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Abstract. We study the motivic cohomology of the special fiber of quaternionic Shimura varieties
at a prime of good reduction. We exhibit classes in these motivic cohomology groups and use
this to give an explicit geometric realization of level raising between Hilbert modular forms. The
main ingredient for our construction is a form of Ihara’s Lemma for compact quaternionic Shimura
surfaces which we prove by generalizing a method of Diamond–Taylor. Along the way we also verify
the Hecke orbit conjecture for these quaternionic Shimura varieties which is a key input for our proof
of Ihara’s Lemma.

Résumé. Nous étudions la cohomologie motivique de la fibre spéciale des variétés de Shimura qua-
ternioniques à un nombre premier de bonne réduction. Nous explicitons des classes dans ces groupes
de cohomologie motivique et utilisons cela pour donner une réalisation géométrique explicite de
l’augmentation de niveau entre les formes modulaires de Hilbert. L’ingrédient principal de notre
construction est une forme du lemme d’Ihara pour les surfaces de Shimura compactes quaternio-
niques, que nous prouvons en généralisant une méthode de Diamond–Taylor. En cours de route,
nous vérifions également la conjecture de l’orbite de Hecke pour ces variétés de Shimura quaternio-
niques, qui est une point-clé de notre preuve du lemme d’Ihara.

1. Introduction

1.1. Main Theorem. The aim of this paper is to study the motivic cohomology of the special fiber of
certain quaternionic Shimura varieties. For a scheme of finite type over a field, its motivic cohomology
groups are a generalization of the usual Chow groups, and the main new observation of this paper is
that for certain Shimura varieties, these groups can encode very rich arithmetic information. More
precisely, we will show that the cycle class map from motivic cohomology to étale cohomology gives a
geometric realization of level raising between Hilbert modular forms. The construction is also related
to a geometric realization of the mod ` Jacquet–Langlands correspondence.

We now state our main result. Let F be a totally real field of even degree [F : Q] = g and p > 2 a
prime which is inert in F . Let B be a totally indefinite quaternion algebra over F which is unramified
at the unique prime p above p and G the associated reductive group over Q. Let K be a sufficiently
small compact open subgroup of G(Af ) such that K = KpK

p where Kp ⊂ G(Qp) = GL2(Fp) is
the standard hyperspecial maximal compact GL2(OFp

) and Kp ⊂ G(Apf ). Then there is a Shimura
variety ShK(G) defined over Q; it extends to a smooth integral model ShK(G) over Z(p). We let
SK(G) denote its special fiber over Fp and SK(G)Fpg its base change to Fpg .

Fix an irreducible cuspidal automorphic representation Π of GL2(F ) of parallel weight 2 defined
over a number field E. Let R be a finite set of places of F not containing p and away from which Π

is unramified and K is hyperspecial. We also choose a prime λ of OE whose residue characteristic
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is coprime to p and write kλ = OE/λ. We write Hi
M(SK(G)Fpg , kλ(j)) for the motivic cohomol-

ogy group with kλ coefficients defined in [SV00]. By [Voe02], we may identify this with the higher
Chow group Chj(SK(G)Fpg , 2j − i, kλ) defined in [Blo86]. When 2j = i, this group is just the usual
Chow group of codimension j cycles modulo rational equivalence (with coefficients in kλ). The group
Chj(SK(G)Fpg , 2j − i, kλ) is equipped with the following cycle class map to the absolute étale coho-
mology:

(1.1.1) Chj(SK(G)Fpg , 2j − i, kλ)→ Hi
ét(SK(G)Fpg , kλ(j)).

We let TR denote the abstract Hecke algebra of GL2(F ) away from R; it is the Z-algebra generated
by elements Tq, Sq where q runs over primes of F away from R. Then the Hecke eigenvalues of Π

induce a map
φΠ
λ : TR → OE → kλ.

We write mR := ker(φΠ
λ ) a maximal ideal of TR and we let m ⊂ TR∪{p} be the preimage of mR in

TR∪{p} under the natural inclusion TR∪{p} → TR.
The Hecke algebra TR∪{p} acts on the étale cohomology H•ét(SK(G)Fp , kλ(−)) and higher Chow

groups Chj(SK(G)Fpg , 2j − i, kλ) of SK(G). Upon making a large image assumption on the mod λ

Galois representation associated to Π (see Assumption 4.1.1) and localizing at the maximal ideal m,
there is an isomorphism

Hg+1
ét (SK(G)Fpg , kλ(g/2 + 1))m ∼= H1(Fpg ,Hg

ét(SK(G)Fp , kλ(g/2 + 1))m).

The cycle class map then induces the Abel–Jacobi map:

(1.1.2) Chg/2+1(SK(G)Fpg , 1, kλ)m → H1(Fpg ,Hg
ét(SK(G)Fp , kλ(g/2 + 1))m).

In §5.3, we will define a subgroup Ch
g/2+1
lr (SK(G)Fpg , 1, kλ)m of Chg/2+1(SK(G)Fpg , 1, kλ)m using

the geometry of Goren–Oort cycles (in fact the cycles we consider arise from the supersingular locus).
on SK(G)Fpg as studied in [TX16], [TX19] and [LT20]. As the notation suggests, this subgroup is
related to level raising. The main theorem of the paper is the following; we refer to §5.3 for the precise
statement.

Theorem 1.1.1. Suppose that p is a λ-level raising prime in the sense of Definition 5.3.2 and that
Assumptions 4.1.1 and 5.3.5 are satisfied; in particular Tp ≡ pg + 1 mod mR and Sp ≡ 1 mod mR.
Then the map

Ch
g/2+1
lr (SK(G)Fpg , 1, kλ)/m→ H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))/m)

induced by (1.1.2) is surjective.

We note that as in [LT20, Remark 4.2, 4.6], if there exist rational primes inert in F , and Π is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all
but finitely many λ, the set of primes p which are λ-level raising primes has positive density.

In general it is a difficult problem to produce non-zero classes in motivic cohomology. The key
input to proving the surjectivity in Theorem 1.1.1 is a form of Ihara’s Lemma which we prove by
generalizing a method of Diamond–Taylor [DT94]; see the next subsection for more details.

We now give an example of the construction of Ch
g/2+1
lr (SK(G)Fpg , 1, kλ) which makes clear the

relationship with level raising. We assume g = 2 so that dim SK(G) = 2.
We write B′ for the totally definite quaternion algebra which agrees with B at all finite places. We

fix an isomorphism
B′ ⊗Q Af ∼= B ⊗Q Af

which allows us to consider K as a compact open subgroup of B′⊗Q Af . We let X ′ and X ′0(p) denote
the discrete Shimura sets

X ′ := B′\B′ ⊗Q Af/K, X ′0(p) := B′\B′ ⊗Q Af/K0(p)
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where the compact open subgroup K0(p) ⊂ B′⊗Q Af agrees with K away from p and is the standard
Iwahori subgroup of GL2(Fp) at p. We let

π1, π2 : X ′0(p)→ X ′

denote the natural degeneracy maps so that the diagram

X ′ π1←− X ′0(p)
π2−→ X ′

is the usual Hecke correspondence for X ′. For any finite set S, we write Γ(S, kλ) for the abelian group
of kλ-valued functions on S.

We may think of SK(G) as a moduli space of abelian varieties with multiplication by some max-
imal order OB in B. We let SK(G)ss be the locus where the underlying abelian variety is supersin-
gular. Using the geometry of SK(G)ss one can show that under the assumptions of Theorem 1.1.1,
Ch2(SK(G)Fp2 , 1, kλ)m admits a map from

Km := ker ((π1∗, π2∗) : Γ(X ′0(p), kλ)→ Γ(X ′, kλ))m .

The construction uses an interpretation of classes in Ch2(SK(G)Fp2 , 1, kλ)m as codimension 1 cycles
together with a rational function on the cycle; see §5.3 for the details. Then Ch2

lr(SK(G)Fp2 , 1, kλ)m
is defined to be the image of Km. Theorem 1.1.1 in this case follows from the following stronger result:

Theorem 1.1.2. Let g = 2. Suppose that p is a λ-level raising prime and that Assumption 4.1.1 is
satisfied. Then the map

(1.1.3) Km → H1(Fp2 ,H2
ét(SK(G)Fp , kλ(2))m)

is surjective.

The relationship with level raising should now be clear. Indeed under the Jacquet–Langlands
correspondence, TR∪{p} acts on left hand side of (1.1.3) via the pnew quotient in the sense of [Rib88],
whereas it is well known that it acts via the pold quotient on the right hand side. In this sense, the
Abel–Jacobi map gives an explicit realization of the congruence between old and new forms.

Relation with motivic Bloch–Kato conjecture: It is known by the work of many authors that the
motivic cohomology groups satisfy many of the formal properties of a cohomology theory. However
there is much that is still not understood, we refer to [Gei05] for a brief survey. We may use Theorem
1.1.2 to show that in certain cases of Shimura surfaces, motivic cohomology coincides with étale
cohomology, upon localizing at m.

Theorem 1.1.3. Let g = 2. Suppose that p is a λ-level raising prime and that Assumption 4.1.1 is
satisfied. Then the cycle class map induces an isomorphism

H3
M(SK(G)Fp2 , kλ(2))m

∼−→ H3
ét(SK(G)Fp2 , kλ(2))m.

When i ≤ j, Voevodsky’s proof of the motivic Bloch–Kato conjecture [Voe11] implies that Chj(X, 2j−
i, kλ) is isomorphic to Hi

ét(X, kλ(j)), for X proper smooth over any base field. For i > j, not much
seems to be known.

Remark 1.1.4. When g is odd, there is an Abel–Jacobi map

(1.1.4) Ch
g−1

2 (SK(G)Fp2g , kλ)m → H1(Fp2g ,Hg
ét(SK(G)Fp , kλ(bg/2c+ 1))m).

In this case the supersingular locus SK(G)ss
Fpg is equidimensional of dimension g−1

2 and we may con-

sider the subgroup Ch
g−1

2

lr (SK(G)Fp2g , kλ)m generated by the irreducible components in SK(G)ss
Fp2g

.
Then [LT20, Theorem 1.3] have shown the surjectivity of (1.1.4) modulo m restricted to this sub-
group. Thus our Theorem 1.1.1 can be thought of as the even-dimensional analogue of the theorem
of Liu–Tian. The main new observation of this work is that we are able to produce certain classes
in motivic cohomology, or higher Chow groups, as opposed to ordinary Chow groups. Its conceptual
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importance lies in the fact that we are able to obtain a geometric interpretation of even-dimensional
Galois cohomology.

Remark 1.1.5. In [LT20], the geometric realization of level raising was a key ingredient in their proof
of certain cases of the Bloch–Kato conjecture1 on special values of L-functions. Our work should have
applications to cases of this conjecture for non-central L-values; we aim to carry this out in a future
work.

1.2. Proof of main result and Ihara’s Lemma. We now explain the proof of Theorem 1.1.1. Our
approach follows that of [LT20], but there are many new difficulties in the even dimensional case.

Firstly, using the construction of the group Ch
g/2+1
lr (SK(G)Fpg , 1, kλ) and the intersection pairing

between certain Goren–Oort strata proved in [TX19], we reduce to proving the surjectivity statement
in the case of quaternionic Shimura surfaces (cf. Proposition 5.4.3). The statement in this case follows
from the following form of Ihara’s Lemma. These type of results first appeared in Ribet’s ICM article
[Rib84] for the case of modular curves and over the last thirty years they have seen many important
arithmetic applications. Therefore our result in the case of surfaces should be of independent interest.

For simplicity, we only state the result in the totally indefinite case; we refer to Theorem 4.1.4 for
the more general statement. Thus we assume g = 2 as in the example of the previous subsection.

Theorem 1.2.1 (Ihara’s Lemma). Under Assumption 4.1.3, the map

π∗1 + π∗2 : H2
ét(ShK(G)Q, kλ)2

m → H2
ét(ShK0(p)(G)Q, kλ)m

is injective.

Here ShK0(p)(G) denotes the quaternionic Shimura surface with Iwahori level structure at p and
π1, π2 are the natural degeneracy maps. In fact the appropriate Abel–Jacobi map in this case can be
related to the map π∗1 +π∗2 in the statement of Theorem 1.2.1; they are essentially dual to one another.
To show the existence of this duality requires a careful analysis of the global geometry of the mod p
fiber of the quaternionic Shimura surface with Iwahori level structure at p. We note that in this case
the Shimura surface has bad reduction at p. The main result which is Corollary A.5.4 is proved in an
appendix and is analogous to the results of [Sta97] in the case of Hilbert modular surfaces.

We now describe our approach to Theorem 1.2.1. The result in the case of Hilbert modular
varieties has been proved by Dimitrov [Dim09]. However his proof relied crucially on the existence of
a q-expansion. Note that when g > 2, even if one is interested in Theorem 1.1.1 for Hilbert modular
varieties, the reduction to the case of surfaces will require us to consider compact Shimura surfaces
where a q-expansion is not available. We therefore take another approach by generalizing a method
of Diamond–Taylor who proved the result for Shimura curves [DT94].

We first apply a crystalline comparison isomorphism to reduce the problem to proving injectivity
of a certain map between global sections of line bundles over the mod ` reduction of the Shimura
surface (Proposition 4.4.1), where ` is the rational prime underlying λ. The property that a non-zero
section lies in the kernel implies that the divisor D corresponding to this section is invariant under
p-power Hecke operators. In the case of Shimura curves, it is known that the image of an ordinary
point under p-power Hecke operators is infinite; this constrains D to be supported on the supersingular
locus. Since p-power Hecke operators act transitively on supersingular points, the support contains
the supersingular locus and this is enough to deduce a contradiction for degree reasons.

In the case of surfaces, we need a stronger result to constrain the support of the divisorD. In section
§3, we prove a version of the Hecke orbit conjecture of Chai–Oort [CO19] for the ordinary locus on
quaternionic Shimura varieties. We assume ` is a prime where the compact open K is hyperspecial
and we write S `

K(G) for the mod ` reduction of the integral model Sh`K(G) at a prime of the reflex
field above `. We write S `

K(G)ord for the locus where the universal abelian variety is ordinary.

1This is a different conjecture to the motivic Bloch–Kato conjecture mentioned above.
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Theorem 1.2.2 (Hecke orbit Conjecture). Let x ∈ S `
K(G)ord(F`). Then the prime-to-` Hecke orbit

is Zariski dense in S `
K(G).

In fact we prove this result in a more general situation; we refer to §3.1 for the statement. Using
the strong approximation theorem, we deduce that the p-power Hecke orbit of x ∈ S `

K(G)ord(F`) is
Zariski dense in the connected component of S `

K(G)F` containing it. This allows one to show that D
is supported on the complement of S `

K(G)ord. A computation involving intersection numbers of D
with certain cycles on S `

K(G) then gives the desired contradiction.

Remark 1.2.3. In [LT20], the authors reduce their surjectivity result to a form of Ihara’s Lemma for
Shimura curves, which was proved by Manning–Shotton [MS21] using a different method.

We note that many of the quaternionic Shimura varieties we consider do not admit good moduli
interpretations. Thus in order to obtain the geometric results we need, we study the geometry of
certain auxiliary unitary Shimura varieties which are of PEL type. Using [TX16, §2], the results for
unitary Shimura varieties transfer easily to the quaternionic side. The moduli interpretation for the
unitary Shimura varieties allow us to adapt many proofs in the case of Hilbert modular varieties to
the quaternionic case.

1.3. Outline of the paper. In §2 we begin with some basics on Shimura varieties and define the
quaternionic Shimura varieties of interest. We recall the construction of the auxiliary unitary Shimura
varieties of PEL type as in [TX16, §3], and recall the description of Goren–Oort cycles obtained in
[TX19]. In §3 we prove the Hecke orbit conjecture for quaternionic Shimura varieties. We deduce
our results from the corresponding statement for the auxiliary unitary Shimura varieties. Using the
moduli interpretation, the proof in the unitary case follows the strategy of [Cha95] who proved the
result for Hilbert modular varieties. A key input here is Moonen’s generalization of Serre–Tate theory
for ordinary abelian varieties [Moo04]. In §4 we study the intersection pairing of cycles on the mod `

reduction of Shimura surfaces and use this to prove Theorem 1.2.1. Finally in §5, we recall the
definition of motivic cohomology groups and higher Chow groups, paying extra attention in the most
pertinent case of surfaces, and we construct the level raising subgroup Ch

g/2+1
lr (SK(G)Fpg , 1, kλ)m.

We then prove Theorem 1.1.1 using the strategy outlined above. In the appendix we describe the bad
reduction of quaternionic Shimura surfaces with Iwahori level structure.

Acknowledgments: The author would like to thank Tony Feng, Bao Le Hung, Chao Li, Ananth
Shankar, Richard Taylor, Liang Xiao and Xinwen Zhu for useful discussions and comments. This
paper started out as a joint work between the author and Akshay Venkatesh, who initially observed
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He generously declined to be included on the final version of the paper despite making a substantial
contribution. The author would like to thank him heartily for his contribution and for many hours of
interesting and enjoyable discussion concerning the material in this paper. Finally the author would
like to thank the anonymous referees for a careful reading of the manuscript and for many useful
comments and suggestions. The author was partially supported by NSF grant No. DMS-1638352
through membership at the Institute for Advanced Study.

1.4. Notation.
• If F is a number field we write OF for its ring of integers. If v is a place of F , we write Fv for the

completion of F at v and if v is finite, we write kv for its residue field at v.
• If F is a local field we write OF for its ring of integers.
• For any field F , we write F for a fixed algebraic closure of F .
• We write A for the ring of adeles and Af the ring of finite adeles. If p is a prime, Apf denotes the

finite adeles with trivial p-component.
• If R→ S is a map of algebras and X is an R-scheme, we write XS for the base change of X to S.
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• If X is a scheme, we write OX for its structure sheaf. We write H•(X,−) for the étale cohomology
of X. For any closed subscheme Y ⊂ X, we write H•Y (X,−) for the étale cohomology supported on
Y .

2. Geometry of quaternionic Shimura varieties and Goren–Oort strata

In this section we recall the results concerning the geometry of quaternionic Shimura varieties and
Goren–Oort cycles following [TX16] and [TX19] that we will need.

2.1. Basics on quaternionic Shimura varieties. Let F be a totally real field with [F : Q] = g and
let p > 2 be a prime which is unramified in F . We are mainly interested in the case when p is inert
in F ; this is the case considered in [TX16] and [LT20]. However, we will sometimes need to consider
the reduction mod ` of these Shimura varieties, so we will keep the more general assumption for now.
We write Σp (resp. Σ∞) for the set of p-adic places (resp. infinite places). We fix once and for all an
isomorphism ιp : C ∼= Qp, which we will use to identify Σ∞ with the set of p-adic embeddings of F .
For p ∈ Σp we let gp := [Fp : Qp] and Σ∞/p the set of p-adic embeddings τ ∈ Σ∞ which induce p. As
p is unramified in F , the p-Frobenius σ induces an action on Σ∞/p.

We fix a totally indefinite quaternion algebra B over F which is split at all the places above p.
Let S ⊂ Σ∞ ∪ Σp be a subset of even cardinality. We set S∞ = S ∩ Σ∞ and for each p we set
S∞/p = S ∩ Σ∞/p. We will make the assumption that p ∈ S only if S∞/p = Σ∞/p.

We write BS for the quaternion algebra over F whose ramification set is precisely the union of S

and the places in F over which B ramifies. For each l a place of F away from the ramification set for
BS, we fix an isomorphism BS ⊗F Fl

∼= GL2(Fl). We define GS to be the reductive group over Q such
that for any Q-algebra R we have

GS(R) = (BS ⊗Q R)×.

When S = ∅, we simply write G for the above group. For ` 6= p a prime, we have an isomorphism
G(Q`) ∼= GS(Q`). Hence we may fix an isomorphism

G(Apf ) ∼= GS(Apf ).

Let T ⊂ S∞ and Tp := S∞/p ∩ T. We consider the following homomorphism:

hS,T : S(R) ∼= C× −→ BS(R) ∼= GL2(R)Σ∞−S∞ ×HT ×HS∞−T

x+ yi −→
(
(x+ yi)Σ∞−S∞ , (x2 + y2)T, 1S∞−T

)
.

Then GS and the conjugacy class of hS,T forms a (weak) Shimura datum in the sense of [TX16, §2.2].
We let ES,T denote the reflex field which is the subfield of the Galois closure F̃ of F in C fixed by
the subgroup of Gal(F̃ /Q) stabilizing S∞ and T. We let v be the p-adic place of ES,T induced by
the embedding ES,T ↪→ C ∼= Qp. We define the compact open subgroup Kp :=

∏
p∈Σp

Kp ⊂ GS(Qp),
where
• Kp = GL2(OFp

) if p /∈ S.
• Kp = OBp

the unique maximal compact of BS ⊗F Fp if p ∈ S.
For a sufficiently small compact open subgroup Kp ⊂ G(Apf ), we write K = KpK

p and let
ShK(GS,T) denote the Shimura variety associated to the above data. We use the notation of [TX16]
so that T determines the Deligne homomorphism. It is an algebraic variety over ES,T whose complex
points are given by

ShK(GS,T)(C) = GS(Q)\(h±)Σ∞−S∞ ×GS(Af )/K,

where h± is the union of the complex upper and lower half planes. We note that the algebraic variety
ShK(GS,T)Q is independent of T. However, different choices of T will give rise to different ES,T

varieties, see for example [TX19, p1563]. We also point out the abuse of notation here, where the
compact open subgroup K implicitly depends on the choice of S. When S∞ = Σ∞, ShK(GS,T)(Q) is
a discrete set and the action of Gal(Q/ES,T) can be described explicitly as in [LT20, §2.1].
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We also set
ShKp(GS,T) := lim

←Kp
ShK(GS,T)

and we write Sh◦Kp(GS,T) for the neutral connected component of ShKp(GS,T)Q. This is the component
containing the image of the point

(iΣ∞−S∞ , 1) ∈ (h±)Σ∞−S∞ ×GS(Af ).

2.2. Unitary Shimura varieties. In this section we define an auxiliary unitary Shimura variety
which is of PEL type in order to define integral models for ShK(GS,T).

Let E/F be a CM-extension such that the following two conditions are satisfied:
(1) E/F is inert at every place that BS is ramified.
(2) For p ∈ Σp, E/F is split at p if p /∈ S and Σ∞−S∞/p is even, and is inert if p /∈ S and Σ∞−S∞/p

is odd.
Let ΣE,∞ denote the set of complex embeddings of E, which we identify with the set of p-adic

embeddings via ιp. For τ̃ ∈ ΣE,∞, we let τ̃ c denote its complex conjugate. For p ∈ Σp, let ΣE,∞/p
denote the subset of p-adic embeddings of E inducing p. Similarly for q a p-adic place of E, we let
ΣE,∞/q denote the set of p-adic embeddings of E inducing q.

We choose a subset S̃∞ ⊂ ΣE,∞ satisfying the property that for each p ∈ Σp, the natural restriction
map ΣE,∞/p → Σ∞/p induces a bijection S̃∞/p

∼−→ S∞/p, where S̃∞/p = S̃∞ ∩ ΣE,∞/p
For each τ̃ ∈ ΣE,∞, the choice of S̃∞ determines a collection of numbers sτ̃ ∈ {0, 1, 2} given by:

(2.2.1) sτ̃ =


0 if τ̃ ∈ S̃∞

2 if τ̃ c ∈ S̃∞

1 otherwise
.

Let S̃ = (S, S̃∞) and TE := ResE/Q(Gm). We let KE,p ⊂ TE(Qp) denote the compact open
(OE ⊗Z Zp)×. We define the homomorphism

hE,S̃,T : S(R) ∼= C× −→ TE(R) ∼=
∏
τ∈Σ∞

(E ⊗F,τ R)× ∼= (C×)S∞−T × (C×)T × (C×)Σ∞−S∞

z = x+ yi −→
(
(z, · · · , z), (z−1, · · · , z−1), (1, · · · , 1)

)
.

Here for τ ∈ S∞, we identify (E ⊗F,τ R)× with C× via the embedding τ̃ : E → C, where τ̃ ∈ S̃∞ is
the unique lift of τ . We use the above data to define a Shimura datum for a unitary similitude group
which will give rise to a moduli interpretation of the unitary Shimura variety.

