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Introduction. Let k be a field. Algebraic Geometry concerns itself with the zero loci in
k™ of systems of polynomials in n variables. For instance, when n = 2, we might study the
solutions of a single polynomial equation f(z,y) = 0. In this formulation however, ques-
tions of arithmetic arise; in order to concentrate on the geometry, we’ll restrict ourselves

to the case of k algebraically closed (i.e. k = k).

There are two pieces of algebra from the Part 1B Optional course on Algebra (Groups,
Rings and Fields) which we shall need.

(a) The ring of polynomials k[X1,..., X,] in n variables has unique factorization.
(b) Hilbert’s Basis Theorem : Any ideal in k[X7, ..., X,] is finitely generated.

It is Hilbert’s Basis Theorem which always allows us to reduce down to a finite set of
polynomial equations. For if V' C k™ is the zero locus of some (perhaps infinite) collection
of polynomials, we set I to be the ideal in k[X7, ..., X,,] generated by these polynomials.
It is clear that

V={xek"; f(x) =0forall fel}.

Hilbert’s Basis Theorem tells us that [ is generated by a finite set of polynomials f1,..., fi,
say, from which it follows that V' is the zero locus of this finite collection. Since each f;
can be written as a finite combination of the original polynomials (with coefficients from
the polynomial ring), we can take as the defining set for V' a finite subset of the original

collection of defining polynomials.

We can however say far more about the geometry if we consider not the affine varieties
which have been described above, but instead projective varieties as defined below. In the
case of algebraic curves, a projective curve may in fact be obtained from an affine one by
adding finitely many points (see (1.3)); for instance P'(C) defined below may be obtained
by adding a single point co to the affine curve C, a fact you learnt in your first term of

1A, since P!(C) may be identified as the Riemann sphere.
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§1. If W is a vector space over a field k, define the associated projective space
P(W) = {1-dimensional subspaces of W}.

A linear subspace is a subset of the form P(U) for U a subspace of W. If dim(W) = n+1, we
say that P(WW) is an n-dimensional projective space and denote it by P™. A linear subspace
P(U) c P(W) is called a hyperplane if dim(W) = dim(U) + 1. Note that P(U;) NP (Usz) =
P(U;NUs), and so the intersection of two linear subspaces is a linear subspace. Moreover,
if dimP(U;) + dimP(Us) > dimP (W), then dim(U;) + dim(Uz) > dim(W), from which it
follows that dim(U; NUsz) > 0, and so in particular P(Uy) NP (Usz) # 0. For instance, two

lines in P? always meet.

An affine n-space A™ over k is just an n-dimensional affine subspace of a vector space
defined over k, i.e. a coset of an n-dimensional linear subspace. If we choose a point on
the affine n-space, the affine space then has the structure of a vector space, since its points
have displacement vectors from the given point which are elements of the n-dimensional

subspace.

Suppose now P(U) C P(W) a hyperplane and let L be any coset of U not containing
the origin, an affine n-space. There exists a natural embedding L — P (W) with comple-
ment P(U) — easy check for reader (draw a picture). Thus the complement of a hyperplane

in P™ has the natural structure of an affine n-space A" over k.

By choosing a basis eq, ..., e, for W, a point of P(WW) corresponds to a equivalence
class of vectors Y., z;e; under the relation given by non-zero scalar multiplication. Thus
a point of P(W) is given by homogeneous coordinates (xg : x1 : ... : x,), where x and y

represent the same point <= y = Ax for some A € k* (non-zero elements of field k).

In terms of homogeneous coordinates, a linear subspace of P(W) is defined by homo-
geneous linear equations in the coordinates. Given a hyperplane P(U) of P(W), we can
assume wlog that ey, ..., e, form a basis of U, and then the hyperplane is given by zg = 0.
The complement of the hyperplane then consists of classes [v], where v = (g : 21 : ... : x,)
with z¢ # 0. Taking L to be given by zo = 1 (i.e. L = e+ U), we have the identification
of P(W)\ P(U) with L given in terms of coordinates via

(xo:xy:...txy) — (1,21/20, ..., 2n/20)
i.e. we have affine coordinates (x1/xo,...,2,/xg) on L, thereby identifying it with k™.
Conversely, given (y1,...,yn) € k™, we have a corresponding point (1 : y; : ... : y,) €

P(W)\ P(U).



A projective variety V- C P™ is defined to be the zero locus of a (finite) set of homoge-
neous polynomials in X, ..., X,. Let I"(V) denote the ideal in k[Xy, ..., X,] generated
by homogeneous polynomials vanishing on V' — observe that F' € I*(V) iff all its homoge-
neous parts are in I"(V). We say that V is irreducible if it cannot be written as the union

V = V1 UV, of two proper subvarieties.

Lemma 1.1. Any projective (or affine) variety V may be written as a finite union of

irreducible varieties.

Proof. If not, then by induction (and countable Axiom of Choice) we obtain a strictly

decreasing infinite sequence of subvarieties
V=W>DV>VW>D ...

Suppose each V; is defined by an ideal I; and let W = N;V;, a subvariety of V defined
by the ideal I = ). I;. Hilbert’s Basis Theorem implies that I is generated by finitely
many (homogeneous) polynomials fi,..., fn,. Each generator f; may be written as a
sum of elements from only finitely many I;, and hence I = Zig n Li for some IV, and so

W = N;<nVi, contradicting our assumption.

Remark. The decomposition of V' into a finite union of irreducible subvarieties is unique
modulo ordering, etc. This is a nice exercise for the reader (essentially an exercise in

topological spaces), but may also be found for instance in Reid’s book.
Lemma 1.2. A projective variety V is irreducible iff I"(V) is a prime ideal.

Proof. Suppose first that V' is reducible, say V' = V; U V5; then we can find homogenous
polynomials F, G, neither of which vanish on all of V', but with F' vanishing on V; and G
vanishing on V. The product FG therefore is in I"(V), implying that I"(V) is not prime.

The converse in similar; if I"(V) is not prime, we can find (not necessarily homoge-
neous) polynomials F, G which are not in I*(V') but whose product is. By replacing F, G
by their homogeneous parts of lowest degree not in I"(V'), we see easily that F, G may be
assumed homogeneous and not in I*(V), but with a product which is. Now letting V; be
the subvariety of V' defined by the extra equation F' = 0, and V5 be the subvariety given
by G = 0, the V; are proper subvarieties of V' whose union is all of V', and hence V is

reducible.



Remark. The same (or even simpler) proof gives a similar result in the affine case. One
should add here that whilst (1.2) is of theoretical importance (as we shall now see), it will
usually be of little practical use to us for seeing if a given projective variety is irreducible.
We’ll comment on this again later in the case of algebraic curves, where a more useful test

will be given.

