G

fi

)
vi.

This map is also translation invariant and sends a constant function to its unique
value.

Moreover if α : V →W is a linear map and f ∈ C(G,V ) then α
(∫
G
f
)

=
∫
G

(αf).

In particular if V is a C-vector space then V → V ; v 7→ iv is R-linear and so
∫
G

is
C-linear.

Theorem. If G is a compact Hausdorff group, then there is a unique Haar integral
on G.

Proof. Omitted �

All the examples of topological groups from last time are compact Hausdorff
except GLn(C) which is not compact. We’ll follow standard practice and write
‘compact group’ to mean ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (ρ, V ) is unitary.

Proof. Same as for finite groups: let 〈−,−〉 be any inner product on V , then

(v, w) =

∫
G

〈ρ(g)v, ρ(g)w〉dg

is the required G-invariant inner product since, for x ∈ G and for v, w ∈ V ,

(ρ(x)v, ρ(x)w) =

∫
G

〈ρ(gx)v, ρ(gx)w〉dg = (v, w).

Checking that (−,−) is an inner product is straightforward using that
∫
G

is C-linear
together with its positivity. �

Remark. It follows that every compact subgroup of GLn(C) is conjugate to a sub-
group of U(n).
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Corollary. All representations of a compact group are completely reducible.

If ρ : G→ GL(V ) is a representation then χρ := tr ρ is a continuous class function
since each ρ(g)ii is continuous.

Lemma. If U is a representation of G then

dimUG =

∫
G

χU .

Proof. Let π : U → U be defined by π =
∫
G
ρU ∈ Homk(U,U). If x ∈ G then

ρU (x)π = ρU (x)

(∫
G

ρU (g) dg

)
=

∫
G

ρU (xg) dg = π

since
∫
G

is translation invariant. Thus Imπ 6 UG.

If u ∈ UG then

π(u) =

∫
G

ρU (g)(u) dg =

∫
G

u = u.

Thus π is a projection onto UG and

dimUG = trπ = tr

(∫
G

ρU

)
=

∫
G

χU . �

We can use the Haar integral to put an inner product on the space CG of (con-
tinuous)35 class functions:

〈f, f ′〉 :=

∫
G

f(g)f ′(g) dg.

Corollary (Orthogonality of Characters). If G is a compact group and V and W
are irreducible reps of G then

〈χV , χW 〉 =

{
1 if V ∼= W

0 if V 6∼= W.

Proof. Same as for finite groups:

〈χV , χW 〉 =

∫
G

χV (g)χW (g) dg

=

∫
G

χHomk(V,W )

= dim HomG(V,W ).

Then apply Schur’s Lemma.
Note along the way we require that χV (g−1) = χV (g) which follows from the

fact that V is unitary. �

It is also possible to make sense of ‘the characters are a basis for the space of
(square integrable) class functions’ but this requires a little knowledge of Hilbert
spaces.

35or better still square integrable
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Lecture 20

8.3. A worked example: S1. We want to understand representations of S1. Since

f 7→ 1

2π

∫ 2π

0

f(eiθ) dθ

is a Haar integral they are all completely reducible so it suffices to understand
irreducible representations. By Schur’s Lemma all such representations have degree
1 and by Weyl’s unitary trick they all have image in S1; that is they are continuous
group homomorphisms S1 → S1. Since

R→ S1; x 7→ e2πix

induces an isomorphism of topological groups R/Z
∼=→ S1,36 there is a 1-1 corre-

spondence between representations of S1 and continuous group homomorphisms
R→ S1 with kernel containing Z.

Fact. If f : R→ S1 is any continuous function with f(0) = 1 then there is a unique
continuous function α : R→ R such that α(0) = 0 and f(x) = e2πiα(x).37

Sketch proof of Fact : locally α(x) = 1
2πi log f(x) and we can choose the branches

of log to make the pieces glue together continuously.

Lemma. If θ : (R,+) → S1 is a continuous group homomorphism then there is a
continuous homomorphism ψ : R→ R such that θ(x) = e2πiψ(x) for all x ∈ R.

Proof. The fact gives a unique continuous function ψ satisfying the defining equa-
tion and ψ(0) = 0. We must show ψ is a group homomorphism. To this end, let ∆
be the continuous function R2 → R given by

∆(a, b) := ψ(a+ b)− ψ(a)− ψ(b).

Since e2πi∆(a,b) = θ(a+ b)θ(a)−1θ(b)−1 = 1, ∆ only takes values in Z. Thus as R2

is connected, ∆ is constant. Since ∆(0, 0) = 0 we see that ∆ ≡ 0 and so ψ is a
group homomorphism. �

Lemma. If ψ : (R,+) → (R,+) is a continuous group homomorphism then there
is some λ ∈ R such that ψ(x) = λx for all x ∈ R.