Let DS := BS ⊗F E, which is isomorphic to Mat2(E) by our assumptions on E. We let b 7→ b

denote the involution on DS defined by the product of the canonical involution on BS and complex
conjugation on E/F . Fix a totally imaginary element α ∈ E such that α is a p-adic unit for every
place above p. Choose an element δ ∈ DS such that δ = δ as in [TX16, Lemma 3.8]. We define a new
involution of DS by b 7→ b∗ = δ−1bδ.

We consider W := DS as a left DS-module of rank 1. It is equipped with the following pairing

(2.2.2) ψ : W ×W → Q, ψ(x, y) = TrE/Q(Tr◦DS/E(αxδy∗)),

where Tr◦DS/E is the reduced trace. It is easy to see this pairing is alternating and non-degenerate.
Moreover it satisfies the following property

ψ(bx, y) = ψ(x, b∗y), b ∈ D×S .

The unitary similitude group is defined to be

G′
S̃
(Q) := {g ∈ GLDS

(W ) | ψ(xg, yg) = c(g)ψ(x, y), for some c(g) ∈ Q×}
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which arises as the Q-points of a reductive group G′
S̃
over Q. We may also describe this group in the

following way. Since GLDS(W ) ∼= D×S , we have g ∈ D×S lies in G′
S̃
(Q) if and only if

TrE/Q(Tr◦DS/E(αxgδg∗y∗)) = c(g)TrE/Q(Tr◦DS/E(αxδy∗)), ∀x, y ∈ DS.

This identity is equivalent to gδg∗ = c(g)δ, i.e. gg = c(g) ∈ Q×. Thus

G′
S̃
(Q) = {g = (b, t) ∈ B×S ×

F× E× | νS(b)NmE/F (t) ∈ Q×}

where νS : BS → F is the reduced norm. Here B×S ×F
×
E× denotes the quotient of B×S × E× by the

central embedding F× → B×S × E× given by x 7→ (x, x−1).
Let TF denote the torus ResF/QGm. We define the group

G′′
S̃

:= GS̃ ×
TF TE .

Applying the above to points valued in a Q-algebra, we see that G′
S̃
is identified with the subgroup of

G′′
S̃
corresponding to the preimage of Gm ⊂ TF under the map

N : G′′
S̃
→ TF , (b, t) 7→ νS(b)NmE/F (t).

We now let h′′
S̃

: S → G′′
S̃
denote the morphism induced by (hS,T, hE,S̃,T); it is independent of T.

The image of h′′
S̃
lies in G′

S̃
and we let h′

S̃
denote the induced map. Let K ′′p ⊂ G′′S̃(Qp) be the compact

open subgroup given by the image ofKp×KE,p andK ′p = G′
S̃
(Qp)∩K ′′p . For sufficiently small compact

open subgroups K ′′p ⊂ G′′
S̃
(Apf ) and K ′p ⊂ G′

S̃
(Apf ), we obtain Shimura varieties ShK′′(G

′′
S̃
),ShK′(G

′
S̃
)

where K ′′ = K ′′pK
′′p and K ′ = K ′pK

′p. We also set

ShK′p(G′
S̃
) := lim

←K′p
ShK′(G

′
S̃
), ShK′′p (G′′

S̃
) := lim

←K′′p
ShK′′(G

′′
S̃
).

Let ES̃ denote the common reflex field of these Shimura varieties, which is a subfield of C. The
isomorphism ιp : Qp ∼= C induces a p-adic place ṽ of ES̃. We let ShK′′p (G′′

S̃
)◦ (resp. ShK′p(G′

S̃
)◦)

denote the neutral geometric connected component of ShK′′p (G′′
S̃
)Q (resp. ShK′p(G′

S̃
)Q). Then both

ShK′′p (G′′
S̃
))◦Qp

and ShK′p(G′
S̃
)◦Qp

can be descended to Qur
p .

We have the following diagram of groups

GS ← GS × TE → G′′
S̃
← G′

S̃

compatible with Deligne homomorphisms and such that the induced maps on the derived and adjoint
groups are isomorphisms. By [TX16, Corollary 2.17] this induces isomorphisms

ShKp(GS)◦Qp
∼←− ShK′′p (G′′

S̃
)◦Qp

∼−→ ShK′p(G′
S̃
)◦Qp

of neutral geometric connected components. Since Shimura varieties may be constructed from its
neutral connected component and the action of Hecke and Galois, we may transfer integral models
from one group to the other. See [TX16, §2.11] for the details.

2.3. Moduli interpretation for unitary Shimura varieties and integral models. The Shimura
variety ShK′(G

′
S̃
) is a Shimura variety of PEL type and thus admits an integral model as a moduli

space. Recall the DS-module W together with the non-degenerate alternating form ψ introduced in
the last subsection. We also fix some integral PEL data. Let ODS

⊂ DS be an order which is maximal
at p and Λ ⊂ W an ODS

-lattice such that ψ(Λ,Λ) ⊂ Z and Λ ⊗Z Zp is self-dual. Let K′p ⊂ G′
S̃

(Apf )

be a sufficiently small compact open subgroup stabilizing Λ ⊗Z Ẑp. We consider the moduli functor
ShK′(G

′
S̃
) that associates to each OES̃,ṽ

-scheme S the set of isomorphism classes of triples (A, ι, λ, εK′p)

where:
• A is an abelian scheme over S of dimension 4[F : Q].
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• ι : ODS
↪→ EndS(A) is an embedding such that the induced action of a ∈ ODS

on Lie(A/S)

satisfies

(2.3.1) det(T − ι(a) | Lie(A/S)) =
∏

τ̃∈ΣE,∞

(T − τ̃(a))2sτ̃ .

• λ : A→ A∨ is a polarization such that:
-The Rosati involution on EndS(A) defined by λ induces the involution b 7→ b∗ on ODS .
-If p /∈ S, λ induces an isomorphism of p-divisible groups A[p∞] ∼= A∨[p∞].
-If p ∈ S, (kerλ)[p∞] is a finite flat group scheme contained in A[p] of rank p4gp and the cokernel

of the map λ∗ : HdR
1 (A/S)→ HdR

1 (A∨/S) is a locally free module of rank 2 over OS ⊗Zp OE/p. Here
HdR

1 (A/S) denotes the relative de Rham homology.
• εK′p is a K ′p-level structure, i.e. a K ′p-orbit of isomorphisms

εK′p : Λ⊗Z Ẑp ∼= T̂ pA

which respects the action of ODS on both sides and such that the pairing ψ is compatible with the
λ-Weil pairing for some choice of isomorphism Ẑp ∼= Ẑp(1). Here T̂ pA := lim

←p-n
A[n] denotes the

prime-to-p Tate module of A.
By [TX16, Theorem 3.14], the moduli problem ShK′(G

′
S̃
) is representable by a smooth quasi-

projective scheme over OES̃,ṽ
, and its generic fiber is identified with ShK′(G

′
S̃
)ES̃,ṽ

. Moreover it is an
integral canonical model for ShK′(G

′
S̃
) in the sense of [TX16, §2.4]; see also [Mil92]. We write

ShK′p(G′
S̃
) := lim

←K′p
ShK′pK′p(G′

S̃
).

Taking the closure of ShK′p(G′
S̃
)◦ in ShK′p(G′

S̃
)⊗OE

S̃,ṽ
Zur
p and using Deligne’s recipe to transfer across

to GS we obtain an integral canonical model ShK(GS,T) for ShK(GS,T); see [TX16, §2.11]. We write
SK(GS,T) (resp. SK′(G

′
S̃
)) for the special fiber of ShK(GS,T) (resp. ShK′(G

′
S̃
)) over kv (resp. kṽ).

We let k0 be any finite field containing all the residue fields of the p-adic places of E.
We fix an isomorphism ODS,p := ODS ⊗Z Zp ∼= M2×2(OE ⊗Z Zp) and let e denote the idempotent

of M2(OE ⊗Z Zp) given by

e =

(
1 0

0 0

)
.

SupposeM is a module with an action of ODS,p
. We writeM◦ for the sub OE⊗ZZp-module eM ⊂M .

Now suppose k is a perfect field of characteristic p containing all residue fields at the p-adic places
of E. Let (A, ι, λ, εK′p) be the data corresponding to an S-point of ShK′(GS̃) where S is a kṽ-scheme.
Then we have an exact sequence:

0 // ω◦A∨ // HdR
1 (A/S)◦ // Lie(A)◦ // 0 .

Here ωA∨ is the module of invariant differential forms for the dual abelian variety A∨ and HdR
1 (A/S)

is the first relative de Rham homology; see [TX16, §4.1]. For τ̃ ∈ ΣE,∞, we use a subscript τ̃ to denote
the subspace over which OE,p := OE ⊗Z Zp acts via τ̃ . Then the above induces an exact sequence

(2.3.2) 0 // ω◦A∨,τ̃ // HdR
1 (A/S)◦τ̃

// Lie(A)◦τ̃
// 0

and the dimensions of these three factors are 2 − sτ̃ , 2 and sτ̃ respectively. In particular, for τ ∈
Σ∞ − S∞, and τ̃ a lift of τ , ω◦A∨,τ̃ is a line bundle over S.

For simplicity, we will write X ′ for SK′(G
′
S̃
)k0

and (A′, ι, λ, εK′p) the universal abelian scheme over
X ′ together with polarization and level structure. Recall the Kodaira–Spencer map

KS(A′,ι,λ,εK′p ) : ωA′ ⊗OX′ ωA′∨ → Ω1
X′/k0

which induces a map
KS◦(A′,ι,λ,εK′p ) : ω◦A′ ⊗OX′ ω

◦
A′∨ → Ω1

X′/k0
.
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We writeM⊂ ω◦A′ ⊗OX′⊗OE,p ω
◦
A′∨ for the OX′ -submodule given by the sheafification of the presheaf

whose sections are generated by λ∗(y) ⊗ z − λ∗(z) ⊗ y, where y, z are sections of ω◦A′∨ . We write
ω◦A′ ⊗(OX′⊗OE,p,λ) ω

◦
A′∨ for the quotient of ω◦A′ ⊗OX′⊗OE,p ω

◦
A′∨ byM.

Proposition 2.3.1. The map KS◦(A′,ι,λ,εK′p ) factors as

ω◦A′ ⊗OX′ ω
◦
A′∨ → ω◦A′ ⊗(OX′⊗OE,p,λ) ω

◦
A′∨ → Ω1

X′/k0

and induces an isomorphism ω◦A′ ⊗(OX′⊗OE,p,λ) ω
◦
A′∨
∼= Ω1

X′/k0
.

Proof. This follows from [Lan13, Proposition 2.3.5.2] applied to the universal abelian scheme over
X ′. �

Corollary 2.3.2. The map KS◦(A′,ι,λ,εK′p ) induces an isomorphism of line bundles⊗
τ∈Σ∞−S∞

ω◦A′∨,τ̃ ⊗OX′ ω
◦
A′∨,τ̃c

∼= Ω
|Σ∞−S∞|
X′/k0

where τ̃ is a lift of τ .

Proof. We have an isomorphism

ω◦A′ ⊗OX′⊗OE,p ω
◦
A′∨
∼=

⊕
τ̃∈ΣE,∞

ω◦A′,τ̃ ⊗OX′ ω
◦
A′∨,τ̃ .

Now for τ ∈ S∞ and τ̃ ∈ ΣE,∞ a lift of τ , either ω◦A′,τ̃ or ω◦A′∨,τ̃ has rank 0.
For τ̃ ∈ ΣE,∞ a lift of τ ∈ Σ∞ − S∞, the polarization λ induces an isomorphism ωA′,τ̃ ∼= ωA′∨,τ̃c

compatible with the action of ODS
and hence induces an isomorphism ω◦A′,τ̃

∼= ω◦A′∨,τ̃c . Thus Propo-
sition 2.3.1 implies we have an isomorphism⊕

τ∈Σ∞−S∞

ω◦A′∨,τ̃ ⊗OX′ ω
◦
A′∨,τ̃c

∼= Ω1
X′/k0

,

where τ̃ is a lift of τ . Taking the top exterior power gives the result. �

Now let X denote the special fiber SK(GS,T)k0 . Using [TX16, Corollary 2.13], we may transfer
the vector bundles ω◦A′∨,τ̃ from X ′ to X. For each τ ∈ Σ∞−S∞, we write ωτ to be the line bundle on
X coming from ω◦A′∨,τ̃ on X ′ for some choice of lift τ̃ of τ which we now fix. Then ωτ is independent
of the choice of lift τ̃ up to a torsion element in the Picard group of X by [TX16, Lemma 6.2]. For
any line bundle L on X, we write [L ] for the image of L in the rational Picard group. The next
corollary follows immediately from Corollary 2.3.2.

Corollary 2.3.3. There exists an isomorphism[ ⊗
τ∈Σ∞−S∞

ω2
τ

]
∼=
[
Ω
|Σ∞−S∞|
X/k0

]
in the rational Picard group of X. �

2.4. Goren–Oort divisors and Goren–Oort cycles. We now let k0 be the smallest subfield of
Fp containing the residue fields of the p-adic places of E. Then k0 = Fph , where h is the least
common multiple of {(1 + gp − 2bgp/2c)gp|p ∈ Σ∞}. In this section we will recall the description of
Goren–Oort divisors and Goren–Oort cycles in SK(GS,T)k0

obtained in [TX16] and [TX19]. As before
S ⊂ Σp ∪Σ∞ is a set of even cardinality. For each τ ∈ Σ∞−S∞, [TX16] defines a Goren–Oort divisor
SK(GS,T)k0,τ ⊂ SK(GS,T)k0 by transferring over a certain divisor on an auxiliary unitary Shimura
variety. We briefly recall its construction.

Let (A, ι, λ, εK′p) be an S-point of SK′(G
′
S̃
) for S a k0-scheme. For τ̃ ∈ ΣE,∞, we define the

essential Verschiebung

Ves,τ̃ : HdR
1 (A/S)◦τ̃ → HdR

1 (A(p)/S)◦τ̃
∼= HdR

1 (A/S)
◦,(p)
σ−1τ̃
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to be the usual Verschiebung if sσ−1τ̃ = 0 or 1, and to be the inverse of the usual Frobenius if
sσ−1τ̃ = 2. For every integer n ≥ 1 we define

V nes : HdR
1 (A/S)◦τ̃ → HdR

1 (A(pn)/S)◦τ̃
∼= HdR

1 (A/S)
◦,(pn)
σ−nτ̃

to be the nth-iteration of the essential Verschiebung.
Now let τ ∈ Σ∞−S∞ and τ̃ ∈ ΣE,∞ a lift of τ . We define the integer nτ to be the smallest integer

such that σ−nτ τ ∈ Σ∞ − S∞. Then the restriction of V nτes to ω◦A∨,τ̃ defines a map

hτ̃ (A) : ω◦A∨,τ̃ → ω
◦,(pnτ )
A∨,σ−nτ τ̃

∼= (ω◦A∨,σ−nτ τ̃ )⊗p
nτ
.

Applying this to the universal abelian variety A′ over SK′(G
′
S̃
)k0

, we obtain a global section

hτ̃ ∈ Γ(SK′(G
′
S̃
, )k0 , (ω

◦
A′∨,σ−nτ τ̃ )⊗p

nτ ⊗ (ω◦A′∨,τ̃ )⊗−1).

We call this the τ th partial Hasse-invariant. We let SK′(G
′
S̃
)k0,τ̃ ⊂ SK′(G

′
S̃
)k0 denote the vanishing

locus of hτ̃ , and we let SK(GS,T)k0,τ̃ be the corresponding divisor on SK(GS,T)k0
. By [TX16, Lemma

4.5], SK′(G
′
S̃
)k0,τ̃ , and hence SK(GS,T)k0,τ̃ , is independent of the lifting τ̃ of τ . We may thus write

SK′(G
′
S̃
)k0,τ and SK(GS,T)k0,τ for these divisors respectively. The divisor SK(GS,T)k0,τ is known

as the Goren–Oort divisor corresponding to τ . It can also be described as the vanishing locus of a
certain section of the line bundle of ω⊗p

nτ

σ−nτ τ ⊗ ω
−1
τ on SK(GS,T)k0

.
For J ⊂ Σ∞ − S∞, we set

SK(GS,T)k0,J :=
⋂
τ∈J

SK(GS,T)k0,τ .

The closed subvarieties SK(GS,T)k0,J as J runs over subsets of Σ∞ − S∞ give the Goren–Oort
stratification of SK(GS,T).

To state the main structure theorem of [TX16], we introduce the following notation. For τ ∈
Σ∞ − S∞, we write τ− for σ−nτ τ and we let p denote the p-adic place induced by τ . We write
Tτ = T ∪ {τ} and define

Sτ =

{
S∞/p ∩ {τ, τ−} if S∞/p ∪ {τ} 6= Σ∞/p

S ∪ {τ, p} if S∞/p ∪ {τ} = Σ∞/p
.

Theorem 2.4.1 ([TX16, Theorem 5.2], [LT20, Proposition 3.9]). Under the above notations, there is
a morphism of Fp-varieties

πτ : SK(GS,T)Fp,τ → SK(GSτ ,Tτ )Fp
equivariant for the prime-to-p Hecke action, such that
(1) if S∞/p ∪ {τ} 6= Σ∞/p, πτ is a P1-fibration which descends to a morphism SK(GS,T)k0,τ →

SK(GSτ ,Tτ )k0
of k0-varieties.

(2) if S∞/p ∪ {τ} = Σ∞/p, πτ is an isomorphism.

Note that in case (2), the level structure at p needs to be modified.
We now recall the framework for the construction of Goren–Oort cycles. These cycles are parame-

terized by certain combinatorial objects called periodic semi-meanders whose definition we now recall.
We refer to [LT20, §3.4] for more details.

For p a place of F above p, let dp(S) := gp − |S∞/p|. We consider the cylinder C := {x2 + y2 = 1}
in 3-dimensional space. Let Σ∞/p = {τ0, ..., τgp−1} where σ(τj) = τj+1 for j ∈ Z/gpZ. We use the
τj to label the points on the xy-plane by identifying τj with the point (cos 2πj

gp
, sin 2πj

gp
). If τj ∈ S∞/p

we put a + at the point τj , otherwise we put a node. We call the series of nodes and +’s the band
associated to S∞/p.

A periodic semi-meander for S∞/p is a series of arcs and semi-lines on C (an arc connects two nodes
and a semi-line connects a node and +∞) satisfying the following properties:
(1) All arcs and semi-lines lie above the band.
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(2) Every node is the end-point of an arc or a semi-line.
(3) There are no intersection points among the arcs and semi-lines.
We identify two periodic semi-meanders if one can be continuously deformed into the other. We write
r for the number of arcs in a periodic semi-meander and dp(S)− r is the defect. We write B(S∞/p, r)

for the set of periodic semi-meanders with r arcs.
For any a ∈ B(S∞/p, r) we define the sets Sa and Ta to be

(2.4.1) Sa := S ∪ {τ ∈ Σ∞ | τ is an end-point of an arc in a}

(2.4.2) Ta := T ∪ {τ ∈ Σ∞ | τ is the right end-point of an arc in a}.

To any periodic semi-meander a ∈ B(S∞/p, r), [LT20, §3.5] constructs the Goren–Oort cycle

ZS,T(a) ↪→ SK(GS,T)k0
.

corresponding to a using the method of [TX19, §3.7]. The construction is by induction on r and the
resulting cycle is an rth-iterated P1-bundle over SK(GSa,Ta

)k0
. When r = 0, ZS,T(a) is defined to be

SK(GS,T)k0
. For r ≥ 1, we say an arc δ in a is basic if it does not lie above any other arc. Choose such

a basic arc δ and write τ and τ− for its right and left endpoints respectively. Consider the Goren–
Oort divisor SK(GS,T)k0,τ together with the fibration πτ : SK(GS,T)k0,τ → SK(GSτ ,Tτ )k0

. Let aδ ∈
B(Sτ,∞/p, r− 1) denote the periodic semi-meander given by removing the arc δ from a and replacing
the endpoints with + signs. By induction hypothesis, we have the cycle ZSτ ,Tτ (aδ) ⊂ SK(GSτ ,Tτ )k0

which is an (r−1)th-iterated P1-bundle over SK(GSa,Ta
)k0

. The Goren–Oort cycle ZS,T(a) is defined
to be the preimage of ZSτ ,Tτ (aδ) in SK(GS,T)k0

under the projection πτ . We write

πa : ZS,T(a)→ SK(GSa,Ta
)k0

for the projection map.
The following proposition is clear from the construction and Theorem 2.4.1.

Proposition 2.4.2. ZS,T(a) is an rth-iterated P1-fibration over the Shimura variety SK(GSa,Ta
)k0

.
Moreover the inclusion ZS,T(a) → SK(GS,T)k0

is equivariant for the prime-to-p Hecke correspon-
dences. �

2.5. Goren–Oort cycles and Shimura surfaces. We now give a more detailed description of the
Goren–Oort cycles which will be used in the construction of the level raising subgroup in motivic
cohomology.

For this we will impose the extra assumptions that [F : Q] = g is even and that p is inert in F ;
then p will denote the unique prime above p. In this case we may take k0 = Fpg . We consider the set
B(∅, g/2− 1) of periodic semi-meanders which is easily seen to have

(
g

g/2−1

)
elements.

Fix a ∈ B(∅, g/2 − 1)). Then we have constructed the Goren–Oort cycle Z∅(a) ⊂ SK(G)Fpg and
the projection

πa : Z∅(a)→ SK(G∅a,Ta
)Fpg

which is (g/2−1)-iterated P1-fibration; here Ta is defined as in (2.4.2) with T = ∅. Since SK(G∅a,Ta
)Fpg

is the special fiber of a Shimura surface, the Goren–Oort cycle Z∅(a) has dimension g/2 + 1.
We write Σ∞ \ ∅a = {τi, τj}. Then we may consider the Goren–Oort divisors SK(G∅a,Ta

)Fpg ,τi
and SK(G∅a,Ta

)Fpg ,τj of the Shimura surface SK(G∅a,Ta
)Fpg which are P1-bundles over the dis-

crete Shimura sets SK(G∅a,τi ,Ta,τi
)Fpg and SK(G∅a,τj ,Ta,τj

)Fpg respectively. The Fp-points of these
Shimura sets may be identified (upon fixing a base-point) with

GΣ∞(Q)\GΣ∞(Af )/K.

We let K0(p) ⊂ GΣ∞(Af ) denote the compact open subgroup K0,pK
p where K0,p is the stan-

dard Iwahori subgroup of GL2(Fp) consisting of matrices in GL2(OFp
) which reduce to the upper

triangular matrices mod p. In [TX16, 3.15], there is a construction of the integral model for the
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discrete Shimura set ShK0(p)(G∅a,τi ,Ta,τi
). We can explicitly describe the Fp-points of the special

fiber SK0(p)(G∅a,τi ,Ta,τi
)Fpg and the action of Gal(Fp/Fpg ) as follows. We equip the discrete set

GΣ∞(Q)\GΣ∞(Af )/K0(p) with the Gal(Fp/Fpg )-action where the arithmetic pg-Frobenius σpg acts
via multiplication by the central element p−g/2 ∈ F ⊗QA×f ⊂ GΣ∞(Af ). Here p−g/2 is the idele which
is p−g/2 at the p-adic place p and 1 elsewhere. Then there is a bijection

SK0(p)(G∅a,τi ,Ta,τi
)Fpg (Fp) ∼= GΣ∞(Q)\GΣ∞(Af )/K0(p)

compatible with the Galois action.
The action of σpg on SK(G∅a,τi ,Ta,τi

)Fpg (Fp) is defined in the same way. We write nK∞ for the
order of σpg acting on SK(G∅a,τi ,Ta,τi

)Fpg (Fp). It is easily seen to be independent of the choice of a
and τi.

The following proposition is contained in [TX19, Proposition 2.32].

Proposition 2.5.1. (1) There is an isomorphism

SK(G∅a,Ta
)Fpg ,{τi,τj}

∼= SK0(p)(G∅a,τi ,Ta,τi
)Fpg

of Fpg -varieties.
(2) There is an isomorphism

ητj : SK(G∅a,τj ,Ta,τj
)Fpg

∼−→ SK(G∅a,τi ,Ta,τi
)Fpg

of Fpg -varieties such that the induced diagram

SK0(p)(G∅a,τi ,Ta,τi
)Fpg

πτi◦ιτi

uu

πτj ◦ιτj

))
SK(G∅a,τi ,Ta,τi

)Fpg SK(G∅a,τj ,Ta,τj
)Fpg

ητj // SK(G∅a,τi ,Ta,τi
)Fpg

is identified with the base change to Fpg of the Hecke correspondence for SK(G∅a,τi ,Ta,τi
).