If V. P irreducible, a rational function on V is given by a quotient F'/G of homo-
geneous polynomials of the same degree, G ¢ I"(V), subject to the equivalence relation
R/S ~ F/G <= RG — SF € I"(V). Note that F//G represents the zero function iff
F € I"'(V). A rational function f on V is said to be reqular at P € V if there is a represen-
tation F'/G for f with G(P) # 0. If f is regular at P, we can define f(P) in a unique way,
and in this way f induces an actual function on the subset of regular points. The set of ra-
tional functions on V forms (in an obvious way) a field k(V'), the function field of V.. Note
that k(1) is a finitely generated extension of k (if V' is not contained in the hyperplane
{Xo = 0}, then k(V) is generated by the rational functions X;/Xy,..., X, /Xo).

In this course we shall take k to be algebraically closed (for instance the complex
numbers C); we have not used this assumption yet, but from now on it will be needed.
The dimension dim (V') of an irreducible projective variety V is the smallest integer n for
which there exist functions t1,...,t, € k(V) with k£(V') finite over k(t1,...,t,). Note that
dim(V) = 0 iff V is a point — this follows from the assumption that k = k, and the fact
that (V) = k iff all rational functions (including the coordinate functions X;/Xy) are
constant on V', which in turn is true iff V' is a point. We say that V is a projective curve
over k if dim(V') = 1, i.e. k(V) is a finite extension of the field k(t) of rational functions
in one variable. We observe that if this is the case, and s is any non-constant rational
function on V' (i.e. s € k(V) \ k), then k(V) is also a finite extension of k(s). To see this,

we note that s satisfies an equation over klt]
an(t)s™ + an_l(t)s”_l +...4+ai(t)s+ap(t) =0

with a;(t) € k[t], not all the a; being in k (the latter since s ¢ k and k algebraically closed).
This may also be regarded as an equation for ¢ over k[s], and so k(t, s) is finite over k(s).

Since by assumption k(V') is finite over k(t), the assertion follows.

Suppose we have chosen homogeneous coordinates X, ..., X, on P"; the complement
of the hyperplane { Xy = 0} is an affine n-space Ay, which has affine coordinates y1, ..., yn
given by y; = X;/Xo. Similarly the complements of the other coordinate hyperplanes are

affine n-spaces and have corresponding affine coordinates. These n+ 1 affine n-spaces form

4



an affine cover of P". If now V C P" is a projective variety, then Vy, = V N Af is the
subset of A defined by the polynomials f(y1,...,yn) = F(L,y1,...,Yn) € kly1,---,Yn]
obtained from the homogeneous polynomials defining V. Such a subset of A™ is called an

affine variety, and so in this way we obtain an affine covering of V' by affine varieties.

If U € A™ is an affine variety, we define its coordinate ring k[U] to be the ring of
polynomial functions on U, which in turn may be identified as k[U] = k[x1,...,z,]/I(U),
where I(U) = {f € klz1,...,2,] ; f(x) = 0 for all x € U}. In fact, k[U] is a k-algebra,
which means that it contains k as a subring. If U is a non-empty affine piece of a projective
variety V' C P™, it is an easy check that I(U) is prime if I" (V) is prime — if fg € I(U), then
XoFG € I"'(V) and hence either F or G is in I"(V'), and so either f or g is in I(U). Hence
by (1.2), U is irreducible if V' is irreducible. Under these circumstances k[U] is an integral
domain, and its field of fractions (known as the function field of U) consists of rational
functions f/g on U, with f,g € k[z1,...,2z,], g € I(U), subject to the obvious equivalence
relation analogous to that used in the projective case. Thus if U is the affine piece of V'
given by Xy # 0, we have an isomorphism of function fields k(V) — k(U) obtained by
‘putting Xy = 1’ in the representatives F'/G of elements of k(V) (more formally, writing
F/Gas F(1,z1,...,2,)/G(1,x1,...,x,), with z; = X; /X for i > 0); note here that if G
vanishes on Vg = U, then XoG € I"(V), and thus G € I"(V). Therefore we see (for V
irreducible) that its function field k£(V') is determined by any (non-empty) affine piece.

Lemma 1.3. If V is an irreducible algebraic (affine or projective) curve, then its only

proper subvarieties are finite.

Proof. By (1.1), proper subvarieties are finite unions of irreducible proper subvarieties.

So we need to prove that every irreducible proper subvariety W consists of a single point.

By considering a finite affine cover, we can reduce to the affine case W C V C A",

and so we have a surjective homomorphism of coordinate rings
klV] =kl[z1,...,2,]/I(V) — kW] = k[x1,...,z,]/T(W).

Let 0 # f € k[V] map to zero in k[W]; if W is not a point, we can choose a non-constant
element g € k[W] C k(W), and then for any lift g € k[V] of g, we check easily that f,g
are algebraically independent as elements of k(V') over k, that is there is no polynomial
relation over k between f and g (wlog such a relation is not a multiple of f since k[V]
integral, and then take its image in k[W]). This then contradicts our assumption that

dim(V) =1 (by previous argument, neither f nor g being constant).
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When studying specific examples, the converse to (1.3) is a useful criterion for showing
that an algebraic curve is irreducible. If V' is a projective or affine variety with infinitely
many points, but such that the only proper subvarieties are finite, then by (1.1) it must

be irreducible (it will in fact be a curve, but this will be clear in the examples we study).

As an example of the above ideas, let us consider the important case of V C P?
defined by a homogeneous polynomial F'(Xg, X7, X5) of positive degree; we have an affine
piece U of V given by a polynomial f(x,y) where x = X;/Xy and y = X5/X(. Assuming
F' is not divisible by X, we have that F' is irreducible iff f is irreducible.

Lemma 1.4. Given f,g € k[z,y| coprime polynomials, there exist polynomials «, 3 €

k[x,y| such that af + 3g = h, where 0 # h € k[x] is a polynomial in x only.

This lemma follows easily (essentially just eliminate inductively the variable y, or
alternatively use Gauss’s Lemma). From Lemma 1.4, it follows that if F' is irreducible,
then the only proper subvarieties of V' are finite sets of points. To prove this we observe
that, since V has a finite affine cover, we can reduce to the affine case U C A2, given
an irreducible (non-constant) polynomial f(z,y). Suppose now we have any g € k[z,y],
g € I(U), then f and g are coprime and we can apply (1.4). In particular, if P = (u,v)
satisfies f(P) = 0 = g(P), then h(u) = 0, so there are only finitely many z-coordinates
for such points P; similarly, there are only finitely many y-coordinates, and hence only
finitely many such points. However V' has infinitely many points (for all but finitely many
x-coordinates, can solve for a y-coordinate), and so it follows that V must be irreducible.
Moreover, the above agument also shows that if g € I(U), then f divides g; i.e. that
I(U) = (f). The function field k(V') is then naturally isomorphic to the field of fractions
of the integral domain k[z,y]/(f), and it is also then clear that dim(V') = 1; such a variety

V' is called a plane projective curve.