Proof. Let λ = ψ(1). Since ψ is a group homomorphism, ψ(n) = λn for all n ∈ Z.
Then mψ(n/m) = ψ(n) = λn and so ψ(n/m) = λn/m. That is ψ(x) = λx for all
x ∈ Q. But Q is dense in R and ψ is continuous so ψ(x) = λx for all x ∈ R. �

Theorem. Every irreducible representation of S1 has degree 1 and is of the form
z 7→ zn for some n ∈ Z.

Proof. We’ve seem that if ρ : S1 → GLd(C) is an irreducible representation then
d = 1 and ρ(S1) 6 S1. Moreover ρ induces a continuous homomorphism θ : R→ S1

via θ(x) = ρ(e2πix).
By the last two Lemmas, there is λ ∈ R such that

θ(x) = e2πiλx for all x ∈ R.
Since θ(1) = 1, λ ∈ Z and ρ(e2πix) = e2πiλx for all x ∈ R. �

36i.e. a group isomorphism that is also a homeomorphism.
37In the language of algebraic topology R→ S1; x 7→ e2πix is a covering map and so paths in

S1 lift uniquely to paths in R after choosing the lift of the starting point. In fact R is the universal
cover of S1 via this map.
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The theorem tell us that the ‘character table’ of S1 has rows χn indexed by Z
with χn(eiθ) = einθ.38

Notation. Let

Z[z, z−1] :=

{∑
n∈Z

anz
n | an ∈ Z0 with

∑
n∈Z
|an| <∞

}
Now if V is any rep of S1 then by Machke’s Theorem V breaks up as a direct

sum of one dimensional subreps and so its character χV =
∑
anz

n lies in Z[z, z−1]
with all an > 0 and

∑
an = dimV . Thus Z[z, z−1] is the character ring of S1.

As usual an is the number of copies of ρn : z 7→ zn in the decomposition of V as
a direct sum of simple subrepresentations. Thus, by orthogonality of characters,39

we can compute

an = 〈χn, χV 〉S1 =
1

2π

∫ 2π

0

χV (eiφ)e−inφ dφ

and

χV (eiθ) =
∑
n∈Z

(
1

2π

∫ 2π

0

χV (eiφ)e−inφ dφ

)
einθ.

So Fourier decomposition gives the decomposition of χV into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S1 can
be uniformly approximated by a finite C-linear combination of the χn.

Moreover the χn form a complete orthonormal set in the Hilbert space

L2(S1) =

{
f : S1 → C

∣∣∣∣ ∫ 2π

0

|f(eiθ)|2 dθ exists and is finite

}
/ ∼

of square-integrable complex-valued functions on S1. That is every f ∈ L2(S1) has
a unique series expansion

f(eiθ) =
∑
n∈Z

(
1

2π

∫ 2π

0

f(eiθ
′
)e−inθ

′
dθ′
)
einθ

converging with respect to the norm ||f ||2 = 1
2π

∫ 2π

0
|f(eiθ)|2 dθ.

We can phrase this as

L2(S1) =
⊕̂
n∈Z

Cχn40

which is an analogue of

CG =
⊕

V ∈Irr(G)

(dimV )V

for finite groups.41

38As an aside the unitary irreducible characters of Z are indexed by S1 giving a duality between
Z and S1.

39in this case this simply says 〈χn, χm〉S1 = 1
2π

∫ 2π
0 e(m−n)iθ dθ = δn,m

40⊕̂ is supposed to mean a completed direct sum or more precisely a direct sum in the category

of Hilbert spaces.
41cf the Peter-Weyl theorem.
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8.4. Second worked example: SU(2).

Recall that SU(2) = {A ∈ GL2(C) | ATA = I, detA = 1}.

If A =

(
a b
c d

)
∈ SU(2) then since detA = 1, A−1 =

(
d −b
−c a

)
.

Thus d = a and c = −b. Moreover aa+ bb = 1. In this way we see that

SU(2) =

{(
a b

−b a

) ∣∣∣∣ a, b ∈ C and |a|2 + |b|2 = 1

}
which is homeomorphic to S3 ⊂ R4 ∼= C2.