Here the maps
ιτi : SK0(p)(G∅a,τi ,Ta,τi

)Fpg → SK(G∅a,Ta
)Fpg ,τi ,

ιτj : SK0(p)(G∅a,τi ,Ta,τi
)Fpg → SK(G∅a,Ta

)Fpg ,τj

are the natural embeddings coming from (1).
�

3. Hecke orbit conjecture

In this section we prove a version of the Hecke orbit conjecture for the ordinary locus of quaternionic
Shimura varieties. The desired result follows from the corresponding statement for the auxiliary
unitary Shimura varieties of PEL type constructed in the previous section. The result for these
Shimura varieties can then be deduced using the method of [Cha95].

3.1. Statement of Hecke orbit conjecture. We keep the notation introduced in §2. We let
ShK(GS,T) be the integral model for the quaternionic Shimura variety ShK(GS,T). We will assume in
this section that S ( Σ∞ so that the compact open subgroup K = KpK

p is hyperspecial at p. Since
the case of Hilbert modular varieties has been proved in [Cha95], we also assume ShK(GS,T), and
hence ShK(GS,T), is compact, or in other words that the quaternion algebra BS is not totally split.
By our assumption on S, ShK(GS,T) is not discrete, in other words it arises from a genuine Shimura
datum (as opposed to a weak Shimura datum). For ease of notation we will write X := SK(GS,T)Fp
for the geometric special fiber of ShK(GS,T).

We also write ShK′(G
′
S̃
) for the unitary Shimura variety of PEL type associated to ShK(GS,T) by

the choice of an imaginary quadratic field E/F and a subset S̃∞ ⊂ ΣE,∞ satisfying the conditions
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in §2.2. We similarly write X ′ = SK′(G
′
S̃
)Fp for the geometric special fiber of the integral model

ShK′(G
′
S̃
).

Our formulation of the Hecke orbit conjecture for X ′ differs from the statement in [Cha95]; we
need a slightly stronger statement in order to transfer the result to the quaternionic side. More
precisely we will consider the orbit under Hecke correspondences coming from the derived group. We
let G′der denote the derived group of G′

S̃
. Since G′

S̃
and GS have the same derived group, G′S is the

reductive group corresponding to (B×S )νS=1; in particular G′der is simply connected. We write T ′ab for
the quotient of G′

S̃
by its derived group; it is isomorphic to the subtorus Nm−1

E/F (Gm) ⊂ TE . We write
T ′ab(R)† = Im(Z ′(R)→ T ′ab(R)), where Z ′ is the center of G′

S̃
. We let T ′ab(Q)† = T ′ab(R)† ∩ T ′ab(Q).

We write ν′ : G′
S̃
→ T ′ab for the quotient map. This induces a bijection

(3.1.1) π0(ShK′(G
′
S̃
)) ∼= T ′ab(Q)†\T ′ab(Af )/ν′(K ′)

where the left hand side is the set of geometric connected components. Since ShK′(G
′
S̃
) is smooth,

there is a bijection
π0(X ′) ∼−→ T ′ab(Q)†\T ′ab(Af )/ν′(K ′)

compatible with specialization from (3.1.1). For an element c′ on the right hand side, we write X ′c′

for the corresponding connected component of X ′.
We consider the inverse limit scheme

ShK′p(G′
S̃
) := lim

←K′p
ShK′pK′p(G′

S̃
)

which has an action by the group G′
S̃
(Apf ). Let x ∈ ShK′(G

′
S̃
)(Fp) = X ′(Fp) and x̃ ∈ ShK′p(G′

S̃
)(Fp) a

lift of x. We write Ỹ ′p(x̃) ⊂ ShK′p(G′
S̃
)(Fp) for the orbit of x̃ under the group G′der(A

p
f ). Similarly, for

` a prime coprime to p, we write Ỹ ′` (x̃) ⊂ ShK′p(G′
S̃
)(Fp) for the orbit of x̃ under the group G′der(Q`).

Definition 3.1.1. The reduced prime-to-p Hecke orbit Y ′p(x) of x is defined to be the image of
Ỹ ′p(x̃) in X ′(Fp). Similarly the reduced `-power Hecke orbit Y ′` (x) is defined to be the image of Ỹ ′` (x̃)

in X ′(Fp). We write Z ′p(x) and Z ′`(x) for the Zariski closure of Y ′p(x) and Y ′` (x) respectively.

It is clear from the definition that Y ′p(x) and Y ′` (x) are independent of the choice of x̃ and that
Y ′` (x) ⊂ Y ′p(x). When we consider Y ′` (x) we will also assume K ′ factors as K ′pK ′`K

′p,`, where
K ′` ∈ G′S̃(Q`) and K ′p,` ⊂ G′

S̃
(Ap,`f ) are compact open subgroups; here Ap,`f denotes the adeles with

trivial component at p and `.
By the main result of [Ham15], there is a stratification of X ′ parametrized by the set B(G′

S̃,Qp
, {µ})

where {µ} is the geometric conjugacy class of cocharacters of G′
S̃
containing the inverse of the Hodge

cocharacter associated to the Shimura datum. This is a certain subset of the set of σ-conjugacy classes
of G′

S̃
(L), where L is the completion of the maximal unramified extension of Qp; we refer to §A.2 for

the definition. The set B(G′
S̃,Qp

, {µ}) is equipped with a partial order. It contains a unique maximal

element [b]ord and a unique minimal element [b]ss. We write X ′ord and X ′ss for the corresponding
strata.

Remark 3.1.2. In the literature, X ′ord is usually known as the µ-ordinary locus. If S̃∞ satisfies [LT20,
Assumption 2.2], the stratum X ′ss coincides with the locus where the universal abelian variety is
supersingular. In what follows, we will abuse notation and refer to X ′ss as the supersingular locus
even when this assumption is not satisfied.

The main result of this section is the following.

Theorem 3.1.3. Let c′ ∈ T ′ab(Q)†\T ′ab(Af )/ν′(K ′). Then for any x ∈ X ′c′ ∩ X ′ord(Fp) we have

Z ′p(x) = X ′c
′
.
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Remark 3.1.4. (1) The inclusion Z ′p(x) ⊂ X ′c′ is clear since G′der = ker ν′.
(2) Since G′

S̃
(Apf ) acts transitively on the set of connected components of ShK′p(G′

S̃
) (see for example

[Kis10, Lemma 2.2.5]), this theorem implies the prime-to-p Hecke orbit of any x ∈ X ′ord(Fp) is Zariski
dense in X ′. Here the prime-to-p Hecke orbit is defined by replacing the G′der(A

p
f )-orbit with the

G′
S̃
(Apf )-orbit in the definition of Ỹ ′p(x̃).

The rest of this section is devoted to the proof of Theorem 3.1.3. We briefly outline the strategy
following [Cha95]. The first step is to analyze the formal completion Ẑ ′p(x) of Z ′p(x) at a smooth
ordinary point. The stability of Z ′p(x) under Hecke correspondences constrains the possibilities for
this formal completion. Indeed, using Moonen’s generalization of the Serre–Tate coordinates [Moo04]
in this context, one can show that the formal completion of X ′ at an ordinary point has a formal
group structure; then Ẑ ′p(x) is actually a formal subgroup. The second step is to show that Z ′p(x)

contains a supersingular point; this uses the quasi-affineness of the Ekedahl–Oort stratification on
X ′ proved in [VW13]. Finally we analyze the formal completion of Z ′p(x) at a supersingular point
s ∈ X ′ss ∩ Z ′p(x); we use the fact that s is the specialization of an ordinary point x′ and that As has
a large endomorphism group to show that the formal completion of Z ′p(x) at x′ is the whole formal
neighborhood in X ′. This implies the result.

A key ingredient of the proof of the Hecke orbit conjecture for Hilbert modular varieties in [Cha95]
was an explicit description of the structure of isogeny classes associated to an abelian variety with extra
structure. This required an understanding of the endomorphism algebra of these abelian varieties,
see [Cha95, Lemma 6]. We will instead use a group theoretic approach using results of [Kis17] which
avoids some of the case-by-case analysis of loc. cit.

Let k be an algebraically closed field of characteristic p. Let x ∈ X ′(k) and (Ax, ι, λ, εK′p) the
associated quadruple. We write Ix for the reductive group over Q such that Ix(Q) := Aut0

(ODS
,λ)(Ax)

the group of quasi-isogenies of Ax respecting the ODS
-structure and preserving the polarization λ up

to a scalar in Q×.
We would like to apply the results of [Kis17, §2] to our situation. Suppose that x ∈ X ′(Fp). We

write IKis
x for the group denoted I in [Kis17, §2.1]. Then it is easy to see that IKis

x
∼= Ix; indeed in

[Kis17] we may take the tensors sα ∈ Λ⊗Z(p)
to be the classes corresponding to the endomorphisms and

polarization. Then the condition defining IKis
x in [Kis17, §2.1] precisely corresponds to the condition

defining Ix. By [Kis17, Corollary 2.3.5], there is a subgroup I0 ⊂ G′S̃ equipped with an inner twisting
I0 ⊗Q Q ∼= Ix ⊗Q Q. The map ν′ : G′

S̃
→ T ′ab determines a map ν′x : Ix → T ′ab and we let I1

x ⊂ Ix
denote the kernel of ν′x.

For all primes ` 6= p, upon fixing a trivialization of T`Ax, there is a map Ix(Q)→ G′
S̃
(Q`) given by

the action on the `-adic Tate module. We write Gx := Ax[p∞] for the p-divisible group associated to
Ax and D(Gx) its Dieudonné module over OL. Then upon fixing an OL-linear bijection

(3.1.2) D(Gx) ∼= Λ⊗Z OL
preserving the action ofODS

and the pairings on both sides, we obtain an embedding Ix(Qp) ↪→ G′
S̃
(L).

We write Hp ⊂ Ix(Qp) for the subgroup of elements which stabilizer Λ ⊗Z OL; it is a compact open
subgroup of Ix(Qp) which does not depend on the choice of bijection (3.1.2). The following proposition
can be deduced in a standard way as in [Cha95, p448].

Proposition 3.1.5. Suppose x ∈ X ′(Fp). There are bijections

(3.1.3) Y ′p(x) ∼= I1
x(Q) ∩Hp\G′der(A

p
f )K ′p/K ′p

(3.1.4) Y ′` (x) ∼= I1
x(Q) ∩HpK

′p,`\G′der(Q`)K ′`/K ′`
such that (3.1.3) (resp. (3.1.4)) is equivariant for reduced prime-to-p (resp. reduced `-power) Hecke
operators.
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Proof. Let x̃ ∈ ShK′p(G′
S̃
)(Fp) be a lift of x. Then by the argument of [Cha95, p448], the stabilizer

of x̃ in G′
S̃
(Apf ) is identified with Ix(Q) ∩Hp and hence the G′

S̃
(Apf )-orbit of x̃ can be identified with

Ix(Q)∩Hp\G′S̃(Apf ), cf. also [Kis17, Proposition 2.1.3]. Since G′der(A
p
f )∩Ix(Q) = I1

x(Q), the G′der(A
p
f )-

orbit of x̃ is identified with I1
x(Q) ∩Hp\G′der(A

p
f ) and the description of Y ′p(x) follows by taking the

image in X ′. The description of Y ′` (x) is proved in a similar way. �

3.2. Serre–Tate theory following [Moo04] and analysis at ordinary points. In this subsection
we study the formal neighbourhood of a point in X ′ord. We begin with some preliminaries concerning
p-divisible groups with an action of the ring of integers O of a finite unramified extension of Qp. Recall
we have the integral PEL datum (ODS

⊂ DS, ∗,Λ ⊂ W,ψ); we write D for the base change of this
datum to Zp.

Definition 3.2.1. Let S be an OES̃,ṽ
-scheme. A p-divisible group with D-structure over S is a triple

(G , λ, ι) where:
• G is a p-divisible group over S of height dimW .
• ι : ODS,p → End(G ) is a homomorphism satisfying

(3.2.1) det(T − ι(a) | Lie(G /S)) =
∏

τ̃∈ΣE,∞

(T − τ̃(a))2sτ̃ .

• λ : G → G ∨ is a polarization such that

ι(a) = λ−1 ◦ ι(a∗)∨ ◦ λ.

It is easy to see that for any x ∈ Sh′K(G′
S̃
)(S) with associated quadruple (Ax, ι, λ, εK′p), the p-

divisible group Gx := Ax[p∞] is a p-divisible group with D-structure.
Suppose p factors as p1 . . . pr in F ; we have a decomposition F ⊗Q Qp ∼= Fp1 × · · · × Fpr . This

induces a decomposition
DS,p

∼= DS,p1 × · · · ×DS,pr .

The datum D decomposes as a product of data Di := (ODS,pi
⊂ DS,pi , ∗,Λi ⊂Wi, ψi), whereWi is the

subspace of W ⊗QQp on which DS,p acts via DS,pi and ψi and ∗ are the restrictions of ψ⊗QQp and ∗
to Wi. Similarly to Definition 3.2.1, we may define the notion of p-divisible group with Di-structure.
By [Ham15, Corollary 4.5 (1)], there is an equivalence of categories

(3.2.2) {p-divisible groups with D-structure} ∼=
∏
i

{p-divisible groups with Di-structure}

which takes isogenies to isogenies. Moreover this equivalence gives a decomposition

G ∼=
r∏
i=1

Gi

for G a p-divisible group with D-structure. The Gi are equipped with polarizations λi and ODS,pi-
actions and the isomorphism identifies λ with the product polarization and ι with the product of the
actions of ODS,pi .

For any x ∈ X ′(Fp), we write Jx for the group of automorphism of Gx in the isogeny category
preserving the ODS,p -action and the polarization up to a Q×p scalar. Then Jx is a reductive group over
Qp which is an inner form of a Levi subgroup of G′

S̃,Qp
and there is a natural embedding Ix⊗QQp ↪→ Jx.

Similarly to the definition of I1
x, the map G′

S̃
→ T ′ab induces a natural map Jx → T ′ab,Qp and we

write J1
x for its kernel. Then J1

x breaks up into a product J1
x,i corresponding to the decomposition

Gx ∼=
∏r
i=1 Gx,i.

Now suppose k is an algebraically closed field of characteristic p and x ∈ X ′ord(k). We write Ûx for
the formal neighborhood of X ′ at the point x. By the Serre–Tate theorem, Ûx is identified with the
characteristic p deformation space of Gx; see [Ham15, Proposition 2.9] for example. In other words,
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let DefGx,λ be the functor on local Artinian rings R/k with residue field k satisfying:

DefGx,λ(R) =
{

(G̃ , λ̃, ι)/R a p-divisible group with D-structure, θ : G̃ ⊗R k
∼−→ Gx

}
/ ∼ .

Here θ is an isomorphism of p-divisible groups with D structure (i.e. preserves actions and polariza-
tions) and ∼ is the equivalence relation identifying isomorphic p-divisible groups with D-structure.
Then DefGx,λ is representable by a formal scheme Spf R, and Spf R ∼= Ûx. The equivalence of
categories (3.2.2) implies that there is an isomorphism

DefGx,λ
∼=

r∏
i=1

DefGx,i,λi

where DefGx,i,λi is the deformation space of the p-divisible group Gx,i with Di-structure
(3.2.3)

DefGx,i,λi(R) =
{

(G̃i, λ̃i, ιi)/R a p-divisible group with Di-structure, θi : G̃i ⊗R k
∼−→ Gx,i

}
/ ∼ .

Theorem 3.2.2 ([Moo04, Theorem p226, Example 3.3.2]). For i = 1, . . . , r, DefGx,i,λi is a formal
p-divisible group. Hence DefGx,λ is a formal p-divisible group.

The results in [Moo04] in fact give an explicit description of the group structure of these deformation
spaces which we now recall. To do this we introduce some notations. Let O be the ring of integers in
an unramified extension of Qp of degree g. Recall a p-divisible group with O-structure over a scheme
S is a p-divisible group G /S together with a homomorphism of Zp-algebras ι : O → EndS(G ); see
§A.3. The O-height htO(G ) of G satisfies

ghtO(G ) = ht(G ).

We identify the set of embeddings O → W (k) with I := {1, . . . , g} so that σ(m) ≡ m + 1 mod g.
Let d be an integer and f : I → {0, . . . , d}. For m ∈ I we let Mm be a W (k)-module of rank d with
basis (em,n)n=1,...,d. We equip M :=

⊕g
m=1Mm with a Frobenius ϕ given by

(3.2.4) ϕ(em,n) =

{
em+1,n if n ≤ d− f(m)

pem+1,n if n > d− f(m)
.

This givesM the structure of a Dieudonné module and hence corresponds to a p-divisible group G (d, f)

over k. The action of O onM given by letting O act onMm via the embedding m induces an action of
O on G (d, f). Then G (d, f) is a p-divisible group with O-structure of O-height d. The above discussion
extends in the obvious way to the case where O =

∏r
i=iOi and Oi is the ring of integers in a finite

unramified extension of Qp.
We now return to the previous notations so that x ∈ X ′ord(k). Let i ∈ {1, . . . , r} and O′ := OEpi

;
we write g := [Fpi : Qp]. By Morita equivalence, there exists a polarized p-divisible group (G ◦, λ◦)
with O′-structure of O′-height 2 such that (G ◦)2 = Gx,i. The polarization λ◦ induces an involution ∗
on O′. Then (O′, ∗) is one of the following two forms, see [Moo04, §3.1.2]:

Case (AL): pi is splits as qiqi in E and O′ = W (Fpg )×W (Fpg ), where the involution ∗ is given by
(a, b) 7→ (b, a).

Case (AU): pi is inert in E and O′ = W (Fp2g ). The involution ∗ is given by the pg-Frobenius.
In the case (AL), we write O = OEqi

∼= W (Fpg ). Then by [Ham15, Corollary 4.5 (2) I], there is
a p-divisible group G ′ with O-structure of O-height 2 such that G ◦ ∼= G ′ × G ′∨. We identify the set
of embeddings O → W (k) with I := {1, . . . , g} as above, and we also identify this with ΣE,∞/qi .
Then G ′ ∼= G (2, s) where s : I → {0, 1, 2} is defined by s(m) = sm; here sm is the number defined in
(2.2.1).
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We define a function d : I → {0, 1} by setting

d(m) =

{
1 if sm = 1

0 otherwise
.

Then by [Moo04, Theorem p226] there is an isomorphism

DefGx,i,λi
∼= DefG ′

∼= G (1, d)for,

where we write G (1, d)for for the formal group associated to G (1, d) and the space DefG ′ is the
deformation space of the p-divisible group G ′ with O-structure (without polarization). The first
isomorphism here is via [Ham15, Corollary 4.5 (2) I]. Then DefGx,i,λi is (the formal group associated
to) a p-divisible group with O-structure of O-height 1.

In the case (AU), we write O := OFpi

∼= W (Fpg ); recall O′ := OEpi

∼= W (Fp2g ). Then G ◦ ∼= G (2, s)

where s : {1, . . . , 2g} → {0, 1, 2} is defined by s(m) = sm as above. Here we have identified {1, . . . , 2g}
with ΣE,∞/pi . There exists a p-divisible group with O′-structure G ′ of O′-height 1 and an isomorphism
G ◦ ∼= G ′ × G ′∨. The polarization λ◦ on G ◦ switches the two factors.

We define a p-divisible group G̃ := G (1, d) with O′-structure where d is defined by

d(m) =

{
1 if sm = 1

0 otherwise

as above. In this case, the polarization λ◦ induces an automorphism of G̃ for; then there is an isomor-
phism

DefGx,i,λi
∼= DefG ◦,λ◦

∼= (G̃ for)λ
◦
,

where (G̃ for)λ
◦
denotes the formal subgroup of G̃ for fixed by the automorphism induced by λ◦. In

this case the deformation space DefGx,i,λi is no longer stable under the action of O′. However it is
stable under O and indeed it is (the formal group associated to) a p-divisible group with O-structure
of O-height 1.

Using the definition of slopes for a p-divisible group with O-structure as in [Moo04, §1.2.5], it is
easily checked that G ′ in case (AL) and G ◦ in case (AU) has one slope if Σ∞/pi − S∞/pi = ∅ and two
slopes otherwise. Moreover we have that DefGx,i,λi has dimension |Σ∞/pi −S∞/pi | in both cases (AL)
and (AU); in particular DefGx,i,λi is trivial if Σ∞/pi − S∞/pi = ∅.

We also need a description of the endomorphism algebra of Gx,i and its action on the deformation
space. For i ∈ {1, . . . , r}, we write Jx,i := Aut(O′,λ◦i )(G

◦
x,i) for the group of automorphisms of G ◦x,i

respecting the O′ action and polarization. The group Jx,i acts on DefGx,i,λi via modification of the
isomorphism θi in (3.2.3).

In case (AL), Jx,i can be identified with the group of automorphisms of G ′ respecting the OFpi
-

structure. If G ′ has one slope, in other words if sm 6= 1 for any m ∈ ΣE,∞/qi , then Jx,i ∼= M2(Opi).
In this case the deformation space is trivial and Jx,i acts trivially on DefGx,i,λi . If G ′ has more than
one slope, which occurs if S∞/pi 6= Σ∞/pi , then Jx,i ∼= (O×Fpi

)2. In this case Jx,i acts on DefGx,i,λi via
(a, b) 7→ ι(ab−1); here ι gives the OFpi

-structure on DefGx,i,λi .
In case (AU), if G ◦ has one slope, then Jx,i is identified with the subgroup in GL2(OEpi

) preserving

the Hermitian form given by the matrix
(

0 1

−1 0

)
. In this case the deformation space is trivial and

Jx,i acts trivially on DefGx,i . If G ◦ has two slopes, Jx,i is identified with O×Epi
. Then Jx,i acts on

DefGx,i via a 7→ ι(NmEpi
/Fpi

(a)).
It follows from these descriptions that DefGx,λ is equipped with an action of (OF ⊗Z Zp)×.
Now assume x′ ∈ X ′ord(Fp). We let x ∈ Z ′p(x′)(Fp) be a µ-ordinary point which lies in the smooth

locus of Z ′p(x′) and we write Ẑ ′px (x′) ⊂ DefGx,λ for the formal completion of Z ′p(x′) at x. The analysis
of the actions of Jx,i on DefGx,i,λi leads to the following proposition.
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Proposition 3.2.3. Ẑ ′px (x′) ⊂ DefGx is stable under the action of an open subgroup of (OF ⊗Z Zp)×.

Proof. Recall we have the groups Jx and J1
x defined above. Let T ⊂ Ix denote a maximal torus and

T 1 its intersection with I1
x. By [Kis17, Corollary 2.1.7], Ix and Jx have the same rank, and hence I1

x

and J1
x have the same rank. It follows that T 1

Qp is a maximal torus of J1
x .

Now T 1(Qp) breaks up into a product
∏r
i=1 Ti(Qp) where Ti(Qp) ⊂ J1

x,i. Let i ∈ {1, . . . , r} be an
element such that G ′x,i in case (AL) (resp. G ◦x,i in case (AU)) has more than one slope. It can be
checked in the two cases there is the following description of T 1

i (Qp):
Case (AL): T 1

i (Qp) ⊂ Aut0
O(G ′x,i)

∼= (F×pi )
2 is the subgroup of elements of the form (a, b) with

ab = 1. Here G ′x,i is as in the discussion above and Aut0
O(G ′x,i) is the group of automorphisms in the

isogeny category preserving the O-action.
Case (AU): T 1

i (Qp) ⊂ Aut0
O′,λ◦(G

◦
x,i)
∼= E×pi is the subgroup consisting of elements a ∈ E×pi with

aa−1 = 1. Here Aut0
O′,λ◦(G

◦
x,i) denotes the group of automorphisms in the isogeny category preserving

the O′-actions and the polarization.
By weak approximation for T 1, see [San81, Corollary 3.5], T 1(Q) ∩ Jx is dense in T 1(Qp) ∩ Jx.

Since the action of T 1(Q) ∩ Jx on DefGx,λ preserves Ẑ ′p(x′) so does the action of T 1(Qp) ∩ Jx. By
the description of T 1(Qp) in the previous paragraph, the action of T 1(Qp) ∩ J1

x on the deformation
space can be described in the following way. We assume i ∈ {1, . . . , r} is such that G ◦x,i has two slopes.
Then in either case (AU) or (AL), T 1

i (Qp) ∩ Jx,i ∼= O×Fpi
acts on DefGx,i,λi via a 7→ ι(a2). Since the

image of a 7→ a2 in O×Fpi
is open, this proves the proposition.

