MOTIVIC COHOMOLOGY OF QUATERNIONIC SHIMURA VARIETIES AND
LEVEL RAISING
COHOMOLOGIE MOTIVIQUE DES VARIETES DE SHIMURA
QUATERNIONIQUE ET AUGMENTATION DU NIVEAU

RONG ZHOU

ABsTrACT. We study the motivic cohomology of the special fiber of quaternionic Shimura varieties
at a prime of good reduction. We exhibit classes in these motivic cohomology groups and use
this to give an explicit geometric realization of level raising between Hilbert modular forms. The
main ingredient for our construction is a form of Thara’s Lemma for compact quaternionic Shimura
surfaces which we prove by generalizing a method of Diamond—Taylor. Along the way we also verify
the Hecke orbit conjecture for these quaternionic Shimura varieties which is a key input for our proof
of Thara’s Lemma.

REsuME. Nous étudions la cohomologie motivique de la fibre spéciale des variétés de Shimura qua-
ternioniques & un nombre premier de bonne réduction. Nous explicitons des classes dans ces groupes
de cohomologie motivique et utilisons cela pour donner une réalisation géométrique explicite de
I’augmentation de niveau entre les formes modulaires de Hilbert. L’ingrédient principal de notre
construction est une forme du lemme d’Thara pour les surfaces de Shimura compactes quaternio-
niques, que nous prouvons en généralisant une méthode de Diamond-Taylor. En cours de route,
nous vérifions également la conjecture de I'orbite de Hecke pour ces variétés de Shimura quaternio-
niques, qui est une point-clé de notre preuve du lemme d’Thara.

1. INTRODUCTION

1.1. Main Theorem. The aim of this paper is to study the motivic cohomology of the special fiber of
certain quaternionic Shimura varieties. For a scheme of finite type over a field, its motivic cohomology
groups are a generalization of the usual Chow groups, and the main new observation of this paper is
that for certain Shimura varieties, these groups can encode very rich arithmetic information. More
precisely, we will show that the cycle class map from motivic cohomology to étale cohomology gives a
geometric realization of level raising between Hilbert modular forms. The construction is also related
to a geometric realization of the mod ¢ Jacquet—Langlands correspondence.

We now state our main result. Let F' be a totally real field of even degree [F': Q] =g and p > 2 a
prime which is inert in F'. Let B be a totally indefinite quaternion algebra over F' which is unramified
at the unique prime p above p and G the associated reductive group over Q. Let K be a sufficiently
small compact open subgroup of G(Ay) such that K = K,K? where K, C G(Qp) = GLa(F}) is
the standard hyperspecial maximal compact GL2(Or,) and K? C G(A%). Then there is a Shimura
variety Shy (G) defined over Q; it extends to a smooth integral model Shy (G) over Z,). We let
YK (G) denote its special fiber over F, and .k (G)r,, its base change to Fp.

Fix an irreducible cuspidal automorphic representation II of GLo(F') of parallel weight 2 defined
over a number field E. Let R be a finite set of places of F' not containing p and away from which II
is unramified and K is hyperspecial. We also choose a prime A of Og whose residue characteristic
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is coprime to p and write kyx = Og/A. We write H),(k (G)F,,,kx(j)) for the motivic cohomol-
ogy group with k) coefficients defined in [SV00]. By [Voe02|, we may identify this with the higher
Chow group Ch’ (ZK(G)r,g,2) —i,kx) defined in [Blo86]. When 2j = i, this group is just the usual
Chow group of codimension j cycles modulo rational equivalence (with coefficients in k). The group
Chj(YK(G)Fpg ,27 — i, k) is equipped with the following cycle class map to the absolute étale coho-
mology:

(1.1.1) CW (S (G)ryg, 25 — i, kn) = Hey(Li (G, g, kr())-

We let Tr denote the abstract Hecke algebra of GLo(F') away from R; it is the Z-algebra generated
by elements Ty, Sq where q runs over primes of F' away from R. Then the Hecke eigenvalues of II
induce a map

QZ/)KI:TR—)OE—)]C)\.
We write mg := ker(¢ll) a maximal ideal of Tg and we let m C Truip) be the preimage of my in
TRru{py under the natural inclusion Trypy — Tr-

The Hecke algebra Ty} acts on the étale cohomology HE, (YK(G)E, kx(—)) and higher Chow
groups Chj(yK(G)Fpg ,2§ —i,ky) of Sk (G). Upon making a large image assumption on the mod A
Galois representation associated to II (see Assumption and localizing at the maximal ideal m,
there is an isomorphism

HET (SK(G)rya s ka(9/2 + 1))m 2= H (Fpo, HE (S (G, ka(9/2 + 1))m)-
The cycle class map then induces the Abel-Jacobi map:

(1.12) B2 (S (@) Lk Jon = (B B (S (G, a(9/2 + 1)),

In we will define a subgroup ChY/*™ (Fx (G)g,,, 1, kx)m of Ch¥*F(F(Q)g 1, 1, kx)m using
the geometry of Goren—Oort cycles (in fact the cycles we consider arise from the supersingular locus).
on Sk (G)r,, as studied in [TX16], [TX19] and [LT20]. As the notation suggests, this subgroup is
related to level raising. The main theorem of the paper is the following; we refer to §5.3] for the precise
statement.

Theorem 1.1.1. Suppose that p is a A-level raising prime in the sense of Definition and that
Assumptions and[5.3.9) are satisfied; in particular T, = p? +1 mod mg and Sy, =1 mod mg.
Then the map

Chf/ 2 (S (G 1, ) = HE (Fpo, B (S5 (G, ia(9/2 + 1)) /m)
induced by is surjective.

We note that as in [LT20, Remark 4.2, 4.6], if there exist rational primes inert in F', and II is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all
but finitely many A, the set of primes p which are A-level raising primes has positive density.

In general it is a difficult problem to produce non-zero classes in motivic cohomology. The key
input to proving the surjectivity in Theorem [[.1.1] is a form of Thara’s Lemma which we prove by
generalizing a method of Diamond-Taylor [DT94]; see the next subsection for more details.

We now give an example of the construction of Chfr/ (e (G)F,q, 1, kx) which makes clear the
relationship with level raising. We assume g = 2 so that dim ., (G) = 2.

We write B’ for the totally definite quaternion algebra which agrees with B at all finite places. We
fix an isomorphism

BI®QA]¢ %B@QAJC
which allows us to consider K as a compact open subgroup of B’ ®g Ay. We let X’ and Xj(p) denote
the discrete Shimura sets

X' = B'\B' ©q Af/K, Xj(p):=B\B ©qAs/Ko(p)
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where the compact open subgroup Ko(p) C B’ ®g Ay agrees with K away from p and is the standard
Iwahori subgroup of GLa(F}) at p. We let

w1, ot XY (p) = X7

denote the natural degeneracy maps so that the diagram

XX (p) = A
is the usual Hecke correspondence for X’. For any finite set S, we write I'(S, k) for the abelian group
of ky-valued functions on S.

We may think of % (G) as a moduli space of abelian varieties with multiplication by some max-
imal order Op in B. We let .Zk(G)* be the locus where the underlying abelian variety is supersin-
gular. Using the geometry of #k(G)® one can show that under the assumptions of Theorem m
Ch2(<5”K(G)]pp2 ,1,kx)m admits a map from

K = ker ((7T1*7772*) : F(X(;(p)v kx) — F(Xl> k)\))m :
The construction uses an interpretation of classes in ChQ(YK(G)FP2 , 1, k))m as codimension 1 cycles
together with a rational function on the cycle; see 3. for the details. Then Ch12r(<7;<(G)Ipp2 1, kX )m
is defined to be the image of Ky;,. Theorem in this case follows from the following stronger result:

Theorem 1.1.2. Let g = 2. Suppose that p is a A-level raising prime and that Assumption [{.1.1] is
satisfied. Then the map

(1.1.3) K — H(Fpe, g (L5 (G, ka(2)m)

1S surjective.

The relationship with level raising should now be clear. Indeed under the Jacquet—Langlands
correspondence, Tg(py acts on left hand side of (1.1.3)) via the p"®" quotient in the sense of [Rib8&8],
whereas it is well known that it acts via the p°'4 quotient on the right hand side. In this sense, the
Abel-Jacobi map gives an explicit realization of the congruence between old and new forms.

Relation with motivic Bloch—-Kato conjecture: It is known by the work of many authors that the
motivic cohomology groups satisfy many of the formal properties of a cohomology theory. However
there is much that is still not understood, we refer to [Gei05] for a brief survey. We may use Theorem
to show that in certain cases of Shimura surfaces, motivic cohomology coincides with étale
cohomology, upon localizing at m.

Theorem 1.1.3. Let g = 2. Suppose that p is a A-level raising prime and that Assumption 18
satisfied. Then the cycle class map induces an isomorphism

H(Sx (Q)z o5 ka(2))m = HE (L (G)r 2 s ka(2))m-
When i < j, Voevodsky’s proof of the motivic Bloch-Kato conjecture [Voell] implies that Ch? (X, 25—

i, ky) is isomorphic to H (X, k(j)), for X proper smooth over any base field. For i > j, not much
seems to be known.

Remark 1.1.4. When g is odd, there is an Abel-Jacobi map
(1.1.4) Ch*T (Fa (P oy s k) = H (Frzo, HY (LG, ka(L9/2) + 1))m).

g—1
2

SS

In this case the supersingular locus #x (G)g , is equidimensional of dimension and we may con-
p

sider the subgroup Ch;Tl (ZK(G)F 2, kx)m generated by the irreducible components in YK(G)%;Q.
Then [LT20, Theorem 1.3] have shown the surjectivity of modulo m restricted to this sub-
group. Thus our Theorem [1.1.1| can be thought of as the even-dimensional analogue of the theorem
of Liu—Tian. The main new observation of this work is that we are able to produce certain classes
in motivic cohomology, or higher Chow groups, as opposed to ordinary Chow groups. Its conceptual
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importance lies in the fact that we are able to obtain a geometric interpretation of even-dimensional
Galois cohomology.

Remark 1.1.5. In [LT20], the geometric realization of level raising was a key ingredient in their proof
of certain cases of the Bloch-Kato conjectureﬂ on special values of L-functions. Our work should have
applications to cases of this conjecture for non-central L-values; we aim to carry this out in a future
work.

1.2. Proof of main result and Ihara’s Lemma. We now explain the proof of Theorem [[.1.1] Our
approach follows that of [LT20], but there are many new difficulties in the even dimensional case.
Firstly, using the construction of the group Chir/ 2+1(<7K (G)F,q,1,kx) and the intersection pairing
between certain Goren—QOort strata proved in [TX19], we reduce to proving the surjectivity statement
in the case of quaternionic Shimura surfaces (cf. Proposition . The statement in this case follows
from the following form of Thara’s Lemma. These type of results first appeared in Ribet’s ICM article
[Rib&4] for the case of modular curves and over the last thirty years they have seen many important
arithmetic applications. Therefore our result in the case of surfaces should be of independent interest.
For simplicity, we only state the result in the totally indefinite case; we refer to Theorem [£.1.4] for
the more general statement. Thus we assume g = 2 as in the example of the previous subsection.

Theorem 1.2.1 (Thara’s Lemma). Under Assumption the map
4+ w5 HE (Shi (G)g, k)i = HE (Shicy () (G)g ka)m
18 injective.

Here Shy, ;) (G) denotes the quaternionic Shimura surface with Iwahori level structure at p and
my, Ty are the natural degeneracy maps. In fact the appropriate Abel-Jacobi map in this case can be
related to the map 77 475 in the statement of Theorem@ they are essentially dual to one another.
To show the existence of this duality requires a careful analysis of the global geometry of the mod p
fiber of the quaternionic Shimura surface with Iwahori level structure at p. We note that in this case
the Shimura surface has bad reduction at p. The main result which is Corollary [A5.4]is proved in an
appendix and is analogous to the results of [Sta97] in the case of Hilbert modular surfaces.

We now describe our approach to Theorem [1.2.1] The result in the case of Hilbert modular
varieties has been proved by Dimitrov [Dim09]. However his proof relied crucially on the existence of
a g-expansion. Note that when g > 2, even if one is interested in Theorem for Hilbert modular
varieties, the reduction to the case of surfaces will require us to consider compact Shimura surfaces
where a g-expansion is not available. We therefore take another approach by generalizing a method
of Diamond-Taylor who proved the result for Shimura curves [DT94].

We first apply a crystalline comparison isomorphism to reduce the problem to proving injectivity
of a certain map between global sections of line bundles over the mod ¢ reduction of the Shimura
surface (Proposition , where / is the rational prime underlying A. The property that a non-zero
section lies in the kernel implies that the divisor D corresponding to this section is invariant under
p-power Hecke operators. In the case of Shimura curves, it is known that the image of an ordinary
point under p-power Hecke operators is infinite; this constrains D to be supported on the supersingular
locus. Since p-power Hecke operators act transitively on supersingular points, the support contains
the supersingular locus and this is enough to deduce a contradiction for degree reasons.

In the case of surfaces, we need a stronger result to constrain the support of the divisor D. In section
we prove a version of the Hecke orbit conjecture of Chai-Oort [CO19| for the ordinary locus on
quaternionic Shimura varieties. We assume /¢ is a prime where the compact open K is hyperspecial
and we write .#%(G) for the mod ¢ reduction of the integral model Sh% (G) at a prime of the reflex
field above £. We write .71 (G)°™ for the locus where the universal abelian variety is ordinary.

LThis is a different conjecture to the motivic Bloch-Kato conjecture mentioned above.
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Theorem 1.2.2 (Hecke orbit Conjecture). Let v € % (G)**4(Fy). Then the prime-to-{ Hecke orbit
is Zariski dense in S (G).

In fact we prove this result in a more general situation; we refer to for the statement. Using
the strong approximation theorem, we deduce that the p-power Hecke orbit of x € YIZ((G)Ord(Fg) is
Zariski dense in the connected component of .7} (G)F, containing it. This allows one to show that D
is supported on the complement of Y[K((G)Ord. A computation involving intersection numbers of D
with certain cycles on .4 (G) then gives the desired contradiction.

Remark 1.2.3. In [LT20], the authors reduce their surjectivity result to a form of Ihara’s Lemma for
Shimura curves, which was proved by Manning—Shotton [MS21] using a different method.

We note that many of the quaternionic Shimura varieties we consider do not admit good moduli
interpretations. Thus in order to obtain the geometric results we need, we study the geometry of
certain auxiliary unitary Shimura varieties which are of PEL type. Using [TX16l §2], the results for
unitary Shimura varieties transfer easily to the quaternionic side. The moduli interpretation for the
unitary Shimura varieties allow us to adapt many proofs in the case of Hilbert modular varieties to
the quaternionic case.

1.3. Outline of the paper. In §2 we begin with some basics on Shimura varieties and define the
quaternionic Shimura varieties of interest. We recall the construction of the auxiliary unitary Shimura
varieties of PEL type as in [TX16] §3], and recall the description of Goren—Oort cycles obtained in
[TX19]. In §3 we prove the Hecke orbit conjecture for quaternionic Shimura varieties. We deduce
our results from the corresponding statement for the auxiliary unitary Shimura varieties. Using the
moduli interpretation, the proof in the unitary case follows the strategy of [Cha95] who proved the
result for Hilbert modular varieties. A key input here is Moonen’s generalization of Serre-Tate theory
for ordinary abelian varieties [Moo04]. In §4 we study the intersection pairing of cycles on the mod ¢
reduction of Shimura surfaces and use this to prove Theorem [1.2.1] Finally in §5, we recall the
definition of motivic cohomology groups and higher Chow groups, paying extra attention in the most
pertinent case of surfaces, and we construct the level raising subgroup Chlgr/ ZH(YK(G)FW s 1 k) ) m-
We then prove Theorem |1.1.1{using the strategy outlined above. In the appendix we describe the bad
reduction of quaternionic Shimura surfaces with Iwahori level structure.
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like to thank the anonymous referees for a careful reading of the manuscript and for many useful
comments and suggestions. The author was partially supported by NSF grant No. DMS-1638352
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1.4. Notation.

e If F' is a number field we write Op for its ring of integers. If v is a place of F', we write F, for the
completion of F' at v and if v is finite, we write k, for its residue field at v.

If F is a local field we write O for its ring of integers.

For any field F, we write F for a fixed algebraic closure of F.

We write A for the ring of adeles and Ay the ring of finite adeles. If p is a prime, A’; denotes the
finite adeles with trivial p-component.

If R — S is a map of algebras and X is an R-scheme, we write Xg for the base change of X to S.
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e If X is a scheme, we write Ox for its structure sheaf. We write H®*(X, —) for the étale cohomology
of X. For any closed subscheme Y C X, we write H}, (X, —) for the étale cohomology supported on
Y.

2. GEOMETRY OF QUATERNIONIC SHIMURA VARIETIES AND GOREN—QOORT STRATA

In this section we recall the results concerning the geometry of quaternionic Shimura varieties and
Goren—Oort cycles following [TX16] and [TX19] that we will need.

2.1. Basics on quaternionic Shimura varieties. Let F' be a totally real field with [F': Q] = g and
let p > 2 be a prime which is unramified in F. We are mainly interested in the case when p is inert
in F; this is the case considered in [TX16] and [LT20]. However, we will sometimes need to consider
the reduction mod ¢ of these Shimura varieties, so we will keep the more general assumption for now.
We write ¥, (resp. Xo) for the set of p-adic places (resp. infinite places). We fix once and for all an
isomorphism ¢, : C = @p, which we will use to identify ¥, with the set of p-adic embeddings of F'.
For p € ¥, we let g, := [F}, : Q] and X/, the set of p-adic embeddings 7 € ¥, which induce p. As
p is unramified in F', the p-Frobenius o induces an action on ¥ /.

We fix a totally indefinite quaternion algebra B over F' which is split at all the places above p.
Let S C ¥ U X, be a subset of even cardinality. We set Sooc = SN X and for each p we set
Seo/p = SN Xs/p. We will make the assumption that p € S only if S/, = Yo /p-

We write Bg for the quaternion algebra over F' whose ramification set is precisely the union of S
and the places in F' over which B ramifies. For each [ a place of F' away from the ramification set for
Bs, we fix an isomorphism Bs ®p F| 2 GLa(F). We define Gg to be the reductive group over Q such
that for any Q-algebra R we have

Gs(R) = (Bs ®g R)™.
When S = ), we simply write G for the above group. For £ # p a prime, we have an isomorphism
G(Q¢) = Gs(Qy). Hence we may fix an isomorphism
G(A?) = GS(A?).
Let T C Soo and Ty := S/, N'T. We consider the following homomorphism:
hst: S(R) = C* — Bgs(R) = GLy(R)Z>="5= x HT x H3=~T
z+yi — ((z+yi)7= 5= (22 +¢2)T,15=7T).

Then Gg and the conjugacy class of hg T forms a (weak) Shimura datum in the sense of [TX16 §2.2].
We let Es 1 denote the reflex field which is the subfield of the Galois closure F of F in C fixed by
the subgroup of Gal(F/Q) stabilizing So, and T. We let v be the p-adic place of Egr induced by
the embedding Eg 1 < C = Q,. We define the compact open subgroup K, := Hpezp K, C Gs(Qp),
where

o K, = GL2(OpF,) if p ¢ S.

e K, = Op, the unique maximal compact of Bs @ F} if p € S.

For a sufficiently small compact open subgroup K? C G(A’f’), we write K = K,K? and let
Shk (Gs 1) denote the Shimura variety associated to the above data. We use the notation of [TX16]
so that T determines the Deligne homomorphism. It is an algebraic variety over Eg 1t whose complex
points are given by

Shi (Gs,1)(C) = Gs(@\(h*)™="5= x Gs(Af)/K,
where h* is the union of the complex upper and lower half planes. We note that the algebraic variety
ShK(GS;p)@ is independent of T. However, different choices of T will give rise to different Eg t
varieties, see for example [TX19, p1563]. We also point out the abuse of notation here, where the
compact open subgroup K implicitly depends on the choice of S. When So, = Yoo, Shi (Gs1)(Q) is
a discrete set and the action of Gal(Q/Es 1) can be described explicitly as in [LT20, §2.1].
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We also set
Sth (GS,T) = lim ShK(GS’T)
+—KP

and we write Shj (Gs 1) for the neutral connected component of Shx, (Gs,1)g. This is the component
containing the image of the point

(i%= "5 1) € (hF)™= "5 x Gs(Ay).

2.2. Unitary Shimura varieties. In this section we define an auxiliary unitary Shimura variety
which is of PEL type in order to define integral models for Shx (Gs 1).

Let E/F be a CM-extension such that the following two conditions are satisfied:

(1) E/F is inert at every place that Bg is ramified.

(2) Forp € ¥, E/F issplit at p if p ¢ S and Yo, =S, /p is even, and is inert if p ¢ S and Yoo —Soo/p
is odd.

