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1. Let M be a smooth manifold, equipped with a Riemannian metric, and let γ : [a, b]→
M denote any smooth curve on M ; we define length(γ) :=

∫ b

a
〈γ̇(t), γ̇(t)〉1/2dt. This

in turn gives rise to a distance function ρ, where ρ(P,Q) is the infimum of lengths
of smooth curves from P to Q. Prove that (M,ρ) is a metric space.

2. Let M be an embedded submanifold of a manifold N . Show that there is a vector
bundle TN |M onM , containing TM as a sub-bundle, and that any Koszul connection
∇ on N induces a linear connection (which we also denote as ∇) on TN |M .

Suppose now that g is a Riemannian metric on N ; show that g induces a Riemann-
ian metric on M , and also determines an orthogonal projection map π : TN |M →
TM of bundles on M . If now ∇ denotes the Levi-Civita connection on N , identify
the Levi-Civita connection on M in terms of ∇ and π.

3. Suppose that g is a Riemannian metric on a smooth manifold M , and r is a strictly
positive real number. Show that the effect of scaling the Riemannian metric by r2

(and hence distances by r) is to leave the Levi–Civita connection unchanged but to
scale the sectional curvatures by 1/r2.

4. Consider the embedded submanifold Sn−1 ⊂ Rn, the unit sphere, and let the symbol
dS2 denote the expression for the induced Riemannian metric on the unit sphere Sn−1

with respect to suitable local coordinates on the sphere. Show that the Euclidean
metric on Rn \ {0} can be expressed as g = dr2 + r2dS2, where r = |x|, x ∈ Rn.
[You might like to consider the dimensions n = 2 or 3 first, using polar coordinates.]

5. With the setup as in Question 2, and ∇ denoting the Levi–Civita connection on
the Riemannian manifold N , for local vector fields V,W on M we set II(V,W ) to
be the normal component of ∇VW with respect to the metric. Show that II is
symmetric in V and W , and hence deduce that it induces a symmetric bilinear form
on the tangent bundle of M with values in the normal bundle (called the second
fundamental form). If R denotes the curvature tensor on N and R̄ the curvature
tensor on M , for tangent vectors v, w, x, y to M at P , prove Gauss’s formula that

〈R̄vwx, y〉 = 〈Rvwx, y〉+ 〈II(v, y), II(w, x)〉 − 〈II(v, x), II(w, y)〉.

[Hint: Use Q4 from Example Sheet 3.]

6. Suppose now in the previous question that N is the Euclidean space Rn and that
M is a smooth hypersurface defined by a smooth function f = 0. Show that there
is a globally defined field of unit normal vectors N defined on M , thereby defining a
smooth map N : M → Sn−1 (the Gauss map). Show that the tangent space to Sn−1



at N(P ) has a natural identification with TPM , and hence that the derivative dPN
may be regarded as an endomorphism of TPM . Prove that

II(v, w) = −〈dPN(v), w〉N for all v, w ∈ TPM.

Deduce that the sectional curvatures of the embedded hypersphere Sn−1 ⊂ Rn of
radius r > 0 are all 1/r2.

7*. An almost complex structure on a manifold M is an endomorphism J of its tangent
bundle TM such that J2 = −1. If M has an almost complex structure, show that it
is even dimensional.

We say that a connection ∇ on TM is compatible with J if ∇(J) = 0, where ∇
here denotes also the induced connection on End(TM). Given a metric g and a
compatible almost complex structure J on M , that is g(JX, JY ) = g(X, Y ) for all
X, Y , show that there are metric connections on M which are compatible with J ,
and that there is a distinguished choice for such a connection.

If M has dimension 2r and it is equipped with a metric and a compatible almost
complex structure J , show that parallel transport around closed curves (defined by
any such metric connection compatible with J) is represented by elements of U(r).

8. Show that the Riemann curvature (Rijkl) of (M, g) defines a symmetric bilinear form
the fibres of ∧2TM . Show that if dimM = 3 then the Riemann curvature R(g) is
determined at each point of M by the Ricci curvature Ric(g).
[Hint: the assignment of Ric(g) to R(g) is a linear map, at each point of M . A
special feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R3

have the same dimension.]

9. Suppose we have two Riemannian manifolds (M, g) and (N, h); show that there is a
natural product metric g+h on M×N . If X is a vector field on M and Y one on N ,
we may regard both of these as vector field on the product. If ∇ denotes the Levi-
Civita connection on M×N , show that∇XY = 0. Conclude that R(X, Y,X, Y ) = 0.
[This means that product metrics have many sectional curvatures which are zero.]

10. Let q(x,y) = −x0y0 +
∑n

i=1 xiyi, a Lorentzian bilinear form on Rn+1, and set H(r)
to be the upper branch of the hypersurface q(x,y) = −r2 (i.e. the part with x0 >
0). Show that H(r) is a smooth manifold, and that the restriction of q to the
tangent spaces of H(r) (considered as codimension one subspaces of Rn+1) defines
a Riemannian metric on H(r). Show that the sectional curvatures of H(r) are all
−1/r2. [The Riemannian manifold H(r) is called hyperbolic space of dimension n.]

11. Suppose M is a connected Riemannian manifold of dimension at least three, and that
the Ricci curvatures are constant at each point. Show that the metric is Einstein.