�

We may relabel the primes pi so that G ′x,i in case (AL) (resp. G ◦x,i in case (AU)) has two slopes
for i = 1, . . . , a and one slope for i = a + 1, . . . , r. Then DefGx,i,λi is non-trivial for i = 1, . . . , a and
trivial for i = a+ 1, . . . , r, and we have an isomorphism:

DefGx,λ
∼=

a∏
i=1

DefGx,i,λi .

Corollary 3.2.4. There exists a subset ω ⊂ {1, . . . , a} such that

Ẑ ′px (x′) =
∏
i∈ω

DefGx,i,λi .

Proof. By [Cha08, Proposition 4.2], Ẑ ′px (x′) is a formal p-divisible subgroup of DefGx,i,λi . Indeed it
can be checked from the explicit description of the action of T 1(Qp)∩Jx on DefGx that the conditions
stated in [Cha08, Proposition 4.2] are satisfied. By Proposition 3.2.3, Ẑ ′px (x′) is a formal p-divisible
subgroup stable under the action of an open subgroup of (OF ⊗Z Zp)×. The only such subgroups are
the ones described. �

This proposition can be globalized to the following. Recall the tangent sheaf TX ′ is equipped with
an action of OF ⊗Z Zp by Proposition 2.3.1. We write TX ′(pi) for the subspace of TX ′ on which
OF ⊗Z Zp acts via the projection to OFpi

. The next corollary follows immediately from 3.2.4 and
faithfully flat descent.

Corollary 3.2.5. Let W be an irreducible component of the smooth locus Z ′p(x′)sm of Z ′p(x′). Then
there exists a subset ω ⊂ {1, . . . , a} such that the tangent sheaf TW of W is given by⊕

i∈ω
TX ′(pi)⊗OX′ OW ⊂ TX ′ ⊗OX′ OW .

�
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3.3. Proof of the main theorem. Recall for x ∈ X ′(Fp), Y p(x) and Y`(x) are the reduced prime-
to-p and `-power Hecke orbits respectively, and Z ′p(x) and Z ′`(x) are their respective closures.

Proposition 3.3.1. Z ′`(x) ∩ X ′ss 6= ∅.

Proof. Since X ′ is proper over Fp, Z ′`(x) is proper. By the main theorem of [VW13], there is a
stratification on X ′ whose strata are quasi-affine and stable under prime-to-p Hecke correspondences.
The strata X ′w are parametrized by a certain subset JW of the Weyl group W of G′

S̃
. The closure

relations are given by a partial ordering on JW .
We let w ∈ JW be a minimal element for this partial order such that X ′w ∩ Z ′`(x) 6= ∅. Then

X ′w ∩ Z ′`(x) is closed in X ′ by the minimality of w and the properness of Z ′`(x), hence X ′w ∩ Z ′`(x) is
proper. Since X ′w ∩ Z ′`(x) is also quasi-affine, it follows that X ′w ∩ Z ′`(x) is 0-dimensional. By Lemma
3.3.2 below, X ′w ∩ Z ′`(x) ⊂ X ′ss 6= ∅.

�

Lemma 3.3.2. Let Y ⊂ X ′ be a 0-dimensional subscheme of X ′ which is stable under reduced `-power
Hecke correspondences. Then Y ⊂ X ′ss.

Conversely if x ∈ X ′ss(Fp), then Y p(x) is finite and hence Z ′p(x) is 0-dimensional.

Proof. First assume x ∈ X ′ss(Fp). Then Ix ⊗Q Q` ∼= G′
S̃
⊗Q Q` for all ` 6= p by [XZ, 7.2.14] and hence

I1
x ⊗Q Q` ∼= G′der ⊗Q Q`. Therefore Y p(x) ∼= I1

x(Q) ∩Hp\G′der(A
p
f )K ′p/K ′p is finite by the finiteness

of class groups.
Now we assume Y is finite and x ∈ Y (Fp); then Y`(x) is finite. It follows that I1

x(Q`)\G′der(Q`) is
compact. The same argument as in [Kis17, Corollary 2.1.7] shows that

I1
x ⊗Q Q` ∼= G′der ⊗Q Q`

and hence
Ix ⊗Q Q` ∼= G′

S̃
⊗Q Q`

since Ix and G′
S̃
have the same ranks by [Kis17, Corollary 2.1.7]. But Ix ⊗Q Qp is a subgroup of Jx

which is an inner form of a Levi subgroup of G′
S̃
⊗Q Qp. Since Ix and G′

S̃
have the same dimension,

Jx is an inner form of G′
S̃
. Therefore the Newton cocharacter defined as in §A.2 is central and hence

x is a supersingular point. �

We will need the following two results on the structure of I1
x for supersingular points.

Proposition 3.3.3. Suppose x ∈ X ′ss(Fp).
(1) The natural map I1

x ⊗Q Qp → J1
x is an isomorphism.

(2) I1
x is an inner form of G′der. In particular I1

x is simply connected.

Proof. By [XZ, Lemma 7.2.14] Ix is an inner form of G and Ix ⊗Q Qp → Jx is an isomorphism.
Therefore I1

x is an inner form of G′der and I1
x ⊗Q Qp → J1

x is an isomorphism.
�

We can now complete the proof of the main theorem.

Proof of Theorem 3.1.3. We proceed as in [Cha95, Proposition 7]; we will assume Z ′p(x) is not equal
to X ′c′ and deduce a contradiction. By Proposition 3.3.1, Z ′p(x) contains a supersingular point
s ∈ X ′ss(Fp). We write Ẑ ′ps (x) for the completion of Z ′p(x) at the point s.

Let As be the abelian variety with ODS
-multiplication associated to s. The corresponding p-

divisible group (Gs, λ, ι) with D-structure breaks up into a product Gs,1 × · · · × Gs,r of p-divisible
groups with Di-structure and there is a decomposition of the deformation space

DefGs,λ
∼= DefGs,1,λ1

× · · · ×DefGs,r,λr .
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We write Js for the group of automorphisms of Gs respecting the ODS
-action and polarization, and

J1
s its intersection with J1

s . Then J1
s is a compact open subgroup of J1

s and there is a product
decomposition

J1
s
∼=

r∏
i=1

J1
s,i.

Since I1
s is simply connected and I1

s ⊗Q Qp ∼= J1
s by Proposition 3.3.3, the weak approximation

theorem implies that I1
s (Q) ∩ J1

s is dense in J1
s. Since I1

s (Q) ∩ J1
s preserves the subspace Ẑ ′ps (x) ⊂

DefGx,λ, it is preserved by the group J1
s.

There exists an irreducible component W of the smooth locus of Z ′p(x) such that s lies in the
closure of W . By Corollary 3.2.5, the tangent sheaf TW is equal to a product⊕

i∈ω
TX ′(pi)⊗OX′ OW

where ω ⊂ {1, . . . , a} is a proper subset since we assumed Z ′p(x) 6= X ′c′ . We fix a choice of j ∈
{1, . . . , a} − ω.

Let ξ : Spec k[[t]] → DefGs,λ be a formal curve which generically lies in W and with special fiber
s, and we write ξi : Spec k[[t]] → DefGs,i,λi for the pi-component of the map ξ. We write η for the
generic fiber of ξ; then η is an ordinary point. It follows that J1

η,j is a torus by the description given
in 3.2. Therefore, there exist elements u(n)

j ∈ Js,j such that u(n)
j ξ 6= ξ but (u

(n)
j ξ) is congruent to ξ

modulo arbitrarily high powers of t as n→∞. For i 6= j, the pi-component of u(n)
j ξ is equal to ξi.

Let Ŵs denote the formal neighbourhood at s of the closure of W and we write Ŵs,pj for the
image of Ŵs in the pj-component DefGs,j ,λj . Then upon replacing u(n)

j by a subsequence, there is an
irreducible component Û ⊂ Ŵs,pj containing the pj-component of u(n)

j ξ for all n. Let Ŵs,pj = Spf Rj

and let I ⊂ Rj be the defining ideal for Û . Then f(ξj) = 0 for any f ∈ I by continuity, and hence Û

contains ξj . By considering the tangent space at the k((t))-valued point Rj/I
ξj−→ k[[t]]→ k((t)), one

sees that the tangent space to W at the point η : Spec k((t))→W contains a non-zero pj-component,
which is a contradiction. �

We may use this to deduce the following corollary

Corollary 3.3.4. Let x ∈ X ′c′ ∩ X ′ord(Fp) and ` a prime such that G′
S̃
is unramified at `. Then

Z ′`(x) = X ′c′ .

Proof. By Theorem 3.1.3, it suffices to show that Z ′`(x) is stable under reduced prime-to-p Hecke
correspondences; we use the same argument as in [Cha95, Theorem 1].

By Proposition 3.3.1, Z ′`(x) contains a supersingular point s ∈ X ′ss(Fp). As in the proof of Lemma
3.3.2, we have an isomorphism I1

s ⊗Q Apf ∼= G′der ⊗Q Apf . Since I1
s is simply connected, the strong

approximation theorem implies I1
s (Q)I1

s (Q`) is dense in I1
s (Af ). It follows that I1

s (Q) ∩ HpK
′p,` is

dense in I1
s (Qp)∩Hp. Since I1

s (Q)∩HpK
′p,` is contained in the stabilizer of Z ′`(x) at s, the completion

Ẑ ′`,s(x) at s is stable under the action of I1
s (Qp) ∩Hp.

Let γ̃ ∈ G′der(A
p
f ) and we write γ for the corresponding reduced prime-to-p Hecke correspondence.

We write γ(Z ′`(x)) for the image of Z ′`(x) under γ; we need to show that γ(Z ′`(x)) = Z ′`(x). The strong
approximation theorem also implies that Y ′p(s) = Y ′` (s) by the description in Proposition 3.1.5. It
follows that upon right multiplying γ̃ ∈ G′der(A

p
f ) by an element of G′der(Q`), which does not alter

γ(Z ′`(x)), we may assume γ̃ = ik for some i ∈ I1
s (Q) ∩Hp and k ∈ K ′p. Modifying again by k−1, we

may assume γ̃ ∈ I1
s (Q) ∩ Hp. By the previous paragraph, γ̃ preserves Ẑ ′`,s(x) and hence the formal

completion of Z ′`(x) ∪ γ(Z ′`(x)) at s is equal to Ẑ ′`,s(x). Applying the argument to all supersingular
points in Z ′`(x), we find that Z ′`(x) ∪ γ(Z ′`(x)) is equal to Z ′`(x) ∪W where W is a closed subscheme
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of X ′ stable under reduced `-power Hecke correspondences and which does not contain supersingular
points. Then Proposition 3.3.1 implies that W is empty. Since γ was arbitrary, it follows that Z ′`(x)

is stable under reduced prime-to-p Hecke correspondences as desired.
�

3.4. The result in the quaternionic case. We now explain how Theorem 3.1.3 may be used to
deduce the Hecke-orbit conjecture for quaternionic Shimura varieties. The open subscheme X ′ord

transfers to an open subscheme X ord of X , see for example [SZ]2. We write Gder for the derived group
of GS. Then Gder

∼= G′der.
For x ∈ X (Fp), we may define the reduced prime-to-p Hecke orbit Y p(x) and reduced `-power Hecke

orbit Y`(x) in the same way as for X ′. Namely, we let x̃ denote a lift of x to ShKp(GS,T)(Fp) and we
write Ỹ p(x) (resp. Ỹ`(x)) for the Gder(Apf )-orbit (resp Gder(Q`)-orbit) of x̃. Then Y p(x) (resp. Y`(x))
is defined to be the image of Ỹ p(x) (resp. Ỹ`(x)) in X . We write Zp(x) and Z`(x) for the closures of
Y p(x) and Y`(x) respectively.

Recall νS : GS → TF denotes the reduced norm. Then νS induces an isomorphism

π0(X ) ∼= TF (Q)†\TF (Af )/νS(K)

where TF (Q)† is defined as in 3.1. For c in the right hand side we write X c for the corresonding
connected component

Let ` be a prime coprime to p. The following result follows immediately from Theorem 3.1.3 by
using the fact that the unitary Shimura variety and quaternionic Shimura variety have isomorphic
geometric connected components (upon taking the inverse limit over the prime-to-p level) and the fact
that G′der

∼= Gder.

Theorem 3.4.1. Let c ∈ TF (Q)†\TF (Af )/νS(K) and x ∈ X c ∩ X ord(Fp). Then
(1) Zp(x) = X c.
(2) Z`(x) = X c. �

Remark 3.4.2. As in Remark 3.1.4, one can use this to deduce that the prime-to-p Hecke orbit of an
ordinary point is dense in X .

4. Ihara’s Lemma for Shimura surfaces

In this section we prove a version of Ihara’s lemma for certain quaternionic Shimura surfaces. The
argument combines the arguments of [Dim09] and [DT94].

4.1. Statement of Ihara’s Lemma. We keep the previous notations, so that B is a totally indefinite
quaternion algebra over a totally real field F of degree g := [F : Q], and we let K be a sufficiently
small compact open subgroup of (B ⊗Q Af )×.

Let Π be an irreducible cuspidal automorphic representation of GL2(AF ) of parallel weight 2 defined
over a number field E. We write OE for the ring of integers of E and kλ for the residue field of OE at
a prime λ. Let R be a finite set of places of F away from which Π is unramified and K is hyperspecial;
in particular R contains the ramification set of B . Let TR denote the (abstract) Hecke algebra away
from R, i.e. the polynomial ring over Z generated by Tq, Sq where q is a prime away from R. The
representation Π determines a homomorphism

φΠ
R : TR → OE

via the Hecke eigenvalues of Π. For every prime λ of E there is an attached Galois representation

ρΠ,λ : Gal(F/F )→ GL2(OEλ)

2It is not a priori clear that the definitions of ordinary locus is independent of the choice of auxiliary PEL data. For
the applications, it is not necessary to know this.
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unramified outside of R ∪ Rλ where Rλ is the set of primes of F having the same zdue characteristic
as λ. It is characterized by the property that for q /∈ R ∪ Rλ, the characteristic polynomial of the
arithmetic Frobenius Frobq at q is given by

X2 − φΠ
R(Tq)X + NmF/Q(q)φΠ

R(Sq).

We write ρΠ,λ for the reduction of ρΠ,λ mod λ.
We now assume p is a prime which is inert in F and such that K = KpK

p where Kp ⊂ GS(Qp) is
a hyperspecial subgroup. We let p denote the unique prime of F above p. Let m := mΠ,λ ⊂ TR∪{p}
denote the preimage of the ideal (λ) ⊂ OE under the map φΠ

R∪{p}; it is a maximal ideal of TR∪{p}.
For any TR∪{p}-module M , we write Mm for the localization of M at the ideal m. We introduce the
following assumptions:

Assumption 4.1.1. Let ` be the underlying prime of λ.
(1) ` is coprime to R, disc(F ), and the cardinality of F×\A×F,f/A

×
F,f ∩K, where we consider A×F,f :=

(F ⊗Q Af )× as the center of (B ⊗Q Af )×.
(2) ` ≥ g + 2.
(3) The representation ρΠ,λ satisfies the condition LIIndρΠ,λ

in [Dim05, Proposition 0.1].
(4) B splits at all places above ` and the compact open subgroup K factors as K = K`K

` where
K` ⊂ GL2(Q`) is a hyperspecial subgroup.

Let S ⊂ Σ∞∪Σp and T ⊂ S∞ as in §2.1. Then we have the associated Shimura variety ShK(GS,T).

Proposition 4.1.2. Suppose Assumption 4.1.1 is satisfied. Then
(1) Hj(ShK(GS,T)Q,OEλ)m = 0 unless j = gS := |Σ∞ − S|.
(2) HgS(ShK(GS,T)Q,OEλ)m is a free OEλ-module.

Proof. The case of Hilbert modular varieties is proved in [Dim09, Theorem 6.6]. We thus assume
ShK(GS,T) is compact.

For (1), it suffices to show that Hj(ShK(GS,T)Q, kλ)/m = 0 for j = 0, . . . , gS − 1 by Nakayama’s
Lemma and Poincaré duality. We let F̃ denote the Galois closure of F and GF̃ its absolute Galois group.
For any irreducible representation ρ′ of GF̃ which appears as a subquotient of Hj(ShK(GS,T)Q, kλ)/m,
the same argument as in [Liu19, Theorem 3.21] shows that gS appears as a Fontaine–Laffaille weight
of ρ′; note here we need to use Assumption 4.1.1 (2) in order to apply this theory. By Assumption
4.1.1 (4), ShK(GS,T)F

`h
admits a proper smooth model over W (F`h), where h is the residue degree of

a prime in F̃ above `. Therefore, by Faltings’ Comparison Theorem [Fal89], we know that gS cannot
be a Fontaine–Laffaille weight for Hj(ShK(GS,T)Q, kλ)/m, j < gS. This proves (1).

For (2) the proof is the same as [Dim05, Theorem 6.6]. �

For the rest of this section we make the following assumption.

Assumption 4.1.3. (1) p /∈ S and |Σ∞ − S| = 2.
(2) B×S 6= GL2(F ).

In particular this condition implies that the associated Shimura varieties are compact. We write
Σ∞−S = {τ1, τ2} (note we do not use the convention in §2.4 so that σ(τ1) is not necessarily equal to τ2).
As in §A.1, we fix an isomorphism (BS⊗QQp)× ∼= GL2(Fp) such that Kp corresponds to the standard
hyperspecial subgroup of GL2(Fp), and we let K0,p correspond to the standard Iwahori subgroup of
GL2(Fp). We let K0(p) = K0,pK

p. We then have the Shimura variety ShK0(p)(GS,T) with Iwahori
level structure at p which is equipped with two finite étale maps π1, π2 : ShK0(p)(GS,T)→ ShK(GS,T).

The main theorem of this section is the following.

Theorem 4.1.4. Under Assumptions 4.1.1 and 4.1.3, the map

π∗1 + π∗2 : H2(ShK(GS,T)Q, kλ)2
m → H2(ShK0(p)(GS,T)Q, kλ)m
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is injective.

Remark 4.1.5. In the case of Hilbert modular varieties, this theorem was proved by Dimitrov [Dim09].
For Shimura curves, the case F = Q is due to Diamond–Taylor [DT94] and the case of general totally
real F is due to Manning–Shotton [MS21].

We outline the strategy for the proof of this theorem. Following the idea of Diamond–Taylor,
we use Faltings’ comparison theorem [Fal89] to reduce to proving the injectivity of a certain map
between global sections of line bundles over the mod ` reduction of the Shimura surface (Proposition
4.4.1). The property that such a global section lies in the kernel of the map (4.4.1) implies that the
divisor corresponding to this section is stable under certain Hecke correspondences. The Hecke orbit
conjecture proved in the previous section shows that this divisor (if non-trivial) must be supported on
the complement of the ordinary locus. We then compute the intersection pairing of this divisor with
certain Goren–Oort divisors to deduce a contradiction.

4.2. Intersection numbers. In this section we compute the intersection numbers of certain cycles
on the special fiber of quaternionic Shimura surfaces. The corresponding calculations for Hilbert
modular surfaces were carried out in [AG04].

Recall we have assumed ` is a prime which is unramified in F and such thatK is hyperspecial at `; in
other words that K = K`K

` where K` ⊂ GS(Q`) ∼= GL2(F ⊗Q Q`) is hyperspecial. In this subsection
we need to consider the mod ` reductions of the quaternionic Shimura varieties constructed in section
2. Fix an isomorphism ι` : Q`

∼−→ C through which we identify Σ∞ with Σ`. We let X` denote the
integral model of ShK(GS,T) over OES̃,˜̀

determined by a choice of imaginary quadratic extension
E/F and a subset S̃∞ ⊂ ΣE,∞ as in §2.2; here ˜̀ is the prime of ES̃ induced by ι`. We may apply
the construction in §2 upon replacing p by `. In this section we will only need to consider geometric
special fibers, so we do not need to keep track of the fields of definitions as in §2. In particular, the
subset T will not play a role. We write X` for the special fiber of X` over F`.

For a choice of auxiliary PEL data, the Newton stratification on the corresponding unitary Shimura
variety defines a stratification on X`, see §3.1. We write X ord

` for the µ-ordinary locus of X` and we
write X n−ord

` for the complement of X ord
` in X`. We would like to understand the intersection numbers

of certain cycles supported on X n−ord
` . This is possible since in the case of surfaces, we may give an

explicit description of the non-ordinary locus in terms of Goren–Oort cycles. The relationship with
Goren–Oort strata follows easily from an examination of the Dieudonné modules of the universal
p-divisible group over the unitary Shimura variety. Since the calculations are completely analogous
to the case of Hilbert modular varieties (see for example [Sta97] and [LT20] for some cases of totally
indefinite quaternion algebras), we omit the computations and just give the statements. We consider
the following two cases separately:

Case (1): There exists a prime l above ` such that τ1, τ2 ∈ Σl/∞.
Case (2): There exists distinct primes l1, l2 above ` such that τ1 ∈ Σl1/∞ and τ2 ∈ Σl2/∞.
We first consider Case (1). Then we have

X n−ord
`

∼= X ss
` = X`,τ1 ∪ X`,τ2

where X`,τ1 and X`,τ2 are the Goren–Oort divisors over F` corresponding to τ1, τ2 ∈ Σ∞ − S∞. Here
X ss
` is defined as in §3.1.
By Proposition 2.4.1, X`,τ1 and X`,τ2 are P1-bundles over the discrete Shimura set

GΣ∞(Q)\GΣ∞(Af )/K

and by [TX19, Proposition 2.32 (3)] there is an isomorphism

X`,τ1 ∩ X`,τ2 ∼= GΣ∞(Q)\GΣ∞(Af )/K0(l)
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where K0(l) ⊂ K denotes the compact open which agrees with K away from l and with Iwahori level
structure at l. Here we consider these finite sets as discrete schemes over F`. We write s`(K) for the
cardinality of GΣ∞(Q)\GΣ∞(Af )/K and s`(K0(l)) for the cardinality of GΣ∞(Q)\GΣ∞(Af )/K0(l).
Then s`(K) and s`(K0(l)) are related by the equality

s`(K0(l)) = (`gl + 1)s`(K)

where gl = [Fl : Qp].
By [TX19, Theorem 4.3]3 the intersection matrix of X`,τ1 and X`,τ2 considered as divisors on X` is

given by (
−2`nτ1 s`(K) s`(K0(l))

s`(K0(l)) −2lnτ2 s`(K)

)
= s`(K)

(
−2`nτ1 `gl + 1

`gl + 1 −2lnτ2

)
We write ωτ1 (resp. ωτ2) for the line bundle on X` defined in §2.3 corresponding to a choice of lift τ̃1
(resp, τ̃2) in S̃∞. Since X`,τ1 (resp. X`,τ2) is the vanishing locus of a section of (ωτ2)`

nτ1 ⊗ (ωτ1)−1

(resp. (ωτ1)`
nτ2 ⊗ (ωτ2)−1), applying a change of basis matrix we compute the intersection matrix of

ωτ1 and ωτ2 to be (
0 s`(K)

s`(K) 0

)
.

Now we consider Case (2). In this case we have the two Goren–Oort divisors X`,τ1 and X`,τ2 and

X n-ord
` = X`,τ1 ∪ X`,τ2 .

By Theorem 2.4.1, X`,τ1 and X`,τ2 are isomorphic to SK(GSτ1 ,Tτ1
)F` and SK(GSτ2 ,Tτ2

)F` respectively;
these are the special fibers of certain Shimura curves. Moreover, by [TX16, Theorem 5.2], X`,τ1 and
X`,τ2 intersect transversally and there is an identification of X`,τ1 ∩ X`,τ2 with the discrete Shimura
set

GS∪{τ1,τ2,l1,l2}(Q)\GS∪{τ1,τ2,l1,l2}(Af )/Kl1,l2 = GΣ∞∪{l1,l2}(Q)\GΣ∞∪{l1,l2}(Af )/Kl1,l2

where Kl1,l2 is the compact open which agrees with K away from l1 and l2 and is the unique maximal
compact at the places l1 and l2. We write s`(Kl1,l2) for the cardinality of this finite set. It follows
that the intersection number X`,τ1 .X`,τ2 is equal to s`(Kl1,l2).