More precisely if

H := R · SU(2) =

{(
z w
−w z

) ∣∣∣∣w, z ∈ C} ⊂M2(C)

then ||A||2 = detA defines a norm on H ∼= R4 and SU(2) is the unit sphere in H. If
A ∈ SU(2) and X ∈ H then ||XA = ||AX|| = ||X|| since ||A|| = 1. So, SU(2) acts
by isometries on H on both the left and the right and, after normalisation, usual
integration of functions on S3 defines a Haar integral on SU(2). i.e.∫

SU(2)

f =
1

2π2

∫
S3

f.

Here 2π2 is the volume of S3 in R4 with respect to the usual measure.
We now try to compute the conjugacy classes in SU(2).

Definition. Let T =

{(
a 0
0 a−1

) ∣∣∣∣ a ∈ S1

}
∼= S1.

Proposition.

(i) Every conjugacy class O in SU(2) contains an element of T .
(ii) More precisely. if O is a conjugacy class then O∩T = {t, t−1} for some t ∈ T

and t = t−1 if and only if t = ±I when O = {t}.
(iii) There is a bijection

{conjugacy classes in SU(2)} → [−1, 1]

given by [A]SU(2) 7→ 1
2 trA.

Lecture 21

Proof. (i) Every unitary matrix has an orthonormal basis of eigenvectors. That is,
if A ∈ SU(2), there is a unitary matrix P such that PAP−1 is diagonal. Then if
Q = 1√

detP
P . P−1AP = Q−1AQ ∈ T ie [A]SU2 ∩ T 6= ∅.

(ii) If ±I ∈ O the result is clear.

[t]SU(2) = {gtg−1 | g ∈ SU(2)}.

But s =

(
0 1
−1 0

)
∈ SU(2) and sts−1 = t−1 for all t ∈ T so [t]SU(2) ∩T ⊃ {t, t−1}.

Conversely, if t′ ∈ O∩T then t′ and t must have the same eigenvalues since they
are conjugate. This suffices to see that t′ ∈ {t±1}.

(iii) To see the given function is injective, suppose that 1
2 trA = 1

2 trB. Then
since detA = detB = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.
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To see that it is surjective notice that 1
2 tr

(
eiθ 0
0 e−iθ

)
= cos θ. Since cos : R→ R

has image [−1, 1] the given function is surjective. �

Corollary. A (continuous) class function f : SU(2) → C is determined by its

restriction to T and f |T is even ie f

((
z 0
0 z−1

))
= f

((
z−1 0
0 z

))
for all

z ∈ S1.42 �

Notation. Let

Z[z, z−1]ev = {f ∈ Z[z, z−1] | f(z) = f(z−1)}

=
{∑

anz
n : an ∈ Z, an = a−n for all n ∈ Z

}
.

Lemma. If χ is a character of a representation of SU(2) then χ|T ∈ Z[z, z−1]ev.

Proof. If V is a representation of SU(2) then Res
SU(2)
T V is a representation of T

and χResT V is the restriction of χV to T . Since every character of T is in Z[z, z−1]43

and χ|T is even we’re done. �

It follows that R(SU(2)) 6 Z[z, z−1]ev. In fact we’ll see that we have equality.
Let’s write Ox = {A ∈ SU(2) | 1

2 trA = x} for x ∈ [−1, 1]. We’ve proven that
the Ox are the conjugacy classes in SU(2). Clearly O1 = {I} and O−1 = {−I}.
For −1 < x < 1 there is some θ ∈ (0, π) such that cos θ = x then

Ox =

{(
a b

−b a

) ∣∣∣∣ (Im a)2 + |b|2 = sin2 θ

}
since Rea = x = cos θ. That is Ox is a 2-sphere of radius | sin θ|.

Thus if f is a class-function on SU(2), since f is constant on each Ocos θ,∫
SU(2)

f(g) dg =
1

2π2

∫ π

0

f(eiθ)4π sin2 θ dθ =
1

π

∫ 2π

0

f(eiθ) sin2 θ dθ.

Note this is normalised correctly, since 1
π

∫ 2π

0
sin2 θ dθ = 1.

8.5. Representations of SU(2).
Let Vn be the complex vector space of homogeneous polynomials in two variables

x, y. So dimVn = n+ 1. Then GL2(C) acts on Vn via

ρn : GL2(C)→ GL(Vn)

given by

ρn

((
a b
c d

))
f(x, y) = f(ax+ cy, bx+ dy).

i.e.

ρn

((
a b
c d

))
xiyj = (ax+ cy)i(bx+ dy)j .

Examples.
V0 = C has the trivial action.

42We’ll write f(z) for f

((
z 0
0 z−1

))
identifying T with S1.