Let X5  denote the set of complex embeddings of E, which we identify with the set of p-adic
embeddings via ;. For 7 € ¥ o, we let 7° denote its complex conjugate. For p € X, let X o /p
denote the subset of p-adic embeddings of E inducing p. Similarly for q a p-adic place of E, we let
¥ B 00/q denote the set of p-adic embeddings of E inducing g.

We choose a subset Soo C % E, satisfying the property that for each p € ¥,,, the natural restriction
map Xg oo/p —F Looyp induces a bijection Soo/p = Seo/p> Where goo/p =S, N Y Eco/p

For each 7 € ¥ «, the choice of SOO determines a collection of numbers sz € {0, 1,2} given by:

0 if 7€ Sy
(2.2.1) sr =<2 if7 €S-

1 otherwise

Let S = (S,S4) and Ty := Resp/g(Gr). We let Kg, C Tg(Q,) denote the compact open
(Op ®z Z,)*. We define the homomorphism
hpgr SR)=C* — Tp(R) = [[ (E®p, R)* = (C)5=T x (C)T x (CX)P=5
TEX
z=x+yi— ((z,--,2), 27, (1,0, 1)
Here for 7 € So, we identify (E ®@p r R)* with C* via the embedding 7 : E — C, where 7 € Seo is
the unique lift of 7. We use the above data to define a Shimura datum for a unitary similitude group
which will give rise to a moduli interpretation of the unitary Shimura variety.

Let Dg := Bs ®F E, which is isomorphic to Maty(FE) by our assumptions on E. We let b — b
denote the involution on Dg defined by the product of the canonical involution on Bsg and complex
conjugation on E/F. Fix a totally imaginary element « € E such that « is a p-adic unit for every
place above p. Choose an element § € Dg such that § = § as in [TX16, Lemma 3.8]. We define a new
involution of Dg by b+ b* = §~1b6.

We consider W := Dg as a left Dg-module of rank 1. It is equipped with the following pairing

(2.2.2) YW W =Q, ¢(x,y) = Trg(Trpy plazdy”)),

where Tri, /e 1s the reduced trace. It is easy to see this pairing is alternating and non-degenerate.
Moreover it satisfies the following property

Y(bz,y) = ¢(x,b"y), b€ Dg.
The unitary similitude group is defined to be

G5(Q) := {g € GLps(W) | ¥(xg,yg) = c(9)¢(x,y), for some c(g) € Q*}
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which arises as the Q-points of a reductive group G% over Q. We may also describe this group in the
following way. Since GLpg (W) = D&, we have g € D lies in G5(Q) if and only if

Trg/o(Trh, /p(axgdg™y”)) = c(9)Tre/o(Trh, /p(axdy™)), Yo,y € Ds.
This identity is equivalent to gdg* = ¢(g)0, i.e. gg = c¢(g) € Q*. Thus

G5(Q) = {g = (b,t) € B x" E* | vs(b)Nmp,p(t) € Q*}

where vg : B — F is the reduced norm. Here B x T E* denotes the quotient of Bg x E* by the
central embedding F* — B x E* given by z + (z,z7 ).
Let Tr denote the torus Resp/9Gy,. We define the group

Gg = Gg XTF TE.

Applying the above to points valued in a Q-algebra, we see that G’S is identified with the subgroup of
G’S’ corresponding to the preimage of G,,, C Tr under the map

N : Gg — TF, (b, t) — l/s(b)NmE/F(t).

We now let h’g' 'S — G/SI denote the morphism induced by (hs r,hy g 1); it is independent of T.
The image of hg lies in G’g and we let h’S denote the induced map. Let K,/ C G’g' (Qp) be the compact
open subgroup given by the image of K}, x K, and K, = G5(Q,)N K. For sufficiently small compact
open subgroups K7 C G%(A%) and K'7 C G(A%), we obtain Shimura varieties Shx (G%), Sh (G%)
where K" = K;/K"P and K' = K, K'P. We also set

ShKIf7 (Gé) = (_hg}p ShK/(G/é), ShK,’,’(Gg) = (_IIKHII/I) ShK”(Gg)

Let Eg denote the common reflex field of these Shimura varieties, which is a subfield of C. The
isomorphism ¢, : Q, = C induces a p-adic place o of Eg. We let Shry (GF)° (resp. Shg (G5)°)
denote the neutral geometric connected component of Shg, (G%)g (resp. Shg;(G%)g). Then both
Sthg(G’g’))%Zp and Shg; (GIS%,, can be descended to Q.

We have the following diagram of groups

Gs(*GsxTE—)Gg%G%,

compatible with Deligne homomorphisms and such that the induced maps on the derived and adjoint
groups are isomorphisms. By [TX16l Corollary 2.17] this induces isomorphisms

Shi, (Gs)g <= Shiy (Gg)g — Shi, (Gg)g

of neutral geometric connected components. Since Shimura varieties may be constructed from its
neutral connected component and the action of Hecke and Galois, we may transfer integral models
from one group to the other. See [TX16l §2.11] for the details.

2.3. Moduli interpretation for unitary Shimura varieties and integral models. The Shimura
variety ShK/(G’g) is a Shimura variety of PEL type and thus admits an integral model as a moduli
space. Recall the Dg-module W together with the non-degenerate alternating form v introduced in
the last subsection. We also fix some integral PEL data. Let Op, C Dg be an order which is maximal

at p and A C W an Op,-lattice such that ¢(A,A) C Z and A ®z Z, is self-dual. Let K'? C G5(A})

be a sufficiently small compact open subgroup stabilizing A ®y ZP. We consider the moduli functor
Shy (Gg) that associates to each Og ,-scheme S the set of isomorphism classes of triples (A, 1, N\ egm)
where:

e A is an abelian scheme over S of dimension 4[F : Q.
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e . : Op, — Endg(A) is an embedding such that the induced action of a € Opg on Lie(A/S)
satisfies

(2.3.1) det(T — t(a) | Lie(4/S)) = H (T — 7(a))*".
TEXE, 00

e \: A — AV is a polarization such that:

-The Rosati involution on Endg(A) defined by A induces the involution b — b* on Op,.

-If p ¢ S, A induces an isomorphism of p-divisible groups A[p>] = AY[p*].

-If p € S, (ker A\)[p™] is a finite flat group scheme contained in A[p] of rank p?» and the cokernel
of the map A, : H{®(A/S) — H{®(AY/S) is a locally free module of rank 2 over Og ®z, Op/p. Here
H{R(A/S) denotes the relative de Rham homology.

e e is a K'P-level structure, i.e. a K'P-orbit of isomorphisms

EK'P 'A®Zipgfpl4

which respects the action of Opg on both sides and such that the pairing 1 is compatible with the

A-Weil pairing for some choice of isomorphism ZP = ZP(1). Here TPA := 1ir5(1 Aln] denotes the
<—pin
prime-to-p Tate module of A.
By [TX16, Theorem 3.14], the moduli problem Shy. (G%) is representable by a smooth quasi-
projective scheme over Og, _, and its generic fiber is identified with Sth(G’g)Eg .- Moreover it is an
integral canonical model for Shy(G§) in the sense of [TX16, §2.4]; see also [Mil92]. We write

&K; (Gg) = iilfg}p &K;K'p(G/g)-

Taking the closure of Shy (G5)° in Shye, (G%) ®0g,_ 2y and using Deligne’s recipe to transfer across
to G's we obtain an integral canonical model &K(G&T) for Shi (Gs 1); see [TX16l §2.11]. We write
Sk (Gsr) (resp. Sk (GY)) for the special fiber of Shy(Gs 1) (resp. Shy/(Gg)) over ky (resp. kg).
We let kg be any finite field containing all the residue fields of the p-adic places of E.

We fix an isomorphism Opg , := Opg ®z Zp = May2(Op ®z Zy) and let e denote the idempotent
of My(Of ®z Z,) given by

y
0 0/)°

Suppose M is a module with an action of Opg ,. We write M* for the sub Op ®zZ,-module eM C M.

Now suppose k is a perfect field of characteristic p containing all residue fields at the p-adic places
of E. Let (A,1, \,ek») be the data corresponding to an S-point of Shg/(Gg) where S is a kz-scheme.
Then we have an exact sequence:

0 Wy H{R(A/S)° —— Lie(4)° ——=0.

Here wy4v is the module of invariant differential forms for the dual abelian variety AY and H{®(A/S)
is the first relative de Rham homology; see [TX16], §4.1]. For 7 € g », we use a subscript 7 to denote
the subspace over which Of , := O ®z Z,, acts via 7. Then the above induces an exact sequence

(2.3.2) 0 —wfv ; — H{¥(4/85)2 —— Lie(4) —0

T T

and the dimensions of these three factors are 2 — sz, 2 and sz respectively. In particular, for 7 €
Yoo — Seo; and 7 a lift of 7, wjy - is a line bundle over S.
For simplicity, we will write X' for S/ (G%)k, and (A’,, A, ex») the universal abelian scheme over

X'’ together with polarization and level structure. Recall the Kodaira—Spencer map
KS(ar i rerem) * WA R0y warv = Qs g

which induces a map
o ., .0 o 1
KS(A’,L,)\,EK/;D) LWy ®ﬁx, W grv — QX’/kO'
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We write M C w9, ®e,, 005, Wy for the Ox-submodule given by the sheafification of the presheaf
whose sections are generated by A.(y) ® z — A\.(2) ® y, where y,z are sections of w%,. We write
W O (64,005 ,,0) Wy for the quotient of w), ®e, 00y, Wy v by M.

Proposition 2.3.1. The map KS{ 4, 1, factors as

WY Qo Wy = Whr B(64,005 1) Warv — Qk//ko
and induces an isomorphism Wy, @ (6., 005 1) Warv = Qk,/ko.
Proof. This follows from [Lanl3, Proposition 2.3.5.2] applied to the universal abelian scheme over
X'. |
Corollary 2.3.2. The map KS?A/,L,A,EK/p) induces an isomorphism of line bundles

o o |E =S ‘
® Warv 7 @0y, Wary e = QT
TEY oo —Seo

where T is a lift of T.

Proof. We have an isomorphism
[e] o [e] [e]
W s ®0X’®OEJ> W prv = @ w_A/,f— ®ﬁx/ w.A’Vfi"
%EEE,OO

Now for 7 € Soc and 7 € X o a lift of 7, either w), - or w%,v - has rank 0.
For 7 € ¥ o a lift of 7 € ¥ — S, the polarization A induces an isomorphism w7 = warv ze

compatible with the action of Opg and hence induces an isomorphism w9, » = w%,v .. Thus Propo-
sition 2.3.1] implies we have an isomorphism
o o ~ Ol
@ w_A/v’.’: ®@’X, LLJA/\/,;_/: :QX'/k()?
TEX oo —Sco
where 7 is a lift of 7. Taking the top exterior power gives the result. O

Now let X denote the special fiber .#x(Gs 1)k, Using [ITX16, Corollary 2.13], we may transfer
the vector bundles w3, - from X’ to X. For each 7 € ¥, — Soo, We write w, to be the line bundle on
X coming from w3,y > on X " for some choice of lift 7 of 7 which we now fix. Then w, is independent
of the choice of lift 7 up to a torsion element in the Picard group of X by [ITX16, Lemma 6.2]. For
any line bundle . on X, we write [Z] for the image of .Z in the rational Picard group. The next
corollary follows immediately from Corollary [2.3.2]

Corollary 2.3.3. There exists an isomorphism

2| ~ |OZc—Sxl

| ® =[]
TEY oo —Soo

in the rational Picard group of X. |

2.4. Goren—Oort divisors and Goren—QOort cycles. We now let kg be the smallest subfield of
Fp containing the residue fields of the p-adic places of E. Then kg = F,», where h is the least
common multiple of {(1 + g, — 2|gp/2])gp|p € Xoo}. In this section we will recall the description of
Goren—Oort divisors and Goren—Oort cycles in .k (Gs, 1)k, obtained in [TX16] and [TX19]. As before
S C 3, UX is a set of even cardinality. For each 7 € ¥ — S, [TX16] defines a Goren-Oort divisor
I (Gs 1)k, C Sk (Gs 1)k, by transferring over a certain divisor on an auxiliary unitary Shimura
variety. We briefly recall its construction.

Let (A,t,\,exw) be an S-point of yK/(G%) for S a ko-scheme. For 7 € ¥g o, we define the
essential Verschiebung

Veo7 : HIR(A/8)2 — H{F(A®) /8)2 22 H{R(4/8)2)

o~ 17
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to be the usual Verschiebung if s,-1z = 0 or 1, and to be the inverse of the usual Frobenius if
S$y—17 = 2. For every integer n > 1 we define
Vi IR (A/8)2 — HIR(AG") /9)2 = iR (4/8) 7%
to be the n'P-iteration of the essential Verschiebung.
Now let 7 € ¥ oo — S and T € X o a lift of 7. We define the integer n. to be the smallest integer
such that 07" 7 € Yoo — Soo. Then the restriction of Vi~ to wjy ; defines a map

h{— (A) : LUZ\/,
Applying this to the universal abelian variety A’ over .Yk (G’g) ko, We obtain a global section
he € D(Sk/ (GG kgs (W gne )T @ (W 2)971).

We call this the 7! partial Hasse-invariant. We let Ik (Gy)ko,7 C k' (G)k, denote the vanishing
locus of hz, and we let .#x (Gs 1)k, be the corresponding divisor on /i (Gs 1)k, By [TX16, Lemma
4.5], Sk (G/g)ko,ﬁ and hence .k (Gs 1)k,,7, is independent of the lifting 7 of 7. We may thus write
yK/(G’g)kO,T and Sk (Gs,1)k,,» for these divisors respectively. The divisor .k (Gs,T)k,,» is known
as the Goren—Oort divisor corresponding to 7. It can also be described as the vanishing locus of a
certain section of the line bundle of wfpr @wyt on Lk (Gs 1)k

Tnrn
For J C ¥ — S, We set

o,(p"7)

~ o
P wAV,o""Ti' - (wAV,a'*"'r‘T-)

®pn.r
7 .

Tk (GS,T)ko, g = ﬂ Fk(GS,T)ko,r-
TeJ
The closed subvarieties k(G T)k,,s as J runs over subsets of Xo, — Soo give the Goren—Oort
stratification of Sk (Gs 1)
To state the main structure theorem of [TX16], we introduce the following notation. For 7 €

Yoo — Seo, We write 77 for o777 and we let p denote the p-adic place induced by 7. We write
T, =TU {7} and define

_ Soo/p n {7‘,7‘7} if Soo/p U{T} 7& Eoo/p
T{SU{T,p} if Sooyp U{T} = Zaesp
Theorem 2.4.1 (JTX16l Theorem 5.2|, [LT20, Proposition 3.9]). Under the above notations, there is
a morphism of F,-varieties
Tr . yK(GS;T)FP,T — yK(GSmTT)Fp
equivariant for the prime-to-p Hecke action, such that
(1) if Soosp U{T} # Secsp, mr is a P -fibration which descends to a morphism Sk (Gs1)ky,r —
Ik (Gs, 1. )k, of ko-varieties.
(2) if Seojp U{T} = Xog)p, 7 is an isomorphism.

Note that in case (2), the level structure at p needs to be modified.

We now recall the framework for the construction of Goren—Oort cycles. These cycles are parame-
terized by certain combinatorial objects called periodic semi-meanders whose definition we now recall.
We refer to [LT20, §3.4] for more details.

For p a place of F above p, let d,(S) := gp — [Seo/p|- We consider the cylinder C := {z* + y* = 1}
in 3-dimensional space. Let X/, = {70,..., 74,1} where o(7j) = 741 for j € Z/g,Z. We use the

2mg i 27mg .
—,smﬁ). If 7; € S /p

7; to label the points on the zy-plane by identifying 7; with the point (cos o
we put a + at the point 7;, otherwise we put a node. We call the series of nodes and +’s the band
associated to Sog /-

A periodic semi-meander for S/, is a series of arcs and semi-lines on C' (an arc connects two nodes
and a semi-line connects a node and +00) satisfying the following properties:

(1) All arcs and semi-lines lie above the band.
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(2) Every node is the end-point of an arc or a semi-line.
(3) There are no intersection points among the arcs and semi-lines.

We identify two periodic semi-meanders if one can be continuously deformed into the other. We write
r for the number of arcs in a periodic semi-meander and d,(S) — 7 is the defect. We write B(S./p,7)
for the set of periodic semi-meanders with r arcs.

For any a € B(S./p,7) we define the sets S, and T, to be

(2.4.1) Sq :=SU{r € ¥« | 7 is an end-point of an arc in a}

(2.4.2) Tq:=TU{r € £ | 7 is the right end-point of an arc in a}.
To any periodic semi-meander a € B(S/p,7), [LT20, §3.5] constructs the Goren—Oort cycle
Zsr(a) = Lk (Gs1)ky-

corresponding to a using the method of [TX19, §3.7]. The construction is by induction on r and the
resulting cycle is an rP-iterated P!-bundle over .#x (Gs, T, )k,- When r = 0, Zs r(a) is defined to be
Sk (Gs 1)k,- For r > 1, we say an arc J in a is basic if it does not lie above any other arc. Choose such
a basic arc  and write 7 and 7~ for its right and left endpoints respectively. Consider the Goren—
Oort divisor Zx (Gs,1)k,,~ together with the fibration 7, : S (Gs 1)k, = Lk (Gs. 1, )k, Let a5 €
B(S;,00/p,” — 1) denote the periodic semi-meander given by removing the arc ¢ from a and replacing
the endpoints with + signs. By induction hypothesis, we have the cycle Zs_1_(as) C Sk (Gs. T, )k,
which is an (r — 1)tP-iterated P!-bundle over .7k (Gs, T, )k,- The Goren-Oort cycle Zs (a) is defined
to be the preimage of Zg_r_(as) in .k (Gs 1)k, under the projection m.. We write

Tq - ZS,T(a) — yK(GSmTu)ko

for the projection map.
The following proposition is clear from the construction and Theorem [2.4.1

Proposition 2.4.2. Zg v(a) is an r*h_iterated P -fibration over the Shimura variety i (Gs, 1, ) ko -
Moreover the inclusion Zsr(a) — Sk (Gs 1)k, 5 equivariant for the prime-to-p Hecke correspon-
dences. a

2.5. Goren—Oort cycles and Shimura surfaces. We now give a more detailed description of the
Goren—Oort cycles which will be used in the construction of the level raising subgroup in motivic
cohomology.

For this we will impose the extra assumptions that [F' : Q] = g is even and that p is inert in F}
then p will denote the unique prime above p. In this case we may take ko = F,s. We consider the set
B(0,g/2 — 1) of periodic semi-meanders which is easily seen to have (9/5—1) elements.

Fix a € B(0,g/2 — 1)). Then we have constructed the Goren-Oort cycle Zy(a) C .7k (G)r,, and
the projection

T+ Zp(a) = Lk (Gpo 10 )F,0
which is (g/2—1)-iterated P!-fibration; here T, is defined as in with T = ). Since Sk (Gy, 1,)F
is the special fiber of a Shimura surface, the Goren—Oort cycle Zy(a) has dimension g/2 + 1.

We write X \ fa = {7i,7;}. Then we may consider the Goren-Oort divisors .7k (Gy, 1, )F,q,7
and .k (Gy, 1,)F,qe,-, of the Shimura surface #x(Gy, 1,)r,, which are P'-bundles over the dis-
crete Shimura sets Sk (Gy, .. 1, . )F,, and yK(G@W Ta., )F,q respectively. The F,-points of these

p9

Shimura sets may be identified (upon fixing a base-point) with

Gy . (Q\Gx. (Ay)/K.

We let Ko(p) C Gx_(Ay) denote the compact open subgroup Ky ,K? where Ky, is the stan-
dard Iwahori subgroup of GLa(F}) consisting of matrices in GL2(OF,) which reduce to the upper
triangular matrices mod p. In [TXI6l 3.15], there is a construction of the integral model for the
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discrete Shimura set ShKo(p)(G(Dn,Ti,Ta,ri)- We can explicitly describe the F,-points of the special
fiber S, (p)(Go, ,,.T. ., )F,s and the action of Gal(F,/F,¢) as follows. We equip the discrete set
GZW(Q)\GZOQ(Afj/KO(p) with the Gal(F,/F,¢)-action where the arithmetic p9-Frobenius o,s acts
via multiplication by the central element p~9/2 € F ®q AY C G (Af). Here p=9/? is the idele which

is p~9/2 at the p-adic place p and 1 elsewhere. Then there is a bijection

ko) (G0, ., a0 (Fp) = Gu (Q\Gs_ (Af)/Ko(p)

compatible with the Galois action.

The action of ops on Sk (Gy, . 1, . )F,0 (Fp) is defined in the same way. We write ng_ for the
order of 0,0 acting on Sk (Gy, . 7., )F, (Fp). It is easily seen to be independent of the choice of a
and ;.

The following proposition is contained in [TX19, Proposition 2.32].

