

Example Sheet 4

1. Let M be a smooth manifold, equipped with a Riemannian metric, and let $\gamma : [a, b] \rightarrow M$ denote any smooth curve on M ; we define $\text{length}(\gamma) := \int_a^b \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle^{1/2} dt$. This in turn gives rise to a distance function ρ , where $\rho(P, Q)$ is the infimum of lengths of smooth curves from P to Q . Prove that (M, ρ) is a metric space.
2. Let M be an embedded submanifold of a manifold N . Show that there is a vector bundle $TN|_M$ on M , containing TM as a sub-bundle, and that any Koszul connection ∇ on N induces a linear connection (which we also denote as ∇) on $TN|_M$.
Suppose now that g is a Riemannian metric on N ; show that g induces a Riemannian metric on M , and also determines an orthogonal projection map $\pi : TN|_M \rightarrow TM$ of bundles on M . If now ∇ denotes the Levi-Civita connection on N , identify the Levi-Civita connection on M in terms of ∇ and π .
3. Suppose that g is a Riemannian metric on a smooth manifold M , and r is a strictly positive real number. Show that the effect of scaling the Riemannian metric by r^2 (and hence distances by r) is to leave the Levi-Civita connection unchanged but to scale the sectional curvatures by $1/r^2$.
4. Consider the embedded submanifold $S^{n-1} \subset \mathbb{R}^n$, the unit sphere, and let the symbol dS^2 denote the expression for the induced Riemannian metric on the unit sphere S^{n-1} with respect to suitable local coordinates on the sphere. Show that the Euclidean metric on $\mathbb{R}^n \setminus \{0\}$ can be expressed as $g = dr^2 + r^2 dS^2$, where $r = |x|$, $x \in \mathbb{R}^n$. [You might like to consider the dimensions $n = 2$ or 3 first, using polar coordinates.]
5. With the setup as in Question 2, and ∇ denoting the Levi-Civita connection on the Riemannian manifold N , for local vector fields V, W on M we set $II(V, W)$ to be the normal component of $\nabla_V W$ with respect to the metric. Show that II is symmetric in V and W , and hence deduce that it induces a symmetric bilinear form on the tangent bundle of M with values in the normal bundle (called the *second fundamental form*). If R denotes the curvature tensor on N and \bar{R} the curvature tensor on M , for tangent vectors v, w, x, y to M at P , prove Gauss's formula that
$$\langle \bar{R}_{vw}x, y \rangle = \langle R_{vw}x, y \rangle + \langle II(v, y), II(w, x) \rangle - \langle II(v, x), II(w, y) \rangle.$$

[Hint: Use Q4 from Example Sheet 3.]
6. Suppose now in the previous question that N is the Euclidean space \mathbf{R}^n and that M is a smooth hypersurface defined by a smooth function $f = 0$. Show that there is a globally defined field of unit normal vectors \mathbf{N} defined on M , thereby defining a smooth map $\mathbf{N} : M \rightarrow S^{n-1}$ (the *Gauss map*). Show that the tangent space to S^{n-1}

at $\mathbf{N}(P)$ has a natural identification with $T_P M$, and hence that the derivative $d_P \mathbf{N}$ may be regarded as an endomorphism of $T_P M$. Prove that

$$II(v, w) = -\langle d_P \mathbf{N}(v), w \rangle \mathbf{N} \quad \text{for all } v, w \in T_P M.$$

Deduce that the sectional curvatures of the embedded hypersphere $S^{n-1} \subset \mathbf{R}^n$ of radius $r > 0$ are all $1/r^2$.

7*. An almost complex structure on a manifold M is an endomorphism J of its tangent bundle TM such that $J^2 = -1$. If M has an almost complex structure, show that it is even dimensional.

We say that a connection ∇ on TM is *compatible* with J if $\nabla(J) = 0$, where ∇ here denotes also the induced connection on $\text{End}(TM)$. Given a metric g and a compatible almost complex structure J on M , that is $g(JX, JY) = g(X, Y)$ for all X, Y , show that there are metric connections on M which are compatible with J , and that there is a distinguished choice for such a connection.

If M has dimension $2r$ and it is equipped with a metric and a compatible almost complex structure J , show that parallel transport around closed curves (defined by any such metric connection compatible with J) is represented by elements of $U(r)$.

8. Show that the Riemann curvature (R_{ijkl}) of (M, g) defines a symmetric bilinear form the fibres of $\wedge^2 TM$. Show that if $\dim M = 3$ then the Riemann curvature $R(g)$ is determined at each point of M by the Ricci curvature $\text{Ric}(g)$.
[Hint: the assignment of $\text{Ric}(g)$ to $R(g)$ is a linear map, at each point of M . A special feature of the dimension 3 is that the spaces of 1-forms and 2-forms on \mathbf{R}^3 have the same dimension.]
9. Suppose we have two Riemannian manifolds (M, g) and (N, h) ; show that there is a natural product metric $g+h$ on $M \times N$. If X is a vector field on M and Y one on N , we may regard both of these as vector field on the product. If ∇ denotes the Levi-Civita connection on $M \times N$, show that $\nabla_X Y = 0$. Conclude that $R(X, Y, X, Y) = 0$. [This means that product metrics have many sectional curvatures which are zero.]
10. Let $q(\mathbf{x}, \mathbf{y}) = -x_0 y_0 + \sum_{i=1}^n x_i y_i$, a Lorentzian bilinear form on \mathbf{R}^{n+1} , and set $\mathbf{H}(r)$ to be the upper branch of the hypersurface $q(\mathbf{x}, \mathbf{y}) = -r^2$ (i.e. the part with $x_0 > 0$). Show that $\mathbf{H}(r)$ is a smooth manifold, and that the restriction of q to the tangent spaces of $\mathbf{H}(r)$ (considered as codimension one subspaces of \mathbf{R}^{n+1}) defines a Riemannian metric on $\mathbf{H}(r)$. Show that the sectional curvatures of $\mathbf{H}(r)$ are all $-1/r^2$. [The Riemannian manifold $\mathbf{H}(r)$ is called *hyperbolic space* of dimension n .]
11. Suppose M is a connected Riemannian manifold of dimension at least three, and that the Ricci curvatures are constant at each point. Show that the metric is Einstein.