Given a point P of an irreducible projective variety V', the local ring of the variety at
P is defined as Oy p = {h € k(V) : hregular at P}. This is clearly a subring of k(1)
and has a maximal ideal my p = {h € Oy, p : h(P) = 0}. Clearly the units (invertible
elements) U(Oy p) of the ring are precisely the elements not in the maximal ideal, i.e.
my,p = non-units of Oy, p. Since any proper ideal consists of non-units, this shows that
my,p is the unique maximal ideal of Oy p ; in general, a ring with this property is called
a local ring. The local properties of V' at P are encoded in this ring. Note that Oy p is

an integral domain with k(V') as its field of fractions, and that if Vj is an affine piece of V/
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containing P, then Oy p is determined by Vo, i.e. Oyv.p = {f/g; f,9 € k[Vo],9(P) # 0}.

A local integral domain A with maximal ideal m is called a discrete valuation ring
(DVR) if there exists t € m such that every non-zero element a € A can be written in the
form a = ut™ for some n > 0 and unit u € U(A). If V is an algebraic curve and P € V, we
say that P is a smooth or non-singular point of V' if Oy p is a DVR; an element t € my, p
as above is called a local parameter or local coordinate at P. To motivate this definition, I
observe (without proof) that for the case k = C a local parameter ¢ will determine a local
chart from a neighbourhood of P in V to a neighbourhood of 0 € C, so that a smooth
complex curve may also be considered as a Riemann Surface (as an exercise for the reader,
I observe that a smooth complex projective curve will then be a compact Riemann surface).
If P is not a smooth point, we say that P is a singularity of V. For plane curves, these
definitions are seen (1.5) to be equivalent to the usual definitions in terms of vanishing of

partial derivatives of an irreducible defining polynomial.

Lemma 1.5. An affine plane curve U C A? given by an irreducible polynomial f € k[z, y]
is singular at P € U iff 0f /0x (P) =0 = 0f/dy (P).

Proof. Easily checked that the vanishing of partial derivatives (which can be defined
purely formally) is independent of the affine coordinate system chosen, and so in particular
we may assume that P is the origin (0,0). Further, if we write f = f1 + fo + ... + fa,
where deg(f;) = i, then the partial derivatives vanish at the origin iff the linear part f; is

zero. Thus the Lemma is asserting that f; = 0 iff P is a singularity.

To see this, suppose first that P is non-singular; then there exists a local parameter
t € k[U] such that x = ut" and y = ust®, where uy,uy are units, and at least one of r
and s, wlog s = 1 (because my p = (x,y) C Oy, p). Therefore x = uy” for some unit u in
Ou.p, say u = v1/ve with v; € k[z,y] with v;(P) # 0. Therefore vox = v1y" as elements
of k[U], or as polynomials that vox — v1y” € I(U) = (f). Thus f divides the polynomial
vox — v1y", and hence f; # 0.

Conversely, suppose that f; # 0 and that affine coordinates have been chosen with
P =(0,0) and f = x — y + higher order terms. Thus f = zp(z) —yq(x,y), with p(0) # 0

and ¢(0,0) # 0. In particular we note that z = vy in Oy, p, with v a unit.
Claim. Oy p is a DVR with local parameter y.

Given non-zero a € Oy, p, write a = wg with w a unit and g = g(x,y) a polynomial. If
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g(P) # 0, we are done since it is a unit in Oy p; if not then we can use the relation z = vy
to substitute for x in g, and obtain the fact that g is a multiple of y in Oy p. Provided we
can show that g ¢ (y(M +1)) for some M > 0, we shall then be home by induction, since
the process then has to terminate. The required fact however follows from (1.4), since f, g
are coprime polynomials, and hence there exist «, 3 € k[z,y] with af + B9 = y™h(y) for
some M > 0 and some polynomial h with h(0) # 0. Thus h represents a unit in Oy, p,
and so y™ € (g) in Oy, p; i.e. y™ is divisible by g, which rules out the possibility that g
is divisible by yM+1 . QED

Given the DVR Oy p, we have a well-defined function vp : k(V)* — Z, where
vp(ut™) = n (notation as above), called the wvaluation at P; this gives the order of a
zero or pole at P of a non-zero rational function. Note that vp(fg) = vp(f) + vp(g) (so

that vp is a homomorphism of abelian groups) and vp(f + ¢) > min{vp(f),vp(g9)}.

For V' an irreducible projective variety, a rational map ¢ : V— — P™ is given by an
(m 4+ 1)-tuple (fo :...: fm) of elements of k(V') (not all zero) modulo that (fo :...: fi)
and (ho : ... : hy,) define the same rational map iff for some h € k(V)*, we have h; = hf;
for all 7. Interpreting rational functions in terms of homogeneous polynomials, we see
that the rational map ¢ is given by an equivalence class of (m + 1)-tuples of homogeneous
polynomials of the same degree (Fy : ... : Fy,), not all in I"(V), modulo the relation ~,
where (Fy:...: Fp) ~ (Go:...: Gy) & F,G;—F;G; € I"(V) for all i, j. We say that
¢ is reqular at P € V if it can be written in the form ¢ = (fo : ... : f,,) with f; € Oy p for
all 7 and at least one non-vanishing at P — equivalently, ¢ is represented by an (m+1)-tuple
(Fy @ ...: Fy,) such that F;(P) # 0 for some i. We then have a well-defined image point
o(P). It W C P™ a projective variety, a rational map ¢ : V— — W is just a rational map
¢ : V— — P™ such that ¢(P) € W for all points P at which ¢ is regular. A morphism
¢ 'V — W is a rational map which is everywhere regular. An isomorphism ¢ : V — W is
a morphism with an inverse morphism v : W — V. Example of twisted cubic in P? being

isomorphic to P!,

Given a morphism (or even rational map) ¢ : V. — W of irreducible projective vari-
eties, we can define ¢*(f) = fo¢ in an obvious way, provided the image ¢(V) is not con-
tained in a proper subvariety of W, i.e. if a homogeneous polynomial G vanishes on ¢(V'),
then G € I"(W). Namely, if ¢ = (hg : ... : hy), and f = F(Yo,...,Yn)/G(Yo, ..., Ym),
with G ¢ I"(W), then ¢*(f) = F(ho,...,hm)/G(ho,...,hm) € k(V); easily checked this

is well-defined. If ¢* is an isomorphism of function fields, we say that ¢ is birational. An

8



isomorphism induces isomorphisms of the local rings (given by composition with ¢), and

intrinsic properties of the variety are not affected.

It follows immediately from the defining property of a DVR that for V' a smooth
projective curve, every rational map ¢ : V— — P" is a morphism. To see this, write
o= (fo:fi:...,fm); for P €V let t be a local parameter at P, and write f; = u;t"™,
with u; a unit in Oy p and n; € Z, and then clear denominators and cancel out any

common factors of .

Let us now consider morphisms between curves.