Proposition 2.5.1. (1) There is an isomorphism

yK (Gma ,Tq )]Fpg ’{Ti 17_1'} = fyl{O(p) (G(Du,ri 1Tu,7'i >IF:D9
of Fpq-varieties.
(2) There is an isomorphism

ey 0 S (Gog s, T, JEpe — K (G, Tz, By

of Fpe-varieties such that the induced diagram

o (0)(Goq.r, Tar, JFya

T, Olr Tr.Olby.
i ) J J

IK(Gog s, Tar, JFpo (TR P (/R

p9

is identified with the base change to Fpe of the Hecke correspondence for S (Gy, . T,.. )-

2Th

Here the maps
b Ko (0)(Gog s, Tor JFa = K (Goy T, )0 mi
bry + o (0) (Coar, Tar, JFps = TE(Goy T, )F 1
are the natural embeddings coming from (1).

3. HECKE ORBIT CONJECTURE

In this section we prove a version of the Hecke orbit conjecture for the ordinary locus of quaternionic
Shimura varieties. The desired result follows from the corresponding statement for the auxiliary
unitary Shimura varieties of PEL type constructed in the previous section. The result for these
Shimura varieties can then be deduced using the method of [Cha95].

3.1. Statement of Hecke orbit conjecture. We keep the notation introduced in §2. We let
Shy (Gs 1) be the integral model for the quaternionic Shimura variety Shx (Gg ). We will assume in
this section that S C ¥ so that the compact open subgroup K = K, K? is hyperspecial at p. Since
the case of Hilbert modular varieties has been proved in [Cha95], we also assume Shg(Gs 1), and
hence Shy (Gs 1), is compact, or in other words that the quaternion algebra Bg is not totally split.
By our assumption on S, Shy (Gs 1) is not discrete, in other words it arises from a genuine Shimura
datum (as opposed to a weak Shimura datum). For ease of notation we will write X := ./, (GgyT)E
for the geometric special fiber of Shy (Gs ).

We also write Shg(Gg) for the unitary Shimura variety of PEL type associated to Shy (Gs,T) by

the choice of an imaginary quadratic field F/F and a subset See C T E,0o satisfying the conditions
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in §2.2. We similarly write X/ = k- (G/S)?p for the geometric special fiber of the integral model
Shye/(G).

Our formulation of the Hecke orbit conjecture for X’ differs from the statement in [Cha95|; we
need a slightly stronger statement in order to transfer the result to the quaternionic side. More
precisely we will consider the orbit under Hecke correspondences coming from the derived group. We
let G/, denote the derived group of G’g. Since G'g and Gg have the same derived group, Gy is the
reductive group corresponding to (BZ)”s=!; in particular G/, is simply connected. We write 77, for
the quotient of G’S by its derived group; it is isomorphic to the subtorus Nm,}} #(Gp) C Tg. We write
T/, (R)T = Im(Z'(R) — T2, (R)), where Z’ is the center of Gg. We let T, (Q)F =T, (R)T N T (Q).

We write v’ : Gg — Ty, for the quotient map. This induces a bijection

(3.1.1) mo(Shi/ (G§)) = Ty (QN\Toy (Ag) /v (K)
where the left hand side is the set of geometric connected components. Since Shy., (G%) is smooth,
there is a bijection
mo(X) = To(Q)\ T (Ag) V' (K7)
compatible with specialization from . For an element ¢’ on the right hand side, we write X’ ¢
for the corresponding connected component of X’.
We consider the inverse limit scheme

thK,g (Gfg) = ii}r(r}p &K;Kw (G/g)

which has an action by the group Gg(A%}). Let = € Shy, (GIS)(FP) = X'(F,) and 7 € &K; (G's)(Fp) a

lift of z. We write Y'?(&) C &K,’) (G’S)(Fp) for the orbit of & under the group G, (A%}). Similarly, for
¢ a prime coprime to p, we write Y/ (%) C &K;(Gé)(ﬁp) for the orbit of Z under the group G/, (Q¢).

Definition 3.1.1. The reduced prime-to-p Hecke orbit Y'?(z) of z is defined to be the image of
Y'?(%) in X'(F,). Similarly the reduced ¢-power Hecke orbit Y/ (z) is defined to be the image of Y} (%)

in X'(F),). We write Z'?(z) and Z)(z) for the Zariski closure of Y'?(z) and Y/ (z) respectively.

It is clear from the definition that Y'P(z) and Y/ (z) are independent of the choice of Z and that
Y/(x) C Y'(x). When we consider Y/(z) we will also assume K’ factors as K, K;K'"*, where
Kj € G5(Q¢) and Kt C G/S(A];’Z) are compact open subgroups; here A];’Z denotes the adeles with
trivial component at p and /.

By the main result of [Ham15|, there is a stratification of X’ parametrized by the set B (G’g 0, {n})
where {u} is the geometric conjugacy class of cocharacters of G% containing the inverse of the Hodge
cocharacter associated to the Shimura datum. This is a certain subset of the set of o-conjugacy classes
of G’S (L), where L is the completion of the maximal unramified extension of Q,; we refer to for
the definition. The set B (G’&Qp, {i}) is equipped with a partial order. It contains a unique maximal

SS

element [b]°*d and a unique minimal element [b]**. We write X’°*% and A’* for the corresponding

strata.

Remark 3.1.2. In the literature, X’°*4 is usually known as the p-ordinary locus. If Sec satisfies [LT20,
Assumption 2.2|, the stratum X’*® coincides with the locus where the universal abelian variety is
supersingular. In what follows, we will abuse notation and refer to X’** as the supersingular locus
even when this assumption is not satisfied.

The main result of this section is the following.

Theorem 3.1.3. Let ¢ € T/, (Q)I\T/,(Af)/V/(K'). Then for any = € X' N X""Y(F,) we have
7' (z) = X'
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Remark 3.1.4. (1) The inclusion Z(x) C X' is clear since G}, = ker /.

(2) Since G/S(A?) acts transitively on the set of connected components of Shy., (G%
p

S
[Kis10, Lemma 2.2.5]), this theorem implies the prime-to-p Hecke orbit of any z € X"*4(F,,) is Zariski

dense in X’. Here the prime-to-p Hecke orbit is defined by replacing the G&er(A’})—orbit with the
G’g (A?)—orbit in the definition of Y'?(Z).

) (see for example

The rest of this section is devoted to the proof of Theorem [3.1.3] We briefly outline the strategy
following [Cha95]. The first step is to analyze the formal completion Z'7(z) of Z'P(x) at a smooth
ordinary point. The stability of Z'P(x) under Hecke correspondences constrains the possibilities for
this formal completion. Indeed, using Moonen’s generalization of the Serre-Tate coordinates [Moo04]
in this context, one can show that the formal completion of X’ at an ordinary point has a formal
group structure; then Z'7 (z) is actually a formal subgroup. The second step is to show that Z'7(x)
contains a supersingular point; this uses the quasi-affineness of the Ekedahl-Oort stratification on
X’ proved in [VW13]. Finally we analyze the formal completion of Z’P(z) at a supersingular point
s € X' N Z'P(x); we use the fact that s is the specialization of an ordinary point =’ and that A, has
a large endomorphism group to show that the formal completion of Z'P(z) at a’ is the whole formal
neighborhood in X’. This implies the result.

A key ingredient of the proof of the Hecke orbit conjecture for Hilbert modular varieties in [Cha95)|
was an explicit description of the structure of isogeny classes associated to an abelian variety with extra
structure. This required an understanding of the endomorphism algebra of these abelian varieties,
see [Cha95l, Lemma 6]. We will instead use a group theoretic approach using results of [Kis17] which
avoids some of the case-by-case analysis of loc. cit.

Let k be an algebraically closed field of characteristic p. Let € X/(k) and (A, ¢, \,ex») the
associated quadruple. We write I, for the reductive group over Q such that I,(Q) := Aut(()o ) (Az)
the group of quasi-isogenies of A4, respecting the Opg-structure and preserving the polarization A up
to a scalar in Q*.

We would like to apply the results of [KisI7, §2| to our situation. Suppose that z € X'(F,). We
write IX% for the group denoted I in [KisI7, §2.1]. Then it is easy to see that IXs = [ indeed in
[Kis17] we may take the tensors s, € A%(p) to be the classes corresponding to the endomorphisms and
polarization. Then the condition defining IX in [KisI7, §2.1| precisely corresponds to the condition
defining I,. By [Kis17, Corollary 2.3.5], there is a subgroup Iy C G’S equipped with an inner twisting
Ip®9 Q & I, ®y Q. The map v/’ : G’g — T/, determines a map v/, : I, — T/, and we let I} C I,
denote the kernel of /.

For all primes ¢ # p, upon fixing a trivialization of T4, there is a map I.(Q) — G’S (Qy) given by
the action on the f-adic Tate module. We write ¢4, := A, [p>°] for the p-divisible group associated to
A, and D(%,) its Dieudonné module over Or,. Then upon fixing an Oy -linear bijection

(3.1.2) D(,) = A @ O,

preserving the action of Opg and the pairings on both sides, we obtain an embedding I,(Q,) — G’S (L).
We write H, C I,(Q,) for the subgroup of elements which stabilizer A ®z Op; it is a compact open
subgroup of I, (Q,) which does not depend on the choice of bijection . The following proposition
can be deduced in a standard way as in [Cha95, p448].

Proposition 3.1.5. Suppose x € X'(F,). There are bijections
(3.1.3) VP (x) 2 I(Q) N Hy\Gler (AF) K7 /K™

(3.1.4) Y(x) = 1,(Q) N Hy K™ \Ge,(Q0) K/ K
such that (3.1.3) (resp. (3.1.4)) is equivariant for reduced prime-to-p (resp. reduced £-power) Hecke

operators.
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Proof. Let ¥ € &K;(G/g)(ﬂ?p) be a lift of . Then by the argument of [Cha95l p448], the stabilizer
of 7 in G(A}) is identified with I,(Q) N H, and hence the G%(A%)-orbit of # can be identified with
I, (Q)ﬂHp\G’S(A?), cf. also [Kisl7, Proposition 2.1.3]. Since Gécr(A?)ﬂII(Q) = I}(Q), the Gécr(A’;)-
orbit of  is identified with I1(Q) N Hp\G}.,(A%) and the description of Y'?(z) follows by taking the
image in X’. The description of Y/ (z) is proved in a similar way. O

3.2. Serre—Tate theory following [Moo04] and analysis at ordinary points. In this subsection
we study the formal neighbourhood of a point in X’°*, We begin with some preliminaries concerning
p-divisible groups with an action of the ring of integers O of a finite unramified extension of Q,. Recall
we have the integral PEL datum (Op, C Dg,*, A C W,1)); we write D for the base change of this
datum to Z,,.

Definition 3.2.1. Let S be an Og, _-scheme. A p-divisible group with D-structure over S is a triple
(4, A\, 1) where: '

e ¢ is a p-divisible group over S of height dim W.

o 1 : Opg p — End(¥) is a homomorphism satisfying

(3.2.1) det(T — u(a) | Lie(®/S)) = [ (T —7(a)>".

%EEE,OO
e \: ¥4 — ¥V is a polarization such that
t(a) =X"tou(a*)V oA

It is easy to see that for any = € &/K(G/é)(s) with associated quadruple (Ag, ¢, A, ex»), the p-
divisible group ¥, := A;[p>] is a p-divisible group with D-structure.

Suppose p factors as pi...p, in F; we have a decomposition F' ®q Q, = F,, x --- x F, . This
induces a decomposition

DSJ, = DS7;31 X oo X DS,pT-

The datum D decomposes as a product of data D; := (Opg, C Ds p,;,*, Aj C Wi, 1;), where W; is the
subspace of W ®g Q, on which Ds , acts via Dgp, and v; and * are the restrictions of 1 ®g Q, and *
to ;. Similarly to Definition [3.2.I] we may define the notion of p-divisible group with D;-structure.
By [HamlI5l Corollary 4.5 (1)], there is an equivalence of categories

(3.2.2) {p-divisible groups with D-structure} = H{p—divisible groups with D;-structure}

3

which takes isogenies to isogenies. Moreover this equivalence gives a decomposition

ggﬁ%
=1

for ¢ a p-divisible group with D-structure. The ¥ are equipped with polarizations A; and Opg p,-
actions and the isomorphism identifies A with the product polarization and ¢ with the product of the
actions of Opg p, -

For any z € &X'(F,), we write J, for the group of automorphism of %, in the isogeny category
preserving the Opg -action and the polarization up to a Q; scalar. Then J; is a reductive group over
Qp which is an inner form of a Levi subgroup of Gé) Q, and there is a natural embedding I, ®qQ, — J,.
Similarly to the definition of I!, the map G’S — T/, induces a natural map J, — T;b)(@p and we
write J! for its kernel. Then J! breaks up into a product J%J-
G 2 i) G

Now suppose k is an algebraically closed field of characteristic p and 2 € X" (k). We write Tj'x for
the formal neighborhood of X’ at the point z. By the Serre-Tate theorem, Ux is identified with the
characteristic p deformation space of ¥,; see [Ham15l Proposition 2.9] for example. In other words,

corresponding to the decomposition
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let Defg, 5 be the functor on local Artinian rings R/k with residue field k satisfying:
Defy, A(R) = {(5!7, A, 1)/R a p-divisible group with D-structure, 6 : 4 @ k —> gm} ]~

Here 6 is an isomorphism of p-divisible groups with D structure (i.e. preserves actions and polariza-
tions) and ~ is the equivalence relation identifying isomorphic p-divisible groups with D-structure.
Then Defy, » is representable by a formal scheme Spf R, and Spf R = ﬁw The equivalence of
categories implies that there is an isomorphism

T
Defy, » = [ [ Defy, ,a,
=1

where Defg, , », is the deformation space of the p-divisible group ¥, ; with D;-structure
(3.2.3)

Defg

x

o (R) = {(fé,, i, t;)/ R a p-divisible group with D;-structure, 6; : G @rk > %m-} /~.

Theorem 3.2.2 ([Moo04, Theorem p226, Example 3.3.2]). Fori = 1,...,r, Defg, ; x

2\

s a formal
p-divisible group. Hence Defy, » is a formal p-divisible group.

The results in [Moo04] in fact give an explicit description of the group structure of these deformation
spaces which we now recall. To do this we introduce some notations. Let O be the ring of integers in
an unramified extension of Q, of degree g. Recall a p-divisible group with O-structure over a scheme
S is a p-divisible group ¢/S together with a homomorphism of Z,-algebras ¢ : O — Endg(¥); see
The O-height htp(¥) of ¥ satisfies

ghto(¥) = ht(9).

We identify the set of embeddings O — W (k) with .# := {1,...,¢} so that o(m) =m+ 1 mod g.
Let d be an integer and f: . — {0,...,d}. For m € .# we let M,, be a W(k)-module of rank d with
basis (€m,n)n=1,....d- We equip M := @? _, M,, with a Frobenius ¢ given by

(3.2.4) plemn) = 4 i ifn<d=j(m) -
m’n Pemiin  if n>d—f(m)

This gives M the structure of a Dieudonné module and hence corresponds to a p-divisible group ¥(d, f)
over k. The action of O on M given by letting O act on M, via the embedding m induces an action of
Oon¥9(d,f). Then 4(d,f) is a p-divisible group with O-structure of O-height d. The above discussion
extends in the obvious way to the case where O = Hle O; and O; is the ring of integers in a finite
unramified extension of Q,,.

We now return to the previous notations so that z € X"*(k). Let i € {1,...,r} and O’ := Og, ;
we write g := [F}, : Qp]. By Morita equivalence, there exists a polarized p-divisible group (¢°, \°)
with (’-structure of O’-height 2 such that (¢4°)? = %, ;. The polarization \° induces an involution x
on O'. Then (O, ) is one of the following two forms, see [Moo04} §3.1.2]:

Case (AL): p; is splits as q;q; in E and O' = W (Fps) x W (Fps), where the involution = is given by
(a,b) — (b,a).

Case (AU): p; is inert in E and O" = W (IF,2,). The involution * is given by the p9-Frobenius.

In the case (AL), we write O = Op, = W(Fps). Then by [Haml5, Corollary 4.5 (2) I|, there is
a p-divisible group ¢’ with O-structure of O-height 2 such that ¥° = ¢’ x 4’V. We identify the set
of embeddings O — W (k) with .# := {1,...,g} as above, and we also identify this with X /g,
Then ¢¥' =2 4(2,s) where s : & — {0,1,2} is defined by s(m) = s,,,; here s, is the number defined in
@.21).
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We define a function ? : # — {0,1} by setting

a(m):{1 if s =1

0 otherwise
Then by [Moo04, Theorem p226] there is an isomorphism
Def%,i,Ai &~ Defg/ = g(]_’ D)for’

where we write (1,9)©" for the formal group associated to %(1,9) and the space Defy is the
deformation space of the p-divisible group ¢’ with O-structure (without polarization). The first
isomorphism here is via [Ham15l, Corollary 4.5 (2) I]. Then Defy, , », is (the formal group associated
to) a p-divisible group with O-structure of O-height 1.

In the case (AU), we write O := Op, = W(Fps); recall O" := Op, = W(Fj2,). Then ¥° = ¥(2,s)
where s : {1,...,29} — {0,1,2} is defined by s(m) = s, as above. Here we have identified {1,...,2g}
with ¥ o /p,. There exists a p-divisible group with O’-structure ¢’ of O’-height 1 and an isomorphism
@° >4’ x 4'V. The polarization A\° on ¥° switches the two factors.

We define a p-divisible group 4 := ¢ (1,9) with O’-structure where 0 is defined by

D(m):{l ifsm:.1

0 otherwise

as above. In this case, the polarization A° induces an automorphism of 7 for. then there is an isomor-
phism
Defrg

o = Defgo yo & (gf'for))\"?

where (gfor)Ao denotes the formal subgroup of ¥ fixed by the automorphism induced by A°. In
this case the deformation space Defg, ; x, is no longer stable under the action of O’. However it is
stable under O and indeed it is (the formal group associated to) a p-divisible group with O-structure
of O-height 1.

Using the definition of slopes for a p-divisible group with O-structure as in [Moo04l, §1.2.5], it is
easily checked that ¢’ in case (AL) and ¢° in case (AU) has one slope if X /p, — Soo/p, = 0 and two
slopes otherwise. Moreover we have that Defg, , x, has dimension |X/,, —Soc/p,| in both cases (AL)
and (AU); in particular Defy, , x, is trivial if X /p, — Soc/p, =

We also need a description of the endomorphism algebra of ¢, ; and its action on the deformation
space. For i € {1,...,r}, we write J, ; := Aut(o/,)\f)(gzi) for the group of automorphisms of 4,
respecting the O action and polarization. The group J.; acts on Defy, , x, via modification of the
isomorphism 6; in .

In case (AL), J;; can be identified with the group of automorphisms of ¢’ respecting the OFF,:'
structure. If ¢4’ has one slope, in other words if s, # 1 for any m € X g 00/qss then Jo i = My(Oy,).
In this case the deformation space is trivial and J, ; acts trivially on Defy, , x,. If 4’ has more than

one slope, which occurs if Sy /p, # Yoo /p,, then J, ; = ((’)X )2 In this case J, ; acts on Defg, , », via
(a,b) — t(ab™1); here ¢ gives the Op, -structure on Defy, , x,.
In case (AU), if ¥° has one slope, then J z,i 1s identified with the subgroup in GL3(Op, ) preserving

1
10

Jz,i acts trivially on Defy, .. If ¢° has two slopes, J;; is identified with ngv. Then J,; acts on

the Hermitian form given by the matrix (_ ) In this case the deformation space is trivial and

Defy, , via a = «(Nmg, /r, (a)).

It follows from these descriptions that Defy, » is equipped with an action of (Op ®z Z,)*

Now assume 2’ € X""(TF. ) We let « € Z'P(2')(F,) be a p-ordinary point which lies in the smooth
locus of Z'P(z') and we write Z/?(z') C Defqy, . for the formal completion of Z'7(z") at x. The analysis
of the actions of J; ; on Defg, , , leads to the following proposition.
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Proposition 3.2.3. Z'?(¢/) C Defy, is stable under the action of an open subgroup of (Op @z Zy)*

Proof. Recall we have the groups J, and J! defined above. Let T' C I, denote a maximal torus and
T* its intersection with Il. By [Kis17, Corollary 2.1.7|, I, and J, have the same rank, and hence I}
and J! have the same rank. It follows that T, ! is a maximal torus of J!.

Now 7"(Q,) breaks up into a product [];_, T (Qp) where T;(Q,) C J; ;. Let i € {1,...,r} be an
element such that &, ; in case (AL) (resp. ¥, in case (AU)) has more than one slope. It can be
checked in the two cases there is the following description of T} (Q,):

Case (AL): T}(Q,) C Autyr(#,,) = (F,5)? is the subgroup of elements of the form (a,b) with
ab = 1. Here ¥, , is as in the discussion above and Autoo(%;i) is the group of automorphisms in the
isogeny category preserving the O-action.

Case (AU): TH(Q,) C Aut%,v\o (95,;) = Ey; is the subgroup consisting of elements a € Ey; with
aa—! = 1. Here Aut(ggg \o (%;1) denotes the group of automorphisms in the isogeny category preserving
the O’-actions and the polarization.