43As T ∼= S1. For the same reason we also know the coefficients an in χ|ResT V (z) =
∑
anzn

are non-negative.
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V1 = C2 is the standard representation of GL(C2) on C2 with basis x, y.
V2 = C3 has basis x2, xy, y2 then

ρ2

((
a b
c d

))
=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


In general Vn ∼= SnV1 as representations of GL2(C).

Since SU(2) is a subgroup of GL2(C) we can view Vn as a representation of
SU(2) by restriction. In fact as we’ll see, the Vn are precisely the irreducible reps
of SU(2) (up to isomorphism).

Let’s compute the character χVn |T of (ρn, Vn):

ρn

((
z 0
0 z−1

))
(xiyj) = (zx)i(z−1y)j = zi−jxiyj .

So for each 0 6 j 6 n, Cxjyn−j a T -subrepresentation with character z2j−n and

χVn

((
z 0
0 z−1

))
= zn + zn−2 + · · ·+ z2−n + z−n =

zn+1 − z−(n+1)

z − z−1
∈ Z[z, z−1]ev.

Theorem. Vn is irreducible as a reperesentation of SU(2).

Proof. Let 0 6= W 6 Vn be a SU(2)-invariant subspace. We want to show that
W = Vn.

W is T -invariant so as Res
SU(2)
T Vn =

⊕n
j=0Cxjyn−j is a direct sum of non-

isomorphic representations of T ,

W has as a basis a subset of {xjyn−j | 0 6 j 6 n}.(6)

Thus xjyn−j ∈W for some 0 6 j 6 n. Since

1√
2

(
1 1
−1 1

)
xjyn−j =

1√
2

((x− y)j(x+ y)n−j) ∈W

so by (6) we can deduce that xn ∈ W . Repeating the same calculation for j = n,
we see that (x+ y)n ∈W and so, by (6) again, xiyn−i ∈W for all i.

Thus W = Vn. �

Exercise. Alternative proof:

〈χVn , χVn〉SU(2) =
1

π

∫ 2π

0

(
e(n+1)iθ − e−(n+1)iθ

eiθ − e−iθ

)2

sin2 θ dθ = 1.

Theorem. Every irreducible representation of SU(2) is isomorphic to Vn for some
n > 0.

Proof. Let V be an irreducible representation of SU(2) so χV ∈ Z[z, z−1]ev.
Now χ0 = 1, χ1 = z + z−1, χ2 = z2 + 1 + z−2, . . .. Thus χV =

∑n
i=0 λiχi for

some λ1, . . . , λn ∈ Z.
Now by orthogonality of characters

λi = 〈χVi , χV 〉SU(2) =

{
1 if V ∼= Vi

0 otherwise.

Since χV 6= 0 there is some i such that λi = 1 and V ∼= Vi. �



REPRESENTATION THEORY 61

We also want to understand ⊗ for representations of SU(2). Recall that if G is
a group and V,W are representations of G then χV⊗W = χV χW .

Let’s compute some examples for SU(2):

χV1⊗V1
(z) = (z + z−1)2 = z2 + 1 + z−2 + 1 = χV2

+ χV0

and

χV2⊗V1
(z) = (z2 + 1 + z−2)(z + z−1) = z3 + 2z + 2z−1 + z−3 = χV3

+ χV1
.

Lecture 22

Proposition (Clebsch–Gordan rule). For n,m ∈ N,

Vn ⊗ Vm ∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|+2 ⊕ V|n−m|.

Proof. Without loss of generality, n > m. Then

(χn · χm)(z) =
zn+1 − z−n−1

z − z−1
· (zm + zm−2 + · · ·+ z−m)

=

m∑
j=0

zn+m+1−2j − z−(n+m+1−2j)

z − z−1

=

m∑
j=0

χn+m−2j(z)

as required. �

8.6. Representations of SO(3).

Proposition. The action by conjugation of SU(2) on the three-dimensional normed
R-vector space of 2× 2 C-matrices{(

a b

−b a

)
: a+ a = 0

}
with ||A||2 = detA induces an isomorphism of topological groups

SU(2)/{±I} ∼→ SO(3).

Proof. See Example Sheet 4 Q4.44 �

Corollary. Every irreducible representation of SO(3) is of the form V2n for some
n > 0.

Proof. It follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that −I acts trivially. But
it is easy to verify that −I acts on Vn as (−1)n �

44If you get stuck then consult my notes from 2012 for some hints.
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9. Character table of GL2(Fq)

9.1. Fq. Let p > 2 be a prime, q = pa a power of p for some a > 0, and Fq be the
field with q elements. We know that F×q ∼= Cq−1.