Lemma 1.6. If ¢ : V — W is a non-constant morphism between irreducible (projective)
curves, then ¢ has finite fibres, i.e. ¢~1(Q) is finite for all Q € W.

Proof. For Q € W, I claim that ¢~1(Q) is a subvariety of V. For suppose that Q =
(ag : ... : am) € W C P™, then ¢~ 1(Q) is defined by all the polynomials of the form
a; F; —a;F;, for (Fy : ... : F,,) ranging over (m + 1)-tuples of homogeneous polynomials
of the same degree representing ¢ (convince yourself of this statement). This is therefore
a subvariety — remember that it doesn’t matter that we may have written down infinitely
many equations, since by Hilbert’s Basis Theorem a finite subset of equations will suffice.

If ¢ is non-constant, the fibre is a proper subvariety of V', and hence finite by (1.3).

In the circumstances of (1.6), the image of ¢ is not finite, since if it were then V
would be finite. So any homogeneous polynomial F' which vanishes on the image must be
in I"(W). From this follows that there is an induced injective homomorphism of function
fields ¢* : k(W) — k(V) given by ‘composition with ¢’. It follows from the above facts
that there exist non-constant rational functions s € ¢*k(W), namely of the form s = ¢*(z)
for x a rational function on W which is non-constant on the image of ¢. Since dim(V') = 1,
we deduce that k(V') is finite over the subfield ¢p*k(W). The degree deg(¢) of the morphism
¢ is by definition the degree of the field extension [k(V') : ¢*k(W)].

If now ¢ : V' — W is a non-constant morphism between irreducible smooth projective

curves, it also satisfies an important additional property called finiteness :

Finiteness Theorem. If ¢ : V — W is a non-constant morphism of smooth (irreducible)

projective curves, then ¢ is surjective, and for any point () € W and local parameter t at
Q, we have ZPegb—l(Q) vp(¢*(t)) = deg(¢).



The proof is omitted here (it may be found for instance in Shafarevich, pages 141-143)
and is non-examinable. I shall issue an Appendix containing the proof for those who
are interested, but my initial recommendation is to take the result on trust. Over the
complex numbers, the theorem may be alternatively proved using the (analytic) theory of
Riemann Surfaces. In summary, the theorem says that, counting multiplicities, the number
of points in each fibre is a constant finite number, equal to the degree of the morphism.
From Question 9 on the first Example Sheet, it will be seen that both the conditions

smooth and projective on the curves are needed for such a statement to be true.

§2.  We now introduce some tools for the study of smooth projective curves. The first of
these is the concept of divisors, the terminology taken from Algebraic Number Theory. Let
V' be a smooth projective curve; a divisor D on V is a formal finite sum D = ) n; P; with
P, € V and n; € Z. The degree of D is just deg(D) = > n;. It is convenient to extend
the notation of valuations to divisors by defining vp(D) = n; if P = P;, and vp(D) =0

otherwise.

For V' a smooth irreducible curve and f € k(V)*, we can write f = F/G with F,G
homogeneous polynomials of the same degree, neither of which is in I"(V). It therefore
follows from (1.3) that f has only finitely many zeros and poles, i.e. that vp(f) = 0 for all
but finitely many points P € V. We define the divisor of f to be (f) = > pcy ve(f)P.
Such a divisor is called a principal divisor. Observe that (fg) = (f)+ (g) and that (f) =0
if f € k*. We remark that our notations are consistent in that vp((f)) = vp(f) for all
P € V. Two divisors Dy, Dy are called linearly equivalent if the difference D1 — Dy is a
principal divisor. The linear equivalence classes of divisors form a group under addition,
called the divisor class group CI(V). For example, when V = P! a divisor D has degree
0 iff it is principal, and so CI(P!) = Z.

More generally, for any smooth irreducible projective curve V' and non-constant ra-
tional function f, we have a rational map (and hence a morphism) ¢ = (1: f) : V — P1.
Let A! be the affine piece of P! given by X, # 0, affine coordinate x = X;/X,. Then x
is a local parameter at 0 = (1 : 0) and 1/z a local parameter at oo = (0 : 1). Observe that
¢*(x) = f. But then, using the Finiteness Theorem,

deg (f)= > wp(¢*(@)— > wp(¢*(1/z)) = deg(¢)— deg(¢) =0
Pep=1(0) Pegp=1(o0)
i.e. any principal divisor has degree 0. Hence there is an induced homomorphism of abelian
groups deg : Cl(V) — Z.
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For a smooth projective curve V' C P™, any hyperplane not containing V' cuts out a
divisor D on V in an obvious way; namely, if the hyperplane is given by a homogeneous
linear form L(Xy,...,X,), then for P in the affine piece V; given by X; # 0, we have
vp(D) =vp(L/X;) — clearly well-defined. We also write D = (L). Any two such divisors
are linearly equivalent and so have the same degree; we call this the degree of V' in P".
Similarly, for G homogeneous of degree m, we obtain a divisor (G) on V of degree m.deg(V).
The twisted cubic V C P3, defined to be the image of the morphism ¢ : P! — P3 given
by (s3 : s%t : st? : t3), has degree 3. If V C P2 is defined by an irreducible homogeneous
polynomial F' of degree d, then easily seen that for a line H given a homogeneous linear
polynomial L, the degree of (L) on V equals the degree of (F') on H, and hence that
deg(V) = d.

We say that a divisor D = Y n;P; is effective , written D > 0, if n; > 0 for all i.

Given any divisor D on V', define the vector space
LDD)={fek(V)" : (f/)+D>0}u{0}

ie. if D=7) n;P;, then 0 # f € L(D) <= vp,(f) > —n, for all i and vp(f) > 0 for all
P # P;. For example, if V' = P! with affine coordinate x = X; /Xy and point P, = (0: 1)
at infinity, and if D = nPy, then £(D) consists precisely of polynomials in x of degree at

most n.

We note that if Dy ~ Dy, then £(D1) = L(D2) (if D1 — D2 = (g), then isomorphism
given by multiplication by g). We let [(D) denote the dimension of £(D); note that
(D) >0 <= 3D >0st D ~ D. Also note that for V projective, (D) =
0 whenever deg(D) < 0, since effective divisors have non-negative degree and linearly
equivalent divisors have the same degree. Moreover £(0) = k, i.e. [(0) = 1, since 0 is the

only effective divisor of degree 0.
Lemma 2.1. For D a divisor on a smooth projective curve V, (D — P) > (D) — 1.

Proof. Let n =wvp(D) and t a local parameter at P. Define a linear map of vector spaces

over k,

0 : /;(D) — OVJD/(t) =k

by 0(f) = (t"f)(P). The kernel of 0 is then £(D — P), and so the quotient space
L(D)/L(D — P) has dimension at most one.
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If D is an effective divisor on V, it follows from (2.1) by induction on the degree that
I(D) < deg(D) + 1. Since I(D) depends only on the linear eqivalence class of D, it is true
that {(D) < deg(D) + 1 whenever (D) > 0.