By weak approximation for T, see [San81, Corollary 3.5], 71 (Q) N J, is dense in TH(Q,) N J,.
Since the action of T*(Q) N J, on Defy, ) preserves 2’p(x') so does the action of T1(Q,) N J,. B
the description of T'(Q,) in the previous paragraph, the action of 7(Q,) N J. on the deformation
space can be described in the following way. We assume i € {1,...,r} is such that %, ; has two slopes.
Then in either case (AU) or (AL), TH(Qp) N J,,; = Ofx’w acts on Defy, , , via a — t(a?). Since the
image of a ++ a? in O;w is open, this proves the proposition.

O

We may relabel the primes p; so that ¢, ; in case (AL) (resp. ¥, in case (AU)) has two slopes

for i =1,...,a and one slope for i = a+1,...,7. Then Defg, , », is non-trivial for i = 1,...,a and
trivial for i =a+1,...,7, and we have an isomorphism'

Defy, » = HDefgm, A

Corollary 3.2.4. There exists a subset w C {1 ...,a} such that
ZP(a") = | [ Defy, , »

1EW

i

can be checked from the explicit description of the action of T1(Q,) NJ, on Defy,_ that the conditions
i

Proof. By [Cha08| Proposition 4.2], Z\;p(x/) is a formal p-divisible subgroup of Defg, , x,. Indeed it

stated in [Cha08, Proposition 4.2] are satisfied. By Proposition Z'P(2') is a formal p-divisible
subgroup stable under the action of an open subgroup of (Op ®z Z,)*. The only such subgroups are
the ones described. O

This proposition can be globalized to the following. Recall the tangent sheaf Ty is equipped with
an action of O ®z Z, by Proposition m We write Ty (p;) for the subspace of Ty, on which
Or ®z Zy, acts via the projection to Op, . The next corollary follows immediately from and
faithfully flat descent.

Corollary 3.2.5. Let W be an irreducible component of the smooth locus Z'P(x')™™ of Z'P(z'). Then
there exists a subset w C {1,...,a} such that the tangent sheaf Ty of W is given by

B T (p:) @6, Ow C Tx @6, Ow.

S
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3.3. Proof of the main theorem. Recall for x € X'(F,), Y?(z) and Y;(x) are the reduced prime-
to-p and ¢-power Hecke orbits respectively, and Z'?(z) and Z;(z) are their respective closures.

Proposition 3.3.1. Z(z) N X’"* # (.

Proof. Since X’ is proper over F,, Z(z) is proper. By the main theorem of [VWI3], there is a
stratification on X’ whose strata are quasi-affine and stable under prime-to-p Hecke correspondences.
The strata X! are parametrized by a certain subset W of the Weyl group W of GIS' The closure
relations are given by a partial ordering on 7.

We let w € /W be a minimal element for this partial order such that X, N Z)(x) # 0. Then
X, N Z)(x) is closed in &’ by the minimality of w and the properness of Zj(z), hence X, N Z;(x) is
proper. Since X N Z;(z) is also quasi-affine, it follows that X N Z;(z) is 0-dimensional. By Lemma
B-3.2 below, X;, N Zj(x) C X" £ 0.

O

Lemma 3.3.2. LetY C X’ be a 0-dimensional subscheme of X' which is stable under reduced £-power
Hecke correspondences. Then'Y C X'5.

Conversely if x € X'*5(F,), then YP(x) is finite and hence Z'P(z) is 0-dimensional.

Proof. First assume z € X**(F;,). Then I, ®g Q; = G5 ®q Q; for all £ # p by [XZ, 7.2.14] and hence
I3 ®@q Q¢ = G}, ®g Q. Therefore YP(z) = I(Q) N Hy\GY,, (AF) K™ /K™ is finite by the finiteness
of class groups.

Now we assume Y is finite and = € Y/(F,); then Y;(z) is finite. It follows that I1(Q/)\Ghe (Qp) is
compact. The same argument as in [Kis17, Corollary 2.1.7] shows that

It ®q Q¢ =2 Gy ®g Qe
and hence

I ® Qe = G5 ®g Q¢
since I, and G’g have the same ranks by [Kis17, Corollary 2.1.7]. But I, ®g Q, is a subgroup of J,
which is an inner form of a Levi subgroup of G’g ®q Qp. Since I, and G’S have the same dimension,

J is an inner form of G’S. Therefore the Newton cocharacter defined as in is central and hence
T is a supersingular point. O

We will need the following two results on the structure of I} for supersingular points.

Proposition 3.3.3. Suppose x € X"5(F,).

(1) The natural map I} @g Q, — J} is an isomorphism.
(2) I} is an inner form of GY.,. In particular I is simply connected.

Proof. By [XZ, Lemma 7.2.14] I, is an inner form of G and I, ®y Q, — J, is an isomorphism.

Therefore I} is an inner form of G/, and I} ®g Q, — J! is an isomorphism.

|
We can now complete the proof of the main theorem.

Proof of Theorem[3.1.5 We proceed as in [Cha95 Proposition 7|; we will assume Z'P(x) is not equal
to X' and deduce a contradiction. By Proposition , Z'P(x) contains a supersingular point
s € X'*(F,). We write Z!P(z) for the completion of Z'P(z) at the point s.

Let A, be the abelian variety with Opg-multiplication associated to s. The corresponding p-
divisible group (¥, A, ) with D-structure breaks up into a product %1 X --- x ¥, of p-divisible
groups with D;-structure and there is a decomposition of the deformation space

Defy, ) = DefgSJ’)\l X oo X Defgmv,\r.



MOTIVIC COHOMOLOGY OF QUATERNIONIC SHIMURA VARIETIES AND LEVEL RAISING 21

We write Jg for the group of automorphisms of ¥, respecting the Opg-action and polarization, and
J! its intersection with J!. Then J! is a compact open subgroup of J! and there is a product

r
1 ~ 1
Js = H Js,i'
=1

Since I! is simply connected and I} ®g Q, = J! by Proposition the weak approximation
theorem implies that I1(Q) N J! is dense in J!. Since I1(Q) N J! preserves the subspace ZP(x) C
Defy, », it is preserved by the group JL.

There exists an irreducible component W of the smooth locus of Z'P(x) such that s lies in the
closure of W. By Corollary [3.:2.5] the tangent sheaf Ty is equal to a product

P 1y i) 0o, Ow

1EW

decomposition

where w C {1,...,a} is a proper subset since we assumed Z'P(x) # X<, We fix a choice of j €
{1,...,a} —w.

Let & : Spec k[[t]] — Defg,  be a formal curve which generically lies in W and with special fiber
s, and we write &; : Spec k[[t]] — Defgy, , x, for the p;-component of the map {. We write 7 for the

generic fiber of &; then 7 is an ordinary point. It follows that J%yj is a torus by the description given

in Therefore, there exist elements uﬁ") € J,,; such that u§")§ £ ¢ but (u§n)§) is congruent to &
modulo arbitrarily high powers of ¢ as n — oo. For ¢ # j, the p;-component of ugn)f is equal to &;.
Let W denote the formal neighbourhood at s of the closure of W and we write W, ,. for the
image of WS in the p;j-component Defg, . .. Then upon replacing u;") by a subsequence, there is an
irreducible component Uc Wsﬁpj containing the p;-component of ug-n)f for all n. Let Ws’pj = Spf R;
and let I C R; be the defining ideal for U. Then f(§;) = 0 for any f € I by continuity, and hence U

contains &;. By considering the tangent space at the k((t))-valued point R;/I LN E[[t]] = E((t)), one
sees that the tangent space to W at the point 1 : Spec k((t)) — W contains a non-zero p;-component,
which is a contradiction. O

We may use this to deduce the following corollary

Corollary 3.3.4. Let 2 € X' N X'°'YF,) and ¢ a prime such that G’g is unramified at €. Then
Zy(z) = X'

Proof. By Theorem it suffices to show that Zj(x) is stable under reduced prime-to-p Hecke
correspondences; we use the same argument as in [Cha95, Theorem 1].

By Proposition m Z)(x) contains a supersingular point s € X*5(F,). As in the proof of Lemma
we have an isomorphism I ®q A} = G}, ®g A%, Since I is simply connected, the strong
approximation theorem implies I!(Q)I1(Qy) is dense in I}(Af). It follows that I1(Q) N H,K'"* is
dense in I} (Q,)N H,. Since I}(Q)N H,K'?* is contained in the stabilizer of Z)(x) at s, the completion
Zé7s(x) at s is stable under the action of I}(Q,) N H,.

Let v € G:ier(A?) and we write 7y for the corresponding reduced prime-to-p Hecke correspondence.
We write v(Z;(x)) for the image of Z;(z) under 7; we need to show that v(Z;(x)) = Z)(z). The strong
approximation theorem also implies that Y'P(s) = Y/(s) by the description in Proposition It
follows that upon right multiplying 5 € Géer(Az;) by an element of G/,,.(Q), which does not alter
v(Z)(z)), we may assume 7 = ik for some i € I}(Q) N H, and k € K'P. Modifying again by k~!, we
may assume 7 € I1(Q) N H,. By the previous paragraph, 7 preserves Zés(x) and hence the formal
completion of Z;(x) U~(Z)(x)) at s is equal to Eés(m) Applying the argument to all supersingular
points in Zj(x), we find that Z;(x) Uy(Z;(x)) is equal to Z)(x) UW where W is a closed subscheme
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of X’ stable under reduced ¢-power Hecke correspondences and which does not contain supersingular
points. Then Proposition implies that W is empty. Since v was arbitrary, it follows that Zj(x)
is stable under reduced prime-to-p Hecke correspondences as desired.

|

3.4. The result in the quaternionic case. We now explain how Theorem may be used to
deduce the Hecke-orbit conjecture for quaternionic Shimura varieties. The open subscheme X7°'d
transfers to an open subscheme X°'4 of X, see for example [SZEI We write Gge, for the derived group
of Gs. Then Gger = G,

For z € X(F,), we may define the reduced prime-to-p Hecke orbit Y7 (x) and reduced ¢-power Hecke
orbit Yy(z) in the same way as for X’. Namely, we let Z denote a lift of x to &KP(GS,T)(E?) and we
write Y?(x) (resp. Yy(x)) for the Gder(A?)—orbit (resp Gaer(Qp)-orbit) of . Then YP(x) (resp. Yz(x))
is defined to be the image of Y?(z) (resp. Yy(z)) in X. We write ZP(x) and Z;(z) for the closures of
YP(z) and Yy(z) respectively.

Recall vg : Gg — T denotes the reduced norm. Then vg induces an isomorphism

mo(X) 2 Tr(Q)N\Tr(Ay) /vs(K)
where Tr(Q)' is defined as in For ¢ in the right hand side we write X for the corresonding
connected component

Let ¢ be a prime coprime to p. The following result follows immediately from Theorem [3.1.3] by
using the fact that the unitary Shimura variety and quaternionic Shimura variety have isomorphic

geometric connected components (upon taking the inverse limit over the prime-to-p level) and the fact
that Gl = Ger-

Theorem 3.4.1. Let ¢ € Tr(Q)\Tr(Ay)/vs(K) and x € XN X°"4(F,). Then
(1) ZP(z) = X°.
(2) Zo(x) = X°. O

Remark 3.4.2. As in Remark one can use this to deduce that the prime-to-p Hecke orbit of an
ordinary point is dense in X.

4. THARA’S LEMMA FOR SHIMURA SURFACES

In this section we prove a version of Thara’s lemma for certain quaternionic Shimura surfaces. The
argument combines the arguments of [Dim09] and [DT94].

4.1. Statement of Thara’s Lemma. We keep the previous notations, so that B is a totally indefinite
quaternion algebra over a totally real field F' of degree g := [F : Q], and we let K be a sufficiently
small compact open subgroup of (B ®qg Ay)*.

Let II be an irreducible cuspidal automorphic representation of GL2 (A ) of parallel weight 2 defined
over a number field E. We write Og for the ring of integers of E and k) for the residue field of Og at
a prime \. Let R be a finite set of places of F' away from which II is unramified and K is hyperspecial;
in particular R contains the ramification set of B . Let Tg denote the (abstract) Hecke algebra away
from R, i.e. the polynomial ring over Z generated by Ty, Sq where q is a prime away from R. The
representation II determines a homomorphism

¢g : Tr — Og
via the Hecke eigenvalues of II. For every prime A of E there is an attached Galois representation

P, - Gal(F/F) — GLQ(OEA)

2It is not a priori clear that the definitions of ordinary locus is independent of the choice of auxiliary PEL data. For
the applications, it is not necessary to know this.
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unramified outside of R U Ry where R, is the set of primes of F' having the same zdue characteristic
as A. It is characterized by the property that for ¢ ¢ R U R), the characteristic polynomial of the
arithmetic Frobenius Frobg at ¢ is given by

X? = R (Tq) X + Nuugyo(q)oR (Sq)-
We write py , for the reduction of pry x mod A.
We now assume p is a prime which is inert in F' and such that K = K,K? where K, C Gs(Q,) is
a hyperspecial subgroup. We let p denote the unique prime of F' above p. Let m := mp x C Truyp)
denote the preimage of the ideal (A\) C Og under the map ¢gu o it is a maximal ideal of Tgyqp}-
For any Tgryypy-module M, we write My, for the localization of M at the ideal m. We introduce the
following assumptions:

Assumption 4.1.1. Let ¢ be the underlying prime of A.

(1) € is coprime to R, disc(F'), and the cardinality of F*\Af /AL . N K, where we consider A  :=
(F ®@g Ay)* as the center of (B ®g Af)*.

(2) £>g+2.

(3) The representation pyy , satisfies the condition Llag, , in [Dim05, Proposition 0.1].

(4) B splits at all places above £ and the compact open subgroup K factors as K = K,K* where
Ky C GLy(Qy) is a hyperspecial subgroup.

Let S C ¥ooUX, and T C S as in Then we have the associated Shimura variety Shx (Gs ).

Proposition 4.1.2. Suppose Assumption[].1.1] is satisfied. Then
(1) H (Shg(Gs1)g, Ory )m = 0 unless j = gs = [Zoo — 9|
(2) H% (Shk (Gs,1)g, Or, )m is a free O, -module.

Proof. The case of Hilbert modular varieties is proved in [Dim09, Theorem 6.6]. We thus assume
Shg (Gg, 1) is compact.

For (1), it suffices to show that H’(Sh(Gs)g, ka)/m = 0 for j = 0,...,gs — 1 by Nakayama’s
Lemma and Poincaré duality. We let E denote the Galois closure of F and G 7 its absolute Galois group.
For any irreducible representation p’ of G which appears as a subquotient of H’(Sh K(GS,T)@, kx)/m,
the same argument as in [Liul9, Theorem 3.21] shows that gs appears as a Fontaine-Laffaille weight
of p’; note here we need to use Assumption m (2) in order to apply this theory. By Assumption
(4), Shg (Gs,1)r,, admits a proper smooth model over W (Fy ), where & is the residue degree of
a prime in F' above £. Therefore, by Faltings’ Comparison Theorem [Fal89], we know that gs cannot
be a Fontaine-Laffaille weight for H’ (Shx (Gs 1)g; ka)/m, j < gs. This proves (1).

For (2) the proof is the same as [Dim05, Theorem 6.6]. O

For the rest of this section we make the following assumption.

Assumption 4.1.3. (1) p ¢ S and |2 — S| = 2.
(2) B # GLa(F),

In particular this condition implies that the associated Shimura varieties are compact. We write
Yoo—S = {71, 72} (note we do not use the convention in §2.4]so that o(71) is not necessarily equal to 73).
As in we fix an isomorphism (Bs ®gQ,)* =2 GLy(F}) such that K, corresponds to the standard
hyperspecial subgroup of GLa(F}), and we let Ky, correspond to the standard Iwahori subgroup of
GL2(Fy). We let Ko(p) = Ko KP. We then have the Shimura variety Shg, ) (Gs,r) with Iwahori
level structure at p which is equipped with two finite étale maps 71, m : Shi () (Gs 1) — Shx (Gs ).

The main theorem of this section is the following.

Theorem 4.1.4. Under Assumptions and[{-1.3, the map
7'1'1< + ﬂ'; : HZ(ShK(G&T)@, k)\)i — HZ(ShKO(p)(G&T)@, k,\)m
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s injective.

Remark 4.1.5. In the case of Hilbert modular varieties, this theorem was proved by Dimitrov [Dim09].
For Shimura curves, the case F' = Q is due to Diamond-Taylor [DT94] and the case of general totally
real F' is due to Manning—Shotton [MS21].

We outline the strategy for the proof of this theorem. Following the idea of Diamond-Taylor,
we use Faltings’ comparison theorem [Fal89] to reduce to proving the injectivity of a certain map
between global sections of line bundles over the mod ¢ reduction of the Shimura surface (Proposition
. The property that such a global section lies in the kernel of the map implies that the
divisor corresponding to this section is stable under certain Hecke correspondences. The Hecke orbit
conjecture proved in the previous section shows that this divisor (if non-trivial) must be supported on
the complement of the ordinary locus. We then compute the intersection pairing of this divisor with
certain Goren—QOort divisors to deduce a contradiction.

4.2. Intersection numbers. In this section we compute the intersection numbers of certain cycles
on the special fiber of quaternionic Shimura surfaces. The corresponding calculations for Hilbert
modular surfaces were carried out in [AG04].

Recall we have assumed £ is a prime which is unramified in F' and such that K is hyperspecial at ¢; in
other words that K = K;K* where K, C Gs(Qy) = GLa(F ®g Q) is hyperspecial. In this subsection
we need to consider the mod ¢ reductions of the quaternionic Shimura varieties constructed in section
Fix an isomorphism ¢ : @e = C through which we identify Yo with ¥,. We let X, denote the
integral model of Shyx(Gs 1) over OES,Z determined by a choice of imaginary quadratic extension

E/F and a subset Seo C YE o asin here £ is the prime of Eg induced by t,. We may apply
the construction in §2 upon replacing p by ¢. In this section we will only need to consider geometric
special fibers, so we do not need to keep track of the fields of definitions as in §2} In particular, the
subset T will not play a role. We write X, for the special fiber of X, over F,.

For a choice of auxiliary PEL data, the Newton stratification on the corresponding unitary Shimura
variety defines a stratification on Xy, see We write X for the p-ordinary locus of X, and we
write Xén_ord for the complement of X2 in X,. We would like to understand the intersection numbers
of certain cycles supported on Xgnford. This is possible since in the case of surfaces, we may give an
explicit description of the non-ordinary locus in terms of Goren—QOort cycles. The relationship with
Goren—Qort strata follows easily from an examination of the Dieudonné modules of the universal
p-divisible group over the unitary Shimura variety. Since the calculations are completely analogous
to the case of Hilbert modular varieties (see for example [Sta97| and [LT20] for some cases of totally
indefinite quaternion algebras), we omit the computations and just give the statements. We consider
the following two cases separately:

Case (1): There exists a prime [ above ¢ such that 7,7, € Xy/q.

Case (2): There exists distinct primes Iy, I above £ such that 71 € ¥, /o and 72 € ¥y, /oo

We first consider Case (1). Then we have

n—ord ~v
xpood e = X U X,

where &, and &} ,, are the Goren-Oort divisors over F, corresponding to 71,72 € Yse — Seo. Here
X7® is defined as in §3.1]
By Proposition X;.,, and Xy ., are Pl-bundles over the discrete Shimura set

Gr.. (Q\Ge (Af)/ K
and by [TX19l Proposition 2.32 (3)] there is an isomorphism

Xpr, N X7, =2 Gy (Q\Gx, (Af)/Ko(l)
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where Ky(I) C K denotes the compact open which agrees with K away from [ and with Iwahori level
structure at [. Here we consider these finite sets as discrete schemes over Fy. We write s;(K) for the
cardinality of Gx_ (Q)\Gx_ (As)/K and s;(Ky(l)) for the cardinality of Gx_ (Q)\Gx_ (As)/Ko(l).
Then s¢(K) and s¢(Ko(l)) are related by the equality

se(Ko(l) = (49" + 1)s¢(K)

where gr = [F{ : Q).