For a projective scheme S of dimension d over a field k and F a coherent sheaf on S, we write

χS(F) :=

d∑
i=0

(−1)i dimk Hi(S,F)

for the Euler characteristic of F . We write χS(0) for the Euler characteristic of the structure sheaf.
By [LT20, Proposition 3.2] and Corollary 2.3.3, we have ω2

τ2 |X`,τ1 ∼= Ω1
X`,τ1

in the rational Picard
group of X`,τ1 . Thus

2χX`,τ1 (0) = 2 deg(ωτ2 |X`,τ1 )

= 2(`nτ1 − 1)ωτ1 .ωτ2 .

On the other hand, the adjunction formula implies that

2χX`,τ1 (0) = X`,τ1 .(X`,τ1 +Kcan)

= (ωτ1)`
nτ1−1.

(
(ωτ1)`

nτ1 +1 + (ωτ2)2
)

= (`2nτ1 − 1)ωτ1 .ωτ1 + 2(`nτ1 − 1)ωτ1 .ωτ2 .

3In [TX19], there is a running assumption that the prime p (` in our setting) is inert in F . This is required for the
cohomological results to hold. However it is easily checked that the computation of the intersection pairing, which is
purely geometric, holds if the prime is only assumed unramified.
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where Kcan is the canonical bundle on X` and for the second equality we have used Corollary 2.3.3.
Thus since ` > 4, it follows that ωτ1 .ωτ1 = 0, and hence X`,τ1 .X`,τ1 = 0. Similarly we have X`,τ2 .X`,τ2 =

0.
In summary, the intersection matrix of X`,τ1 ,X`,τ2 is given by(

0 s`(Kl1,l2)

s`(Kl1,l2) 0

)
and the intersection matrix of ω1, ωτ2 is

1

(`nτ1 − 1)(`nτ2 − 1)

(
0 s`(Kl1,l2)

s`(Kl1,l2) 0

)
.

4.3. Connected components. We will need a variant of the above computations for the connected
components of X`; this is due to the fact that we will need to apply the strong approximation theorem
in the proof of Proposition 4.3.4 and this only holds for the derived group of GS. We keep the notations
and assumptions of §4.2.

Recall νS : GS → TF denotes the reduced norm and this induces an isomorphism

(4.3.1) π0(X`) ∼= TF (Q)†\TF (Af )/νS(K).

We write ClF (K) for the right hand side. For an element c ∈ ClF (K), we write X c
` for the connected

component of X` corresponding to c. We also write ωc
τ1 , ω

c
τ2 for the restriction of the lines bundles

ωτ1 , ωτ2 to X c
` . We would like to obtain the intersection matrix of the line bundles ωc

τ1 , ω
c
τ2 on X c

` .
There are maps between the Shimura sets

(4.3.2) GΣ∞(Q)\GΣ∞(Af )/K → TF (Q)†\TF (Af )/νΣ∞(K), in Case (1).

(4.3.3)
GΣ∞∪{l1,l2}(Q)\GΣ∞∪{l1,l2}(Af )/Kl1,l2 → TF (Q)†\TF (Af )/νΣ∞∪{l1,l2}(Kl1,l2), in Case (2).

In each of the equations (4.3.1), (4.3.2) and (4.3.3), TF (Q)† is identified with the set of totally
positive elements in F and the images of K and Kl1.l2 under the various reduced norms are all
identified, therefore we may identify the right hand sides of (4.3.2) and (4.3.3) with ClF (K). We thus
write (GΣ∞(Q)\GΣ∞(Af )/K)c (resp. (GΣ∞∪{l1,l2}(Q)\GΣ∞∪{l1,l2}(Af )/Kl1,l2)c) for the preimage of
c under (4.3.2) (resp. (4.3.3)), and we write s`(K)c (resp s`(Kl1,l2)c) for its cardinality.

Suppose we are in Case (1) of §4.2. For i = 1, 2, we have an identification of the irreducible
components of X`,τi with GΣ∞(Q)\GΣ∞(Af )/K. We may choose this identification compatibly with
(4.3.1). In other words, if we denote by X c

`,τi
the union of irreducible components of X`,τi corresponding

to (GΣ∞(Q)\GΣ∞(Af )/K)c, then X c
`,τi

= X`,τi ∩ X c
` for i = 1, 2.

Proposition 4.3.1. In Case (1), the intersection matrix of ωc
τ1 , ω

c
τ2 is given by(

0 s`(K)c

s`(K)c 0

)
.

Proof. Using the fact that X`,τi ∩ X c
`
∼= X c

`,τi
and [TX19, Theorem 4.3], we find that in Case (1) the

intersection matrix of X c
`,τ1

, X c
`,τ2

is given by

s`(K)c
(
−2`nτ1 `gl + 1

`gl + 1 −2`nτ2

)
.

Applying a change of basis matrix gives the desired result. �

Now suppose we are in Case (2). For i = 1, 2 we may identify

π0(X`,τi) ∼= ClF (K)

compatibly with the identification π0(X`) ∼= ClF (K). In other words if we write X c
`,τi

for the compo-
nent of X`τi corresponding to c, we have X c

`,τi
= X c

` ∩ X`,τi for i = 1, 2.
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Proposition 4.3.2. In Case (2), the intersection matrix of ωc
τ1 , ω

c
τ2 is given by

1

(`nτ1 − 1)(`nτ2 − 1)

(
0 s`(Kl1,l2)c

s`(Kl1,l2)c 0

)
.

Proof. Using the fact that X c
`,τ1

and X c
`,τ2

intersect transversally and that there are s`(Kl1,l2)c inter-
section points, we see that X c

`,τ1
.X c
`,τ2

= s`(Kl1,l2)c.
As in §4.2, we have ω2

τ2 |X c
`.τ1

∼= Ω1
X c
`,τ1

and ω2
τ1 |X c

`.τ2

∼= Ω1
X c
`,τ2

in the rational Picard group. Applying
the adjunction formula to each connected component and arguing as in §4.2, we find that X c

`,τi
.X c
`,τi

=

0, and hence ωc
τi .ω

c
τi = 0 for i = 1, 2. �

We let X0(p)` denote the special fiber of the integral model for ShK0(p)(GS,T) over F`. We note
that, since we have only changed level away from `, X0(p)` is still smooth.

Recall there are two degeneracy maps

π1, π2 : ShK0(p)(GS,T)→ ShK(GS,T).

We also write π1, π2 : X0(p)` → X` for the corresponding maps on the special fiber; both of these
maps are finite étale.

Definition 4.3.3. Let x, x′ ∈ X`(F`). We write x ∼p x
′ if there exists x̃, x̃′ ∈ X0(p)`(F`) such that

π1(x̃) = x, π1(x̃′) = x′, and π2(x̃) = π2(x̃′).

We write ∼ for the equivalence relation on X`(F`) generated by ∼p.

It is easy to see that for x ∈ X`(F`), the ∼ equivalence class of x may be identified with Yp(x) in
the notation of §3.4. Note that the roles of p and ` have been switched.

Recall we have the discrete Shimura sets GΣ∞(Q)\GΣ∞(Af )/K, GΣ∞(Q)\GΣ∞(Af )/K0(p) and
natural degeneracy maps

π1, π2 : GΣ∞(Q)\GΣ∞(Af )/K0(p)→ GΣ∞(Q)\GΣ∞(Af )/K.

Similarly to the above we may define an equivalence relation on this set by specifying x ∼p x
′ for

x, x′ ∈ GΣ∞(Q)\GΣ∞(Af )/K if there exists x̃, x̃′ ∈ GΣ∞(Q)\GΣ∞(Af )/K0(p) such that

π1(x̃) = x, π1(x̃′) = x′, and π2(x̃) = π2(x̃′).

We write ∼ for the equivalence relation generated by ∼p, and we write Yp(x) for the equivalence class
of x.

Proposition 4.3.4. For any x ∈ (GΣ∞(Q)\GΣ∞(Af )/K)c, we have

Yp(x) = (GΣ∞(Q)\GΣ∞(Af )/K)c.

Proof. Let G1
Σ∞

denote the kernel of νΣ∞ : GΣ∞ → TF . Then G1
Σ∞

is the derived group of GΣ∞ and
is simply connected. Let g ∈ GΣ∞(Af ) be a representative of (GΣ∞(Q)\GΣ∞(Af )/K)c. It is easy to
see that

(GΣ∞(Q)\GΣ∞(Af )/K)c = G1
Σ∞(Q)\G1

Σ∞(Af )gK/K

∼= G1
Σ∞(Q)\G1

Σ∞(Af )gKg−1/gKg−1;

the isomorphism is given by right multiplication by g−1.
Then Yp(x) is identified with

G1
Σ∞(Q) ∩Kp\G1

Σ∞(Qp)gKg−1/gKg−1 ⊂ G1
Σ∞(Q)\G1

Σ∞(Af )gKg−1/gKg−1.

By the strong approximation theorem, G1
Σ∞

(Q)G1
Σ∞

(Qp) is dense in G1
Σ∞

(Af ) and hence

G1
Σ∞(Q) ∩Kp\G1

Σ∞(Qp)gKg−1/gKg−1 = G1
Σ∞(Q)\G1

Σ∞(Af )gKg−1/gKg−1.

�
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4.4. Ihara’s Lemma. We now prove the main theorem of the section. We keep the notations of the
previous subsection.

Proposition 4.4.1. The map

(4.4.1) π∗1 + π∗2 : H0(X`,Ω2
X`/F`

)2 → H0(X0(p)`,Ω
2
X0(p)`/F`

)

is injective.

Proof. Let (f1, f2) be an element of the kernel. We show f1 = 0; in fact we will show f1|X c
`

= 0 for all
c ∈ ClF (K). Assume for contradiction that f1|X c

`
6= 0. Suppose f1 has a zero at a point x ∈ X c

` (Fp).
Let y, z ∈ X`(Fp) be such that

π−1
1 (x) ∩ π−1

2 (y) 6= ∅, π−1
1 (z) ∩ π−1

2 (y) 6= ∅.

Then since π∗1(f1) = −π∗2(f2), f1 has a zero at z. This implies f1 vanishes at every point of Yp(x). If
f1 vanishes at an ordinary point of X c

` , then by Theorem 3.4.1, f1|X c
`

= 0.
Therefore div(f1|X c

`
) is supported on the complement of the ordinary locus.

We first consider Case (1). Then div(f1) is supported on X ss
` .

Let us consider Dc := div(f1)|X c
`
for some c ∈ ClF (K). Then Dc is supported on X c

` ∩ X ss
` . Recall

X c
` ∩ X ss

` = X c
`,τ1
∪ X c

`,τ2
and each X c

`,τi
is a P1-fibration over (GΣ∞(Q)\GΣ∞(Af )/K)c. We let Dc

τ1

(resp. Dc
τ2) be the divisor corresponding to the sum of irreducible components in X c

`,τ1
= X`,τ1 ∩ X c

`

(resp. X c
`,τ2

= X`,τ2 ∩ X c
` ). We claim there are non-negative integers a, b such that

Dc = aDc
τ1 + bDc

τ2 .

Indeed if f1 vanishes on some irreducible component of X`,τ1 then by Proposition 4.3.4, f1 vanishes
on every irreducible component of X`,τ1 . We let hτ1 ∈ H0(X c

` , (ω
c
τ2)`

nτ1 ⊗ (ωc
τ1)−1) be a section with

divisor Dc
τ1 . The section hτ1 can be chosen to be compatible with prime-to-` level structure and so

π∗1(hτ1) = π∗2(hτ1). Then (f1h
−1
τ1 , f2h

−1
τ1 ) ∈ ker(π∗1 + π∗2). Repeating the argument we see that there

exists a such that f1h
−a
τ1 |X c

`
is non-vanishing on X c

`,τ1
. We may use the same argument for X c

`,τ2
to

obtain b such that f1h
−b
τ2 |X c

`
is non-vanishing on X c

`,τ1
. It follows that the zero-locus of f1h

−a
τ1 h

−b
τ2 |X c

`

has codimension 2 and hence is empty; this proves the claim.
Now f1 corresponds to a section of the line bundle Ω2

X`/F`
, which is isomorphic to (ωτ1)2 ⊗ (ωτ2)2

up to a torsion element of the Picard group by Corollary 2.3.3. Furthermore Dc
τ1 (resp. Dc

τ2) is the
divisor corresponding to a global section of (ωc

τ2)`
nτ1 ⊗ (ωc

τ1)−1 (resp. (ωc
τ1)`

nτ2 ⊗ (ωc
τ2)−1). Therefore

the line bundle
((ωc

τ2)`
nτ1 ⊗ (ωc

τ1)−1)−a ⊗ ((ωc
τ1)`

nτ2 ⊗ (ωc
τ2)−1)−b ⊗ Ω2

X`/F`
has a non-vanishing section; hence it must be the trivial bundle. It follows that

((ωc
τ2)`

nτ1 ⊗ (ωc
τ1)−1)a⊗ ((ωc

τ1)`
nτ2 ⊗ (ωc

τ2)−1)b⊗ (ωc
τ1)−2⊗ (ωc

τ2)−2 ∼= (ωc
τ2)a`

nτ1−b−2⊗ (ωc
τ1)b`

nτ2−a−2

is torsion in the Picard group of X`, hence pairs with any divisor to be 0. Since nτ1 , nτ2 > 0 and
` > 4, at least one of a`nτ1 − b− 2, b`nτ2 − a− 2 is non-zero.

Recall the intersection matrix for the line bundles ωc
τ1 and ωc

τ2 on X c
` is given by(

0 s`(K)
c

s`(K)
c

0

)
.

Thus (ωc
τ2)a`

nτ1−b−2 ⊗ (ωc
τ1)b`

nτ2−a−2 pairs with either ωc
τ1 or ωc

τ2 to give a non-zero number. This is
a contradiction.

We now consider Case (2). Then div(f1) is supported on X c
`,τ1
∪ X c

`,τ2
. Let Dc := div(f1)|X c

`
, and

we write Dc1
τ1 (resp. Dc

τ2) for the divisor X`,τ1 ∩ X c
` (resp. X`,τ2 ∩ X c

` ). Then

Dc = aDc
τ1 + bDc

τ2
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for some integers a, b since Dc
τ1 and Dc

τ2 are primitive divisors. Since Dc
τ1 (resp. Dc

τ2) is the vanishing
locus of a section of (ωc

τ1)`
nτ1−1 (resp. (ωc

τ2)`
nτ2−1), the same argument as in case (1) shows that

(ωc
τ1)a`

nτ1−a−2 ⊗ (ωc
τ2)b`

nτ2−b−2

is a torsion element in the Picard group of X`. Since ` > 4, a`nτ1 − a− 2 6= 0 for any value of a. Thus
intersecting with Dc

τ2 gives a non-zero number. This is a contradiction. �

Proof of Theorem 4.1.4. Let

W := H2(ShK(GS,T)Q, kλ)m, W0(p) := H2(ShK0(p)(GS,T)Q, kλ)m.

The image TW
R∪{p} of TR∪{p} in Endkλ(W ) is a local Artinian ring and miW is a finite decreasing

filtration of W . By the freeness result in Proposition 4.1.2 (2), each graded piece miW/mi+1W is a
quotient of two TR∪{p}[GF̃ ]-lattices in H2(ShK(GS,T)Q,OEλ)m. By Lemma [Dim05, Lemma 6.5] and
the Eichler–Shimura congruence relation proved by Nekovar [Nek18, A.6], the irreducible subquotients
of W are all isomorphic as Galois representations of GF̃ . The same statement holds for the irreducible
subquotients of W0(p). Using Faltings’ comparison theorem [Fal89], we may therefore check the
injectivity on the last graded pieces of the Fontaine–Laffaille filtration. By the degeneracy of the
Hodge–de Rham spectral sequence proved in [DI87], this follows from the assertion of Proposition
4.4.1.

�

Remark 4.4.2. In Case (1), there is an alternative argument to prove Theorem 4.1.4. We are grateful to
the anonymous referee for explaining this to us. In this case, we assume the two Frobenius eigenvalues
at ` are distinct. Then using the Tate conjecture for SK(GS,T), which can be proved as in [TX19],
one can deduce that (π1∗, π2∗) : W0(p)∗ → (W ∗)2 is surjective by reducing it to the surjectivity in the
case of discrete Shimura sets which is well known.

5. Abel–Jacobi map and geometric level raising

In this section we will use the results from the previous sections to construct classes in the motivic
cohomology of quaternionic Shimura varieties. We begin by recalling the definition of higher Chow
groups and the associated cycle class maps.

5.1. Higher Chow groups and `-adic cycle class maps. Let X be a smooth variety over a field
k and let ∆n denote the standard n-simplex Spec k[x0, ..., xn]/(

∑n
i=0 xi − 1). For integers n, r, we

define zr(X,n) to be the free abelian group generated by the integral closed subvarieties Z of X×∆n

such that for any face F ⊂ ∆n we have

codimX×F (Z ∩ (X × F )) ≥ r.

The groups zr(X,n) fit into a complex

(5.1.1) ...→ zr(X,n)→ zr(X,n− 1)→ ...→ zr(X, 0)→ 0

where the differential is given by taking the alternating sum of the induced face maps. The higher
Chow group Chr(X,n) is the defined to the be nth homology of the above complex. It is easy to see
that Chr(X, 0) is the standard Chow group of codimension r cycles on X. By [Voe02], we have an
isomorphism

Chj(X, 2j − i) ∼= HiM(X,Z(j))

where HiM(X,Z(j)) is the motivic cohomology group of [SV00].
We may also consider a variant of this construction by introducing coefficients. Let R be any ring

and we let Chr(X,n,R) denote the nth homology of the sequence (5.1.1) tensored with R. As before
there is an isomorphism Chj(X, 2j − i, R) ∼= HiM(X,R(j)); see [Voe02, Corollary 2]. From now on,
we will work with higher Chow groups.
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Let ` be a prime which is invertible in k, then there is an `-adic cycle class map

Chj(X, 2j − i)→ Hicont(X,Z`(j))

where Hicont(X,Z`(j)) is the continuous étale cohomology defined by [Jan88]. This coincides with the
usual cycle class map when i = 2j.

Similarly if kλ is a finite extension of F`, there is a cycle class map

Chj(X, 2j − i, kλ)→ Hi(X, kλ(j)).

Let Y → X denote a fibration with connected smooth fibers of dimension s and R any coefficient
ring. Then taking preimages of cycles under the projection Y ×∆n → X ×∆n induces a map

(5.1.2) Chr(X,n,R)→ Chr(Y, n,R).

Finally let Z ↪→ X be a closed immersion where Z is smooth and of codimension t in X. Then
pushforward of cycles along Z ×∆n → X ×∆n induces a map

(5.1.3) Chr(Z, n,R)→ Chr+t(X,n,R).

5.2. Motivic cohomology of surfaces and dual graphs. We are particularly interested in the
case of surfaces. In this case, the motivic cohomology H3

M(X,Z(2)) ∼= Ch2(X, 1) is given by the
homology of the following sequence (see [Sch00] for example):

(5.2.1) K2(k(X))
∂−→ ⊕S⊂Xk(S)×

div−−→ ⊕x∈XZ.

Here the middle sum runs over the set of irreducible curves S ⊂ X and k(X) (resp. k(S)) denotes the
field of rational functions on X (resp. S). The term K2(k(X)) denotes the second Milnor K-group of
the rational function field k(X) and the S-component of the map ∂ is the tame symbol associated to
the valuation ordS . The map div sends a rational function f on S to its divisor div(f).

There is a special case where we can understand a part of Ch2(X, 1) in a purely combinatorial way.
If k′/k is a finite extension, we write P1

k′/k for the projective line P1
k′ over k

′ considered as a k-scheme.
Therefore P1

k′/k ⊗k k can be identified with [k′ : k] copies of P1
k
corresponding to the embeddings

k′ → k. Let Y ⊂ X be a codimension 1 subvariety satisfying the following conditions:
(1) Each irreducible component S of Y is isomorphic to P1

kS/k
where kS is a finite extension of k.

(2) Any two irreducible components of Yk intersect transversally and no three components have a
common intersection point.

The non-smooth points of Yk are the intersection points of the components in Yk and it is naturally
a closed subscheme of X defined over k. We note that by (1), the irreducible components of Yk are
isomorphic to P1

k
.

Definition 5.2.1. We define Ch2
Y (X, 1) to be the subgroup of Ch2(X, 1) supported on Y . In other

words, it is generated by elements of the form
⊕

S⊂X fS where fS ∈ k(S)× is trivial unless S ⊂ Y .

We now describe how Ch2
Y (X, 1) can be interpreted in terms of the combinatorics of the configu-

ration of P1
k
’s on Yk.

Definition 5.2.2. The dual graph G associated to Yk is the unoriented graph defined by the following:
(1) The set of vertices V is identified with the set of irreducible components of Yk. For i ∈ V , we let

Si denote the corresponding irreducible component.
(2) The set of edges E is identified with the set of intersection points of two irreducible components

in Yk, where an edge e connects i, j ∈ V if e ∈ Si ∩ Sj .

The Galois group Gal(k/k) naturally acts on G and hence on the homology H1(G,Z) of the graph
G. We will define a map

Θ : H1(G,Z)Gal(k/k) → Ch2
Y (X, 1).
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To do this, we first calculate H1(G,Z). Consider the bouquet of circles G̃ given by contracting all
the elements of V . For each e ∈ E we choose an orientation of e, i.e. an ordering (v1(e), v2(e)) of the
two vertices adjacent to e. This choice determines an isomorphism

H1(G̃,Z) ∼= ZE .

We may then identify H1(G,Z) as the subgroup of ZE corresponding to the kernel of the map

d : ZE → ZV

given by
e 7→ v1(e)− v2(e).

The map Θ can then be defined as follows. Fix a basis of the free Z-module H1(G,Z)Gal(k/k) and
let m := (me)e∈E ∈ H1(G,Z)Gal(k/k) be an element of this basis. Let i ∈ V . We let Z(i), P (i) ⊂ E be
the two subsets of E defined by

Z(i) = {e ∈ E |v1(e) = i}
P (i) = {e ∈ E |v2(e) = i}.

By definition, Z(i) and P (i) are identified with subsets of points on Si.

Lemma 5.2.3. There exists an element (fmS )S⊂Y ∈
⊕

S⊂Y k(S)× such that its image (fmi )i∈V ∈⊕
i∈V k(Si)

× satisfies
div(fmi ) =

∑
e∈Z(i)

me(e)−
∑
e∈P (i)

me(e).

Proof. Let S ∼= P1
kS/k

be an irreducible component of Y . Let VS ⊂ V denote the set of irreducible
components of Sk. We consider the divisor∑

i∈VS

∑
e∈Z(i)

me(e)−
∑
i∈VS

∑
e∈P (i)

me(e)

on Sk. Since m ∈ ker(d), this divisor has degree 0 on every component Si. Moreover, it is Galois
invariant, hence there exists a function fmS ∈ k(S)× with this divisor (we note that k(S) is isomorphic
to the field of rational functions in one variable kS(x) over kS). Repeating the argument for all
components S ⊂ Y proves the lemma. �

Let (fmS )S⊂Y be an element as in the lemma above. Then we have∑
S⊂Y

div(fmS ) =
∑
i∈V

div(fmi )

=
∑
i∈V

∑
e∈Z(i)

me(e)−
∑
i∈V

∑
e∈P (i)

me(e)

=
∑
e∈E

me(e)−
∑
e∈E

me(e)

= 0.

Thus by (5.2.1), the tuple (fmS )S⊂Y gives an element of Ch2
Y (X, 1) and we define Θ(m) to be this

element. Repeating for the other basis elements and extending linearly gives the definition of Θ.
In fact the map Θ is “essentially” surjective in the following sense. Note that the choice of fmS is

well-defined up to multiplication by an element of k(S)× whose divisor is 0, i.e. an element of k×S . It
follows that Θ induces a map

(5.2.2) Θ̃ :

(⊕
S⊂Y

k×S

)
⊕H1(G,Z)Gal(k/k) → Ch2

Y (X, 1).

Proposition 5.2.4. The map Θ̃ is surjective.



32 RONG ZHOU

Proof. Let (fS)S⊂Y ∈
⊕

S⊂Y k(S)× be a representative of an element of Ch2
Y (X, 1). We write (fi)i∈V

for its image in
⊕

i∈V k(Si). Since
∑
S⊂Y div(fS) =

∑
i∈V div(fi) = 0, the divisor div(fi) can only

be supported on the intersection of Si with some other Sj , i.e. on points corresponding to elements
of E .

