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1. (i) Is α ∧ α = 0 true for every differential form α of positive degree?
(ii) Let α be a nowhere-zero 1-form. Prove that for a p-form β (p ≥ 1), one has

α ∧ β = 0 if and only if β = α ∧ γ for some (p− 1)-form γ. [You might like to
do it on Rn first. Partitions of unity are useful in the general case.]

2. Prove that RP n is orientable if and only if n is odd.
[Hint: consider the 2 : 1 map Sn → RP n and a suitable choice of orientation n-form
on Sn.]

3. Prove the identity dω(X, Y ) = Xω(Y ) − Y ω(X) − ω([X, Y ]), for a 1-form ω and
vector fields X, Y . *Can you generalize this result to the case when ω is a p-form?

4. Show that

dω = 0, where ω =
−ydx+ xdy

x2 + y2
,

but ω cannot be written as df for any smooth function f on R2 \ {0}.
[Hint: consider an appropriate embedding of S1 in R2 and integrate the pull-back of
ω over S1.]

Hence or otherwise deduce that the de Rham cohomology of the circle is H1(S1) = R.

5. (i) Show that every closed 1-form on S2 is exact.

(ii) *Construct isomorphisms of de Rham cohomology Hk(Sn) ∼= Hk−1(Sn−1), for
all k, n > 1. Calculate the de Rham cohomology Hk(Sn) for every k, n.
[You may assume a generalised version of the Poincaré Lemma, namely that
for M any smooth manifold, Hk(M × R) ∼= Hk(M) for all k.]

6. Construct a nowhere-vanishing (smooth) vector field on S2n+1 for any n.

7. Let G be a matrix Lie group and Xi, i = 1, . . . , d = dimG, a system of linearly
independent left-invariant vector fields onG induced by a basis of TIG. Show that the
condition that ωi(Xj) = δij identically on G defines a system of linearly independent

smooth 1-forms ωi on G. Show further that the 1-forms ωi are left-invariant in the
sense that

L∗
g(ω

i) = ωi, for every g ∈ G.
Let Ck

ij be a set of real constants determined by [Xi, Xj] =
∑

k C
k
ijXk. Deduce from

the identity of Question 3 the formula

dωk = −1

2

∑
i,j

Ck
ijω

i ∧ ωj.



8. Modify the construction of Hopf bundle, given in the lectures, replacing C everywhere
by R to obtain a rank one real vector bundle E over S1. The total space of this
R-analogue of Hopf (vector) bundle is thus a surface (2-dimensional manifold). Can
you identify this surface? What is the surface corresponding to E ⊗ E?

9. Show that every (real) vector bundle can be given a positive definite inner product,
varying smoothly with the fibres, i.e. given in each local trivialization (Uα,Φα) by a
smooth map gα : x ∈ Uα → gα(x) ∈ Sym+(k,R). Here k = rankE and Sym+(k,R)
denotes the set of all real positive-definite k × k symmetric matrices.
[Hint: you might like to use a partition of unity.]

Deduce that any vector bundle admits an O(n)-structure. Deduce also that any
(real) vector bundle is (non-canonically) isomorphic to its dual.

10. Show that the isomorphism classes of line bundles over a manifold M may be given
the structure of a (multiplicative) group, where the group operation, inverses and
identity should be specified, in which all elements (not equal to the identity) have
order 2.

11. Given a vector field X on a manifold M , we let LX denote the Lie derivative acting
on vector fields. If Y is another vector field on M , prove that LX(Y ) = [X, Y ].

12** Given a form ω of degree r > 0 and a vector field X on a manifold M , we define
i(X)ω, the interior product of X with ω, to be the (r − 1)-form given by

(i(X)ω)(X1, . . . , Xr−1) = ω(X,X1, . . . , Xr−1).

If LX denotes the Lie derivative acting on forms, prove the formula

LXω = i(X)dω + di(X)ω.

If ω is a closed 2-form with LXω = 0 on a manifold M with H1
DR(M) = 0, deduce

that i(X)ω = dH for some smooth function H on M . If i(X)ω is non-zero at a
point P , show that the level set of H through P is locally near P a codimension one
submanifold of M , and that its tangent space at P is the codimension one subspace
of TPM defined by {v ∈ TPM : (i(X)ω)(v) = 0}.