Given a divisor D with {(D) > 0, we can choose a basis fy, ..., f, for £(D) and define
a rational map (and hence a morphism) ¢p : V. — P™ by ¢p = (fo:...: fimn); we can in
fact define ¢p without choosing a basis as a map ¢p : V — P(L(D)*) to the projective
space associated to the dual of £(D), but don’t worry about this unless you wish to. We
note however that ¢p depends only on the divisor class of D, since if D' = D — (g), then
9fo,-.-,9fm is a basis of L(D’). In particular, suppose that V' C P is not contained
in any hyperplane and D is a fixed hyperplane section of V', wlog given by Xy = 0. We
therefore have linearly independent elements 1, X;/Xo, ..., X,,/Xo of £(D). If these also

span, then

dp=01:X1/Xo:...: X,/ X0)=(Xo: X1:...: X})

is the original embedding, and deg(V') = deg(D) by definition. In this situation, a general
non-zero element of £(D) has the form L(Xy,...,X,)/Xo where L is a linear homogeneous
form. Thus we obtain a bijection between the projective space P(L£(D)) and the hyperplane
sections of V', with the multiples of h # 0 corresponding to the hyperplane section D+ (h).
Under this correspondence, the subspace £(D — P) corresponds to hyperplane sections
containing P and L£(D — P — Q) to those containing both P and @ (or if P = @Q, the
hyperplanes which are tangent at P —i.e. when P € V N {X; # 0}, hyperplanes L = 0
with vp(L/X;) > 1). This latter interpretation is left as an exercise for the reader. It
is clear here that for any P,Q € V (not necessarily distinct), I(D — P — Q) < (D) — 2,
and hence from (2.1) we have equality. The extremely useful Embedding Criterion gives a

converse to this, where D is a divisor on a smooth projective curve V.

Embedding Criterion. If [(D — P — Q) = (D) — 2 for all P,Q € V (not necessarily
distinct), then ¢p : V — PUP)=1 js an embedding, that is an isomorphism of V onto a

subvariety W of P{P)=1 where the image W has degree deg(D).

This result is also one we don’t fully prove, but let us prove that the conditions do

imply that ¢p is injective, and then indicate how the rest of the proof proceeds.

Lemma 2.2. If D is a divisor on a smooth projective curve V such that [(D — P — Q) =
[(D) — 2 for all points P # @ on V, then ¢p is an injective morphism.
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Proof. Required to prove that if P # @, then ¢p(P) # ¢p(Q). We show first that we
can find D’ ~ D with vp(D’) = 0 = vg(D’). Wlog, we can assume that both P and Q
are in the affine piece Vo = V N {Xy # 0}. Letting x; = X;/Xo (i = 1,...,n) be the
affine coordinates on V), we have my p = (21 — z1(P),..., 2y — 2,(P)) in Oy p. If L is a
homogeneous linear form in Xy, ..., X, with L(P) = 0, we have that vp(L/Xy) = 1 for all
such L outside a codimension one subspace (viz. the kernel of the map to mp/m% = k).
By choosing such an L with L(Q) # 0, we obtain a local coordinate t; at P which is a unit
in Oy,g. Similarly, we obtain a local coordinate to at ) which is a unit in Oy p. If now
vp(D) = a and vg(D) = b, the required divisor D’ is D — (t4t4). Since however ¢p = ¢pr,
we may assume wlog that D' = D, i.e. that vp(D) =0 = vg(D).

The assumption from the Lemma together with (2.1) implies that {(D—P) = [(D)—1,
and (D — P — Q) = (D) — 2. If we write down a basis fo, ..., fim—2 for L(D — P — Q),
extend to a basis fo,..., fm—1 for L(D — P), and then to a basis fo,..., fi, of L(D), it
follows that the f; are regular at both P and @ for all 4, that f,,(P) # 0, f,,—1(P) =0
and f,,—1(Q) # 0. Hence ¢p(P) # ¢p(Q), and ¢p is injective as claimed.

The proof of the Embedding Criterion then proceeds roughly as follows.
(a) Show that ¢p(V) = W C P™ is a subvariety — this follows using ideas from the
Appendix on the Finiteness Theorem, and in particular needs Hilbert’s Nullstellensatz.
(b) Show that W is a smooth curve — one shows that ¢}, : Oy gpy — Oy,p is an
isomorphism, using fact that [(D — 2P) = [(D) — 2 and an argument similar to the proof
of Claim 2 from the Appendix.
(¢) Since ¢p : V — W is now an injective morphism between smooth projective curves,
it follows easily from the Finiteness Theorem that it is an isomorphism.
(d) Verify that a hyperplane section on W corresponds on V' to an effective divisor linearly

equivalent to D; hence deg(W) = deg(D) as claimed.

As a corollary of the Embedding Criterion, we note that if P # @ € V with P ~ @,
then [(P) > 1. It follows that [(P) = 2 and ¢p : V — P! is an isomorphism. This however

can be proved without recourse to the Theorem - see Example Sheet II, Question 5.

§3. The second tool we introduce is that of Kahler differentials. For V' an irreducible
smooth projective curve, we define the vector space Qi(v) Jk Over k(V') of rational differ-
entials on V to consist of finite sums ) f;dg; (with f;,g; € k(V)) subject to the relations
that
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(i) da=0forall ack.
(i) d(f+g)=df +dgforall f,g € k(V).
(iii) d(fg) = fdg + gdf for all f,g € k(V).

As an easy exercise, it follows that d(f/g) = (gdf — fdg)/g* for f € k(V), g € k(V)*.

For V' a curve and ¢t € k(V) non-constant, we know that k(V") is a finite extension
of k(t). If char k = p > 0, we would need a further fact, that ¢ can be chosen such that
k(V) is a separable extension of k(t); i.e. any y € k(V') satisfies an irreducible polynomial
H € k(t)[Y] which is not a polynomial in Y?, or in other words with 0H/0Y # 0. Assuming
standard results on separability from the Galois Theory course, this is not hard to prove
(we suppose k(V) = k(z1,...,x,) and prove that one of the x; must have the required
property). In a first course on Algebraic Curves however, I believe that it is better not to
get tied up with the details for characteristic p > 0, and so from now on we shall assume
that char £k = 0. The main results of the course remain valid for characteristic p > 0 (for
hyperelliptic curves one should assume p # 2, for elliptic curves that p # 2 or 3, and for the
Riemann-Hurwitz Formula that p does not divide the degree n of the map), and the really
assiduous reader would be able to rewrite the notes below so that the proofs included the

case of positive characteristic.

For any non-constant element ¢ € k(V'), we have (in characteristic zero) that k(V') is
a finite separable extension of k(¢). From this it follows that Q,lc(v) /i 18 1-dimensional over
k(V') with generator dt (any g € k(V') satisfies a separable polynomial equation over k(t);
taking d of this equation gives dg in terms of dt).