Notice that F×q → F×q ;x 7→ x2 is a group homomorphism with kernel ±1. Thus

half the elements of F×q are squares and half are not. Moreover x 7→ x
q−1
2 is a group

homomorphism that sends squares to 1 and non-squares to −1.

Let ε ∈ F×q be a fixed non-square, so ε
q−1
2 = −1, and let

Fq2 := {a+ b
√
ε | a, b ∈ Fq},

the field extension of Fq with q2 elements under the obvious operations.
Every element of Fq has a square root in Fq2 since if λ is non-square then λ/ε = µ2

is a square, and (
√
εµ)2 = λ. It follows by completing the square that every

quadratic polynomial in Fq factorizes in Fq2 .

Notice that (a + b
√
ε)q = aq + bqε

q−1
2
√
ε = (a − b

√
ε).45 Thus the roots of an

irreducible quadratic over Fq are of the form λ, λq.46

9.2. GL2(Fq) and its conjugacy classes. We want to compute the character
table of the group

G := GL2(Fq) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Fq and ad− bc 6= 0

}
.

The order of G is the number of bases for F2
q over Fq. This is (q2 − 1)(q2 − q).

First, we compute the conjugacy classes in G. We know from linear algebra
(rational canonical form) that 2×2-matrices are determined by their minimal poly-
nomials up to conjugation. By Cayley–Hamilton each element A of GL2(Fq) has
minimal polynomial mA(X) of degree at most 2 and mA(0) 6= 0.

There are four cases.
Case 1: mA = X − λ for some λ ∈ F×q . Then A = λI. So CG(A) = G, and

|[A]G| = |{λI}| = 1.

There are q − 1 such classes corresponding the possible choices of λ.

Case 2: mA = (X − λ)2 for some λ ∈ F×q so [A]G =

[(
λ 1
0 λ

)]
G

. Now

CG

((
λ 1
0 λ

))
=

{(
a b
0 a

) ∣∣∣∣ a, b ∈ Fq, a 6= 0

}
so

|[A]G| =
(q − 1)2(q + 1)q

(q − 1)q
= (q − 1)(q + 1).

There are q − 1 such classes.
Case 3: mA = (X − λ)(X − µ) for some distinct λ, µ ∈ F×q . Then

[A]G =

[(
λ 0
0 µ

)]
G

=

[(
µ 0
0 λ

)]
G

.

Moreover

CG

((
λ 0
0 µ

))
=

{(
a 0
0 d

) ∣∣∣∣ a, d ∈ F×q } =: T.

45Since p |
(q
i

)
for i = 1, . . . , q − 1.

46λ 7→ λq should be viewed as an analogue of complex conjugation.
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So

|[A]G| =
q(q − 1)(q2 − 1)

(q − 1)2
= q(q + 1).

There are
(
q−1

2

)
corresponding to each possible choice of the pair {λ, µ}.

Case 4: mA(X) is irreducible over Fq of degree 2 so

mA(X) = (X − α)(X − αq) ∈ Fq2 [X]

= (X2 − (α+ αq)X + αq+1)

= (X2 − (trA)X + detA)

for some α = λ+ µ
√
ε with λ, µ ∈ Fq, µ 6= 0. Then

[A]G =

[(
λ εµ
µ λ

)]
G

=

[(
λ −εµ
−µ λ

)]
G

since both these matrices have trace 2λ = α+ αq and determinant

(λ+
√
εµ)(λ−

√
εµ) = ααq.

Now

CG

((
λ εµ
µ λ

))
=

{(
a εb
b a

) ∣∣∣∣ a2 − εb2 6= 0

}
=: K.

If a2 = εb2 then ε is a square or a = b = 0. So |K| = q2 − 1 and so

|[A]G| =
q(q − 1)(q2 − 1)

q2 − 1
= q(q − 1).

There are q(q − 1)/2 such classes corresponding to the choices of the pair {α, αq}.
In summary

Representative A CG |[A]G| No of such classes(
λ 0

0 λ

)
G 1 q − 1(

λ 1

0 λ

) (
a b

0 a

)
(q − 1)(q + 1) q − 1(

λ 0

0 µ

)
T q(q + 1)

(
q−1

2

)
(
λ εµ

µ λ

)
K q(q − 1)

(
q
2

)
The groups T and K are both maximal tori. That is they are maximal subgroups

of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension of Fq. T is called split and K is called
non-split.

