

Example Sheet 2

1. (i) Is $\alpha \wedge \alpha = 0$ true for every differential form α of positive degree?
(ii) Let α be a nowhere-zero 1-form. Prove that for a p -form β ($p \geq 1$), one has $\alpha \wedge \beta = 0$ if and only if $\beta = \alpha \wedge \gamma$ for some $(p-1)$ -form γ . [You might like to do it on \mathbb{R}^n first. Partitions of unity are useful in the general case.]
2. Prove that $\mathbb{R}P^n$ is orientable if and only if n is odd.
[Hint: consider the $2 : 1$ map $S^n \rightarrow \mathbb{R}P^n$ and a suitable choice of orientation n -form on S^n .]
3. Prove the identity $d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y])$, for a 1-form ω and vector fields X, Y . *Can you generalize this result to the case when ω is a p -form?
4. Show that
$$d\omega = 0, \quad \text{where } \omega = \frac{-ydx + xdy}{x^2 + y^2},$$
but ω cannot be written as df for any smooth function f on $\mathbb{R}^2 \setminus \{0\}$.
[Hint: consider an appropriate embedding of S^1 in \mathbb{R}^2 and integrate the pull-back of ω over S^1 .]
Hence or otherwise deduce that the de Rham cohomology of the circle is $H^1(S^1) = \mathbb{R}$.
5. (i) Show that every closed 1-form on S^2 is exact.
(ii) *Construct isomorphisms of de Rham cohomology $H^k(S^n) \cong H^{k-1}(S^{n-1})$, for all $k, n > 1$. Calculate the de Rham cohomology $H^k(S^n)$ for every k, n .
[You may assume a generalised version of the Poincaré Lemma, namely that for M any smooth manifold, $H^k(M \times \mathbb{R}) \cong H^k(M)$ for all k .]
6. Construct a nowhere-vanishing (smooth) vector field on S^{2n+1} for any n .
7. Let G be a matrix Lie group and X_i , $i = 1, \dots, d = \dim G$, a system of linearly independent left-invariant vector fields on G induced by a basis of $T_I G$. Show that the condition that $\omega^i(X_j) = \delta_j^i$ identically on G defines a system of linearly independent smooth 1-forms ω^i on G . Show further that the 1-forms ω^i are *left-invariant* in the sense that
$$L_g^*(\omega^i) = \omega^i, \quad \text{for every } g \in G.$$
Let C_{ij}^k be a set of real constants determined by $[X_i, X_j] = \sum_k C_{ij}^k X_k$. Deduce from the identity of Question 3 the formula
$$d\omega^k = -\frac{1}{2} \sum_{i,j} C_{ij}^k \omega^i \wedge \omega^j.$$

Let C_{ij}^k be a set of real constants determined by $[X_i, X_j] = \sum_k C_{ij}^k X_k$. Deduce from the identity of Question 3 the formula

$$d\omega^k = -\frac{1}{2} \sum_{i,j} C_{ij}^k \omega^i \wedge \omega^j.$$

8. Modify the construction of Hopf bundle, given in the lectures, replacing \mathbb{C} everywhere by \mathbb{R} to obtain a rank one real vector bundle E over S^1 . The total space of this \mathbb{R} -analogue of Hopf (vector) bundle is thus a surface (2-dimensional manifold). Can you identify this surface? What is the surface corresponding to $E \otimes E$?

9. Show that every (real) vector bundle can be given a positive definite inner product, varying smoothly with the fibres, i.e. given in each local trivialization (U_α, Φ_α) by a smooth map $g_\alpha : x \in U_\alpha \rightarrow g_\alpha(x) \in \text{Sym}_+(k, \mathbb{R})$. Here $k = \text{rank } E$ and $\text{Sym}_+(k, \mathbb{R})$ denotes the set of all real positive-definite $k \times k$ symmetric matrices.
 [Hint: you might like to use a partition of unity.]
 Deduce that any vector bundle admits an $O(n)$ -structure. Deduce also that any (real) vector bundle is (non-canonically) isomorphic to its dual.

10. Show that the isomorphism classes of line bundles over a manifold M may be given the structure of a (multiplicative) group, where the group operation, inverses and identity should be specified, in which all elements (not equal to the identity) have order 2.

11. Given a vector field X on a manifold M , we let L_X denote the Lie derivative acting on vector fields. If Y is another vector field on M , prove that $L_X(Y) = [X, Y]$.

12** Given a form ω of degree $r > 0$ and a vector field X on a manifold M , we define $i(X)\omega$, the *interior product* of X with ω , to be the $(r-1)$ -form given by

$$(i(X)\omega)(X_1, \dots, X_{r-1}) = \omega(X, X_1, \dots, X_{r-1}).$$

If L_X denotes the Lie derivative acting on forms, prove the formula

$$L_X\omega = i(X)d\omega + di(X)\omega.$$

If ω is a closed 2-form with $L_X\omega = 0$ on a manifold M with $H_{DR}^1(M) = 0$, deduce that $i(X)\omega = dH$ for some smooth function H on M . If $i(X)\omega$ is non-zero at a point P , show that the level set of H through P is locally near P a codimension one submanifold of M , and that its tangent space at P is the codimension one subspace of $T_P M$ defined by $\{v \in T_P M : (i(X)\omega)(v) = 0\}$.