By [TX19, Theorem 4.3E| the intersection matrix of &y -, and A} ., considered as divisors on A} is
given by

—20"150(K)  s4(Ko(l)) 20" 9 4+ 1
( se(Ko(l))  —=2["m 8@([()) = se(K) (59‘ +1 —21"*2)

We write w,, (resp. wy,) for the line bundle on X, defined in corresponding to a choice of lift 7
(resp, 7) in See. Since Xy, (resp. Xyr,) is the vanishing locus of a section of (wy,)!" ™ @ (wy, )~
(resp. (wr,)"" ™ & (wr,)~ 1), applying a change of basis matrix we compute the intersection matrix of

wr, and w,, to be
0 Sg(K)

Now we consider Case (2). In this case we have the two Goren—Oort divisors Xy ., and X, and
Apord = Xy U Xy,
By Theorem Xy, and X 5, are isomorphic to Sk (Gs,, T,, )E and Sk (Gs,, 1., )E respectively;

- o
these are the special fibers of certain Shimura curves. Moreover, by [TX16, Theorem 5.2|, X, and
X, intersect transversally and there is an identification of X, -, N X, ,, with the discrete Shimura

set

GSU{Tl,Tz,Il,Iz}(Q)\GSU{T17T27[17[2}(Af)/K[h[Q = GZOOU{I],[Z}(Q)\Gzoou{[17[2}(Af)/K[17[‘2

where K\, |, is the compact open which agrees with K away from [; and [ and is the unique maximal
compact at the places [; and lp. We write s;(Ky, (,) for the cardinality of this finite set. It follows
that the intersection number Xy ;. X -, is equal to s¢(KY, 1,).
For a projective scheme S of dimension d over a field k and F a coherent sheaf on S, we write
d

Xs(F) ==Y _(=1)" dimy H'(S, F)
i=0
for the Euler characteristic of 7. We write xg(0) for the Euler characteristic of the structure sheaf.
By [LT20, Proposition 3.2] and Corollary we have w? |x, . = QF, ., in the rational Picard
group of Xy ,,. Thus
ZXXE,Tl (0) =2 deg(sz |Xz,7—1 )
= 200" — 1wy -Wey-
On the other hand, the adjunction formula implies that
2XX4YT1 (0) = XZ,TI -(Xé,n + Kcan)
= (wr)" L (wr) T (wn)?)

= (02" — Dwy, wry + 200" — Dws, Wy,

n , there is a running assumption that the prime p in our setting) is inert in F'. is i1s required for the
3In [TX19], th i ing i hat th i 0 i ting) is i in F'. This i ired for th:
cohomological results to hold. However it is easily checked that the computation of the intersection pairing, which is
purely geometric, holds if the prime is only assumed unramified.
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where K., is the canonical bundle on X, and for the second equality we have used Corollary
Thus since ¢ > 4, it follows that w,, .w,, = 0, and hence X, -, . Xy r, = 0. Similarly we have X , . Xy -, =
0.

In summary, the intersection matrix of &; -, Xy -, is given by

( 0 Sf(Kll,[2)>
SZ(Kll,fz) 0

and the intersection matrix of wy, wy, is

1 0 se(K1y 1)
(enm — 1) (072 — 1) <5Z(K[1,[2) 0 ) .

4.3. Connected components. We will need a variant of the above computations for the connected
components of Xy; this is due to the fact that we will need to apply the strong approximation theorem
in the proof of Proposition[4.3.4]and this only holds for the derived group of Gs. We keep the notations
and assumptions of §4.2]

Recall vg : Gs — T denotes the reduced norm and this induces an isomorphism

(4.3.1) mo(Xe) = Tp(Q)\Tr(Ay)/vs(K).

We write Clp(K) for the right hand side. For an element ¢ € Clp(K), we write X for the connected

component of X, corresponding to ¢. We also write w; ,ws, for the restriction of the lines bundles

Wry,Wr, to X7. We would like to obtain the intersection matrix of the line bundles wy w7, on Xj.
There are maps between the Shimura sets

(4.3.2) Gs_ (Q\Gs. (Ap)/K = Tr(Q)\Tr(As) /v (K), in Case (1).
(4.3.3)
Gy 0t Q\Gs_ U6 (A ) /Ky, = Tr(QN\Tr(Af) /vs oy (K ,),  in Case (2).

In each of the equations (4.3.1), (4.3.2) and (4.3.3), Tr(Q)T is identified with the set of totally
positive elements in F' and the images of K and K\, (, under the various reduced norms are all
identified, therefore we may identify the right hand sides of (4.3.2)) and (4.3.3) with Clp(K). We thus
write (Gx_ (Q)\Gs, (Ar)/K)¢ (resp. (Gs_ugi,i} QNG g, (Ar) /Ky 1,)¢) for the preimage of
¢ under (resp. (4.3.3))), and we write s¢(K)¢ (resp s¢(K, 1,)¢) for its cardinality.

Suppose we are in Case (1) of For i = 1,2, we have an identification of the irreducible
components of X, ;, with Gx_ (Q)\Gx_ (Ay)/K. We may choose this identification compatibly with
l) In other words, if we denote by X ., the union of irreducible components of Xy ;, corresponding
to (Gx_, (@)\sz (Af)/K)c, then Xéc,n =X, NXJ fori=1,2.

Proposition 4.3.1. In Case (1), the intersection matriz of w

(wiior ™0")

Proof. Using the fact that Xy, N X7 = A7 and [TX19, Theorem 4.3|, we find that in Case (1) the

¢ e
o Wr, 18 given by

intersection matrix of X; ., X/, is given by
=20 9+ 1
c
SE(K) <€g[ + 1 2[n,2>
Applying a change of basis matrix gives the desired result. O

Now suppose we are in Case (2). For ¢ = 1,2 we may identify
mo(Xe,r,) = Clp(K)

compatibly with the identification mo(X;) = Clp(K). In other words if we write X for the compo-
nent of Xy;, corresponding to ¢, we have Xj = = X; N Ay, fori=1,2.
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¢ ¢
Tl7w7'2

1 ( 0 Se(Kll,b)c)
(£ = 1) (0= — 1) \se(Ky 1,)° 0 .

Proof. Using the fact that Xy and Xy intersect transversally and that there are s,(K7,,1,)¢ inter-
section points, we see that Xy A7 = s,(Ky, 1,)"
: 2 ~ 1 2 ~ 1 . . . .
Asin 3 we have w? | X = Q L and w? |xg L Q Ay the rational Picard group. Applying

Proposition 4.3.2. In Case (2), the intersection matriz of w s given by

the adjunction formula to each connected component and arguing as in we find that Xy Xy, =
0, and hence wy .w; =0 for i =1,2.

We let Xy(p)¢ denote the special fiber of the integral model for ShKO(p)(GS’T) over Fy. We note
that, since we have only changed level away from ¢, Xy(p)e is still smooth.
Recall there are two degeneracy maps

T, T2 @ ShKO(p)(GS,T) — ShK(GS,T).

We also write mq,m : Xp(p)e — X for the corresponding maps on the special fiber; both of these
maps are finite étale.

Definition 4.3.3. Let z,2’ € Xy(F,). We write x ~y 2’ if there exists , 7’ € Xy(p)¢(F¢) such that
m(Z) = z,m(2') = 2/, and ma(T) = ma(T').
We write ~ for the equivalence relation on X (F;) generated by ~p.

It is easy to see that for z € Ay(FF,), the ~ equivalence class of z may be identified with Y, (z) in
the notation of Note that the roles of p and ¢ have been switched.

Recall we have the discrete Shimura sets Gx_ (Q)\Gxs_ (Af)/K, Gx_(Q)\Gx, (Af)/Ko(p) and
natural degeneracy maps

T, 72 Ge (Q\Gs (Ay)/Ko(p) = Gz, (Q\Gx,, (Af)/K.

Similarly to the above we may define an equivalence relation on this set by specifying = ~, z’ for
z, 2" € Gy (Q)\Gx_ (Ay)/K if there exists 2,z € Gx__(Q)\Gx_ (Af)/Ko(p) such that
Fl(j) = (Z?,’/Tl(’f/) = l’/, and 71'2(57) = ﬂg(j,).

We write ~ for the equivalence relation generated by ~,, and we write Y}, (z) for the equivalence class
of .

Proposition 4.3.4. For any z € (Gs_ (Q)\Gs_ (As)/K)*, we have
Yp(2) = (G (Q\Gs. (Ap)/K)".

Proof. Let Glzoo denote the kernel of vy, _ : G, — TFr. Then G%x is the derived group of Gx_, and
is simply connected. Let g € G5 (Ay) be a representative of (Gx_ (Q)\Gx_ (Af)/K)¢. It is easy to
see that

(Ge.. (Q\Gs. (Af)/K)" =Gy (Q\Gy_(Af)gK/K
=Gy (Q\Gs(Ap)gKg ' /gKg™;

the isomorphism is given by right multiplication by g~!.

Then Y, (x) is identified with
Gy (QNENGy (Qp)gKg™! /gKg™" C Gy (Q\Gy_ (Ap)gKg™" /gKg™".
By the strong approximation theorem, G, (Q)G%,_(Q,) is dense in Gy, _(Ajf) and hence

Gy _(Q) NKP\GL_(Qp)gKg '/gKg ™ =GL_(Q\Gs_(A)gKg ' /gKg™".



28 RONG ZHOU

4.4. Thara’s Lemma. We now prove the main theorem of the section. We keep the notations of the
previous subsection.

Proposition 4.4.1. The map

(4.4.1) 7t 4+ HO (&, Q2

XZ/E)Q - HO(XO (p)e, 2

2 i )
Xo(p)e/Fe
18 1njective.

Proof. Let (f1, f2) be an element of the kernel. We show f; = 0; in fact we will show f1[x; = 0 for all

¢ € Clp(K). Assume for contradiction that fi|xs # 0. Suppose fi has a zero at a point x € X/ (F).

Let y, z € Xp(F,) be such that
T @) Nyt (y) # 0, w2 Nyt (y) # 0.

Then since 75 (f1) = —75(f2), f1 has a zero at z. This implies f; vanishes at every point of Y, (z). If
f1 vanishes at an ordinary point of X, then by Theorem filxg = 0.

Therefore div(f1|x;) is supported on the complement of the ordinary locus.

We first consider Case (1). Then div(f;) is supported on A}®.

Let us consider D° := div(f1)|x; for some ¢ € Clp(K). Then D¢ is supported on X N A7®. Recall
XN =X, UX;  and each Xj_ is a P!-fibration over (Gx_ (Q)\Gs._ (As)/K). We let Dt
(resp. Ds,) be the divisor corresponding to the sum of irreducible components in Xy = &, N A
(resp. X[, = X, N A[f). We claim there are non-negative integers a, b such that

D¢ = aDt, +bDS,.

Indeed if f; vanishes on some irreducible component of Xp ,, then by Proposition f1 vanishes

on every irreducible component of Xy ,,. We let h,, € HO(XS, (w,)"™ ® (ws,)™") be a section with

divisor D7 . The section h,, can be chosen to be compatible with prime-to-£ level structure and so
7} (hy,) = 75(hey). Then (f1hZ!, fahi') € ker(n} + m5). Repeating the argument we see that there
exists a such that fih ¢ xs is non-vanishing on X, . We may use the same argument for Xy, to
obtain b such that f; h;;’\ x; is non-vanishing on Xéﬁ. It follows that the zero-locus of flh;l“h:;’| xf
has codimension 2 and hence is empty; this proves the claim.

Now f; corresponds to a section of the line bundle Qi{ 5

up to a torsion element of the Picard group by Corollary Furthermore Dy (resp. Dj,) is the

which is isomorphic to (wr,)? ® (w,)?

divisor corresponding to a global section of (wf)* ™ ® (ws, )™t (resp. (wE,)* ™ @ (w,)™1). Therefore
the line bundle

(5)™ @ (w57 (@)™ (w5, ) @ 0 g,
has a non-vanishing section; hence it must be the trivial bundle. It follows that
(95,)"7 ® (w5,)7)7 @ (W5,)™ © (w5,) ™" ® (65,2 @ () ™2 2 (w,)"™ ™2 0 (w5, )~
is torsion in the Picard group of Xy, hence pairs with any divisor to be 0. Since n,,n,, > 0 and

£ > 4, at least one of al™1 — b — 2, bl™"2 — a¢ — 2 is non-zero.
Recall the intersection matrix for the line bundles w; and wj, on X; is given by

(i 47

Thus (wg,)*" ™ 7072 @ (w, )" ™ 722 pairs with either w or w, to give a non-zero number. This is
a contradiction.

We now consider Case (2). Then div(f1) is supported on Xy U X7 . Let D := div(f1)|x;, and
we write D$! (resp. D)) for the divisor Xy, N &f (resp. Ay, NAF). Then

Df = aD¥, +bD5,
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for some integers a, b since D and DY are primitive divisors. Since D{ (resp. Df,) is the vanishing
¢ "2 -1
) )

T , the same argument as in case (1) shows that

locus of a section of (wil)fnf1 1 (resp. (w

"1 —a—2 be" T2 —b—2
(wr)®™ T (W)
is a torsion element in the Picard group of Xy. Since ¢ > 4, af™1 —a — 2 # 0 for any value of a. Thus

intersecting with DJ  gives a non-zero number. This is a contradiction. O

Proof of Theorem[}.1.7} Let
W .= HZ(ShK(G&T)@, k’)\)m, Wo(p) = HQ(ShKD(p)(G&T)@, k))m.

The image T‘évu{p} of Trugpy in Endy, (W) is a local Artinian ring and m!W is a finite decreasing
filtration of W. By the freeness result in Proposition m (2), each graded piece m'W/m W is a
quotient of two Try(py[G]-lattices in H*(Shx (Gs 1)g; Or,)m- By Lemma [Dim05, Lemma 6.5] and
the Eichler—Shimura congruence relation proved by Nekovar [Nek18, A.6], the irreducible subquotients
of W are all isomorphic as Galois representations of Gz. The same statement holds for the irreducible
subquotients of Wy(p). Using Faltings’ comparison theorem [Fal89], we may therefore check the
injectivity on the last graded pieces of the Fontaine-Laffaille filtration. By the degeneracy of the
Hodge-de Rham spectral sequence proved in [DI8T7], this follows from the assertion of Proposition
441l

|

Remark 4.4.2. In Case (1), there is an alternative argument to prove Theorem We are grateful to
the anonymous referee for explaining this to us. In this case, we assume the two Frobenius eigenvalues
at ¢ are distinct. Then using the Tate conjecture for .#x (Gg 1), which can be proved as in [TX19],
one can deduce that (1., mo.) : Wo(p)* — (W*)? is surjective by reducing it to the surjectivity in the
case of discrete Shimura sets which is well known.

5. ABEL—JACOBI MAP AND GEOMETRIC LEVEL RAISING

In this section we will use the results from the previous sections to construct classes in the motivic
cohomology of quaternionic Shimura varieties. We begin by recalling the definition of higher Chow
groups and the associated cycle class maps.

5.1. Higher Chow groups and /-adic cycle class maps. Let X be a smooth variety over a field
k and let A™ denote the standard n-simplex Spec k[zo, ..., z,]/(} ;o @i — 1). For integers n,r, we
define z"(X,n) to be the free abelian group generated by the integral closed subvarieties Z of X x A"
such that for any face ' C A™ we have

codimxxp(ZN(X x F)) >r.
The groups 2" (X, n) fit into a complex
(5.1.1) =2 Xn) = 2" (X,n—-1)— ... = 2"(X,0) >0

where the differential is given by taking the alternating sum of the induced face maps. The higher
Chow group Ch"(X,n) is the defined to the be n'* homology of the above complex. It is easy to see
that Ch"(X,0) is the standard Chow group of codimension r cycles on X. By [Voe02], we have an
isomorphism

Ch (X, 2j — i) = H) (X, Z(5))
where H' (X, Z(j)) is the motivic cohomology group of [SV00).

We may also consider a variant of this construction by introducing coefficients. Let R be any ring
and we let Ch"(X,n, R) denote the n*® homology of the sequence tensored with R. As before
there is an isomorphism Ch?(X,2j — i, R) = H,(X, R(j)); see [Voe02, Corollary 2|. From now on,
we will work with higher Chow groups.
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Let £ be a prime which is invertible in k, then there is an ¢-adic cycle class map
Ch (X, 25 — 1) = Heou (X, Ze(5)

where H'__ (X, Z¢(j)) is the continuous étale cohomology defined by [Jan88|. This coincides with the
usual cycle class map when ¢ = 2j.
Similarly if k) is a finite extension of Fy, there is a cycle class map

Ch/(X,2§ — i, k) — HY(X, kr(5)).

Let Y — X denote a fibration with connected smooth fibers of dimension s and R any coefficient
ring. Then taking preimages of cycles under the projection ¥ x A™ — X x A™ induces a map

(5.1.2) Ch"(X,n, R) — Ch' (Y, n, R).

Finally let Z < X be a closed immersion where Z is smooth and of codimension ¢ in X. Then
pushforward of cycles along Z x A™ — X x A"™ induces a map

(5.1.3) Ch"(Z,n,R) — Ch" ™" (X, n, R).

5.2. Motivic cohomology of surfaces and dual graphs. We are particularly interested in the
case of surfaces. In this case, the motivic cohomology H3,(X,%(2)) = Ch*(X,1) is given by the
homology of the following sequence (see [Sch00] for example):

(5.2.1) Ko(k(X)) S ®scxk(S) 1Y @,exZ.

Here the middle sum runs over the set of irreducible curves S C X and k(X) (resp. k(S)) denotes the
field of rational functions on X (resp. S). The term Ko(k(X)) denotes the second Milnor K-group of
the rational function field k(X) and the S-component of the map 9 is the tame symbol associated to
the valuation ordg. The map div sends a rational function f on S to its divisor div(f).

There is a special case where we can understand a part of Ch2(X ,1) in a purely combinatorial way.
If k' /k is a finite extension, we write P}, s, for the projective line P}, over k' considered as a k-scheme.
Therefore Py, /& Ok k can be identified with [k’ : k] copies of IP’% corresponding to the embeddings

k' — k. Let Y C X be a codimension 1 subvariety satisfying the following conditions:

(1) Each irreducible component S of Y is isomorphic to IP’}CS /i Where kg is a finite extension of k.

(2) Any two irreducible components of Y5 intersect transversally and no three components have a
common intersection point.

The non-smooth points of Y are the intersection points of the components in Y7 and it is naturally
a closed subscheme of X defined over k. We note that by (1), the irreducible components of Yz are
isomorphic to ]P%.

Definition 5.2.1. We define Ch}. (X, 1) to be the subgroup of Ch*(X, 1) supported on Y. In other
words, it is generated by elements of the form gy fs where fs € k(S)* is trivial unless S C Y.

We now describe how Ch3-(X,1) can be interpreted in terms of the combinatorics of the configu-
ration of P’s on V7.

Definition 5.2.2. The dual graph & associated to Y7 is the unoriented graph defined by the following:

(1) The set of vertices ¥ is identified with the set of irreducible components of Y. For i € 7, we let
S; denote the corresponding irreducible component.

(2) The set of edges & is identified with the set of intersection points of two irreducible components
in Yz, where an edge e connects i,j € ¥ if e € ;N 5.

The Galois group Gal(k/k) naturally acts on @ and hence on the homology H;(®,Z) of the graph
®. We will define a map

0 : Hy(6,7)%F/k) _ Ch2 (X, 1).
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To do this, we first calculate Hy(®,Z). Consider the bouquet of circles & given by contracting all
the elements of #. For each e € & we choose an orientation of e, i.e. an ordering (v'(e),v?(e)) of the
two vertices adjacent to e. This choice determines an isomorphism

H(6,7) =75,
We may then identify H;(®,Z) as the subgroup of Z¢ corresponding to the kernel of the map
d:7% -17”
given by
e vy(e) —va(e).

The map © can then be defined as follows. Fix a basis of the free Z-module H; (&, 7)Gal(k/k) and
let m := (Me)ece € Hi(6,Z)52F/F) be an element of this basis. Let i € ¥. We let Z(i), P(i) C & be
the two subsets of & defined by

Z(i) = {e € &vi(e) =i}
P(i) = {e € &|va(e) = i}.
By definition, Z(i) and P(i) are identified with subsets of points on .S;.

Lemma 5.2.3. There erists an element (f§')scy € @gcy k(S)* such that its image (f]")icv €

D,y k(Si)* satisfies
div(f) = > mele) = Y mele).

e€Z(i) e€P(i)

Proof. Let S = ]P’,lcs Jk be an irreducible component of Y. Let #s C ¥ denote the set of irreducible
components of S;. We consider the divisor

D D mele) =3 > mele)
i€Vs e€Z (i) 1€V e€P(i)

on Sg. Since m € ker(d), this divisor has degree 0 on every component S;. Moreover, it is Galois
invariant, hence there exists a function fg* € k(S)* with this divisor (we note that k(S) is isomorphic
to the field of rational functions in one variable kg(z) over kg). Repeating the argument for all
components S C Y proves the lemma. O

Let (f&)scy be an element as in the lemma above. Then we have

> div(fg) = div(f")

SCY i€V
Y w0 Y o
i€V e€Z (i) 1€V e€P(3)
= Z me(e) — Z me(e)
e€s e€é
=0.

Thus by , the tuple (f2')scy gives an element of Ch3 (X, 1) and we define ©(m) to be this
element. Repeating for the other basis elements and extending linearly gives the definition of ©.

In fact the map © is “essentially” surjective in the following sense. Note that the choice of fg' is
well-defined up to multiplication by an element of k£(S)* whose divisor is 0, i.e. an element of kJ. It
follows that © induces a map

(5.2.2) O: (@ k§> & Hy(6,7)%Fk) 5 ch2 (X,1).
SCY

Proposition 5.2.4. The map © is surjective.
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Proof. Let (fs)scy € @gcy k(S)* be a representative of an element of Ch} (X, 1). We write (fi)icy
for its image in @, k(S;). Since Y gy div(fs) = 3 ,cy div(fi) = 0, the divisor div(f;) can only
be supported on the intersection of S; with some other S;, i.e. on points corresponding to elements
of &.