Some other important subgroups of G are

Z := {λI | λ ∈ Fq×}
which is the subgroup of scalar matrices (the centre);

N :=

{(
1 b

0 1

) ∣∣∣∣ b ∈ Fq}
a Sylow p-subgroup of G; and

B :=

{(
a b

0 d

) ∣∣∣∣ b ∈ Fq, a, d ∈ Fq×}
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a Borel subgroup of G. Then N is normal in B and

B/N ∼= T ∼= F×q × F×q ∼= Cq−1 × Cq−1.

9.3. The character table of B.

Lecture 23

Let’s warm ourselves up by computing the character table of B.
Recall

B =

{(
a b

0 d

)
: b ∈ Fq, a, d ∈ Fq×

}
and

N :=

{(
1 b

0 1

)
: b ∈ Fq

}
/ B 6 G = GL2(Fq).

The conjugacy classes in B are

Representative CB No of elts No of such classes(
λ 0

0 λ

)
B 1 q − 1(

λ 1

0 λ

)
ZN q − 1 q − 1(

λ 0

0 µ

)
T q (q − 1)(q − 2)

Moreover B/N ∼= T ∼= F×q × F×q . So if Θq := {reps θ : F×q → C×}, then Θq is a
cyclic group of order q − 1 under pointwise operations. Moreover, for each pair
θ, φ ∈ Θq, we have a 1-dimensional representation of B (factoring through B/N)
given by

χθ,φ

((
a b

0 d

))
= θ(a)φ(d)

giving (q − 1)2 1-dimensional reps.
Suppose γ : (Fq,+)→ C× is a degree 1 representation and θ ∈ Θq, we can define

a 1-dimensional representation of ZN ∼= F×q × Fq;
(
a b

0 a

)
7→ (a, a−1b) by

ρθ,γ

((
a b

0 a

))
= θ(a)γ(a−1b).

Now ZN C B so by Mackey’s irreducibility criterion IndBZN ρθ,γ is irreducible if

and only if gρθ,γ 6= ρθ,γ for all g 6∈ ZN . Since

{
tλ =

(
1 0

0 λ

) ∣∣∣∣λ ∈ Fq×} is a family

of left coset reps of ZN in B and(
tλρθ,γ

)((a b

0 a

))
= ρθ,γ

((
a λb

0 a

))
= θ(a)γ(a−1λb),

tλρθ,γ = ρθ,γ if and only if γ(a−1λb) = γ(a−1b) for all b ∈ Fq.
The latter is equivalent to γ((λ−1)b) = 1 for all b ∈ Fq i.e. either λ = 1 or γ = 1Fq .

So IndBZN ρθ,γ is irreducible if and only if γ 6= 1Fq .
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Now since

IndBZN χ(b) =
∑

[g]ZN⊆[b]B

|CB(b)|
|CZN (g)|

χ(g)

We see that

IndBZN ρθ,γ

((
λ 0

0 λ

))
= (q − 1)θ(λ),

IndBZN ρθ,γ

((
λ 1

0 λ

))
=
∑
b∈Fq×

θ(λ)γ(b)

= θ(λ)

∑
b∈Fq

γ(b)

− θ(λ)

= θ(λ)(q〈1Fq , γ〉Fq − 1)

=

{
−θ(λ) if γ 6= 1Fq
(q − 1)θ(λ) if γ = 1Fq

IndBZN ρθ,γ

((
λ 0

0 µ

))
= 0

Let µθ := IndBZN ρθ,γ for γ 6= 1Fq noting that this does not then depend on γ.
Then each µθ is irreducible by the discussion above and we have (q− 1) irreducible
representations of degree q − 1. Thus the character table of B is(

λ 0

0 λ

) (
λ 1

0 λ

) (
λ 0

0 µ

)
χθ,φ θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ)

µθ (q − 1)θ(λ) −θ(λ) 0

Remarks.

(1) The 0 in the bottom right corner appears in q − 1 rows and (q − 1)(q − 2)
columns. But they are forced to be 0 by a Lemma in §7.4 since the order of
these conjugacy classes are all q, the degree of the irreducible representations
are all (q − 1) which is coprime to q, and these elements can’t act by scalars
because the representations are faithful and the elements are not in the centre.

(2) B = Z×
{(

a b

0 1

) ∣∣∣∣ a ∈ F×q , b ∈ Fq} and the second factor is a Frobenius group.

So Example Sheet 3 Q10, together with our construction of irreducible repre-
sentations of a direct product as the tensor product of the irreducible represen-
tations of the factors, tells us that we should expect to be able to construct all
the irreducible representation of B in the manner that we have done so.

9.4. The character table of G. As det : G→ Fq× is a surjective group homomor-
phism, for each θ ∈ Θq we have a 1-dimensional representation of G via χθ := θ◦det
giving q − 1 representations of degree 1.