Given a non-zero rational differential w on V' and P € V, choose a local parameter

t € my, p. Writing w = fdt, we define vp(w) = vp(f).

Lemma 3.1. (i) The numbers vp(dh) for h € Oy, p are bounded below.
(ii)) wvp(dh) > 0 for all h € Oy p.
(iii) wvp(dt') =0 for any local parameter t' at P.

Proof. (i) Wlog we can assume V C A" affine. An element of Oy p has the form
h = f(z1,...,2n)/9(x1,...,2,), where g(P) # 0 and z; € Oy p is the ith coordinate

function on V. Therefore
dh = (gdf — fdg)/g> = a; dz; for suitable o; € Oy,p .

Thus vp(dh) is bounded below by min{vp(dz;) :i=1,...,n}.
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(i) Let m > 0 be the minimum integer such that vp(dh) > —m for all h € Oy, p; such

an m exists because of (i). We show that m = 0.

Suppose we have h € Oy, p with vp(dh) = —m < 0. Observe that dh = d(h—h(P)) =
d(thy) for some h; € Oy p. Thus dh = hydt + tdh;, and since vp(dhy) > —m, we deduce

that vp(dh) > —m, contrary to assumption. The claim therefore follows.

(iii) Write ¢’ = ut with w a unit in Oy, p. Therefore
dt’ = udt + tdu = (u + th)dt

for some h € Oy, p with du = hdt. By (ii), we know that vp(h) = vp(du) > 0, and hence
that vp(dt’) = vp(u+th) =0. QED

In particular, we deduce from (iii) that vp(w) does not depend on the choice of local
parameter ¢, since for any other local parameter t’, the rational differential dt’ is a multiple

of dt by a unit in Oy p. We say that w is regular at P if vp(w) > 0.

Lemma 3.2. If V a smooth irreducible projective curve and w a non-zero rational differ-

ential, then vp(w) = 0 for all but finitely many points P on V.

Proof. Reduce to the affine case and consider the differential dx; for z; = X;/Xp an
affine coordinate function on the curve. Sufficient then to prove the result for dz;. Clearly
dzq has only finitely many poles (using (3.1)), and we show that it has only finitely many
zeros by considering the finite extension of fields k(V')/k(x1). Each coordinate function
x; satisfies an irreducible polynomial equation f;(x1,2;) = 0 in k(V'), for which 9f;/0x;
defines a non-zero function on V. More precisely, by (1.3) there are only finitely many
points P with 0 f;/0x;(P) = 0. This is true for all 4, and so can reduce down to considering
points P with 0f;/0xz;(P) # 0 for all ¢ > 1. For such points P, we must have vp(dz;) =0
— to see this, observe that df;/0x, dxy + 0f;/0x; dx; = 0 in Qi(v)/k for ¢ > 1. Thus
if vp(dz1) > 0, we would have vp(dx;) > 0 for all 4, contradicting the fact that P is a
smooth point, since one of the functions x; — x;(P) must then be a local parameter at P,

and hence in particular vp(dz;) = 0 for some 1.

We can now define the divisor (w) of w in the obvious way: (w) = > pcy vp(w)P; such
a divisor is called a canonical divisor, usually denoted Ky . Any other non-zero rational
differential w’ is of the form w’ = hw for some h € k(V)*, and so (w') = (h) + (w), i.e. we

have a uniquely defined divisor class on V, also denoted Ky, the canonical class on V.
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For V' a smooth projective curve, we can consider the vector space over k of rational
differentials which are regular everywhere, i.e. (w) > 0. If wp is a fixed non-zero rational
differential with (wg) = Ky, then an arbitrary rational differential w = hwy is regular
everywhere iff (hwy) = (h) + Ky > 0, i.e. h € L(Ky). The space of global regular
differentials on V' is therefore isomorphic to £(Ky ) and has dimension [(Ky ); by definition
this is the genus g(V') of V, the basic invariant of the curve. The genus is invariant under
isomorphisms. Recall that an isomorphism of smooth projective curves ¢ : V. — W
induces an isomorphism of function fields ¢* : k(W) — k(V), and isomorphisms of the
local rings ¢* : Ow,g4p)y — Ovy,p for all P € V. The obvious induced isomorphism
oF Q,li(W)/k — Q}g(v)/k given by ¢* (> fidgi) = > (¢* fi)d(d*g;), has the property that
vp(¢*w) = v4(py(w) for all P € V, and hence g(V)) = g(W) as claimed. A closely related
basic invariant is the degree of the canonical class (well defined since principal divisors
have degree zero, and also clearly invariant under isomorphisms); we shall see from the

Riemann-Roch Theorem below that this number is just 2¢g(V) — 2.

We now consider various examples. An easy argument shows that g(P!) = 0. An
irreducible curve V' is said to be rational if its function field k(V') = k(t). In the case of
smooth projective curves, this translates into the condition that V is isomorphic to P?
(since rational maps between smooth projective curves are morphisms). Thus any smooth
projective rational curve V' has ¢g(V) = 0. In §4 we shall see that the converse holds. A

smooth plane conic is clearly rational. We now look at an example of a non-rational curve.

Example. Let V be the smooth plane cubic with equation Xo X3 = X1(X; — Xo)(X; —
AXp), A # 0,1. Let Vj denote the affine piece with affine equation y? = z(z —1)(z — \) =

f ().
Observe that 2ydy = f'(x)dx in Qi(v)/k.
If y # 0, then vp(dx) = 0 (since if vp(dz) > 0, then also vp(dy) > 0, a contradiction).

When y = 0, we have a point P = (a,0), where f(a) = 0 and hence f’(a) # 0. The above

equation implies that vp(dz) > 0, and so we must have vp(dy) = 0.
Claim. vp(dz/y) =0 for all P € V.

Proof. For y # 0, vp(dz/y) = vp(dz) = 0. For P with y-coordinate zero, vp(dz/y) =
vp(2dy/f'(x)) = vp(dy) = 0. Thus the Claim is true.

The point at infinity on V is the point P,, = (0 : 0 : 1). We need to calculate
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Voo (dz/y). Consider the affine piece given by X, # 0, with affine coordinates z = 1/y
and w = x/y. The affine curve V5 then has equation z = w(w — z)(w — Az). Since both
Voo (2) and veo(w) > 0, we see from the equation that v (z) > 3, and hence that w is a
local parameter at P., (since one of z,w must be), i.e. voo(w) = 1. We therefore have
Voo(z) = 3, and 80 Voo (y) = —3 and veo(x) = —2. From this it follows that v (dx) = —3,
and Ve (dx/y) = Voo (dz) — vo(y) = =3 +3 = 0.

The canonical divisor Ky = (dx/y) is therefore the zero divisor. The genus of V' is
just g(V) =1(0) =1 by (2.1).

Definition. A curve of genus one is called elliptic. We’ll see in §4 that any elliptic curve

can be embedded in P? with equation of the above type.