For each e € &, let S; denote the divisor corresponding to v1(e) and define m. € Z to be the order
of the zero of f; at e. Reversing the above argument, we see that m = (m.)cce defines an element of
H,(®,Z) which is Galois invariant since div(fs) is.

By definition the S*'-component of ©(m) has the same divisor as fs, thus we may modify ©(m)
by an element of @ gy kg to get the element (fs)scy- |

We will consider an analogue of this construction with torsion coefficients. Indeed upon tensoring
with k) we obtain a map

(5.2.3) Ok, : (@ kX ®z ky) & Hy (8, ky) S E/R) 5 Ch2 (X, 1, ky)
SCY

and same proof as Proposition shows that éh is surjective. Here we consider the abelian group
@Dscy kg as a Z-module in taking the tensor product, and in defining Ch?(X, 1, ky) we may take the

homology of the sequence (5.2.1) tensored with ky; the subgroup Ch2 (X, 1, k) is then defined in the
same way as Definition [5.2.1

5.3. Motivic cohomology and level raising. We keep the notations of but now F will be
a totally real field with [F : Q] = g even and p will be a prime which is inert in F’; we let p denote
the unique prime of F' above p. We let B be a quaternion algebra over F' whose ramification set does
not intersect with 3, U ¥o,. We will apply the construction of the previous subsections for the case
YK (G)r,,- Specifically we are interested in the cycle class map:

(5.3.1) Ch9 2 (S (G)p,y . 1, kn) = HITH (IR (G)r,y, kir(9/2 + 1))

Let II be an irreducible cuspidal automorphic representation of GLo(F') defined over E as in
Let A be a prime of E with underlying rational prime ¢ satisfying Assumption Recall for R a
finite set of places of F' away from which K is hyperspecial and II is unramified, we have the prime-
to-R Hecke algebra Tk and a homomorphism qﬁg : TR — Og induced by the Hecke eigenvalues of
II. We assume p ¢ R and we write mg C Tr (resp. m C Tgygpy) for the maximal ideal given

by (¢¥)~1(\) (resp. ( gu{p})_l(/\)). Then Tgyugp acts on Chg/QH(yK(G)Fpg, 1,k)) and the map
(5.3.1]) is equivariant for this action. Localizing at m, we obtain

ChY* (SR (G)pyas Lo ka)m — HITH (IR (G0, kin(9/2 + 1))
By the Hochschild—Serre spectral sequence and Proposition there is an isomorphism
H' (Fpo, B (L% (G)g,, ka(9/2 + 1)m) = BT (S Qg ka(9/2 4 1))m,
where H!(F,s, —) denotes the Galois cohomology. We let
Adm : Ch9P N (e (G 1, ha)m = H (o, HY (S (G Ka(9/2 + 1))m)

denote the induced map which we call the Abel-Jacobi map.
We would like to show that AJy, is surjective modulo m. In fact we will identify a certain subgroup

ChY/ > (S5 (G)r,y s 1, k2) © ChI 2 (S5 (G)ryy s 1K)

such that AJ,, restricted to this subgroup already surjects. Moreover as suggested by the notation,
this subgroup is related to level raising. The group Chfr/QH(YK(G)Fpg,l,k)\) is defined using the
geometry of Goren-Oort cycles as follows. We note that we may take kg = IFps in this section.
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Let B := B(0,g9/2 — 1) as in thus |B| = (9/2971). Let a € 9B, then by the discussion in
the Goren-Oort cycle Zy(a) is a (g/2 —1)-iterated P'-bundle over the Shimura surface . (Gg, 1, )r,
where T = (). We have |Yo — 04| = 2 and we write X — 0q = {73, 75}

The Goren-Oort divisors Sk (Gy, 1,)F,0.7> Zk(Go,,1.)F,0,r are P-bundles over the discrete
Shimura sets yK(G@u,T,‘vTa,Ti)IFPQ and Sk (Gy

Shimura sets are isomorphic over F,s and their ]Fp pomts are isomorphic to

Gy . (Q\Gx. (Ay)/K.

By Proposition 1} the intersection of these two divisors /x (Gy, T,)
the discrete Shlmura set iy (p) (G ., )F,, and the induced diagram

)Fpg via maps 7., 7, respectively. These

u'r7

Foo,{r;,r;} is identified with
a,7;
N7, 0Tz

e —— I (G, . To )Py

R

S L (T T PR (e

is identified with the Hecke correspondence for 5’1( (G@“ S N
We may apply the construction of §5.2]in this setting to obtain a map

Hy (6, k)G Fe/Fo0) 5 Ch2 (S5 (G )r.y 5 1, k),

where & is the dual graph associated to the configuration of projective lines in ., (Go, 1,5, ,, and

Fpo»

Sk (GVJu,Tu)F,,,Tj~ We may describe Hy (&, k) more explicitly as follows. For any finite set .S, we write
['(S, kx) for the abelian group of kx-valued functions on S. The maps 7, and 7, o w,, induce maps

Torws Ny 0 77 )w : D( Lo (p) (G o oo (Fp) s Kx) = T(Fx (G, L v, )Fpe (Fp), Kx)
Then Hy(®, k) is identified with

(5.3.2)

Ker (Froes 01, ©70,)) 5 DSk 0) (G T, s ()i B2) = T( (G 1 1 i (B) )2
We write K(a) for this kernel, and we write ©(a) for the map
(5.3.3) O(a) : K(a)SlE /) — % (S (G, 0, )y0s 1, n)

which is equivariant for the action of Tryyp;-
Using (5.1.2) and ([5.1.3) we obtain a map

(5.3.4) ChZ(YK(G@q )6 L) B Cn(Zy(a), 1, k) By ChI/2 L (4 (G, 1, K
Composing (5 and - and taking the direct sum over a € B we obtain a map:
(5.3.5) D K@)/ 5 Ch* (S (G)ry 1, K

acs
Definition 5.3.1. We define the level raising subgroup
Ch{/* T ( Sk (G0, 1, kn) C ChY (S5 (G)p, 0,1, k)
to be the image of .
Localizing (5 at m and composing with the map AJ,, we obtain a map:

w @ K@) o Y (F e HY( k(@ ka(9/2 + 1))
aeB

Definition 5.3.2. A prime p is a A-level raising prime (with respect to F, B, 11, K) if the following
four conditions are satisfied:

(1) pisinert in F' and coprime to R URj.

(2) AT (P = 1).
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(3) PR(Ty)? = (p? + 1)* mod A and ¢1i(Sy) =1 mod .
(4) For any a € B and 7; € X, — g, we have £ { (p9"¥e — 1) where nk_, is the order of ¢ acting on
Ik (G, Tar, JEpa (Fp).

Remark 5.3.3. As in [LT20, Remark 4.6], it can be shown that for ¢ sufficiently large, there are
infinitely many A-level raising primes with positive density as long as there are rational primes inert
in F and ) satisfies Assumption

Lemma 5.3.4. Assume p is a A-level raising prime. Then Gal(F,/F,¢) acts trivially on K(a)y for
any a € °B.

Proof. By the definition of the Galois action in and Definition (3), Gal(F, /Fp¢) acts trivially
on K(a)/m. By Assumption (1), the trivial action on K(a), is the only lifting of the trivial
action on K (a)/m; the lemma follows. O

We will need to make the following additional assumption:

Assumption 5.3.5. H(Shk (G)g, kx)/m has dimension 29dim(I1p) ¥ over ky, where Il 5 denotes the
Jacquet-Langlands transfer of II to B ®q A.

Theorem 5.3.6. Let p be a \-level raising prime and suppose that Assumptions[{.1.1 and[5.3.5 are
satisfied. Then the induced map

(5.3.6) P K(a)/m — H'(Fpo, B (S% (G)5, . kal9/2 + 1)) /m)
acB
s surjective.

Remark 5.3.7. In the case when [F : Q] = 2 and B = GL(F), the surjectivity of ¥y, implies level
raising for Hilbert modular forms. Indeed in this case there is a unique a € %5 and the description
of K(a) in shows that it is identified under the Jacquet-Langlands correspondence with the
space of mod ¢ Hilbert modular forms of parallel weight 2 and level Ky(p) which are new at p. In
particular Tgypy acts on K (a) via the p-new quotient as in [Rib88|, whereas it is well known Tgrypy
acts on Hl(IFpg,Hg(yK(G)E, kx(g/2 4+ 1))) via the p-old quotient.

Before embarking on the proof, we state an immediate corollary of Theorem [5.3.6] which is Theorem
[L1Tl of the introduction.

Corollary 5.3.8. The map AJ,, mod m restricted to Chfr/”l(YK(G)Fpg ,1,kx)/m is surjective.

O

5.4. Proof of Theorem The rest of this section will be devoted to the proof of Theorem
5.3.61 For notational convenience, we will write . (G, )r,, for what was denoted .7, (G, T,)r,, in
the previous subsection.

Recall for a € B(0,g/2 — 1) we have the correspondence:

Ik(Gp,)E,e <= Zy(a) = Ik (G)r,,
where 7, is a (g/2 — 1)-iterated P'-bundle. This induces a Gysin map:
Gys(a) : H*(Sx (G, )5, ka(2)) = H 972 (Fk(G)g, , kalg/2 + 1))
Then the map @, o K(a)m — Hl(]Fpg,Hg(yK(G)Fp7 kx(g/2 4 1))m) factors as

p9
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ChY > (S (G)r o, 1 hin ) ——= HY (o, HI(F ke (G5, ka(9/2 +1))m)

T TEHG% Gys(@)m

@ae% K(a>m @aE‘B H1<]Fp9 ’ H? (yK (G(Du)E,a kA(Q))m)

where the bottom map is the composition of the direct sums of the maps ©(a)y, and the Abel-Jacobi
maps

AJ(@)m : CO* (S (Go,)ry0, 1y ka)m = H (Fpo, B2(SK (Go, )5, kr(2))m)-
We write U(a)y : K(a)m — H (Fpo, H2(Fx (Gy, ), kx(2))m) for this composition.
Proposition 5.4.1. The map ) . Gys(a) mod m is surjective.

Proof. The proof is the same as in [LT20, Proof of Theorem 4.7]. The idea is to show that >
mod m is injective; the surjectivity then follows by a dimension count.

acB Gys(a)

O

Remark 5.4.2. The proof of Proposition uses Definition [5.3.2] (2), Assumption and the
freeness result in Proposition in an essential way.

Thus in order to prove Theorem [5.3.6] it suffices to prove the following proposition.
Proposition 5.4.3. For each a € B, the map
U(a)m : K()m — H' (Fpo, B (L% (G, ), kr(2))m)
18 surjective.

Fix a € B. We let X, — So = {7, 7;}. To ease notation, we write X = Zx(Gyp,)r,, and we
write 71 = Sk (Gy,)F,o.m» Z2 = Lk (Gy,)F,q,r for the Goren-Oort divisors. We let Z;5 denote the
intersection Z; N Z, and we write X°" for the complement of Z; U Z5 in X.

The first observation is that the map ¥(a), factors through a certain cohomology group with
supports.

Proposition 5.4.4. The map ¥(a)w factors through H, |, (X, kx(2))m. Moreover the induced map
K(a)m — H3Z1UZQ (X, kA(2)m

s surjective.

Proof. The factoring property follows from the definition of the cycle class map. Indeed we have the
following diagram with exact columns and rows

0 0
O L Hl(Zl n Z2 — Zlg, k)\(l)) c—> HO(Zlg, k)\)

a Tb
div®zkx

0——K——> HO(Zl N Zg - Zlg, Gm) X7z k)\ —— HO(Zlg, k)\)

Here H°(Zy N Zy — Z12,G,,) is identified with the group of rational functions on Z; N Zy with
zeros and poles only at the points in Z;5, and the map div ®z k), is induced from the map taking
such a function to its divisor. The groups L and K are by definition the kernels of the maps on the
right. The map b comes from the Kummer sequence and its surjectivity follows from the fact that
Z1 U Zy — Z15 is a union of open subsets in A%ph’ /Fps for g | h hence all have trivial Picard group.
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Here we write AJ} . for the affine line A! over [F,n considered as a s scheme. The map div®z kx
ph/Efp

factors through b, hence we obtain the map c.
By purity, we may identify the top row of the exact sequence with the exact sequence of the triple
(X, Z12, Zl U Zg):

H3ZIQ (X7 k)\ (2)) = O — H?élUZz (X7 k)\(2))
— H3ZlUZ27Z12 (X - 2127 k)\<2)) — Hélg (X7 k)\(2))

It is easy to see from the definition that the group Ch221u22 (X,1,ky) is a quotient of the group K.
Then the cycle class map is induced by

K — L>H} 5 (X,k\(2) = H (X, ka(2)).
To deduce the moreover part, we note that the map
K<a)m - Ch2Z1UZ2 (X7 1u k)\)m
is surjective. Indeed by the discussion after Proposition [5.2.4] the map

( @ kX ®z kk> & K(a) G Fr/Fro) _, Chy, g, (X, 1,ky)
SCZ1UZsy

is surjective. But k§ ®z ky = 0 for all S by Definition (4). Tt therefore suffices to show that the
map a is surjective. We write

A:=Im (HO(Zl n Z2 — Zlg, Gm) — HO(Zlg, k)\))
B :=1Im (H'(Z1 N Zs — Z12, k(1)) = H*(Z12,k))) -

The map A — B is injective, hence by the snake lemma, a is surjective. O

Thus in order to prove Proposition[5.4.3] and hence Theorem [5.3.6] it suffices to show that the map
Py, : H3Z1UZQ (X, kr(2))m = B (X, kA(2))m

is surjective.
By the Hochschild—Serre spectral sequence, this map fits into the following diagram with exact
rows:

0—— HI(FW’ H2Z1UZ2 (Xﬁpv kx (2))m) - H%IUZQ(Xv kA(Z))m - HO(EI"’? Hgéluzz (Xva k%(z))m) —0

| | |

0 H(Fp, HQ(XE)7 Ex(2))m) —— H3(X, kA (2)) g ———— HO(IF,,g,HZ‘(XE7 kx(2))m) — 0.

Since H*(Xg , kx(2))m = 0 by Proposition we have an isomorphism
Hs(Xv kA (2))m = Hl(Fp97H2<Xva ka(2))m)-
The diagram above then induces a map
vt HO(F o Y, 7 (X, Fn(2))m) = H (B, H2(Xg b (2)m) /H (B, B, 7 (X Fr(2)) )

and surjectivity of ®] is equivalent to the surjectivity of ®,. It therefore suffices to prove @y, is
surjective.
We may dualize the above to obtain a map

gy 5 (! (B, H2(X, o (2))m) /B (B 12,2, (X s B (2D)m) ) = HO (B, Bz, (X (2)) )"
Consider the exact sequence of cohomology

HY (X5, ka) = B (Zi5, U Zog, . kn) — H2E(XR' k) = B2 (X5, k) = H2(Zy5, U Zy5,, k)
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arising from the triple Z; U Z5 4 X & X9 When X is the special fiber of the Hilbert modular
surface (hence non-compact), we abuse notation and write Hi(X%rd,k,\) for HQ(XFP, jikx). Upon

localizing at m, Hl(Xﬁp,kA)m = 0, and we obtain the following boundary map for the long exact

sequence of Galois cohomology:
(5.4.1)

ker (HO(Fyo, H3(Xg, .k )m) = HO (B, H2(Zy5, U Zgg ko)) ) = B (B, B (Zy5, U Zog K ))-
By Poincaré duality and the duality of Galois cohomology over finite fields, (5.4.1)) is identified with ®,.
We mention that in the case of Hilbert modular surfaces, we need to use the canonical isomorphism
H? (X5, b )m = HE (X, ks )m,
which follows from [LS18| Corollary 5.20] and [Dim09, Theorem 2.3].
Let Xo(p) be the special fiber #k,()(Gy, )r,, for the Shimura variety Shg, ) (Gy,) with Iwahori
level structure at p constructed in We claim @7 can be related to a certain map relating the

geometry of X and Xg(p).
By Corollary there is a decomposition

Xo(p)g, = X5, U Aop, U g,
where Xﬁp and Xﬁp are the two copies of Xﬁp corresponding to the essential Frobenius and Ver-
schiebung isogenies respectively and Xﬁp is the “supersingular locus”. For k,l,m € {1,2,3} distinct,
we write
i - Xka — XO(p)ﬁp
Tl - kap N XZFT, — Xo(p)?p
Thlm - Xkﬁp n XZE, N Xme — Xo(p)Fp
for the closed immersions. Then we have an exact sequence of sheaves on X (p)FP:
0= kx L iraky @ dnuky @ dgukn — dogukn © i15.kx @ dngakin L i123.kx = 0,
Here the maps are induced by (pushing forward) the usual unit maps of the adjunction. We define
C := coker(f) = ker(g).

Then the above exact sequence breaks up into two short exact sequences of sheaves on X (p)ﬁp.
(5.4.2) 0 — ky Link)\@ig*k)\@i?,*k‘)\ —-C =0

(5.4.3) 0 — C — i93.k) D i13:kr D i23:kx i) 1123:kx — 0
Taking cohomology of the sequence ([5.4.2]), we obtain:

(i193,13)

0 R H?(Xo(p)g,, k> )m H?(Xg . k)i ® H?(Xgz , ka)m

where R = Hl()(()(p)ﬁ}77 C)m/Hl(Xgﬁpv k)\)m-
Consider the map
T+ HA(X k) = H2(Xo(p)g,  ka)m
induced by the degeneracy maps m,m2 @ Xo(p) — X. Let Ry, denote the nearby cycles functor
applied to the sheaf k) on X@p. Then we have canonical isomorphisms

(5.4.4) HQ(ShK(G@n)@p,kA)m = H (X5, ka)m

(5.4.5) H?(Shco(5) (G, ), B )m 22 H2 (Xo(p)g, , Rtk I,
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where these isomorphisms follow from proper base change if Shx (G, ) and Sh, ) (G, ) are proper,
and [LS18|, Corollary 5.20] if they are not proper.
We write
T 5+ T - H(Shi (Go, )g - kx)m = H(Shio(p) (Go,)g,  ka)m

for the map induced by the degeneracy maps on the generic fiber which is injective by Theorem
Then under the the identifications (5.4.4) and (5.4.5), 77 - + 73 - factors as

Tl
H(Xz ), ka)m ——— H(Xo(p)g, . kx)m — H?(Xo(p)s, . Rk, -

It follows that 77 + 75 : HQ(Xﬁp7 k)2 — HQ(XO(]J)E), kx)m is injective.
We consider the kernel S of the composition

A
9 mtmy

(87,15.,43)
m o B (Xo(0)g,, ka)m —2 HA(Xg , ko) @ H2 (Xag k)
We obtain a map ¥,, : S — R which fits into the diagram:

H?(Xg k)

(i195,13)

0 R H2 (XO (p)FP ) k)\)m H2 (Xﬁpa k)\)?n © H2 (Xgﬁpv k)\)m

W Tﬂf+‘n’;
S (X , k)2

Since 77 + 75 is injective, it follows that Wy, is injective. Therefore in order to prove Proposition
it suffices to prove the following proposition.

Proposition 5.4.5. The map Uy, can be identified with the map .

Proof. We first identify the groups S and R with the corresponding domain and codomain for the
map Dj,.
First note that the composition
e (702
H2(Xz k)i —— HA(Xo(p)z, . ka)m i H2 (X5, k)

induces the endomorphism

1 Fr’
(546) <Fr/5p1 1 ) )

where Fr’ is the essential Frobenius as defined in By Definition m (3) and Assumption m
(1), this is the same as the endomorphism

1 B

1)

By Proposition and Definition m (3), Fr'? = Fr, the p9-Frobenius, thus we may identify the
kernel of (5.4.6) with the image of the injective map

Ty, = —Fr’,id
HO(Fpo, B (Xp b)) & H2(Xg L ha)m® ™ - B2 (X k)2
Therefore we have an identification
S = ker (HO(IFpg,Hz(XFp, kx))m — H(Xo(P)g, » kx)m =, H? (Xgz k,\)m) :
The map in the above equation factors as

HO(Fp97H2(Xﬁpv kx))m — HQ(ZﬁP U ZoF, > ka)m = H2(X3ﬁp7 kx)m
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Here the second map is an injection by [Liul9, Lemma 3.26 (2)] since Xyp, = Z15, U Z5, where
Zﬁy and Zﬂp are P'-fibrations over Zﬁp and Z2Fp respectively and the intersection Zﬁp N Zﬁp is
0-dimensional. Therefore we may identify S with the domain in the definition of ®,.