For each e ∈ E , let Si denote the divisor corresponding to v1(e) and define me ∈ Z to be the order
of the zero of f1 at e. Reversing the above argument, we see that m = (me)e∈E defines an element of
H1(G,Z) which is Galois invariant since div(fS) is.

By definition the Sth-component of Θ(m) has the same divisor as fS , thus we may modify Θ(m)

by an element of
⊕

S⊂Y k
×
S to get the element (fS)S⊂Y . �

We will consider an analogue of this construction with torsion coefficients. Indeed upon tensoring
with kλ we obtain a map

(5.2.3) Θ̃kλ :

(⊕
S⊂Y

k×S ⊗Z kλ

)
⊕H1(G, kλ)Gal(k/k) → Ch2

Y (X, 1, kλ)

and same proof as Proposition 5.2.4 shows that Θ̃kλ is surjective. Here we consider the abelian group⊕
S⊂Y k

×
S as a Z-module in taking the tensor product, and in defining Ch2(X, 1, kλ) we may take the

homology of the sequence (5.2.1) tensored with kλ; the subgroup Ch2
Y (X, 1, kλ) is then defined in the

same way as Definition 5.2.1.

5.3. Motivic cohomology and level raising. We keep the notations of §2.1, but now F will be
a totally real field with [F : Q] = g even and p will be a prime which is inert in F ; we let p denote
the unique prime of F above p. We let B be a quaternion algebra over F whose ramification set does
not intersect with Σp ∪ Σ∞. We will apply the construction of the previous subsections for the case
SK(G)Fpg . Specifically we are interested in the cycle class map:

(5.3.1) Chg/2+1(SK(G)Fpg , 1, kλ)→ Hg+1(SK(G)Fpg , kλ(g/2 + 1)).

Let Π be an irreducible cuspidal automorphic representation of GL2(F ) defined over E as in §4.1.
Let λ be a prime of E with underlying rational prime ` satisfying Assumption 4.1.1. Recall for R a
finite set of places of F away from which K is hyperspecial and Π is unramified, we have the prime-
to-R Hecke algebra TR and a homomorphism φΠ

R : TR → OE induced by the Hecke eigenvalues of
Π. We assume p /∈ R and we write mR ⊂ TR (resp. m ⊂ TR∪{p}) for the maximal ideal given
by (φΠ

R)−1(λ) (resp. (φΠ
R∪{p})

−1(λ)). Then TR∪{p} acts on Chg/2+1(SK(G)Fpg , 1, kλ) and the map
(5.3.1) is equivariant for this action. Localizing at m, we obtain

Chg/2+1(SK(G)Fpg , 1, kλ)m → Hg+1(SK(G)Fpg , kλ(g/2 + 1))m.

By the Hochschild–Serre spectral sequence and Proposition 4.1.2, there is an isomorphism

H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))m) ∼= Hg+1(SK(G)Fpg , kλ(g/2 + 1))m,

where H1(Fpg ,−) denotes the Galois cohomology. We let

AJm : Chg/2+1(SK(G)Fpg , 1, kλ)m → H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))m)

denote the induced map which we call the Abel–Jacobi map.
We would like to show that AJm is surjective modulo m. In fact we will identify a certain subgroup

Chg/2+1
lr (SK(G)Fpg , 1, kλ) ⊂ Chg/2+1(SK(G)Fpg , 1, kλ)

such that AJm restricted to this subgroup already surjects. Moreover as suggested by the notation,
this subgroup is related to level raising. The group Chg/2+1

lr (SK(G)Fpg , 1, kλ) is defined using the
geometry of Goren–Oort cycles as follows. We note that we may take k0 = Fpg in this section.
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Let B := B(∅, g/2 − 1) as in §2.5; thus |B| =
(

g
g/2−1

)
. Let a ∈ B, then by the discussion in §2.5,

the Goren–Oort cycle Z∅(a) is a (g/2−1)-iterated P1-bundle over the Shimura surface SK(G∅a,Ta
)Fpg

where T = ∅. We have |Σ∞ − ∅a| = 2 and we write Σ∞ − ∅a = {τi, τj}.
The Goren–Oort divisors SK(G∅a,Ta

)Fpg ,τi , SK(G∅a,Ta
)Fpg ,τj are P1-bundles over the discrete

Shimura sets SK(G∅a,τi ,Ta,τi
)Fpg and SK(G∅a,τj ,Ta,τj

)Fpg via maps πτi , πτj respectively. These
Shimura sets are isomorphic over Fpg and their Fp-points are isomorphic to

GΣ∞(Q)\GΣ∞(Af )/K.

By Proposition 2.5.1, the intersection of these two divisors SK(G∅a,Ta
)Fpg ,{τi,τj} is identified with

the discrete Shimura set SK0(p)(G∅a,τi ,Ta,τi
)Fpg and the induced diagram

SK(G∅a,τi ,Ta,τi
)Fpg

πτi←−− SK0(p)(G∅a,τi ,Ta,τi
)Fpg

ητj ◦πτj−−−−−→ SK(G∅a,τi ,Ta,τi
)Fpg

is identified with the Hecke correspondence for SK(G∅a,τi ,Ta,τi
)Fpg .

We may apply the construction of §5.2 in this setting to obtain a map

H1(G, kλ)Gal(Fp/Fpg ) → Ch2(SK(G∅a)Fpg , 1, kλ),

where G is the dual graph associated to the configuration of projective lines in SK(G∅a,Ta
)Fp,τi and

SK(G∅a,Ta
)Fp,τj . We may describe H1(G, kλ) more explicitly as follows. For any finite set S, we write

Γ(S, kλ) for the abelian group of kλ-valued functions on S. The maps πτi and ητj ◦ πτj induce maps

πτi∗, (ητj ◦ πτj )∗ : Γ(SK0(p)(G∅a,τi ,Ta,τi
)Fpg (Fp), kλ)→ Γ(SK(G∅a,τi ,Ta,τi

)Fpg (Fp), kλ)

Then H1(G, kλ) is identified with

(5.3.2)
ker
(

(πτi∗, (ητj ◦ πτj )∗) : Γ(SK0(p)(G∅a,τi ,Ta,τi
)Fpg (Fp), kλ)→ Γ(SK(G∅a,τi ,Ta,τi

)Fpg (Fp), kλ)2
)
.

We write K(a) for this kernel, and we write Θ(a) for the map

(5.3.3) Θ(a) : K(a)Gal(Fp/Fpg ) → Ch2(SK(G∅a,Ta
)Fpg , 1, kλ)

which is equivariant for the action of TR∪{p}.
Using (5.1.2) and (5.1.3) we obtain a map

(5.3.4) Ch2(SK(G∅a,Ta
)Fgp , 1, kλ)

(5.1.2)−−−−→ Ch2(Z∅(a), 1, kλ)
(5.1.3)−−−−→ Chg/2+1(SK(G)Fgp , 1, kλ)

Composing (5.3.4) and (5.3.3) and taking the direct sum over a ∈ B we obtain a map:

(5.3.5)
⊕
a∈B

K(a)Gal(Fp/Fpg ) → Chg/2+1(SK(G)Fpg , 1, kλ)

Definition 5.3.1. We define the level raising subgroup

Chg/2+1
lr (SK(G)Fpg , 1, kλ) ⊂ Chg/2+1(SK(G)Fpg , 1, kλ)

to be the image of (5.3.5).

Localizing (5.3.5) at m and composing with the map AJm we obtain a map:

Ψm :
⊕
a∈B

K(a)
Gal(Fp/Fpg )
m → H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))m)

Definition 5.3.2. A prime p is a λ-level raising prime (with respect to F,B,Π,K) if the following
four conditions are satisfied:

(1) p is inert in F and coprime to R ∪ Rλ.
(2) ` -

∏g
i=1(p2gi − 1).
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(3) φΠ
R(Tp)2 ≡ (pg + 1)2 mod λ and φΠ

R(Sp) ≡ 1 mod λ.
(4) For any a ∈ B and τi ∈ Σ∞−∅a, we have ` - (pgnK∞ − 1) where nK∞ is the order of σgp acting on

SK(G∅a,τi ,Ta,τi
)Fpg (Fp).

Remark 5.3.3. As in [LT20, Remark 4.6], it can be shown that for ` sufficiently large, there are
infinitely many λ-level raising primes with positive density as long as there are rational primes inert
in F and λ satisfies Assumption 4.1.1.

Lemma 5.3.4. Assume p is a λ-level raising prime. Then Gal(Fp/Fpg ) acts trivially on K(a)m for
any a ∈ B.

Proof. By the definition of the Galois action in §2.5 and Definition 5.3.2 (3), Gal(Fp/Fpg ) acts trivially
on K(a)/m. By Assumption 4.1.1 (1), the trivial action on K(a)m is the only lifting of the trivial
action on K(a)/m; the lemma follows. �

We will need to make the following additional assumption:

Assumption 5.3.5. Hg(ShK(G)Q, kλ)/m has dimension 2gdim(ΠB)K over kλ, where ΠB denotes the
Jacquet–Langlands transfer of Π to B ⊗Q A.

Theorem 5.3.6. Let p be a λ-level raising prime and suppose that Assumptions 4.1.1 and 5.3.5 are
satisfied. Then the induced map

(5.3.6)
⊕
a∈B

K(a)/m→ H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))/m)

is surjective.

Remark 5.3.7. In the case when [F : Q] = 2 and B = GL2(F ), the surjectivity of Ψm implies level
raising for Hilbert modular forms. Indeed in this case there is a unique a ∈ B and the description
of K(a) in (5.3.2) shows that it is identified under the Jacquet–Langlands correspondence with the
space of mod ` Hilbert modular forms of parallel weight 2 and level K0(p) which are new at p. In
particular TR∪{p} acts on K(a) via the p-new quotient as in [Rib88], whereas it is well known TR∪{p}
acts on H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))) via the p-old quotient.

Before embarking on the proof, we state an immediate corollary of Theorem 5.3.6, which is Theorem
1.1.1 of the introduction.

Corollary 5.3.8. The map AJm mod m restricted to Ch
g/2+1
lr (SK(G)Fpg , 1, kλ)/m is surjective.

�

5.4. Proof of Theorem 5.3.6. The rest of this section will be devoted to the proof of Theorem
5.3.6. For notational convenience, we will write SK(G∅a)Fpg for what was denoted SK(G∅a,Ta

)Fpg in
the previous subsection.

Recall for a ∈ B(∅, g/2− 1) we have the correspondence:

SK(G∅a)Fpg
πa←− Z∅(a) ↪→ SK(G)Fpg

where πa is a (g/2− 1)-iterated P1-bundle. This induces a Gysin map:

Gys(a) : H∗(SK(G∅a)Fp , kλ(2))→ H∗+g−2(SK(G)Fp , kλ(g/2 + 1)).

Then the map
⊕

a∈B K(a)m → H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))m) factors as
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Ch
g/2+1
lr (SK(G)Fpg , 1, kλ)m // H1(Fpg ,Hg(SK(G)Fp , kλ(g/2 + 1))m)

⊕
a∈B K(a)m //

OO

⊕
a∈B H1(Fpg ,H2(SK(G∅a)Fp , kλ(2))m)

∑
a∈B Gys(a)m

OO

where the bottom map is the composition of the direct sums of the maps Θ(a)m and the Abel–Jacobi
maps

AJ(a)m : Ch2(SK(G∅a)Fpg , 1, kλ)m → H1(Fpg ,H2(SK(G∅a)Fp , kλ(2))m).

We write Ψ(a)m : K(a)m → H1(Fpg ,H2(SK(G∅a), kλ(2))m) for this composition.

Proposition 5.4.1. The map
∑

a∈B Gys(a) mod m is surjective.

Proof. The proof is the same as in [LT20, Proof of Theorem 4.7]. The idea is to show that
∑

a∈B Gys(a)

mod m is injective; the surjectivity then follows by a dimension count.
�

Remark 5.4.2. The proof of Proposition 5.4.1 uses Definition 5.3.2 (2), Assumption 5.3.5, and the
freeness result in Proposition 4.1.2 in an essential way.

Thus in order to prove Theorem 5.3.6, it suffices to prove the following proposition.

Proposition 5.4.3. For each a ∈ B, the map

Ψ(a)m : K(a)m → H1(Fpg ,H2(SK(G∅a), kλ(2))m)

is surjective.

Fix a ∈ B. We let Σ∞ − S∞ = {τi, τj}. To ease notation, we write X = SK(G∅a)Fpg and we
write Z1 = SK(G∅a)Fpg ,τi , Z2 = SK(G∅a)Fpg ,τj for the Goren–Oort divisors. We let Z12 denote the
intersection Z1 ∩ Z2 and we write Xord for the complement of Z1 ∪ Z2 in X.

The first observation is that the map Ψ(a)m factors through a certain cohomology group with
supports.

Proposition 5.4.4. The map Ψ(a)m factors through H3
Z1∪Z2

(X, kλ(2))m. Moreover the induced map

K(a)m → H3
Z1∪Z2

(X, kλ(2))m

is surjective.

Proof. The factoring property follows from the definition of the cycle class map. Indeed we have the
following diagram with exact columns and rows

0 0

0 // L // H1(Z1 ∩ Z2 − Z12, kλ(1))
c //

OO

H0(Z12, kλ)

OO

0 // K //

a

OO

H0(Z1 ∩ Z2 − Z12,Gm)⊗Z kλ
div⊗Zkλ //

b

OO

H0(Z12, kλ).

Here H0(Z1 ∩ Z2 − Z12,Gm) is identified with the group of rational functions on Z1 ∩ Z2 with
zeros and poles only at the points in Z12, and the map div ⊗Z kλ is induced from the map taking
such a function to its divisor. The groups L and K are by definition the kernels of the maps on the
right. The map b comes from the Kummer sequence and its surjectivity follows from the fact that
Z1 ∪ Z2 − Z12 is a union of open subsets in A1

F
ph
/Fpg for g | h hence all have trivial Picard group.
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Here we write A1
F
ph
/Fpg for the affine line A1 over Fph considered as a Fpg scheme. The map div⊗Z kλ

factors through b, hence we obtain the map c.
By purity, we may identify the top row of the exact sequence with the exact sequence of the triple

(X,Z12, Z1 ∪ Z2):

H3
Z12

(X, kλ(2)) = 0→ H3
Z1∪Z2

(X, kλ(2))

→ H3
Z1∪Z2−Z12

(X − Z12, kλ(2))→ H4
Z12

(X, kλ(2)).

It is easy to see from the definition that the group Ch2
Z1∪Z2

(X, 1, kλ) is a quotient of the group K.
Then the cycle class map is induced by

K→ L ∼= H3
Z1∪Z2

(X, kλ(2))→ H3(X, kλ(2)).

To deduce the moreover part, we note that the map

K(a)m → Ch2
Z1∪Z2

(X, 1, kλ)m

is surjective. Indeed by the discussion after Proposition 5.2.4, the map( ⊕
S⊂Z1∪Z2

k×S ⊗Z kλ

)
⊕K(a)Gal(Fp/Fpg ) → Ch2

Z1∪Z2
(X, 1, kλ)

is surjective. But k×S ⊗Z kλ = 0 for all S by Definition 5.3.2 (4). It therefore suffices to show that the
map a is surjective. We write

A := Im
(
H0(Z1 ∩ Z2 − Z12,Gm)→ H0(Z12, kλ)

)
B := Im

(
H1(Z1 ∩ Z2 − Z12, kλ(1))→ H0(Z12, kλ)

)
.

The map A→ B is injective, hence by the snake lemma, a is surjective. �

Thus in order to prove Proposition 5.4.3, and hence Theorem 5.3.6, it suffices to show that the map

Φ′m : H3
Z1∪Z2

(X, kλ(2))m → H3(X, kλ(2))m

is surjective.
By the Hochschild–Serre spectral sequence, this map fits into the following diagram with exact

rows:

0 // H1(Fpg ,H2
Z1∪Z2

(XFp , kλ(2))m) //

��

H3
Z1∪Z2

(X, kλ(2))m //

Φ′m

��

H0(Fpg ,H3
Z1∪Z2

(XFp , kλ(2))m) //

��

0

0 // H1(Fpg ,H2(XFp , kλ(2))m) // H3(X, kλ(2))m // H0(Fpg ,H3(XFp , kλ(2))m) // 0.

Since H3(XFp , kλ(2))m = 0 by Proposition 4.1.2, we have an isomorphism

H3(X, kλ(2))m ∼= H1(Fpg ,H2(XFp , kλ(2))m).

The diagram above then induces a map

Φm : H0(Fpg ,H3
Z1∪Z2

(XFp , kλ(2))m)→ H1(Fpg ,H2(XFp , kλ(2))m)/H1(Fpg ,H2
Z1∪Z2

(XFp , kλ(2))m)

and surjectivity of Φ′m is equivalent to the surjectivity of Φm. It therefore suffices to prove Φm is
surjective.

We may dualize the above to obtain a map

Φ∗m :
(

H1(Fpg ,H2(XFp , kλ(2))m)/H1(Fpg ,H2
Z1∪Z2

(XFp , kλ(2))m)
)∗
→ H0(Fpg ,H3

Z1∪Z2
(XFp , kλ(2))m)∗.

Consider the exact sequence of cohomology

H1(XFp , kλ)→ H1(Z1Fp ∪ Z2Fp , kλ)→ H2
c(X

ord
Fp
, kλ)→ H2(XFp , kλ)→ H2(Z1Fp ∪ Z2Fp , kλ)
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arising from the triple Z1 ∪ Z2
i−→ X

j←− Xord. When X is the special fiber of the Hilbert modular
surface (hence non-compact), we abuse notation and write H2

c(X
ord
Fp
, kλ) for H2(XFp , j!kλ). Upon

localizing at m, H1(XFp , kλ)m = 0, and we obtain the following boundary map for the long exact
sequence of Galois cohomology:
(5.4.1)

ker
(

H0(Fpg ,H2(XFp , kλ)m)→ H0(Fpg ,H2(Z1Fp ∪ Z2Fp , kλ)m)
)
→ H1(Fpg ,H1(Z1Fp ∪ Z2Fp , kλ)m).

By Poincaré duality and the duality of Galois cohomology over finite fields, (5.4.1) is identified with Φ∗m.
We mention that in the case of Hilbert modular surfaces, we need to use the canonical isomorphism

H2(XFp , kλ)m ∼= H2
c(XFp , kλ)m,

which follows from [LS18, Corollary 5.20] and [Dim09, Theorem 2.3].
Let X0(p) be the special fiber SK0(p)(G∅a)Fpg for the Shimura variety ShK0(p)(G∅a) with Iwahori

level structure at p constructed in A.1. We claim Φ∗m can be related to a certain map relating the
geometry of X and X0(p).

By Corollary A.5.4 there is a decomposition

X0(p)Fp = X1Fp ∪ X2Fp ∪ X3Fp

where X1Fp and X2Fp are the two copies of XFp corresponding to the essential Frobenius and Ver-
schiebung isogenies respectively and X3Fp is the “supersingular locus”. For k, l,m ∈ {1, 2, 3} distinct,
we write

ik : XkFp → X0(p)Fp
ikl : XkFp ∩ X`Fp → X0(p)Fp

iklm : XkFp ∩ X`Fp ∩ XmFp → X0(p)Fp
for the closed immersions. Then we have an exact sequence of sheaves on X0(p)Fp :

0→ kλ
f−→ i1∗kλ ⊕ i2∗kλ ⊕ i3∗kλ → i23∗kλ ⊕ i13∗kλ ⊕ i23∗kλ

g−→ i123∗kλ → 0.

Here the maps are induced by (pushing forward) the usual unit maps of the adjunction. We define

C := coker(f) = ker(g).

Then the above exact sequence breaks up into two short exact sequences of sheaves on X0(p)Fp .

(5.4.2) 0→ kλ
f−→ i1∗kλ ⊕ i2∗kλ ⊕ i3∗kλ → C → 0

(5.4.3) 0→ C → i23∗kλ ⊕ i13∗kλ ⊕ i23∗kλ
g−→ i123∗kλ → 0

Taking cohomology of the sequence (5.4.2), we obtain:

0 // R // H2(X0(p)Fp , kλ)m
(i∗1 ,i

∗
2 ,i
∗
3) // H2(XFp , kλ)2

m ⊕H2(X3Fp , kλ)m

where R ∼= H1(X0(p)Fp , C)m/H
1(X3Fp , kλ)m.

Consider the map
π∗1 + π∗2 : H2(XFp , kλ)2

m → H2(X0(p)Fp , kλ)m

induced by the degeneracy maps π1, π2 : X0(p) → X. Let Rψkλ denote the nearby cycles functor
applied to the sheaf kλ on XQp . Then we have canonical isomorphisms

(5.4.4) H2(ShK(G∅a)Qp , kλ)m ∼= H2(XFp , kλ)m

(5.4.5) H2(ShK0(p)(G∅a)Qp , kλ)m ∼= H2(X0(p)Fp , Rψkλ)m,
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where these isomorphisms follow from proper base change if ShK(G∅a) and ShK0(p)(G∅a) are proper,
and [LS18, Corollary 5.20] if they are not proper.

We write
π∗1,η + π∗2,η : H2(ShK(G∅a)Qp , kλ)2

m → H2(ShK0(p)(G∅a)Qp , kλ)m

for the map induced by the degeneracy maps on the generic fiber which is injective by Theorem 4.1.4.
Then under the the identifications (5.4.4) and (5.4.5), π∗1,η + π∗2,η factors as

H2(XFp , kλ)2
m

π∗1+π∗2−−−−→ H2(X0(p)Fp , kλ)m → H2(X0(p)Fp , Rψkλ)m.

It follows that π∗1 + π∗2 : H2(XFp , kλ)2
m → H2(X0(p)Fp , kλ)m is injective.

We consider the kernel S of the composition

H2(XFp , kλ)2
m

π∗1+π∗2−−−−→ H2(X0(p)Fp , kλ)m
(i∗1 ,i

∗
2 ,i
∗
3)−−−−−−→ H2(XFp , kλ)2

m ⊕H2(X3Fp , kλ)m.

We obtain a map Ψm : S→ R which fits into the diagram:

0 // R // H2(X0(p)Fp , kλ)m
(i∗1 ,i

∗
2 ,i
∗
3) // H2(XFp , kλ)2

m ⊕H2(X3Fp , kλ)m

S

Ψm

OO

// H2(XFp , kλ)2
m

π∗1+π∗2

OO

Since π∗1 + π∗2 is injective, it follows that Ψm is injective. Therefore in order to prove Proposition
5.4.3, it suffices to prove the following proposition.

Proposition 5.4.5. The map Ψm can be identified with the map Φ∗m.

Proof. We first identify the groups S and R with the corresponding domain and codomain for the
map Φ∗m.

First note that the composition

H2(XFp , kλ)2
m

π∗1+π∗2−−−−→ H2(X0(p)Fp , kλ)m
(i∗1 ,i

∗
2)−−−−→ H2(XFp , kλ)2

m

induces the endomorphism

(5.4.6)
(

1 Fr′

Fr′S−1
p 1

)
,

where Fr′ is the essential Frobenius as defined in A.4. By Definition 5.3.2 (3) and Assumption 4.1.1
(1), this is the same as the endomorphism (

1 Fr′

Fr′ 1

)
.

By Proposition A.4.2 and Definition 5.3.2 (3), Fr′2 = Frp the pg-Frobenius, thus we may identify the
kernel of (5.4.6) with the image of the injective map

H0(Fpg ,H2(XFp , kλ))m ∼= H2(XFp , kλ)
Frp=1
m

(−Fr′,id)−−−−−−→ H2(XFp , kλ)2
m.

Therefore we have an identification

S ∼= ker

(
H0(Fpg ,H2(XFp , kλ))m → H2(X0(p)Fp , kλ)m

i∗3−→ H2(X3Fp , kλ)m

)
.

The map in the above equation factors as

H0(Fpg ,H2(XFp , kλ))m → H2(Z1Fp ∪ Z2Fp , kλ)m ↪→ H2(X3Fp , kλ)m
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Here the second map is an injection by [Liu19, Lemma 3.26 (2)] since X3Fp
∼= Z1Fp ∪ Z2Fp where

Z1Fp and Z2Fp are P1-fibrations over Z1Fp and Z2Fp respectively and the intersection Z1Fp ∩ Z2Fp is
0-dimensional. Therefore we may identify S with the domain in the definition of Φ∗m.