Note that the curve V with equation XoX2 = X1(X; — Xo)(X1 — AXp), A # 0,1,
admits a degree 2 morphism 7 : V — P! (viz. 7 = (X : X1)), ‘branched’ over the four

points 0,1, A, oco.

More generally, a smooth projective curve V' is called hyperelliptic is there is a degree
2 morphism 7 : V — P, or equivalently that k(V) is a degree 2 extension of k(P1) = k(t).
It will follow from the Riemann-Hurwitz formula in §4 that 7 is ‘branched’ over 2n points

and that g(V) =n — 1.

Finally, we consider the case of an arbitrary smooth projective plane curve V C P?

defined by an irreducible homogeneous polynomial of degree d.

Proposition 3.3. If V is a smooth plane projective curve defined by an irreducible ho-
mogeneous polynomial F(Xy, X1, Xs) of degree d > 0, then Ky ~ (d — 3)Hy, where
Hy = (Xp) is the divisor cut out on V by the hyperplane X, = 0. In particular,
deg(Ky) = d(d — 3).

Proof. Choose homogeneous coordinates so that (0:0: 1) &€ V. Let U be the affine piece
of V given by Xy # 0. On U, we have affine coordinate functions y; = X;/Xo, i = 1,2,
and U C A? is defined by f € k[y1,y2] of degree d, where f(y1,y2) = Xo_d F(Xo, X1, X5).

In Q}C(V)/k we have
0=df =0f/0y1 dyr + 0f/0y2 dyo. (%)

Let Uy = {P € U : 90f/0y;(P) # 0}, i = 1,2. Since U smooth, U = U; U U,. For all
P € Uy, we deduce using (x) that vp(dyy) = vp(—0f/0y2 dys) > vp(dys2). Since at least

one of y; — y;(P), i = 1,2, is a local parameter at P, we must have vp(dys) = 0 for all
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P € U;. Similarly, vp(dy;) = 0 for all P € U;. Now consider

w=—(0f/0yr) " "dys = (0f /By2) " dyr € Dy -

This has vp(w) = 0 for all P € U = U; UUs. We now need to consider w at points at
infinity.

Denote by W the affine piece of V' given by X; # 0. By assumption, V = U U W.
On W, we have affine coordinate functions z; = 1/y; and 2o = y2/y1, and W C A?
is defined by g € k[z1, 22] of degree d, where g(z1,20) = 2¢f(1/21,22/21). Observe that
dy; = —z] 2dz and 0g/0z = zf_lﬁf/ayg. We deduce that w = zf_?’wo, where

wo = —(0g/022) "z = (0g/021) dzy € Q,lc(v)/k,

the second equality following from the analogous identity to (x) for g. An analogous
argument to that employed on U shows that vp(wy) = 0 for all P € W, and thus that
(W) = (2¢7®) on W. Since (0 : 0:1) ¢ V, and z; = Xo/X;, we deduce that (w) =
(d — 3)Hy, as required.

In particular, we note that any smooth plane cubic is elliptic, and that a smooth
projective plane curve is rational iff its degree is 1 or 2. Of course singular plane curves of
degree > 2 may be rational (for instance the nodal cubic Xo X2 = X?(X; + Xg) and the
cuspidal cubic XoX35 = X7). The above formula translates into the statement that the
genus g(V) = 5(d — 1)(d — 2), once one has the identity deg(Ky) = 2g — 2 from §4. Thus
the genus of a smooth projective plane curve is always a ‘triangular number’. Thus for
many values of the genus g, there is no hope of embedding a smooth projective curve of
genus g as a plane projective curve. It is in fact true however that any smooth projective

curve may be embedded as a curve in P3.

84. The central result in the theory of algebraic curves is the Riemann—Roch Theorem.
Unlike other results which have been stated only (whose proofs have been omitted through
lack of time), the proof of this theorem is definitely too hard for a Part II course, but this

should not prevent us understanding its statement and being able to use it.

Riemann—Roch Theorem. Given a smooth projective curve V of genus g and a divisor
DonV, I(D)=1-g+deg(D)+ (Kyv — D).

If we set D = Ky in Riemann-Roch, we obtain deg(Ky) = 2g — 2, a highly useful

alternative characterization of the genus.
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As another immediate consequence of Riemann—Roch, we note that if ¢ = 0 and

P €V, then I(P) =2 and V is rational (see comment at the end of §2 ).

Given a non-constant morphism ¢ : V' — W of smooth projective curves, the inclusion
of function fields ¢* : k(W) — k(V) yields obvious homomorphisms on the spaces of
rational differentials and of global regular differentials (i.e. if w = > fidg;, then ¢*w =
> o*(fi)d(9*g;)), which are clearly injective; this latter statement stops being true in
characteristic p. The existence of a non-constant morphism therefore implies that g(W) <
g(V) — for a stronger statement, see Riemann—Hurwitz below. We can now deduce the
geometric form of Liiroth’s Theorem, that if ¢ : V' — W is a non-constant morphism of
smooth projective curves with V rational, then W is also rational (since V rational implies
that g(V) = 0 and hence g(WW) = 0 and therefore W rational). Once one knows the
existence of smooth projective models for any curve, this implies the algebraic version of
Liiroth over k: if K C k(t) is a finite extension, then K is a pure transcendental extension

of k. Both forms of Liiroth are however proved more easily by a direct argument.

We now look at the case of elliptic curves. Let V be a smooth projective curve of
genus 1 and Py € V some fixed point. Let CIO(V) denote the divisor class group, the
abelian group whose elements are the linear equivalence classes of degree 0. For D a
divisor of degree 0 on V', we note that the divisor Ky — D — Py has degree —1, and hence
I(Ky — D — Py) = 0. Therefore Riemann—-Roch implies that [(D+ Py)) =1—-1+1+0=1,
and hence there exists a unique point P € V such that D + Py ~ P, or equivalently such
that D ~ P — Py. Hence the following result has been proved.

Proposition 4.1. The map V. — C1°(V) given by P — class(P — Py) is a bijection

between the points of V and the divisor classes of degree 0.