Consider the following commutative diagram of Gal(F,/Fs )-modules with exact rows:

H2(X, i) ——= (X, )

* * ’ * * ’
lﬂ'z—ﬂlFr lﬂ'Z—frlFr
-

0—=H(X,

Jﬁp7 k)\)m 4&) Hz(X%;d, I{Z)\)g1 E— HQ(X()(]J)E), k)\)m 43> HZ(XSFP’ k)\)m

lA l(ii,i’é) lA’

52} LT
0——>H'(Zy5, U Zys, ka)a —> B2 )l —— B2(X k)i — = H2(Zj5, U Zo5 , ki

Here the middle row is the exact sequence of cohomology arising from the triple
Xgp > Xo(P)g, + Xo(p)g, — Xy, = XL X

The maps A and A’ are induced by the inclusion maps 412, %13.
Now recall @7 is identified with the coboundary map after taking cohomology of the short exact
sequence:

(5.4.7) 0= H'(Zp, U Zyp  ka)m = HA(X2, k)m — coker(y) — 0.
To identify R with the codomain Hl(Fpg,Hl(Zﬁp U Zy5 . kx))m, note that by definition we have a
canonical identification

R 2 ker (coker(a) AGLICOR coker(y @ 7)) .

We then use the snake lemma applied to the diagram:

[0}

0

Hl(Xﬁp, kx)m Hg(X%;d, ky)2, —— coker(a) —— 0

L |

0 ——HY(Zy5, U Zyg,, kn)i —> HA(Xg, k)% —— coker(y &) ——> 0

to deduce an isomorphism
R= Hl(Zlﬁp U Zzﬁpa kA)m = Hl (Fpga Hl(Zlﬁp U ZQva kA)m)

where we have identified coker(A) with Hl(Zﬁp U Zyg ,kx)m via projection onto the second factor
and the second isomorphism follows from Definition (3) and Assumption [4.1.1} which implies
Gal(F,/F,¢) acts trivially on Hl(Zﬁp U Zﬁp, kx)m. Using these identifications, we may now compare
the maps @ and U,.

Let z € S C HO(Fpg,HQ(XFp7k)\>)m. We will compute ¥, (2) € R considered as an element of
coker(A) = Hl(Zﬁp u Zﬁp, Ex)m and show that it coincides with the image under the coboundary

map of (5.4.7).

To compute Uy, (x) we let T € Hg(X%rd, Ex)m be a lift of z, which exists since  maps to 0 in
P
H2(Z1Fp u Zﬁp,k)\)m. Moreover we may assume & is fixed by S, since S, acts semi-simply on
Hf(X%;d,kA)m. Then 73 (%) — miF' (%) € Hf(X%:d,kA)?n is an element lifting 73 (x) — miFr'(z) €
ker(i%,43), hence comes from an element

(&) € H'(Zy5, U Zyg ) k)i
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By definition, ¥ (z) is the image of m}(z) — 7 Ft’(z) € ker(i},3) in coker(A). Therefore the image
of ¢(Z) is identified with W, (z).
However we also have

m3(2) — M FY (2) = (85 'F(2),7) — (FY'(2), Fry (7)) 22 (0, (1 — Fry)(2)).

By definition of the coboundary map, the image of this element in coker(A) = Hl(Zﬁp U Zo5,, A s
equal to @} (z). O

We finish by stating the following corollary.

Corollary 5.4.6. Let p be a A-level raising prime and suppose that Assumption is satisfied.
Then the cycle class map

H3 (i (G, )05 ka(2))m — B2 (Lx (G, )rp0 5 A(2))m

is an tsomorphism.

Proof. The surjectivity follows from Proposition The injectivity is [Voelll, Theorem 6.17]. O

APPENDIX A. BAD REDUCTION OF QUATERNIONIC SHIMURA SURFACES

In this appendix we give a global description of the special fiber of certain quaternionic Shimura
surfaces with Twahori level structure at p. These are associated to the group Gs with |X — Seo| = 2.
The idea is that only the two places ¥, —Ss should contribute to the geometry, and thus the structural
results we obtain are completely analogous to the results of Stamm [Sta97] in the case of the Hilbert
modular surface. Indeed the proofs are also completely analogous, with some extra technical difficulties
since we must transfer the results from unitary Shimura varieties. The key difference is that we must
replace the notion of the usual notion of Frobenius and Verschiebung in the case of Hilbert modular
surfaces with the notion of essential Frobenius and Verschiebung. For this reason, we will refer to
[Sta97] for some of the computations, because they are exactly the same.

A.1. Moduli interpretation and local models. We keep the notation of In particular B/F
is a totally indefinite quaternion algebra and S C 3, U ¥ a set of even cardinality. In fact in this
section we will make the following further assumptions.

Assumption A.1.1. (1) g:=[F : Q] is even and the prime p is inert in F.
(2) p¢Sand |Ye — S| = 2.

We write p for the unique prime of F' above p. We will also exclude the case B = GLo(F') and g = 2,
i.e. the case of the Hilbert modular surfaces as this case is already covered in [Sta97|. In particular
this assumption implies the Shimura varieties we consider are compact. We fix an identification
Yoo &2 {m1,..., 74} such that o(r;) =741 fori=1,...,9g—1 and o(7y) = 1, and o — Sec = {71, 7}
for some c € {2,...,g}.

Fix a subset T C S such that 2|T| = |S| and let K, be the standard hyperspecial subgroup of
(Bs @ Fy)* = GLo(F},). We also define Ky, to denote the following compact open subgroup

o= {(2 Y cctont (¢ 5= (5 2) wenr)

it is an Iwahori subgroup of GLa(F}).

For K? sufficiently small, we define K = K, K? and K(p) = Ko, KP?. We then have the Shimura
varieties Shy,(p)(Gs,1), Shi(Gs 1) defined over the common reflex field Eg t. These are equipped
with finite étale maps

T, T2 & ShKO(p)(GS,T) — ShK(GS,T).

Using a similar procedure as in we may define an integral model for Shg, ,)(Gs 1) as follows.
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We fix a choice E/F of CM-extension and a pair S = (S,S4) as in §2.2} in particular E is split
over the prime p and we write q and q for the primes above p. We make the following assumption on
Seo-

Assumption A.1.2. Let 7 € Y /q be alift of 7 € ¥ Then 7 € S if and only if 7 € T.

oo/q-
We let Dg := Bs®pr E and W := Dg considered as a left Dg-module of rank 1. Then W is equipped
with a pairing 1 of 1' Recall the associated groups G'g and G’g’ which fit in the diagram
Gs < Gs x Tg — Gg + Gy

We let K, denote the image of Ko x Kgp in GZ(Qp).
To define the level structures for G, note that an element g, € G5(Q,) corresponds to an element
of End(W ®q Qp) such that

Y(vgp, wyp) = c(gp)Y(v, ), Yo,w € W ®q Q.
Here we abuse notation so that v also denotes the base change of the pairing ¢ to Q,. We fix an
isomorphism Opg ®0, OF, = Mat,(OF, ) which induces an identification
ODS RF Fp = Matg(OEq) X Matg(OEﬁ).
We then define the following lattice chain A, C A, of Opg @ Fp-modules where

_(Oq 1 O3 Og _ (94 O it O
Al’p_<0q q)EB(Oq @q)’ AQ’p_<Oq 0.) “\a" 0g)

Let K(')_’p C G/S(QP) denote the compact open subgroup stabilizing the lattice chain Ag, C Ay .
We fix an Opg lattice A; of W such that Ay ®z Z, = Ay . For a sufficiently small compact open
subgroup of K'? C G(A}) (resp. K" C GZ(A%)) which stabilizes Ay ®7, ZP), we write K}(p) (resp.
K¢ (p)) for the compact open subgroup Kq , K7 C G5 (Ay) (resp. Ky ,K"? C GZ(Ay)). We then have
the associated Shimura varieties Shx (5)(Gg), Shiy (p)(G§) over the common reflex field Eg, and the
inverse limit schemes:

ShKé,p (G/g) = (_liII(r}p ShKé(p)(Gé)a ShK(/J,,p (Gg) = <_11I(II/1/;) ShKé/(p)(GH).

K-}

S
These Shimura varieties are equipped with finite étale maps
7T/177T£ : ShK(’)(p)(Gé) — ShK/(G/S)
7T,1/,7T/2/ : ShKé’(p)(Gg) — ShK”(Gg)
As before we also have the identification of neutral connected components:

Shr,, (GsT))g, < Shyy (Gg)%p — Shy; | (G/g)%p-
In fact these isomorphisms descend to @}, and this will allow us to transfer the integral models that
we will construct.

In order to define integral models, we follow the procedure in [RZ96] adapted to our situation.

We first make the following definition.

Definition A.1.3. Let A/S be the abelian variety associated to some point of Shy. (G%). A cyclic
1s0geny
p:A— A
is an isogeny of abelian varieties over S such that the kernel of p is an Opg-stable subgroup Hq ® Hy
of Alq) @ A[q] of order |ky|* such that H, and Hg are dual to one another under the pairing
Hq X HE — Up

induced by the polarization. Moreover we require that the induced action of Opg on A’ to satisfy the

condition ([2.3.1]).



42 RONG ZHOU

We now consider the moduli problem &Ké(p)(Gé) that associates to an Ogg _-scheme S the set of
isomorphism classes of tuples (p: A — A’, 1, \,ex») where :

® (A, 1A exw) is an S-point of Shy (Gg).

e p: A— A is a cyclic isogeny.

Then &Ké(p)(G’S) is representable by a quasi-projective variety over OEs,a and it is an integral
model for ShKé(p)(G’S). The two degeneracy maps extend to maps also denoted 71,73 of O, -

S,v
schemes:

1,72 : Shy () (Gg) = Shy (Gg).-

These maps can be described explicitly in terms of the moduli interpretation as follows. m; sends
the tuple (p : A — A’ i, N\ exw) to (A, 1, \,exw). To define my, note that given a tuple (p : A —
A1, N egm), since Hy ® Hy := ker(p) is Opg-stable, the action of Opg on A extends to an action of
A’. Moreover the polarization A and level structure ex» induce a polarization A\’ and level structure
el on A’; here X satisfies pA = p¥ o X o p. It is easy to check the tuple (A’,i’, N, &%, ) satisfies the
conditions defining a point of Shy (G§). This defines the map .

In order to transfer the integral model to the quaternionic side, we can use the construction in
[TX16l §2]. Note however that since the models we construct do not satisfy the correct extension
property, there is a subtlety in defining the G2(Q)*-action on the integral model. We may instead
use a direct description of this action as in [KP18| §4.4] by twisting abelian varieties; the rest of the
argument then goes through and we obtain an integral model &Ko(p)(G&T) for Shy, () (Gs,T) over
OEé.ﬁ :

Remark A.1.4. Alternatively, we may use [TX16l Corollary 2.13] to define a universal p-divisible
group with D°-structure over &K(GS,T)OEg _ in the sense of Definition [A.3.2l We may then define

Shge,(p)(Gs,r) as classifying cyclic isogenies of this universal p-divisible group. We refer to [Car86] for
the details in the case of Shimura curves. We prefer to transfer the results from the unitary Shimura
variety since in this case we may directly apply theorems which are known for certain PEL type
Shimura varieties.

The integral model &Ko(p)(GS,T) is equipped with degeneracy maps
m1, 72t Shye () (Gs,1) — Shg (Gs 1)

Note also that we are not interested in any canonicity properties of these models. The only thing we
use is the existence of such a model with the necessary geometric properties that we will describe in
this section. The integral model Shy (,)(Gs 1) is constructed from the connected component

&Ko,p (GS,T)%;I' = &K{),p (G/g)%;r

and the action of a certain group Egg 1 p, cf. [TX16} 2.11].

For ease of notation, we shall write X" for the special fiber of Shy. (G%) and Xj(p) for the spe-
cial fiber of Shy, (,)(G5). We will also write X and Xo(p) for the special fibers of Shy (Gs 1) and
Shc, (p)(Gs, 1) respectively.

We begin with a few basic facts concerning these moduli spaces.

Proposition A.1.5. (1) Shy ) (G%) is a flat normal scheme over Ogg ; with reduced special fiber.

(2) Each irreducible component of X((p) is smooth of dimension 2.

Proof. Both of these properties follow from the corresponding properties of the local models; see
[Gor01]. O

A.2. Group theoretic preliminaries. Let G be a reductive group over Z,; in particular its generic
fiber is quasi-split and splits over an unramified extension of Q,. Let k£ be an algebraically closed

field of characteristic p, L := W(k)[%] and O = W(k). We write ¢ for the Frobenius element of
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Aut(L/Qp). We fix a maximal Qp-split torus 7' and a Borel subgroup B containing G. We let
X«(T) (resp. X*(T)) denote the group of cocharacters (resp. characters) of T, and X, (T4 (resp.
X*(T)4) the submonoid of dominant cocharacters (resp. characters) with respect to the choice of
Borel subgroup B.

For b € G(L) we let [b] = {g~'bo(g) € G(L)|g € G(L)} denote its o-conjugacy class in G(L) and we
write B(G) to denote the set of all o-conjugacy classes. The set B(G) has been classified by Kottwitz
in [Kot97).

For b € G(L) we let v, € X.(T)g , denote its dominant Newton cocharacter; it depends only on
the image of b in B(G). We let

kg : G(L) = m(G)r
denote the Kottwitz homomorphism, where I := Gal(@p /Q,) and 71 (G)r denotes the I'-coinvariants
of m1(G). This induces a map, also denoted k¢ from B(G) to m1(G)r.

By [Kot97, §4.13], the map

B(G) = Xu(T)g,+ x m1(G)r, [b] = (Tp, k(D))
is injective.
We define a partial order on the set X*(T)@Jr x m1(G)r by setting (v1,%1) < (va, k2) if kK1 = Ka
and vo — v is a non-negative rational linear combination of positive coroots.

Ezample A.2.1. (1) Let G = GL,. Then we have a bijection
B(G) < {isocrystals over k of height n}

given by taking [b] € B(G) to the isocrystal (L™, bo). We may take T to be the diagonal matrices
and B the upper triangular matrices. There is an identification X, (7T") = Q™ and we have m (G) =
Z. The first isomorphism identifies

X (T)gs e {1, ... ) €Q 1y > ... > 1) €Q"

and kg takes b € G(L) to the valuation of its determinant. For [b] € B(G), the element 7,
corresponds under the above identification to the Newton slopes of the associated isocrystal. In
this case kg (b) is determined by the 7, and Kottwitz’s classification recovers the Dieudonné—
Manin classification of isocrystals by their Newton slopes.

(2) Let F denote a finite unramified extension of Q, of degree d and let G = Resp, sz, GLn. As in
the previous example, the association [b] — (F ®q, L,bo) defines a bijection between B(G) and
the set of isocrystals of height dn with an action of F. Given such an isocrystal N, we have a

decomposition
N = H N,
T:F—=L
where N, is the subspace of N over which F acts via the embedding 7 : F — L. As N, is fixed by
b € G(L) and o induces a bijection between N, and N,, it follows that (bo)? takes N, to itself.
This gives N, the structure of a o%isocrystal which is easily seen to be independent of the choice
of 7. One checks that the association N +— N, induces a bijection

{isocrystals of height dn with an action of F} <> {o%isocrystals of height n}.

We let T denote the diagonal torus and B the Borel subgroup of upper triangular matrices.
We have an identification
X.(T)g=Q"
identifying
XMy A1,y >0 > v}
For [b] € B(G), the Newton cocharacter 7}, corresponds under the above identification to the
slopes of the o%isocrystal (N, (bo)?).
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By the Cartan decomposition we have an identification
¢z I GOumG6©r).
HEX. (T)+

Now fix a cocharacter p € X, (T). We define i € X,.(T') to be the Galois average of u. More precisely
we take a Galois extension E/Q, over which p is defined and we define

o
=gy 2 W

T€Gal(E/Q,)

We also define i to be the image of u in m (G)r.
Proposition A.2.2 (JRR96, Thm. 4.2]). Let b € G(Or)u(p)G(OL). Then we have
(0, k(b)) < (7, ).

A.3. p-divisible groups with O-structure and Dieudonné theory. In this subsection we recall
the notion of p-divisible groups with an action of the ring of integers of a finite unramified extension
of Q.

Let F be a finite unramified extension of Q, of degree d with ring of integers O. We let ¢ = p?
denote the cardinality of its residue field.

Definition A.3.1. Let S be a scheme. A p-divisible group with O-structure over S is a pair (¢, 1)
where ¢ is a p-divisible group over S and ¢ : O — End(¥) is a homomorphism.

For any p-divisible group with O-structure (¢,t), we write ¢[p"] for the kernel of multiplication
by p™. Then there exists an integer h := htp%, the O-height of ¢, such that ¢[p"] has rank ¢"". It
is easily verified that we have the equality

ht¥ = [F : Qp]ht(gg

where ht¥ is the usual height of ¢ as a p-divisible group.

Let S be a scheme in which p is locally nilpotent. For ¢ a p-divisible group over S, we write D(¥)
for the contravariant Dieudonné crystal of ¢. This is a locally free crystal on the crystalline site of .S,
equipped with a map o*D(¥4) — D(¥).

Now suppose ¥ is a p-divisible group with O-structure over an algebraically closed field k of
characteristic p of O-height n. Then we identify D(¥) with its Dieudonné module (i.e. D(¥) evaluated
at O, := W(k)) which is a finite free Op-module of rank dn equipped with an injective o semi-linear
map ¢ : D(¥) — D(¥) and an action of O. Fixing an O ®z, Or-basis of D(¥), we obtain an element
b€ G(L) where G = Resp,z, GL,, such that ¢ = bo under the identification D(¥) = (Of ®z, Or)".
The element b is well-defined up to o-conjugation by G(Oy,).

We define the Hodge polygon of ¢ to be the element pu € X, (T)* such that

b e G(Or)a(u(p))G(OL).

By Proposition it follows that (7y, kg (b)) < (@, pf). If S is a scheme of characteristic p, its
Hodge polygon (resp. Newton polygon) is the function assigning to any geometric point 5 of S the
Hodge polygon (resp. the Newton polygon) of the base change of 4 to 5.

We now describe how the study of p-divisible groups which arise naturally from the moduli problem
in the last subsection can be reduced to the case of p-divisible groups with O-structure. Recall we
have the integral PEL datum (Op, C Ds,*, W,1, A1) and we write D for the base change of this
datum to Z,. Recall g = [F': Q]. Let Dg, denote the completion of Dg at the place p and F, (resp.
E,) the completion of F' (resp. E) at p. Then F}, = F, and E, = E; x Eg; we write O for the ring of
integers OF, . Fixing isomorphisms Eq = F}, and Eg = F},, we obtain an isomorphism

DS,p = Matz(Eq) X Matg(Ea) = MatQ(Fp) X Matg(Fp).
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Let Op,, denote the maximal order Maty(O) x Maty(O). Then the involution * on Ds, can be
identified with
(a,b) — (b',a").

Recall we have defined the notion of p-divisible group with D-structure in Definition [3:21} It
follows easily from the definitions that if (4, ¢, A,ex») is an S-point of Shy (G§), then the associated
p-divisible group A[p>] together with the induced Opy ,-action and polarization is a p-divisible group
with D-structure.

We write W! for the sub F}, vector space over which Dg , acts via the first factor, and we write W°

1
for subspace eW! where e is the idempotent (0 8) We define an integer s, € {0,1,2} for 7 € S
by
0 ifreT
sr =142 ifreS,—-T.

1 otherwise

Definition A.3.2. Let S be scheme over Og, .. A p-divisible group with D°-structure is a p-divisible
group ¢ with O-structure such that

(1) htp¥ = 2.
(2) For a € O, we have an equality:
(A.3.1) char(u(a)|Lie) = [ (T - ()"

TEY o
Let 4/S be a p-divisible with D-structure. Then we have a decomposition
G =9, xY

where Opy ,, acts on ¥ via the projection to Maty(FE;) and on %5 via the projection to Maty(Fy).
Moreover by [Haml15l Lemma 4.1], there exists a p-divisible group ¢’ with O-structure such that
9, = %", The condition and the Assumption implies that ¢’ is a p-divisible group with
De-structure.

The following proposition follows from the discussion above and [Ham15, Corollary 4.5 (2)].

Proposition A.3.3. The association 4 — 4’ induces an equivalence of categories
(A.3.2) {p-divisible groups with D-structure} ~ {p-divisible groups with D°-structure}

PTESETving iS0genies. (Il

Let ¢’ be a p-divisible group with D°-structure over an algebraically closed field k of characteristic
p. Fixing a trivialization of D(¥)(W (k)) respecting the O-structure, we obtain an element b € G(L)
where G = Resp/z, GLa. Let T be the diagonal maximal torus of G, then we may identify X, (7')
(resp. X.(T)g) with g copies of Z? (resp. g copies of Q?) and X.(T)+ (resp. X.(T)g,+) with the
subset such that for each factor of Z? (resp. Q?), the terms (a, b) are decreasing. The condition
implies that the Hodge polygon p of ¢ corresponds to [(a;, b;)]i=1

g Where

.....

1 ifi=1,corm; €Se —T
a; =
“lo ifneT

b — 1 ifr; €S, —-T
‘o ifi=1,corr; €T.