Next we’ll do some induction from B. Writing s =

(
0 1

1 0

)
we see that(

a b

0 d

)
s

(
1 β

0 1

)
=

(
b a+ bβ

d βd

)
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and these elements are all distinct. Hence BsN contains q|B| elements so must be
G\B.47 Thus BsN = BsB and B\G/B has two elements G = B

∐
BsB (this is

called Bruhat decomposition).
By the proof of Mackey’s irreducibility criterion if χ is a character of B then

〈IndGB χ, IndGB χ〉G = 〈χ, χ〉B + 〈ResBB∩sB χ,Res
sB
B∩sB

sχ〉B∩sB
Now

s

(
a b

0 d

)
s−1 =

(
d 0

b a

)
so B ∩ sB = T and

〈IndGB χ, IndGB χ〉G = 〈χ, χ〉B + 〈χ|T , sχ|T 〉T
where

sχ

((
a 0

0 d

))
= χ

((
d 0

0 a

))
Thus Wθ,φ := IndGB χθ,φ is irreducible for θ 6= φ ∈ Θq. These are called principal

series representations.
We can also compute that Wθ,θ has two irreducible factors and

〈IndGB µθ, IndGB µθ〉G = 1 +
1

|T |

 ∑
λ∈Fq×

|(q − 1)θ(λ)|2
 = 1 + (q − 1) = q.

Now for any character χ of B

IndGB χ(g) =
∑

[b]B⊆[g]G

|CG(g)|
|CB(b)|

χ(b).

So

IndGB χ

((
λ 0

0 λ

))
= (q + 1)χ

((
λ 0

0 λ

))
,

IndBG χ

((
λ 1

0 λ

))
= χ

((
λ 1

0 λ

))
,

IndGB χ

((
λ 0

0 µ

))
= χ

((
λ 0

0 µ

))
+ χ

((
µ 0

0 λ

))
and

IndGB χ

((
λ εµ

µ λ

))
= 0.

Notice that Wθ,φ
∼= Wφ,θ so we get

(
q−1

2

)
principal series representations.

We also notice that Wθ,θ
∼= χθ ⊗W1,1 and

W1,1 = IndGB 1 = CG/B
is a permutation representation. Thus W1,1 decomposes as 1 ⊕ V1 with V1 an
irreducible representation of degree q. This representation is known as the Steinberg
representation. Then Wθ,θ

∼= χθ⊕Vθ with Vθ = χθ⊗V1 is also irreducible of degree
q a twisted Steinberg.

We have explicitly constructed (q−1)+
(
q−1

2

)
+(q−1) irreducible representations

i.e. not just their characters. We have
(
q
2

)
characters to go. It will turn out that

47As |G| = (q + 1)|B|.
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they are indexed by pairs {ϕ,ϕq} degree 1 representations of K such that ϕ 6= ϕq

but we won’t we able to explicitly construct the representations.

Lecture 24

So far we have

# classes q − 1 q − 1
(
q−1

2

) (
q
2

)(
λ 0

0 λ

) (
λ 1

0 λ

) (
λ 0

0 µ

) (
λ εµ

µ λ

)
# of reps

χθ θ(λ)2 θ(λ)2 θ(λ)θ(µ) θ(λ2 − εµ2) q − 1

Vθ qθ(λ)2 0 θ(λ)θ(µ) −θ(λ2 − εµ2) q − 1

Wθ,φ (q + 1)θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ) + φ(λ)θ(µ) 0
(
q−1

2

)
It follows from calculations from last time that

IndGB µθ(g) =



(q + 1)(q − 1)θ(λ) if [g]G =

[(
λ 0

0 λ

)]
G

−θ(λ) if [g]G =

[(
λ 1

0 λ

)]
G

0 otherwise

and that 〈IndGB µθ, IndGB µθ〉G = q.
Our next strategy is to induce characters from K. The map Fq2 →M2(Fq) given

by

λ+ µ
√
ε 7→

(
λ εµ

µ λ

)
is an isomorphism of rings Fq2 → K ∪ {0} and we will identify these. Notice that

F×q corresponds to Z 6 K with

(
λ 0

0 λ

)
= λ. Moreover

(
λ εµ

µ λ

)q
=

(
λ −εµ
−µ λ

)
since (λ+

√
εµ)q = (λ−

√
εµ).