Consider the following commutative diagram of Gal(Fp/Fpg )-modules with exact rows:

H2
c(X

ord
Fp
, kλ)m

π∗2−π
∗
1Fr′

��

// H2(XFp , kλ)m

π∗2−π
∗
1Fr′

��
0 // H1(X3Fp , kλ)m

α //

∆

��

H2
c(X

ord
Fp
, kλ)2

m
// H2(X0(p)Fp , kλ)m

i∗3 //

(i∗1 ,i
∗
2)

��

H2(X3Fp , kλ)m

∆′

��
0 // H1(Z1Fp ∪ Z2Fp , kλ)2

m

γ⊕γ // H2
c(X

ord
Fp
, kλ)2

m
// H2(XFp , kλ)2

m

δ⊕δ // H2(Z1Fp ∪ Z2Fp , kλ)2
m.

Here the middle row is the exact sequence of cohomology arising from the triple

X3Fp
i3−→ X0(p)Fp ← X0(p)Fp −X3Fp

∼= Xord tXord.

The maps ∆ and ∆′ are induced by the inclusion maps i12, i13.
Now recall Φ∗m is identified with the coboundary map after taking cohomology of the short exact

sequence:

(5.4.7) 0→ H1(Z1Fp ∪ Z2Fp , kλ)m
γ−→ H2

c(X
ord
Fp
, kλ)m → coker(γ)→ 0.

To identify R with the codomain H1(Fpg ,H1(Z1Fp ∪ Z2Fp , kλ))m, note that by definition we have a
canonical identification

R ∼= ker

(
coker(α)

(i1∗,i2∗)−−−−−→ coker(γ ⊕ γ)

)
.

We then use the snake lemma applied to the diagram:

0 // H1(X3Fp , kλ)m
α //

∆

��

H2
c(X

ord
Fp
, kλ)2

m
// coker(α) //

��

0

0 // H1(Z1Fp ∪ Z2Fp , kλ)2
m

γ⊕γ // H2
c(X

ord
Fp
, kλ)2

m
// coker(γ ⊕ γ) // 0

to deduce an isomorphism

R ∼= H1(Z1Fp ∪ Z2Fp , kλ)m ∼= H1(Fpg ,H1(Z1Fp ∪ Z2Fp , kλ)m)

where we have identified coker(∆) with H1(Z1Fp ∪ Z2Fp , kλ)m via projection onto the second factor
and the second isomorphism follows from Definition 5.3.2 (3) and Assumption 4.1.1, which implies
Gal(Fp/Fpg ) acts trivially on H1(Z1Fp ∪Z2Fp , kλ)m. Using these identifications, we may now compare
the maps Φ∗m and Ψm.

Let x ∈ S ⊂ H0(Fpg ,H2(XFp , kλ))m. We will compute Ψm(x) ∈ R considered as an element of
coker(∆) ∼= H1(Z1Fp ∪ Z2Fp , kλ)m and show that it coincides with the image under the coboundary
map of (5.4.7).

To compute Ψm(x) we let x̃ ∈ H2
c(X

ord
Fp
, kλ)m be a lift of x, which exists since x maps to 0 in

H2(Z1Fp ∪ Z2Fp , kλ)m. Moreover we may assume x̃ is fixed by Sp since Sp acts semi-simply on
H2
c(X

ord
Fp
, kλ)m. Then π∗2(x̃) − π∗1Fr

′(x̃) ∈ H2
c(X

ord
Fp
, kλ)2

m is an element lifting π∗2(x) − π∗1Fr
′(x) ∈

ker(i∗1, i
∗
2), hence comes from an element

c(x̃) ∈ H1(Z1Fp ∪ Z2Fp , kλ)2
m.
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By definition, Ψm(x) is the image of π∗2(x)− π∗1Fr′(x) ∈ ker(i∗1, i
∗
2) in coker(∆). Therefore the image

of c(x̃) is identified with Ψm(x).
However we also have

π∗2(x̃)− π∗1Fr
′(x̃) = (S−1

p Fr′(x̃), x̃)− (Fr′(x̃),Frp(x̃)) ∼= (0, (1− Frp)(x̃)).

By definition of the coboundary map, the image of this element in coker(∆) ∼= H1(Z1Fp ∪Z2Fp ,Λ)m is
equal to Φ∗m(x). �

We finish by stating the following corollary.

Corollary 5.4.6. Let p be a λ-level raising prime and suppose that Assumption 4.1.1 is satisfied.
Then the cycle class map

H3
M(SK(G∅a)Fpg , kλ(2))m → H3(SK(G∅a)Fpg , kλ(2))m

is an isomorphism.

Proof. The surjectivity follows from Proposition 5.4.3. The injectivity is [Voe11, Theorem 6.17]. �

Appendix A. Bad reduction of quaternionic Shimura surfaces

In this appendix we give a global description of the special fiber of certain quaternionic Shimura
surfaces with Iwahori level structure at p. These are associated to the group GS with |Σ∞− S∞| = 2.
The idea is that only the two places Σ∞−S∞ should contribute to the geometry, and thus the structural
results we obtain are completely analogous to the results of Stamm [Sta97] in the case of the Hilbert
modular surface. Indeed the proofs are also completely analogous, with some extra technical difficulties
since we must transfer the results from unitary Shimura varieties. The key difference is that we must
replace the notion of the usual notion of Frobenius and Verschiebung in the case of Hilbert modular
surfaces with the notion of essential Frobenius and Verschiebung. For this reason, we will refer to
[Sta97] for some of the computations, because they are exactly the same.

A.1. Moduli interpretation and local models. We keep the notation of §2.1. In particular B/F
is a totally indefinite quaternion algebra and S ⊂ Σp ∪ Σ∞ a set of even cardinality. In fact in this
section we will make the following further assumptions.

Assumption A.1.1. (1) g := [F : Q] is even and the prime p is inert in F .
(2) p /∈ S and |Σ∞ − S∞| = 2.

We write p for the unique prime of F above p. We will also exclude the case B = GL2(F ) and g = 2,
i.e. the case of the Hilbert modular surfaces as this case is already covered in [Sta97]. In particular
this assumption implies the Shimura varieties we consider are compact. We fix an identification
Σ∞ ∼= {τ1, . . . , τg} such that σ(τi) = τi+1 for i = 1, . . . , g − 1 and σ(τg) = 1, and Σ∞ − S∞ = {τ1, τc}
for some c ∈ {2, . . . , g}.

Fix a subset T ⊂ S∞ such that 2|T| = |S| and let Kp be the standard hyperspecial subgroup of
(BS ⊗F Fp)× ∼= GL2(Fp). We also define K0,p to denote the following compact open subgroup

K0,p =
{(a b

c d

)
∈ GL2(OFp

)
∣∣∣ (a b

c d

)
≡
(
∗ ∗
0 ∗

)
mod p

}
;

it is an Iwahori subgroup of GL2(Fp).
For Kp sufficiently small, we define K = KpK

p and K0(p) = K0,pK
p. We then have the Shimura

varieties ShK0(p)(GS,T), ShK(GS,T) defined over the common reflex field ES,T. These are equipped
with finite étale maps

π1, π2 : ShK0(p)(GS,T)→ ShK(GS,T).

Using a similar procedure as in §2.2, we may define an integral model for ShK0(p)(GS,T) as follows.
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We fix a choice E/F of CM-extension and a pair S̃ = (S, S̃∞) as in §2.2; in particular E is split
over the prime p and we write q and q for the primes above p. We make the following assumption on
S̃∞.

Assumption A.1.2. Let τ̃ ∈ ΣE,∞/q be a lift of τ ∈ Σ∞/q. Then τ̃ ∈ S̃∞ if and only if τ ∈ T.

We let DS := BS⊗F E andW := DS considered as a left DS-module of rank 1. ThenW is equipped
with a pairing ψ of (2.2.2). Recall the associated groups G′

S̃
and G′′

S̃
which fit in the diagram

GS ← GS × TE → G′′
S̃
← G′

S̃

We let K ′′0,p denote the image of K0,p ×KE,p in G′′
S̃
(Qp).

To define the level structures for G′
S̃
, note that an element gp ∈ G′S̃(Qp) corresponds to an element

of End(W ⊗Q Qp) such that

ψ(vgp, wgp) = c(gp)ψ(v, w), ∀v, w ∈W ⊗Q Qp.

Here we abuse notation so that ψ also denotes the base change of the pairing ψ to Qp. We fix an
isomorphism OBS

⊗OF OFp
∼= Mat2(OFp

) which induces an identification

ODS ⊗F Fp
∼= Mat2(OEq

)×Mat2(OEq
).

We then define the following lattice chain Λ1,p ⊂ Λ2,p of ODS ⊗F Fp-modules where

Λ1,p =

(
Oq q

Oq q

)
⊕
(
Oq Oq

Oq Oq

)
, Λ2,p =

(
Oq Oq

Oq Oq

)
⊕
(
q−1 Oq

q−1 Oq

)
.

Let K ′0,p ⊂ G′
S̃
(Qp) denote the compact open subgroup stabilizing the lattice chain Λ2,p ⊂ Λ1,p.

We fix an ODS lattice Λ1 of W such that Λ1 ⊗Z Zp = Λ1,p. For a sufficiently small compact open
subgroup of K ′p ⊂ G′

S̃
(Apf ) (resp. K ′′p ⊂ G′′

S̃
(Apf )) which stabilizes Λ1 ⊗Z Z(p), we write K ′0(p) (resp.

K ′′0 (p)) for the compact open subgroup K ′0,pK ′p ⊂ G′S̃(Af ) (resp. K ′′0,pK ′′p ⊂ G′′S̃(Af )). We then have
the associated Shimura varieties ShK′0(p)(G

′
S̃
), ShK′′0 (p)(G

′′
S̃
) over the common reflex field ES̃, and the

inverse limit schemes:

ShK′0,p(G′
S̃
) := lim

←K′p
ShK′0(p)(G

′
S̃
), ShK′′0,p(G′′

S̃
) := lim

←K′′p
ShK′′0 (p)(G

′′
S̃
).

These Shimura varieties are equipped with finite étale maps

π′1, π
′
2 : ShK′0(p)(G

′
S̃
)→ ShK′(G′S̃)

π′′1 , π
′′
2 : ShK′′0 (p)(G

′′
S̃
)→ ShK′′(G′′S̃).

As before we also have the identification of neutral connected components:

ShK0,p
(GS,T))◦Qp

∼←− ShK′′0,p(G′′
S̃
)◦Qp

∼−→ ShK′0,p(G′
S̃
)◦Qp

.

In fact these isomorphisms descend to Qur
p , and this will allow us to transfer the integral models that

we will construct.
In order to define integral models, we follow the procedure in [RZ96] adapted to our situation.
We first make the following definition.

Definition A.1.3. Let A/S be the abelian variety associated to some point of ShK′(G
′
S̃
). A cyclic

isogeny
ρ : A→ A′

is an isogeny of abelian varieties over S such that the kernel of ρ is an ODS
-stable subgroup Hq ⊕Hq

of A[q]⊕A[q] of order |kp|4 such that Hq and Hq are dual to one another under the pairing

Hq ×Hq → µp

induced by the polarization. Moreover we require that the induced action of ODS
on A′ to satisfy the

condition (2.3.1).
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We now consider the moduli problem ShK′0(p)(G
′
S̃
) that associates to an OES̃,ṽ

-scheme S the set of
isomorphism classes of tuples (ρ : A→ A′, ι, λ, εK′p) where :
• (A, ι, λ, εK′p) is an S-point of ShK′(G′S̃).
• ρ : A→ A′ is a cyclic isogeny.
Then ShK′0(p)(G

′
S̃
) is representable by a quasi-projective variety over OES̃,ṽ

and it is an integral
model for ShK′0(p)(G

′
S̃
). The two degeneracy maps extend to maps also denoted π1, π2 of OES̃,ṽ

-
schemes:

π1, π2 : ShK′0(p)(G
′
S̃
)→ ShK′(G

′
S̃
).

These maps can be described explicitly in terms of the moduli interpretation as follows. π1 sends
the tuple (ρ : A → A′, ι, λ, εK′p) to (A, ι, λ, εK′p). To define π2, note that given a tuple (ρ : A →
A′, ι, λ, εK′p), since Hq ⊕Hq := ker(ρ) is ODS-stable, the action of ODS on A extends to an action of
A′. Moreover the polarization λ and level structure εK′p induce a polarization λ′ and level structure
ε′K′p on A′; here λ′ satisfies pλ = ρ∨ ◦ λ′ ◦ ρ. It is easy to check the tuple (A′, i′, λ′, ε′K′p) satisfies the
conditions defining a point of ShK′(G′S̃). This defines the map π2.

In order to transfer the integral model to the quaternionic side, we can use the construction in
[TX16, §2]. Note however that since the models we construct do not satisfy the correct extension
property, there is a subtlety in defining the Gad(Q)+-action on the integral model. We may instead
use a direct description of this action as in [KP18, §4.4] by twisting abelian varieties; the rest of the
argument then goes through and we obtain an integral model ShK0(p)(GS,T) for ShK0(p)(GS,T) over
OES̃,ṽ

.

Remark A.1.4. Alternatively, we may use [TX16, Corollary 2.13] to define a universal p-divisible
group with D◦-structure over ShK(GS,T)OE

S̃,ṽ
in the sense of Definition A.3.2. We may then define

ShK0(p)(GS,T) as classifying cyclic isogenies of this universal p-divisible group. We refer to [Car86] for
the details in the case of Shimura curves. We prefer to transfer the results from the unitary Shimura
variety since in this case we may directly apply theorems which are known for certain PEL type
Shimura varieties.

The integral model ShK0(p)(GS,T) is equipped with degeneracy maps

π1, π2 : ShK0(p)(GS,T)→ ShK(GS,T).

Note also that we are not interested in any canonicity properties of these models. The only thing we
use is the existence of such a model with the necessary geometric properties that we will describe in
this section. The integral model ShK0(p)(GS,T) is constructed from the connected component

ShK0,p
(GS,T)◦Zur

p

∼−→ ShK′0,p(G′
S̃
)◦Zur
p

and the action of a certain group EGS,T,p, cf. [TX16, 2.11].
For ease of notation, we shall write X ′ for the special fiber of ShK′(G

′
S̃
) and X ′0(p) for the spe-

cial fiber of ShK′0(p)(G
′
S̃
). We will also write X and X0(p) for the special fibers of ShK(GS,T) and

ShK0(p)(GS,T) respectively.
We begin with a few basic facts concerning these moduli spaces.

Proposition A.1.5. (1) ShK′0(p)(G
′
S̃
) is a flat normal scheme over OES̃,ṽ

with reduced special fiber.
(2) Each irreducible component of X ′0(p) is smooth of dimension 2.

Proof. Both of these properties follow from the corresponding properties of the local models; see
[Gör01]. �

A.2. Group theoretic preliminaries. Let G be a reductive group over Zp; in particular its generic
fiber is quasi-split and splits over an unramified extension of Qp. Let k be an algebraically closed
field of characteristic p, L := W (k)[ 1

p ] and OL = W (k). We write σ for the Frobenius element of
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Aut(L/Qp). We fix a maximal Qur
p -split torus T and a Borel subgroup B containing G. We let

X∗(T ) (resp. X∗(T )) denote the group of cocharacters (resp. characters) of T , and X∗(T )+ (resp.
X∗(T )+) the submonoid of dominant cocharacters (resp. characters) with respect to the choice of
Borel subgroup B.

For b ∈ G(L) we let [b] = {g−1bσ(g) ∈ G(L)|g ∈ G(L)} denote its σ-conjugacy class in G(L) and we
write B(G) to denote the set of all σ-conjugacy classes. The set B(G) has been classified by Kottwitz
in [Kot97].

For b ∈ G(L) we let νb ∈ X∗(T )σQ,+ denote its dominant Newton cocharacter; it depends only on
the image of b in B(G). We let

κG : G(L)→ π1(G)Γ

denote the Kottwitz homomorphism, where Γ := Gal(Qp/Qp) and π1(G)Γ denotes the Γ-coinvariants
of π1(G). This induces a map, also denoted κG from B(G) to π1(G)Γ.

By [Kot97, §4.13], the map

B(G)→ X∗(T )σQ,+ × π1(G)Γ, [b] 7→ (νb, κG(b))

is injective.
We define a partial order on the set X∗(T )σQ,+ × π1(G)Γ by setting (ν1, κ1) ≤ (ν2, κ2) if κ1 = κ2

and ν2 − ν1 is a non-negative rational linear combination of positive coroots.

Example A.2.1. (1) Let G = GLn. Then we have a bijection

B(G)↔ {isocrystals over k of height n}

given by taking [b] ∈ B(G) to the isocrystal (Ln, bσ). We may take T to be the diagonal matrices
and B the upper triangular matrices. There is an identification X∗(T ) ∼= Qn and we have π1(G) ∼=
Z. The first isomorphism identifies

X∗(T )Q,+ ↔ {(ν1, . . . , νn) ∈ Qn|ν1 ≥ . . . ≥ νn) ∈ Qn

and κG takes b ∈ G(L) to the valuation of its determinant. For [b] ∈ B(G), the element νb
corresponds under the above identification to the Newton slopes of the associated isocrystal. In
this case κG(b) is determined by the νb, and Kottwitz’s classification recovers the Dieudonné–
Manin classification of isocrystals by their Newton slopes.

(2) Let F denote a finite unramified extension of Qp of degree d and let G = ResOF/Zp GLn. As in
the previous example, the association [b] 7→ (F ⊗Qp L, bσ) defines a bijection between B(G) and
the set of isocrystals of height dn with an action of F. Given such an isocrystal N , we have a
decomposition

N ∼=
∏

τ :F→L
Nτ

where Nτ is the subspace of N over which F acts via the embedding τ : F→ L. As Nτ is fixed by
b ∈ G(L) and σ induces a bijection between Nτ and Nστ , it follows that (bσ)d takes Nτ to itself.
This gives Nτ the structure of a σd-isocrystal which is easily seen to be independent of the choice
of τ . One checks that the association N 7→ Nτ induces a bijection

{isocrystals of height dn with an action of F} ↔ {σd-isocrystals of height n}.

We let T denote the diagonal torus and B the Borel subgroup of upper triangular matrices.
We have an identification

X∗(T )σQ
∼= Qn

identifying
X∗(T )σQ,+ ↔ {(ν1, . . . , νn)|ν1 ≥ . . . ≥ νn}.

For [b] ∈ B(G), the Newton cocharacter νb corresponds under the above identification to the
slopes of the σd-isocrystal (Nτ , (bσ)d).
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By the Cartan decomposition we have an identification

G(L) ∼=
∐

µ∈X∗(T )+

G(OL)µ(p)G(OL).

Now fix a cocharacter µ ∈ X∗(T )+. We define µ ∈ X∗(T ) to be the Galois average of µ. More precisely
we take a Galois extension E/Qp over which µ is defined and we define

µ =
1

[E : Qp]
∑

τ∈Gal(E/Qp)

τ(µ).

We also define µ\ to be the image of µ in π1(G)Γ.

Proposition A.2.2 ([RR96, Thm. 4.2]). Let b ∈ G(OL)µ(p)G(OL). Then we have

(νb, κG(b)) ≤ (µ, µ\).

A.3. p-divisible groups with O-structure and Dieudonné theory. In this subsection we recall
the notion of p-divisible groups with an action of the ring of integers of a finite unramified extension
of Qp.

Let F be a finite unramified extension of Qp of degree d with ring of integers O. We let q = pd

denote the cardinality of its residue field.

Definition A.3.1. Let S be a scheme. A p-divisible group with O-structure over S is a pair (G , ι)
where G is a p-divisible group over S and ι : O → End(G ) is a homomorphism.

For any p-divisible group with O-structure (G , ι), we write G [pn] for the kernel of multiplication
by pn. Then there exists an integer h := htOG , the O-height of G , such that G [pn] has rank qnh. It
is easily verified that we have the equality

htG = [F : Qp]htOG

where htG is the usual height of G as a p-divisible group.
Let S be a scheme in which p is locally nilpotent. For G a p-divisible group over S, we write D(G )

for the contravariant Dieudonné crystal of G . This is a locally free crystal on the crystalline site of S,
equipped with a map σ∗D(G )→ D(G ).

Now suppose G is a p-divisible group with O-structure over an algebraically closed field k of
characteristic p of O-height n. Then we identify D(G ) with its Dieudonné module (i.e. D(G ) evaluated
at OL := W (k)) which is a finite free OL-module of rank dn equipped with an injective σ semi-linear
map ϕ : D(G )→ D(G ) and an action of O. Fixing an O⊗Zp OL-basis of D(G ), we obtain an element
b ∈ G(L) where G = ResO/Zp GLn, such that ϕ = bσ under the identification D(G ) ∼= (OF ⊗Zp OL)n.
The element b is well-defined up to σ-conjugation by G(OL).

We define the Hodge polygon of G to be the element µ ∈ X∗(T )+ such that

b ∈ G(OL)σ(µ(p))G(OL).

By Proposition A.2.2, it follows that (νb, κG(b)) ≤ (µ, µ\). If S is a scheme of characteristic p, its
Hodge polygon (resp. Newton polygon) is the function assigning to any geometric point s of S the
Hodge polygon (resp. the Newton polygon) of the base change of G to s.

We now describe how the study of p-divisible groups which arise naturally from the moduli problem
in the last subsection can be reduced to the case of p-divisible groups with O-structure. Recall we
have the integral PEL datum (ODS

⊂ DS, ∗,W, ψ,Λ1) and we write D for the base change of this
datum to Zp. Recall g = [F : Q]. Let DS,p denote the completion of DS at the place p and Fp (resp.
Ep) the completion of F (resp. E) at p. Then Fp ∼= Fp and Ep ∼= Eq ×Eq; we write O for the ring of
integers OFp

. Fixing isomorphisms Eq
∼= Fp and Eq

∼= Fp, we obtain an isomorphism

DS,p
∼= Mat2(Eq)×Mat2(Eq) ∼= Mat2(Fp)×Mat2(Fp).
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Let ODS,p
denote the maximal order Mat2(O) × Mat2(O). Then the involution ∗ on DS,p can be

identified with
(a, b) 7→ (bt, at).

Recall we have defined the notion of p-divisible group with D-structure in Definition 3.2.1. It
follows easily from the definitions that if (A, ι, λ, εK′p) is an S-point of ShK′(G

′
S̃
), then the associated

p-divisible group A[p∞] together with the induced ODS,p
-action and polarization is a p-divisible group

with D-structure.
We write W 1 for the sub Fp vector space over which DS,p acts via the first factor, and we write W ◦

for subspace eW 1 where e is the idempotent
(

1 0

0 0

)
. We define an integer sτ ∈ {0, 1, 2} for τ ∈ S∞

by

sτ =


0 if τ ∈ T

2 if τ ∈ S∞ − T

1 otherwise
.

Definition A.3.2. Let S be scheme over OES̃,ṽ
. A p-divisible group with D◦-structure is a p-divisible

group G with O-structure such that

(1) htOG = 2.
(2) For a ∈ O, we have an equality:

(A.3.1) char(ι(a)|LieG ) =
∏
τ∈Σ∞

(T − τ(a))sτ .

Let G /S be a p-divisible with D-structure. Then we have a decomposition

G = Gq × Gq

where ODS,p acts on Gq via the projection to Mat2(Eq) and on Gq via the projection to Mat2(Eq).
Moreover by [Ham15, Lemma 4.1], there exists a p-divisible group G ′ with O-structure such that
Gq
∼= G ′2. The condition (3.2.1) and the Assumption A.1.2 implies that G ′ is a p-divisible group with

D◦-structure.
The following proposition follows from the discussion above and [Ham15, Corollary 4.5 (2)].

Proposition A.3.3. The association G 7→ G ′ induces an equivalence of categories

(A.3.2) {p-divisible groups with D-structure} ∼−→ {p-divisible groups with D◦-structure}

preserving isogenies. �

Let G ′ be a p-divisible group with D◦-structure over an algebraically closed field k of characteristic
p. Fixing a trivialization of D(G )(W (k)) respecting the O-structure, we obtain an element b ∈ G(L)

where G = ResO/Zp GL2. Let T be the diagonal maximal torus of G, then we may identify X∗(T )

(resp. X∗(T )Q) with g copies of Z2 (resp. g copies of Q2) and X∗(T )+ (resp. X∗(T )Q,+) with the
subset such that for each factor of Z2 (resp. Q2), the terms (a, b) are decreasing. The condition A.3.1
implies that the Hodge polygon µ of G corresponds to [(ai, bi)]i=1,...,g where

ai =

{
1 if i = 1, c or τi ∈ S∞ − T

0 if τi ∈ T

bi =

{
1 if τi ∈ S∞ − T

0 if i = 1, c or τi ∈ T.

