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Example Sheet 4

1. Let M be a smooth manifold, equipped with a Riemannian metric, and let v : [a, b] —

M denote any smooth curve on M; we define length(y) := f:(ﬁ(t), 4(t))Y/2dt. This
in turn gives rise to a distance function p, where p(P, @) is the infimum of lengths
of smooth curves from P to (). Prove that (M, p) is a metric space.

2. Let M be an embedded submanifold of a manifold N. Show that there is a vector
bundle T'N|; on M, containing T'M as a sub-bundle, and that any Koszul connection
V on N induces a linear connection (which we also denote as V) on T'N|,;.
Suppose now that ¢ is a Riemannian metric on N; show that g induces a Riemann-
ian metric on M, and also determines an orthogonal projection map m : TN|y —
TM of bundles on M. If now V denotes the Levi-Civita connection on NV, identify
the Levi-Civita connection on M in terms of V and .

3. Suppose that g is a Riemannian metric on a smooth manifold M, and r is a strictly
positive real number. Show that the effect of scaling the Riemannian metric by r?
(and hence distances by r) is to leave the Levi-Civita connection unchanged but to
scale the sectional curvatures by 1/r2.

4. Consider the embedded submanifold S"~! C R", the unit sphere, and let the symbol
dS? denote the expression for the induced Riemannian metric on the unit sphere S™!
with respect to suitable local coordinates on the sphere. Show that the Euclidean
metric on R™ \ {0} can be expressed as g = dr? + r2dS?, where r = ||, x € R™
[You might like to consider the dimensions n = 2 or 3 first, using polar coordinates. |

5. With the setup as in Question 2, and V denoting the Levi-Civita connection on
the Riemannian manifold N, for local vector fields VW on M we set I1(V, W) to
be the normal component of Vi W with respect to the metric. Show that II is
symmetric in V' and W, and hence deduce that it induces a symmetric bilinear form
on the tangent bundle of M with values in the normal bundle (called the second
fundamental form). If R denotes the curvature tensor on N and R the curvature
tensor on M, for tangent vectors v, w,x,y to M at P, prove Gauss’s formula that

B, = (R, )+ (10, ), T (w,2)) — {11 (0, ), T (w,y).
[Hint: Use Q4 from Example Sheet 3.

6. Suppose now in the previous question that N is the Euclidean space R and that
M is a smooth hypersurface defined by a smooth function f = 0. Show that there
is a globally defined field of unit normal vectors IN defined on M, thereby defining a
smooth map N : M — S™~! (the Gauss map). Show that the tangent space to S™~*



7.

10.

11.

at N(P) has a natural identification with TpM, and hence that the derivative dpIN
may be regarded as an endomorphism of TpM. Prove that

Il(v,w) = —(dpN(v),w) N for all v,w € TpM.

Deduce that the sectional curvatures of the embedded hypersphere S*' C R" of
radius 7 > 0 are all 1/r?%

An almost complex structure on a manifold M is an endomorphism J of its tangent
bundle T'M such that J?> = —1. If M has an almost complex structure, show that it
is even dimensional.

We say that a connection V on T'M is compatible with J if V(J) = 0, where V
here denotes also the induced connection on End(7'M). Given a metric g and a
compatible almost complex structure J on M, that is g(JX,JY) = g(X,Y) for all
X,Y, show that there are metric connections on M which are compatible with J,
and that there is a distinguished choice for such a connection.

If M has dimension 2r and it is equipped with a metric and a compatible almost
complex structure J, show that parallel transport around closed curves (defined by
any such metric connection compatible with J) is represented by elements of U(r).

. Show that the Riemann curvature (R;j;) of (M, g) defines a symmetric bilinear form

the fibres of A*’T'M. Show that if dim M = 3 then the Riemann curvature R(g) is
determined at each point of M by the Ricci curvature Ric(g).

[Hint: the assignment of Ric(g) to R(g) is a linear map, at each point of M. A
special feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R3
have the same dimension.]

. Suppose we have two Riemannian manifolds (M, g) and (N, h); show that there is a

natural product metric g+h on M x N. If X is a vector field on M and Y one on N,
we may regard both of these as vector field on the product. If V denotes the Levi-
Civita connection on M x N, show that VxY = 0. Conclude that R(X,Y, X,Y") = 0.

[This means that product metrics have many sectional curvatures which are zero.]

Let ¢(x,y) = —xoyo + s, T:Yi, a Lorentzian bilinear form on R"™, and set H(r)
to be the upper branch of the hypersurface ¢(x,y) = —r? (i.e. the part with o >
0). Show that H(r) is a smooth manifold, and that the restriction of ¢ to the
tangent spaces of H(r) (considered as codimension one subspaces of R"!) defines
a Riemannian metric on H(r). Show that the sectional curvatures of H(r) are all
—1/r?. [The Riemannian manifold H(r) is called hyperbolic space of dimension n.]

Suppose M is a connected Riemannian manifold of dimension at least three, and that
the Ricci curvatures are constant at each point. Show that the metric is Einstein.