We want to understand IndGK ϕ for a character ϕ of K. First we understand the

double cosetsK\G/K and then we can apply Mackey to compute 〈IndGK ϕ, IndGK ϕ〉G.
Note that for k ∈ K and g ∈ G, kgK = gK if and only if g−1kg ∈ K. Since

[k]G∩K = {k, kq} we see that this is in turn equivalent to g−1kg ∈ {k, kq}. Writing

t =

(
1 0

0 −1

)
we can compute that

t−1

(
λ εµ

µ λ

)
t =

(
λ −εµ
−µ λ

)
so kgK = gK if and only if g−1kg = k or (tg)−1k(tg) = k.

Furthermore since

CG

((
λ εµ

µ λ

))
=

{
G if µ = 0

K if µ 6= 0,
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we see that kgK = gK if and only if either gK ∈ {K, tK} or k ∈ Z. It follows that

|KgK| =

{
|K| if g ∈ K ∪ tK
|K||K/Z| otherwise.

Since |K||K/Z| = (q2 − 1)(q + 1), there are

|G| − 2|K|
|K||K/Z|

=
|G/K| − 2

|K/Z|
=
q(q − 1)− 2

q + 1
= q − 2

double cosets of size |K||K/Z|.
Now K ∩ tK = K and for g ∈ G\K ∪ tK, K ∩ gK = StabK(gK) = Z so by

Mackey

〈IndGK ϕ, IndGK ϕ〉G = 〈ϕ,ϕ〉K + 〈ϕ, tϕ〉K +
∑

g∈K\G/K\{K,tK}

〈ϕ|Z , gϕ|Z〉Z

Since gϕ|Z = ϕ|Z for all g ∈ G and tϕ = ϕq,

〈IndGK ϕ, IndGK ϕ〉G =

{
q − 1 if ϕ 6= ϕq

q if ϕ = ϕq.

Suppose now that ϕ : K → C× is a 1-dimensional character of K. Then

IndGK ϕ(g) =


q(q − 1)ϕ(λ) if [g]G = [λ]G for λ ∈ F×q
ϕ(α) + ϕq(α) if [g]G = [α]G for α ∈ Fq2\Fq and

0 otherwise.

We can thus compute

〈IndGB µθ, IndGK ϕ〉 =
1

|G|
∑
λ∈Z

(q2 − 1)θ(λ)q(q − 1)ϕ(λ)

= (q − 1)〈θ,ResKZ ϕ〉Z

Thus IndGB µθ and IndGK ϕ have many factors in common when φ|Z = θ.
Now, for each ϕ such that ϕ 6= ϕq then our calculations tell us that if βϕ =

IndGB µϕ|Z − IndGK ϕ ∈ R(G) then

〈βϕ, βϕ〉G = q − 2(q − 1) + (q − 1) = 1.

Since also βϕ(1) = q − 1 > 0 it follows that βϕ is an irreducible character. Since

βϕ = βϕq , ϕ
q2 = ϕ and |{ϕ : ϕ = ϕq}| = q− 1 we get (q2−1)−(q−1)

2 =
(
q
2

)
characters

in this way and the character table of GL2(Fq) is complete.

# classes q − 1 q − 1
(
q−1

2

) (
q
2

)
rep

(
λ 0

0 λ

) (
λ 1

0 λ

) (
λ 0

0 µ

)
α, αq # of reps

χθ θ(λ)2 θ(λ)2 θ(λ)θ(µ) θ(αq+1) q − 1

Vθ qθ(λ)2 0 θ(λ)θ(µ) −θ(αq+1) q − 1

Wθ,φ (q + 1)θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ) + φ(λ)θ(µ) 0
(
q−1

2

)
βϕ (q − 1)ϕ(λ) −ϕ(λ) 0 −(ϕ+ ϕq)(α)

(
q
2

)
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The representations corresponding to the βϕ known as discrete series representa-
tions have not been computed explicitly. Drinfeld found these representations in
l-adic étale cohomology groups of an algebraic curve X over Fq. These cohomology
groups should be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne and Lusztig for all finite groups of Lie type.

This construction also enables us to compute the character table of PGL2(Fq) :=
GL2(Fq)/Z(GL2(Fq)) as its irreducible representations are the irreducible represen-
tations of GL2(Fq) such that the scalar matrices act trivially. i.e. the χθ and Vθ
such that θ2 = 1, the Wθ,θ−1 such that θ2 6= 1 and the βϕ such that ϕ|Z = 1Z i.e.
ϕq+1 = 1 as well as ϕq−1 6= 1.

We can also then compute the character table of PSL2(Fq) = SL2(Fq)/Z(SL2(Fq))
which has index 2 in PGL2(Fq) by restriction. These groups are all simple when
q > 5 and this can be seen from the character table.