We write µ ∈ X∗(T ) for this cocharacter.

Proposition A.3.4. (1) There exists exactly two elements [b] ∈ B(G,µ).
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(2) For the maximal element [µ(p)], there exists a unique p-divisible group with O-structure with these
Newton slopes.

Proof. (1) It is easy to check using the explicit description of µ that under the identification X∗(T )σ ∼=
Q2, that the only two elements of B(G, {µ}) correspond to νord = ( g+1

2 , g−1
2 ) and νss = ( g2 ,

g
2 ). Here

we use the fact that 2|T| = |S|.
(2) This is [Moo04, Theorem 3.2.7]; note in this case the Newton cocharacter is νord. �

We say a p-divisible group G /k with D◦-structure is ordinary (resp. supersingular) if the corre-
sponding Newton vector is equal to νord (resp. νss). Similarly a p-divisible group G with D-structure
is ordinary (resp. supersingular) if the corresponding p-divisible group with D◦-structure is. For k
an algebraically closed field of characteristic p, we write G ord for the unique isomorphism class of
ordinary p-divisible groups from part (2) of Proposition A.3.4.

If AX′ denotes the universal abelian variety over X ′, we write X ′ss (resp. X ′ord) for the locus
where AX′ [p∞] is supersingular (resp. ordinary). Similarly if A → A′ denotes the universal cyclic
isogeny over X ′0(p), we define X ′0(p)ss (resp. X ′0(p)ord) as the locus where A[p∞] (equivalently A′[p∞])
is supersingular (resp. ordinary). Then X ′ss is the union of the Goren–Oort divisors corresponding
to τ1 and τc; see [LT20, §3] for example.

Proposition A.3.5. Let x ∈ X ′0(p)ord(Fp). Then x is a smooth point of X ′0(p).

Proof. The local model in this case has a stratification by the µ-admissible set Adm({µ}) and this
induces a stratification of X ′0(p)Fp , cf. [HZ20, §9]. The strata corresponding to translation elements
are all smooth. By [HN17, Theorem 2.6], X ′0(p)ord is contained in these strata, hence x is a smooth
point of X ′0(p). Note that the Axioms of [HR17] for these Shimura varieties have been verified in
[HZ20] so that [HN17, Theorem 2.6] is applicable. �

Definition A.3.6. Let (G , λ, ι) and (G ′, λ′, ι′) be p-divisible groups with D-structure over S. A cyclic
isogeny between G and G ′ over S is an isogeny f : G → G ′ such that
• f is compatible with the actions ι, ι′ and we have pλ = f∨ ◦ λ′ ◦ f .
• ker(f) = Kq⊕Kq ⊂ Gq[q]⊕Gq[q] is of order |kp|4 and Kq is dual to Kq under the pairing induced

by λ.
Similarly, for p-divisible groups with D◦-structure G and G ′ over S, a cyclic isogeny between G

and G ′ is an isogeny f : G → G ′ such that:
• f is compatible with the action of O on G and G ′.
• ker(f) ⊂ G [p] is of order |kp| .

One can check that under the equivalence of categories in Proposition A.3.3, the cyclic isogenies
correspond to one another. Moreover if (A, ι, λ, εK′p) is an S-point of ShK′(G

′
S̃
), then a cyclic isogeny

A→ A′ corresponds precisely to a cyclic isogeny of the associated p-divisible group.

A.4. Essential Frobenius and Verschiebung isogenies. In this section we define two canonical
cyclic isogenies associated to a point in X ′. These isogenies will define sections to the projections
π1, π2 : X ′0(p)→ X ′ analogous to the Frobenius and Verschiebung isogenies in the case of the Hilbert
modular surface (see [Sta97, §4]). For this reason we will call these isogenies the essential Frobenius
and essential Verschiebung isogenies respectively.

We let q = pg and let (A, ι, λ, εK′p) correspond to an S-point of X ′ where S is a smooth Fq-
scheme. We first define the essential Frobenius isogeny A → A′. Note that in order to define a
cyclic isogeny it suffices to define a cyclic isogeny of the associated p-divisible group G := A[p∞]. Let
G = (G ′)2 × (G ′∨)2 denote the decomposition of G coming from Proposition A.3.3; then it suffices to
define a cyclic isogeny of G ′. In order to do this we introduce some notation.



MOTIVIC COHOMOLOGY OF QUATERNIONIC SHIMURA VARIETIES AND LEVEL RAISING 47

Let k be a perfect field of characteristic p and R a smooth k-algebra. By a frame for R we mean
a p-adically complete and separated flat W (k)-algebra lifting R together with a lift of Frobenius
σ : R → R.

A Dieudonné F -crystal over R is a quadruple (M,F, V,∇) where
• M is a finite locally free R module.
• F : σ∗M →M and V : M → σ∗M are injective R-linear maps such that FV = p and V F = p.
• ∇ is a topologically nilpotent integrable connection such that F is parallel for ∇.
If G is a p-divisible group over R, then by [dJ95] D(G )(R) is a Dieudonné F -crystal and the

association G 7→ D(G )(R) induces an anti-equivalence of categories between p-divisible groups over R
and Dieudonné F -crystals. Similarly the association induces an anti-equivalence of categories between
p-divisible groups with O-structure and Dieudonné crystals with an action of O.

It will follow from the canonicity of the construction that we may assume S is affine, since we may
glue the construction over an affine cover. Thus let S = Spec R be a smooth Fq-scheme and R a frame
for R as above. Then in order to define a cyclic isogeny, it suffices to find an R-lattice M ⊂ D(G )(R)

satisfying the following conditions:
(1) M is stable for the action of O
(2) M is stable under F, V,∇.
(3) We have the inclusions pD(G )(R) ⊂M ⊂ D(G )(R).
(4) (A.3.1) holds for the module M/VM .
We now construct such an R-lattice. For τ ∈ Σ∞, we identify this with an embedding τ : O →

W (Fq) and we let D(G )(R)τ the submodule where O acts via τ . Similarly to §2.4 we define the
essential Verschiebung to be

Ves,τ : D(G )(R)τ → D(G )(R)σ−1(τ)

to be the usual Verschiebung if σ−1(τ) /∈ S∞ or σ−1(τ) ∈ S∞ − T and the inverse of Frobenius if
σ−1(τ) ∈ T . For τ ∈ Σ∞, let nτ be the smallest positive integer such that σ−nτ (τ) /∈ S∞. We
define Mτ ∈ D(G )(R)τ to be the preimage of pD(G )(R)σ−nτ (τ) under the map V nτes . Then we define
M :=

⊕
τ∈Σ∞

Mτ . Then M is a locally free R-submodule of D(G )(R) of full rank.

Proposition A.4.1. M ⊂ D(G )(R) satisfies the properties (1), (2), (3), (4), above.

Proof. (1) is clear since M is a direct sum of locally free submodules of D(G )(R)τ . To show M is
stable under F , we must show F (Mτ ) ⊂Mσ(τ). We consider the separate cases τ ∈ S∞ and τ /∈ S∞.
If τ ∈ S∞, we have

V
nσ(τ)
es |D(G )(R)τ = V nτes ◦ Ves,σ(τ)

and Ves,σ(τ) is the usual Verschiebung or the inverse of Frobenius. Since V F = p, we have Ves,σ(τ)FMτ ⊂
Mτ and hence FMτ ⊂ V −1

es,σ(τ)Mτ = Mσ(τ).
In the second case we have

Mσ(τ) = V −1
es,σ(τ)(pD(G )(R)τ ) = F (D(G )(R)τ ).

Since
Mτ = (V nτes )−1(pD(G )(R)σnτ (τ)) ⊂ D(G )(R)τ ,

we have F (Mτ ) ⊂Mσ(τ). The verification of the stability for V follows similarly.
The stability under ∇ follows from the stability of pD(G )(R)τ under ∇ and the fact that F and V

are horizontal for ∇. It follows that (2) is satisfied.
(3) follows from the inclusions

pV D(G )(R)σ(τ) ⊂ pD(G )(R)τ ⊂ V D(G )(R)σ(τ)

for τ ∈ Σ∞ − S∞.
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(4) is equivalent to the condition

dim(M/VM)τ =


1 if τ ∈ Σ∞ − S∞

0 if τ ∈ S∞ − T

2 if τ ∈ T

which follows similarly. �

It follows that M corresponds to a p-divisible group G (p′) equipped with a cyclic isogeny Fr′ : G →
G (p′). We define G (p′) to be the essential Frobenius twist of G and Fr′ to be the essential Frobenius
isogeny. Similarly we may define the essential Verschiebung

Ver′ : G (p′) → G ′

to be defined by the submodule
pD(G )(R) ⊂M.

It follows from the definition that Fr′ ◦Ver′ = p and Ver′ ◦ Fr′ = p.
Let A be the universal abelian scheme over X ′. Taking a cover of X ′ by smooth affine opens and

gluing the construction we obtain isogenies

Fr′A : A→ A(p′), Ver′A : A(p′) → A.

Proposition A.4.2. We have
(A(p′))(p′) = A(pg)

where A(pg) is the usual pg-Frobenius twist. Moreover the composition Fr′ ◦ Fr′ considered as a map
X ′ → X ′ corresponds to S−(g/2−1)

p Frp where Sp is the standard Hecke operator at p and Frp is the
pg-Frobenius.

Proof. We may reduce to the case S = Spec R a smooth affine scheme. Moreover, it suffices to prove
this for the p-divisible G ′ associated to A[p∞] by Proposition A.3.3.

The submodule F gD(G ′)(R) ⊂ D(G ′)(R) corresponds to the pg-Frobenius isogeny. We let M ⊂
D(G ′)(R) be the submodule corresponding to G ′(p

′) and M ′ ⊂ M the submodule corresponding to
(G ′(p

′))(p′). Then by the definition of M ′, we have that p
g
2−1M ′ = F gD(G ′)(R). In particular,

F gD(G ′)(R) ⊂M ′ corresponds to the isogeny

(A.4.1) p
g
2−1 : (G ′(p

′))(p′) → (G ′(p
′))(p′).

Therefore (G ′(p
′))(p′) and G (p) are isomorphic and the moreover part follows. �

Proposition A.4.3. Let G be an ordinary p-divisible with O-structure over a reduced and irreducible
Fq-scheme S. Let f : G → G ′ be a cyclic isogeny, then f = Fr′ or f = Ver′.

Proof. First assume S = Spec k where k is an algebraically closed field of characteristic p. Then
G ∼= G ord by Proposition A.3.4. The same proof as in [Sta97, Proposition 4.3] shows that f = Fr′ or
f = Ver.′

Let SFr′ (resp SVer′) denote the subscheme of S where f coincides with Fr′ (resp. Ver′). Then SFr′

and SVer′ are closed subschemes of S, since the locus where two subgroups of G coincide is closed.
For each closed s point of S, we have by the case above that fs = Fr′ or fs = Ver′. Therefore
SFr′ ∪ SVer′ = S, hence by irreducibility S = SVer′ or S = SFr′ .

�

The association (A, ι, λ, εK′p) 7→ (A(p′), ι′, λ′, ε′K′p) induces a map

Fr′ : X ′ → X ′

By Proposition A.4.2, we have Fr′ ◦ Fr′ = S
−(g/2−1)
p Frp. These isogenies induce maps

F ,V : X ′ → X ′0(p)
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which are defined by
F(A, ι, λ, εK′p) = (Fr′A : A→ A(p′), ι, λ, εK′p)

V(A, ι, λ, εK′p) = (Ver′A : A(p′) → A, ι′, λ′, ε′K′p).

By definition we have the following properties

π1 ◦ F = idX′ , π2 ◦ F = Fr′

π1 ◦ V = S−1
p Fr′, π2 ◦ V = idX′ .

We have the following proposition regarding these maps.

Proposition A.4.4. (1) F and V are closed immersions.
(2) Let (ρ : A → A′, ι, λ, εK′p) be an S-point of X0(p)ord, where S is a reduced scheme, then

x ∈ F(X) ∪ V(X).

Proof. (1) We prove the result for F , the case of V is analogous. First note that F is injective on
points since π1 ◦ F = idX . Therefore it suffices to show F is proper; the valuative criterion in this
case follows from standard properties of Neron models.

(2) Follows directly from Proposition A.4.3. �

A.5. Global structure of quaternionic Shimura surfaces with Iwahori level structure. In
this subsection we prove the main theorem of the appendix. We first need to study the fibers of the
map π1.

Let G /Fp be a supersingular p-divisible group with D◦-structure. We will define a universal cyclic
isogeny of G ; this will parameterize the fiber of the projection π1 : X ′0(p)Fp → X ′Fp

. As in §2.4, we
may define a version of essential Verschiebung for any p-divisible group with D◦ structure G over an
Fp-scheme S. We have the exact sequence of sheaves over S

(A.5.1) 0→ ωG ,τi → D(G )(S)τi → ω∗G∨,τi → 0

for each i = 1, . . . , g, where G ∨ denotes the Cartier dual and ωG (resp. ωG∨) is the sheaf of invariant
differential forms on G (resp. G ∨). If G arises from an abelian variety with D-structure A, then
ωG∨,τi

∼= ω◦A∨,τ̃i as in §2.4, where τ̃i ∈ ΣE,∞/q lifts τi. We obtain sections

hτi ∈ Γ(S, ω⊗p
nτi

G∨,σ−nτi τi
⊗ ω⊗−1

G∨,τi
)

for i = 1, c, using the same construction from §2.4; here we need to use the essential Frobenius to
define these sections since we are using contravariant Dieudonné theory. Applying this to the universal
p-divisible group with D◦-structure on X ′, these may be identified with the partial Hasse invariants
defined in §2.4.

Let G /Fp be a supersingular p-divisible group with D◦-structure. We separate the following two
cases:

Case (1): Both hτ1 and hτc vanish.
Case (2): Exactly one of hτ1 or hτc vanish.
The following proposition can be proved in the same way as [Sta97, §5] where the analogous

calculations are carried out for the Hilbert modular surface.

Proposition A.5.1. Let OL := W (Fp).
In Case (1), there exists an OL-basis {ei, fi} of D(G )(OL)τi for i = 1, ..., g such that

ϕ(ei) = fi+1, ϕ(fi) = pei+1, for i = 1, c

ϕ(ei) = pei+1, ϕ(fi) = pfi+1, for τi ∈ S∞ − T

ϕ(ei) = ei+1, ϕ(fi) = fi+1, for τi ∈ T
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In Case (2); we assume without loss of generality hτc 6= 0. Then there exists an element u ∈ F−Fpg
and an OL-basis {ei, fi} of D(G )(OL)τi such that

ϕ(ei) = fi+1, ϕ(fi) = pei+1 − [up
g−c+1

]fi+1, for i = 1

ϕ(ei) = fi+1 + [up]ei+1, ϕ(fi) = pei+1, for i = c

ϕ(ei) = pei+1, ϕ(fi) = pei+1, for τi ∈ S∞ − T

ϕ(ei) = ei+1, ϕ(fi) = fi+1, for τi ∈ T

where [u] ∈ OL denotes the Teichmüller lifting. �

We now define the universal cyclic isogeny of G . In the two cases above we fix a basis of D(G )(OL)τi
as in the previous proposition.

Case (1): In this case we will define a cyclic isogeny of G × T where T is the scheme consisting of
two copies of P1 intersecting transversally at an Fp-point. To do this we first introduce some notation.

Let S = Spec R be a smooth Fp-scheme.
Let R = OL〈x〉 denote the ring of restricted power series overOL equipped with the lift of Frobenius

given by the usual Frobenius on OL and x 7→ xp. Then R is a frame for R = Fp[x].
We let M be the R-module D(G )(OL)⊗OL R, equipped with the induced Frobenius, Verschiebung

and the trivial connection
∇ := 1⊗ d,

where d : R → Ω1
R/OL is the universal derivation. Then (M,F, V,∇) is the Dieudonné F -crystal

associated to G ⊗Fp R. We now define the submodule M̃0 ⊂ M to be the submodule generated by
generated by pM and

〈ei + xp
i−c
fi | i = c+ 1, . . . , g, 1〉 ∪ 〈fi | i = 2, . . . , c〉.

One checks that M̃0 is stable under F, V and ∇ hence corresponds to a cyclic isogeny

ρ̃0 : G × Spec R→ G̃0

where G̃0 is a p-divisible group with O-structure over R.
Similarly letting R′ = OL〈y〉, we define the submodule M̃ ′0 of M ′ := D(G )(OL) ⊗OL R′ to be

generated by pM ′ and

〈yp
i−c
ei + fi | i = c+ 1, . . . , g, 1〉 ∪ 〈fi | i = 2, . . . , c〉.

As before this corresponds to a cyclic isogeny

ρ̃′0 : G × Spec R→ G̃ ′0.

Using the identification x↔ 1
y , we see that ρ̃0 and ρ̃′0 glue to give an isogeny

ρ0 : G × P1 → G0.

Similarly we may define an isogeny

ρ1 : G × P1 → G1

by gluing the isogenies corresponding to submodules M̃1 ⊂M and M̃ ′1 ⊂M ′ where

〈fi | i = c+ 1, . . . , g, 1〉 ∪ 〈ei + xp
i−1

fi | i = 2, . . . , c〉.

and
〈fi | i = c+ 1, . . . , g, 1〉 ∪ 〈yp

i−1

ei + fi | i = 2, . . . , c〉.
Let z0 = (1 : 0) and z1 = (0 : 1). Then ρ0|z0 : G → G0,z0 and ρ1|z1 : G → G1,z1 agree and hence we

may glue ρ0 and ρ1 to give an isogeny

ρ : G × T → G ′.
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Case (2): Assume hτc 6= 0.
As in case (1), we let R = OL〈x〉 and M = D(G )(R). We define the submodule M̃ of M to be

generated by pM and

〈ei + xp
i−c
fi | i = c+ 1, ..., g, 1〉 ∪ 〈fi | i = 2, ..., c〉.

Similarly M̃ ′ is the submodule generated by pM and

〈yp
i−c
ei + fi | i = c+ 1, ..., g, 1〉 ∪ 〈fi | i = 2, ..., c〉.

As in Case (1), these submodules correspond to isogenies which glue along x ↔ 1
y and define an

isogeny G × P1 → G ′.
If hτ1 6= 0, we may switch the roles of 1 and c to obtain an isogeny G × P1 → G ′.
Let x ∈ X ′(Fp) lie in the intersection of the two Goren–Oort divisors X ′

τ1,Fp
, X ′

τc,Fp
corresponding

to τ1 and τc; we write Ax for the associated abelian variety and G ′x for the p-divisible group with
D◦-structure associated to Ax[p∞] as in Proposition A.3.3. Then we are in Case (1) and have defined
a cyclic isogeny

ρ : G ′x × T → G ′

where T is the union of two copies of P1 intersecting transversally at point. This induces a cyclic
isogeny Ax × T → A′. We therefore obtain a map

β : T → X ′0(p)Fp

whose image lies in the fiber of x under the degeneracy map π1.
Similarly if x ∈ X ′(Fp) lies in a unique Goren–Oort strata for τ1 or τc, then we are in Case (2) and

we obtain a cyclic isogeny Ax × P1 → A′. This induces a map

α : P1 → X ′0(p)Fp

whose image lies in the fiber of x under π1.

Proposition A.5.2. In Case (1), the map β : T → π−1
1 (x) is a bijection on Fp-points.

In Case (2), the map α : P1 → π−1
1 (x) is a bijection on Fp-points.

Proof. This follows from the same calculation as in [Sta97, Proposition 6.5]. �

Theorem A.5.3. (1) X ′0(p)Fp can be decomposed as

V(X ′Fp) ∪ F(X ′Fp) ∪X ′0(p)ss
Fp

where each term is a union of irreducible components of X ′0(p)Fp of dimension 2. Any irreducible
component of X ′0(p)Fp is contained in exactly one of the terms and V(X ′Fp

)∩F(X ′Fp
) is 0-dimensional.

(2) For each irreducible component C of X ′ssFp
, there is a unique irreducible component R of X ′0(p)

such that π1(R) = C. Moreover the projection π1 : R → C exhibits R as a P1-bundle over C ∼= P1

and for any other irreducible component C ′ of X ′ssFp
, we have:

R ∩R′ =

{
{pt} if C ∩ C ′ 6= ∅
∅ otherwise

.

Similarly, the result holds if we replace π1 by π2.

The rest of this subsection will be devoted to the proof. We refer to [Sta97, p409] for a pictorial
representation of the geometry.

Proof. (1) By the theory of local models every irreducible component of X ′0(p) has dimension 2. Now
since F and V are closed immersions, V(X ′Fp

) and F(X ′Fp
) are unions of irreducible components of

X ′0(p)Fp . Let Z be an irreducible component of X ′0(p)Fp not contained in F(X ′Fp
) ∪ V(X ′Fp

) and let
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x ∈ Z(Fp). If x corresponds to an ordinary abelian variety, then x ∈ F(X ′Fp
)∪V(X ′Fp

) by Proposition
A.4.4, hence it lies in more than one irreducible component of X ′0(p)Fp . In particular x is not a smooth
point of X ′0(p)Fp contradicting Proposition A.3.5, therefore x is supersingular.

To show V(X ′Fp
) ∩ F(X ′Fp

) is 0-dimensional, we note that by the closure relations of the Kottwitz-
Rapoport stratification on the local model, the intersection is contained in the minimal stratum which
is 0-dimensional. Part (1) follows.

(2) Let R be an irreducible component of X ′0(p)ss
Fp
. Then since π1|X′0(p)ss

Fp
is surjective with one

dimensional fibers, there exists a unique irreducible component C of X ′ssFp
such that π1(R) = C. Now

Proposition A.5.2 implies the fibers of π1|X′0(p)ss
Fp

are irreducible over a dense subset of C, hence R is

the unique irreducible component of X ′0(p)ss
Fp

mapping to C.
To show R is a P1-bundle over C, we first show the morphism π1|R is smooth. Since R and C are

both smooth and Fp is algebraically closed, it suffices to show the map is surjective on tangent spaces.
This follows in the same way as [Sta97, Proposition 6.7].

For x a smooth point of X ′ssFp
, we have a map P1 → π−1

1 (x) which is bijective on Fp-points by

Proposition A.5.2. Since π−1
1 (x) is smooth, it follows that P1 ∼= π−1

1 (x). Thus it suffices to show that
for x a non-smooth point of C ⊂ X ′ss, we have π−1

1 (x)∩R ∼= P1. In this case there is a map T → π−1(x)

which is bijective on Fp-points by Proposition A.5.2, where T is the transversal intersection of two
copies of P1. Since each component of π−1(x) is smooth, the same argument as above shows that
T ∼= π−1(x). Since π−1

1 (x) ∩R is smooth and one-dimensional, it follows that π−1
1 (x) ∩R ∼= P1.

Now let R and R′ be irreducible components of X ′0(p)ss
Fp

which map to irreducible components C

and C ′ respectively in X ′ssFp
under π1. If C ∩C ′ 6= ∅, then they intersect at a single point x ∈ X ′ssFp

(Fp),
and these are the only irreducible components of X ′ssFp

containing x. Then R∩R′ ⊂ π−1(x). If R∩R′

is one-dimensional, then there is another component R′′ of X0(p)ss
Fp

which intersects π−1(x). Thus its
image C ′′ in X ′ssFp

also contains x which is a contradiction. It follows that R ∩R′ is a point.
�

Transferring to the quaternionic side, we obtain the analogous results for quaternionic Shimura
varieties.

Corollary A.5.4. (1) X0(p)Fp can be decomposed as

V(XFp) ∪ F(XFp) ∪X0(p)ss
Fp

where each term is a union of irreducible components of X0(p)Fp of dimension 2. Any irreducible
component of X0(p)Fp is contained in exactly one of the terms and V(XFp)∩F(XFp) is 0-dimensional.

(2) For each irreducible component C of Xss
Fp
, there is a unique irreducible component R of X0(p)

such that π1(R) = C. Moreover the projection π1 : R → C exhibits R as a P1-bundle over C ∼= P1

and for any other irreducible component C ′ of Xss
Fp
, we have:

R ∩R′ =

{
{pt} if C ∩ C ′ 6= ∅
∅ otherwise

.

Similarly, the result holds if we replace π1 by π2. �
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