We write p € X,.(T) for this cocharacter.

Proposition A.3.4. (1) There exists ezxactly two elements [b] € B(G, ).
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(2) For the mazimal element [u(p)], there exists a unique p-divisible group with O-structure with these
Newton slopes.

Proof. (1) Tt is easy to check using the explicit description of u that under the identification X, (T =
Q2, that the only two elements of B(G, {u1}) correspond to v°*4 = (£ 921y and v* = (£, ). Here
we use the fact that 2|T| = |S].

(2) This is [Moo04, Theorem 3.2.7]; note in this case the Newton cocharacter is v°™.

O

We say a p-divisible group ¢/k with D°-structure is ordinary (resp. supersingular) if the corre-
sponding Newton vector is equal to ™ (resp. v%). Similarly a p-divisible group ¢ with D-structure
is ordinary (resp. supersingular) if the corresponding p-divisible group with D°-structure is. For k
an algebraically closed field of characteristic p, we write 4°d for the unique isomorphism class of
ordinary p-divisible groups from part (2) of Proposition

If Ax/ denotes the universal abelian variety over X', we write X% (resp. X’°*4) for the locus
where Ax/[p>] is supersingular (resp. ordinary). Similarly if A — A’ denotes the universal cyclic
isogeny over X/ (p), we define X{(p)** (vesp. X{(p)°*?) as the locus where A[p>°] (equivalently A’[p>])
is supersingular (resp. ordinary). Then X'** is the union of the Goren—Oort divisors corresponding
to 71 and 7; see [LT20] §3] for example.

Proposition A.3.5. Let x € X\(p)°>"4(F,). Then x is a smooth point of X{(p).

Proof. The local model in this case has a stratification by the p-admissible set Adm({yu}) and this
induces a stratification of X¢(p)z , cf. [HZ20, §9]. The strata corresponding to translation elements
are all smooth. By [HINI7, Theorem 2.6], X/ (p)°*® is contained in these strata, hence x is a smooth
point of X{(p). Note that the Axioms of [HR17| for these Shimura varieties have been verified in
[HZ20] so that [HNI17, Theorem 2.6] is applicable. |

Definition A.3.6. Let (¢, \,¢) and (¢’, N, /') be p-divisible groups with D-structure over S. A cyclic
isogeny between ¥ and ¢’ over S is an isogeny [ : ¥ — ¢’ such that

e f is compatible with the actions ¢,:’ and we have pA = f¥ o X o f.

o ker(f) = Kq& Kg C 9,[q] ®%q) is of order |kp|* and K is dual to K7 under the pairing induced
by A.

Similarly, for p-divisible groups with D°-structure ¢ and ¥’ over S, a cyclic isogeny between ¥
and ¢’ is an isogeny f : 4 — ¢’ such that:

e [ is compatible with the action of O on 4 and ¥’.

o ker(f) C 9[p] is of order |ky| .

One can check that under the equivalence of categories in Proposition [A:3.3] the cyclic isogenies
correspond to one another. Moreover if (A, ¢, \,ex») is an S-point of &K,(Gé), then a cyclic isogeny
A — A’ corresponds precisely to a cyclic isogeny of the associated p-divisible group.

A.4. Essential Frobenius and Verschiebung isogenies. In this section we define two canonical
cyclic isogenies associated to a point in X’. These isogenies will define sections to the projections
71,2 ¢ X((p) — X' analogous to the Frobenius and Verschiebung isogenies in the case of the Hilbert
modular surface (see [Sta97), §4]). For this reason we will call these isogenies the essential Frobenius
and essential Verschiebung isogenies respectively.

We let ¢ = pY and let (A, ¢, A\, exw) correspond to an S-point of X’ where S is a smooth Fg-
scheme. We first define the essential Frobenius isogeny A — A’. Note that in order to define a
cyclic isogeny it suffices to define a cyclic isogeny of the associated p-divisible group ¢ := A[p*°]. Let
G = (9")? x (9'V)? denote the decomposition of & coming from Proposition then it suffices to
define a cyclic isogeny of ¢’. In order to do this we introduce some notation.
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Let k be a perfect field of characteristic p and R a smooth k-algebra. By a frame for R we mean
a p-adically complete and separated flat W (k)-algebra lifting R together with a lift of Frobenius
oc:RX— X

A Dieudonné F-crystal over R is a quadruple (M, F,V,V) where

e M is a finite locally free Z module.

e FF:0*M — M and V : M — o*M are injective #Z-linear maps such that FV =p and VF = p.

e V is a topologically nilpotent integrable connection such that F' is parallel for V.

If ¢ is a p-divisible group over R, then by [dJ95]| D(¥)(Z) is a Dieudonné F-crystal and the
association 4 — D(¥)(R) induces an anti-equivalence of categories between p-divisible groups over R
and Dieudonné F-crystals. Similarly the association induces an anti-equivalence of categories between
p-divisible groups with O-structure and Dieudonné crystals with an action of O.

It will follow from the canonicity of the construction that we may assume S is affine, since we may
glue the construction over an affine cover. Thus let S = Spec R be a smooth Fy-scheme and % a frame
for R as above. Then in order to define a cyclic isogeny, it suffices to find an #-lattice M C D(¥4)(Z)
satisfying the following conditions:

(1) M is stable for the action of O

(2) M is stable under F,V, V.

(3) We have the inclusions pD(¢)(Z) C M C D(4)(Z%).

(4) holds for the module M/V M.

We now construct such an Z-lattice. For 7 € ¥, we identify this with an embedding 7 : O —
W(F,) and we let D(¥)(Z%). the submodule where O acts via 7. Similarly to §2.4] we define the
essential Verschiebung to be

Veor : D@)(#)r — D(S)(R) g1
to be the usual Verschiebung if 071(7) ¢ Sy or 0~ 1(7) € So — T and the inverse of Frobenius if
o~ Y(r) € T. For 7 € X, let n, be the smallest positive integer such that c="7(7) ¢ So. We
define M, € D(¥)(Z). to be the preimage of pD(¥4)(#),-n-(r) under the map V7. Then we define
M =@, s M;. Then M is a locally free Z-submodule of D(¥)(Z) of full rank.

Proposition A.4.1. M C D(9)(Z) satisfies the properties (1), (2), (3), (4), above.

Proof. (1) is clear since M is a direct sum of locally free submodules of D(¥)(#),. To show M is
stable under F', we must show F(M;) C M, ). We consider the separate cases 7 € So, and 7 ¢ S.o.
If 7 € Seo, we have
Ve’ @ ln(e)a2), = Ver™ © Ves,o(r)
and Vg () is the usual Verschiebung or the inverse of Frobenius. Since V F' = p, we have Vg 5 F'M; C
M, and hence FM, C VL My = M)
In the second case we have

Mo (r) = Vs () (PR()(#)) = F(D()(R)q).
Since
M = (Vi) " (pD(G)(R) - () € D(D)(R)-,
we have F(M;) C My (). The verification of the stability for V follows similarly.
The stability under V follows from the stability of pD)(¥4)(Z). under V and the fact that F and V'
are horizontal for V. It follows that (2) is satisfied.
(3) follows from the inclusions
PVD(G)(R)o(r) C PD(G) ()7 C VID(G)(R)o(r)
for 7 € ¥oo — Seo-
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(4) is equivalent to the condition
1 ifreX¥ —Sx
dim(M/VM), =<0 ifre€S,—T
2 iftreT

which follows similarly. O

It follows that M corresponds to a p-divisible group ¢ (#") equipped with a cyclic isogeny Fr’ : 4 —
@®) . We define 9 to be the essential Frobenius twist of 4 and Fr’ to be the essential Frobenius
isogeny. Similarly we may define the essential Verschiebung

Ver' : 9%) — @'
to be defined by the submodule
pD(9) (%) C M.
It follows from the definition that Fr’ o Ver’ = p and Ver’ o Fr’ = p.

Let A be the universal abelian scheme over X’. Taking a cover of X’ by smooth affine opens and
gluing the construction we obtain isogenies

Fry: A— AP, Ver', : AP 4,

Proposition A.4.2. We have

(A(p’))(p’) — A®")
where AP°) is the usual p9-Frobenius twist. Moreover the composition Fr' o Fr' considered as a map
X' — X' corresponds to 55(9/2_1)Frp where Sy is the standard Hecke operator at p and Fry, is the
p9-Frobenius.

Proof. We may reduce to the case S = Spec R a smooth affine scheme. Moreover, it suffices to prove
this for the p-divisible ¢’ associated to A[p>°] by Proposition

The submodule FID(¥')(#) C D(¥Y')(Z#) corresponds to the pI-Frobenius isogeny. We let M C
D(¥4')(Z) be the submodule corresponding to ¥’®") and M’ ¢ M the submodule corresponding to
(9@ @) Then by the definition of M’, we have that p2~'M’' = FID(¥4')(#). In particular,
FID(9')(#) C M’ corresponds to the isogeny

(A4.1) P2l (@) (g,
Therefore (4/®))#) and 4®) are isomorphic and the moreover part follows. O

Proposition A.4.3. Let 4 be an ordinary p-divisible with O-structure over a reduced and irreducible
F,-scheme S. Let f : 9 — 4’ be a cyclic isogeny, then f = Fr' or f = Ver'.

Proof. First assume S = Spec k where k is an algebraically closed field of characteristic p. Then
@ =~ @°vd by Proposition The same proof as in [Sta97, Proposition 4.3] shows that f = Fr’ or
f=Ver/

Let S™' (resp SVer') denote the subscheme of S where f coincides with Ft’ (resp. Ver’). Then SF’
and SVer are closed subschemes of S , since the locus where two subgroups of ¢ coincide is closed.
For each closed s point of S, we have by the case above that f; = Fr’ or f, = Ver’. Therefore
SFy §Ver' — S hence by irreducibility S = SVer' or § = ST,

([l

The association (A, ¢, A\, exmw) — (A(p/)7 VN, ) induces a map
B X - X
By Proposition we have Fr’ o Fr’ = S;(g/Qfl)Frp. These isogenies induce maps
F,V: X' — X[p)
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which are defined by
F(A N\ exm) = (Fr'y : A — AWy N EKp)
V(A, 1, M\ egm) = (Ver'y : AP) = A N hen).
By definition we have the following properties
moF =idx/, moF =Fr
oV = Sp_lFr'7 w0V =idx.

We have the following proposition regarding these maps.

Proposition A.4.4. (1) F and V are closed immersions.
(2) Let (p : A — A1, N\, exmw) be an S-point of Xo(p)°*®, where S is a reduced scheme, then
x e F(X)UV(X).

Proof. (1) We prove the result for F, the case of V is analogous. First note that F is injective on
points since m o F = idx. Therefore it suffices to show F is proper; the valuative criterion in this
case follows from standard properties of Neron models.

(2) Follows directly from Proposition O

A.5. Global structure of quaternionic Shimura surfaces with Iwahori level structure. In
this subsection we prove the main theorem of the appendix. We first need to study the fibers of the
map 7.

Let ¢4 /E, be a supersingular p-divisible group with D°-structure. We will define a universal cyclic
isogeny of ¢; this will parameterize the fiber of the projection m : Xé(p)@p — X%p. As in we
may define a version of essential Verschiebung for any p-divisible group with D° structure ¢4 over an
F,-scheme S. We have the exact sequence of sheaves over S

(A.5.1) 0= wg -, = D)), > wyv,, =0

Ti
for each i = 1,...,g, where ¢V denotes the Cartier dual and wg (resp. wgv ) is the sheaf of invariant
differential forms on ¢ (resp. ¥¢V). If ¢ arises from an abelian variety with D-structure A, then
Wyv r Z Wiy z, asin @ where 7; € X o /q lifts 7;. We obtain sections
hy, € T'(S, wggf:;n” L ® wgiﬁ_l)

for i = 1,c, using the same construction from §2.4} here we need to use the essential Frobenius to
define these sections since we are using contravariant Dieudonné theory. Applying this to the universal
p-divisible group with D°-structure on X’, these may be identified with the partial Hasse invariants
defined in §2.4]

Let 4/F, be a supersingular p-divisible group with D°-structure. We separate the following two
cases:

Case (1): Both h., and h,, vanish.

Case (2): Exactly one of h,, or h., vanish.

The following proposition can be proved in the same way as [Sta97, §5] where the analogous
calculations are carried out for the Hilbert modular surface.

Proposition A.5.1. Let Op, := W (F,).
In Case (1), there exists an Or-basis {e;, fi} of D(9)(OL), fori=1,...,g such that
p(ei) = fir1,0(fi) = peit1, fori=1,c

w(e:) = peir1, o(fi) = pfiv1, for 7 € Seo = T
p(ei) = eip1,9(fi) = fiy1, form €T
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In Case (2); we assume without loss of generality h,, # 0. Then there exists an element u € F—TF g
and an Or-basis {e;, fi} of D(¥)(OL)~, such that

g—c+1

plei) = fir1, o(fi) =peit1 — [P |fit1, fori=1
plei) = fir1 + [uPleitr, o(fi) =peiy1, fori=c
p(ei) = peit1, p(fi) =peit1, for i € Seo = T
plei) = eiv1, ¢(fi) = fixr, form €T
where [u] € Oy, denotes the Teichmiiller lifting. g

We now define the universal cyclic isogeny of ¢. In the two cases above we fix a basis of D(¥)(OL),
as in the previous proposition.

Case (1): In this case we will define a cyclic isogeny of ¢ x T where T is the scheme consisting of
two copies of P! intersecting transversally at an F,-point. To do this we first introduce some notation.

Let S = Spec R be a smooth [Fj-scheme.

Let #Z = Or(x) denote the ring of restricted power series over Oy, equipped with the lift of Frobenius
given by the usual Frobenius on Oy, and x + 2P. Then £ is a frame for R = F,[z].

We let M be the Z-module D(9)(OL) ®o, %, equipped with the induced Frobenius, Verschiebung
and the trivial connection

V:i=1®d,
where d : #Z — Qlﬂ?/oL is the universal derivation. Then (M, F,V,V) is the Dieudonné F-crystal
associated to ¢ ®F, R. We now define the submodule M, C M to be the submodule generated by
generated by pM and
(ei+a? “fili=c+1,...,0VU{fi|i=2...¢).
One checks that My is stable under F,V and V hence corresponds to a cyclic isogeny
ﬁo:%xSpecR%%

where %, is a p-divisible group with O-structure over R. 3
Similarly letting Z' = Op(y), we define the submodule M} of M’ := D(¥4)(OL) o, Z' to be
generated by pM' and

W e+ fili=c+ 1,9, HU(fi]i=2...,0c).
As before this corresponds to a cyclic isogeny
pb: 4 x Spec R — 9.
Using the identification = < %, we see that gy and g, glue to give an isogeny
pPo : 9 x ]Pl — go.
Similarly we may define an isogeny
pP1 9 x Pl — gl
by gluing the isogenies corresponding to submodules M; ¢ M and M{ C M’ where
(fili=c+1,...,g,1)Ule;+a? fi]i=2,...,¢).
and
i—1
<fi|7;:C—‘r1,...7g,1>U<yp 61—|—f1|222770>

Let zo = (1:0) and 23 = (0: 1). Then pols, : 4 — %2, and p1]s, : 9 — %, agree and hence we
may glue py and p; to give an isogeny

p:GxT—9.
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Case (2): Assume h,  #0. )
As in case (1), we let Z = Op(z) and M = D(¥)(#). We define the submodule M of M to be
generated by pM and
(e a2 l[i=c+1,.,9,)U{fi]i=2,..0¢).
Similarly M’ is the submodule generated by pM and
<ypiicei + fl | i=c+ 1a -9 1> U <fl ‘ i = 27 "'7C>'
As in Case (1), these submodules correspond to isogenies which glue along = «» i and define an
isogeny ¢ x P! — &',
If h,, # 0, we may switch the roles of 1 and ¢ to obtain an isogeny ¥ x P! — ¢’

Let € X'(F,) lie in the intersection of the two Goren—Oort divisors X’ Fo X ! & corresponding
T1, P Te, P

to 71 and 7.; we write A, for the associated abelian variety and ¢, for the p-divisible group with
De-structure associated to A, [p™] as in Proposition Then we are in Case (1) and have defined
a cyclic isogeny

p Y9 xT —9
where T is the union of two copies of P! intersecting transversally at point. This induces a cyclic
isogeny A, x T — A’. We therefore obtain a map

B:T — Xy(p)g,

whose image lies in the fiber of x under the degeneracy map 7.

Similarly if € X'(F,) lies in a unique Goren—Oort strata for 7y or 7., then we are in Case (2) and
we obtain a cyclic isogeny A, x P! — A’. This induces a map

a:P' = Xi(p)s,
whose image lies in the fiber of x under 7.

Proposition A.5.2. In Case (1), the map B: T — 7w, '(x) is a bijection on F,-points.
In Case (2), the map o : P* — w7 (2) is a bijection on Fp-points.

Proof. This follows from the same calculation as in [Sta97, Proposition 6.5]. O
Theorem A.5.3. (1) X{)(p)ﬁp can be decomposed as

V(XL ) UF(XE ) UXH(0E
where each term is a union of irreducible components of X{)(p)ﬁp of dimension 2. Any irreducible
component of Xq(p)g, is contained in exactly one of the terms and V(X%p) ﬁ]-'(X%p) is 0-dimensional.

(2) For each irreducible component C of Xﬁs, there is a unique irreducible component R of X{(p)

such that 1 (R) = C. Moreover the projection w1 : R — C ezhibits R as a P-bundle over C' = P!
and for any other irreducible component C’' of X%SS, we have:
P

Rnﬁ_{@ﬂ fonc #0
0 otherwise

Similarly, the result holds if we replace m by m.

The rest of this subsection will be devoted to the proof. We refer to [Stad7, p409] for a pictorial
representation of the geometry.

Proof. (1) By the theory of local models every irreducible component of X|(p) has dimension 2. Now
since F and V are closed immersions, V(XL ) and F(Xz ) are unions of irreducible components of

X} (p)F,- Let Z be an irreducible component of X(’)(p)Fp not contained in }"(X%p) U V(X%p) and let
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x € Z(F,). If  corresponds to an ordinary abelian variety, then x € F (X%p) u V(X%p) by Proposition
hence it lies in more than one irreducible component of X (p)ﬁp. In particular x is not a smooth
point of X}, (p)FP contradicting Proposition therefore x is supersingular.

To show V(X%p) NnF (X%p) is O-dimensional, we note that by the closure relations of the Kottwitz-

Rapoport stratification on the local model, the intersection is contained in the minimal stratum which
is 0-dimensional. Part (1) follows.

(2) Let R be an irreducible component of Xg(p)z . Then since | xj(p)z 1S surjective with one

p
dimensional fibers, there exists a unique irreducible component C' of X2° such that m(R) = C. Now
p
Proposition implies the fibers of 7| X0 are irreducible over a dense subset of C', hence R is
the unique irreducible component of X(’)(p)%s mapping to C.
P

To show R is a P-bundle over C, we first show the morphism 7| is smooth. Since R and C are
both smooth and IF,, is algebraically closed, it suffices to show the map is surjective on tangent spaces.
This follows in the same way as [Sta97, Proposition 6.7].

For z a smooth point of XZ*, we have a map P! — 77 !(x) which is bijective on F,-points by

P
Proposition Since 7, () is smooth, it follows that P! = 7! (). Thus it suffices to show that
for z a non-smooth point of C' C X', we have 7 ' (z)NR = P'. In this case there is amap T — 7~ *(z)
which is bijective on F,-points by Proposition , where T is the transversal intersection of two
copies of P!. Since each component of 7~!(z) is smooth, the same argument as above shows that

> 7= 1(z). Since 7; }(x) N R is smooth and one-dimensional, it follows that 7, *(2) N R = P!

Now let R and R’ be irreducible components of X¢(p)2* which map to irreducible components C

1’7
and C’ respectively in XiSS under 7. If CNC’ # ), then they intersect at a single point = € X%SS (F,),
P
and these are the only 1rredu01ble components of X;** containing z. Then RN R’ C 7~ Yz). T RNR
is one-dimensional, then there is another component R’ " of Xo(p)F which intersects 7~ L(x). Thus its
P

image C” in X2 also contains x which is a contradiction. It follows that RN R’ is a point.
P
O

Transferring to the quaternionic side, we obtain the analogous results for quaternionic Shimura
varieties.

Corollary A.5.4. (1) Xo(p)?p can be decomposed as
V(Xg,)UF(Xg,) U Xo(p)f,

where each term is a union of irreducible components of Xo(p )fp of dimension 2. Any irreducible
component of Xo(p)ﬁp is contained in exactly one of the terms and V(Xz )O]—'( ) is O-dimensional.
(2) For each irreducible component C of X3, there is a unique zrreduczble component R of Xo(p)

P

such that 1 (R) = C. Moreover the projection w1 : R — C ezhibits R as a Pl-bundle over C' = P!
and for any other irreducible component C' of X%S , we have:
P

RAR — {{pt} ifoNC £0
0 otherwise

Similarly, the result holds if we replace m by mo. O
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