The abelian group structure on C1°(V) therefore induces an abelian group structure on
the points of V', with identity element the point Fy. By Riemann—Roch and the embedding
criterion stated in §2, we observe that ¢3p, : V < P? embeds V as a smooth plane cubic,
with Py an inflexion point (i.e. 3Py is cut out by a line). We note that three points P, Q, R
add to zero in the group law on V' iff (P — Py) + (Q — Py) + (R — Pp) = 0 in C1°(V), i.e. iff
P+ Q+ R ~ 3P, as divisors on V. Since [(3P,) = 3, the hyperplane sections of V C P2
are precisely the effective divisors linearly equivalent to 3F,, and thus we see that three
points P,Q, R add to zero in the group law on V' iff the divisor P + Q) + R is cut out by a

line, i.e. the three points are ‘collinear’.
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We note moreover by Riemann-Roch that [(2F)) = 2 and [(3F;) = 3; thus we can
choose a basis {1,z} for £(2F,) and extend to a basis {1,z,y} for L(3F,), and take the
embedding ¢3p, = (1 : x : y) : V — P2 Since L(6F) is six dimensional and contains
the seven rational functions {1, z,y, 22, zy, 23, y?}, they are linearly dependent over k, and
this relation must involve both 23 and g2, these being the only ones with a 6-fold pole
at Py. This relation then says that the image of V under ¢sp, = (1 : = : y) satisfies a
cubic equation which involves both X3 and X(X3. By making an obvious linear change of
variables (corresponding to different choices of = and y), we may take this cubic equation
to be in Legendre normal form XoX32 = X1(X1 — Xo)(X1 —AXo) (A #0,1) (cf. §3). In
particular, this exhibits V' as a double cover of P! branched over the four points 0, 1, \, oo,

where the double cover map is just m = ¢ap, = (1 : z).

As promised, we return to the case of a non-constant morphism ¢ : V- — W of smooth
projective curves, and the precise relation between g(V') and g(W). For P € V', we define
the ramification index ep as follows: Let Q@ = ¢(P) and t be a local parameter on W at
@, and define ep to be vp(¢*(t)), clearly independent of the choice of t. If ep > 1, we say
that ¢ is ramified at P and that @ is a branch point. If ep = 1, we say that ¢ is unramified
at P. In §3 we saw that ¢ induces an injection ¢* on rational differentials, and that w
regular at @ = ¢(P) implies that ¢*w is regular at P. If s is now a local parameter at P

and t a local parameter at @), then ¢*(t) = us®” with v a unit in Oy, p. Thus
p*dt = d(¢p*t) = epus®? " ds + s du

and hence that vp(¢*dt) = ep — 1, a fact not true in characteristic p. Thus ¢ is unramified
at P iff vp(¢*dt) = 0 for any local parameter ¢ at (). Since ¢*dt is a non-zero rational
differential on V' (cf. §3), we deduce that ¢ has only finitely many ramification points. By
analysing the order of poles and zeros of ¢*w for a rational differential w on W, and using
the fact that the degree of the divisor (w) is 2g(W') — 2 and that of (¢p*w) is 2¢g(V') — 2, it is
straightforward to deduce the following precise relation, the Riemann—-Hurwitz Formula.
Recall that we are assuming char(k) = 0, although the formula (and proof) remains valid
in characteristic p, so long as p does not divide the degree n or any of the ramification

indices.

Riemann—Hurwitz Formula. If ¢ : V — W is a non-constant morphism of degree n

between smooth projective curves, then

29(V) —2=n(29(W) —2)+ > (ep—1).
PeV
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This result enables us to interpret the genus topologically (non-examinable). A smooth
complex projective curve is also a compact Riemann surface, which in turn is a compact
orientable 2-manifold. Topologically, these are spheres with a certain number of handles
(see Algebraic Topology course), and the topological genus is just the number of such
handles. Note the complex projective line corresponds to the Riemann sphere and so has
topological genus zero. One can however prove the Riemann—Hurwitz Formula in the same
form but with the topological genus (this is essentially done in Kirwan’s book - see Remark
4.23 there). Given any smooth complex projective curve V', we can choose a non-constant
rational function on V, which therefore exhibits V as a branched cover of P*(C). From
the two forms of Riemann—Hurwitz, we deduce that, over the complex numbers, the genus

that we have been using in this course is precisely the same as the topological genus.

Returning now to the case of 7 : V. — P! a double cover (e.g. V hyperelliptic), it

follows from Riemann-Hurwitz that 7 is branched over 2g(V') + 2 points of P*.

Proposition 4.2. Suppose 7 : V — P! is a morphism of degree 2 from a smooth projec-
tive curve of genus g(V') > 0. If P € V is a ramification point of 7, then up to a (linear)

automorphism of P!, we have m = ¢op.

Proof. Let m(P) = Q = (qo : q1) € P!. Choose any non-constant ¢t € £(Q), e.g. t =
(rizo — rox1) /(1o — qox1) with (ro : 71) # (qo : ¢1). Then 1/t is a local parameter at @,
and hence vp(7*(1/t)) = 2, and hence 7*(t) € L(2P). Since [(2P) < 2 (Example Sheet II,
Question 5), we have a basis {1,7*(t)} for L(2P). Setting ¢ap = (1 : 7*(t)), we deduce
that ¢op = 9y o, where 1y = (1 :t) = (q100 — qo1 : 120 — T0x1) : P1 — Pl is a (linear)

automorphism of P!,

We return to the case of elliptic curves and smooth plane cubics.

Lemma 4.3. Let V C P2 be a smooth plane cubic, and R € V a fixed point. The map
V — V given by sending each point P to the third point of intersection of the line RP with
V' (with obvious interpretations when R = P, etc.) is an morphism 1 of the projective

curve V to itself.

Proof. 1t is easily checked that there is an explicit rational map, and hence morphism, 1),
such that the image of P # R is in fact ¢(P). Let @ denote the third point of intersection
of the tangent line at R with V'; it then follows that ¢)(V \ {R}) = V' \ {@}. Since however
the morphism 1) is surjective (Finiteness Theorem), we deduce that (R) = @ also.
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The morphism 1 in (4.3) is its own inverse, and in particular is an isomorphism of V'
to itself, i.e. an automorphism of V. It then follows easily, from the geometric description
of the group law on an elliptic curve V, that the map from V to itself given by adding
a fixed point () is an automorphism of V. Hence the group of automorphisms of V is
transitive. This contrasts with the case when g(V') > 1, in which case it can be shown that

the automorphism group is always finite.

Proposition 4.4. Given an elliptic curve V and two double covers m; : V — P! and
7o : V — P!, there is an automorphism o of V and a (linear) automorphism 7 of P! such

that mp o0 = T o my.

Proof. Let P; be a ramification point for m; : V' — P!, and P, a ramification point for
7o : V — P1L. Now choose an automorphism o of V with o(P;) = P,. Thus mpo0 : V — P!
is also a double cover, with P; a ramification point. Since, by (4.2), a ramification point
determines the double cover V' — P! up to a (linear) automorphism of P!, there are
(linear) automorphisms 7, and 75 of P! with 7m = ¢ p, = Tomo0o. Hence the existence of

a (linear) automorphism 7 of P! such that my 00 = 7o ;.

From this, we show that the number A\ € k appearing in the Legendre normal form
for V' is determined up to the well-known action of Sz on k \ {0,1}; namely, if o €
Ss and A € k\ {0,1}, permute 0,1, A according to a and then apply the unique linear
transformation of k£ sending the first number to 0 and the second to 1, and define a/(\)
to be the image of the third number. We show (Lemma 5.5) that the orbit of A is then
{NT/AT=X1/(1—=A),A/(A=1),(A—=1)/A}. If we define

L B2 A 1)
TN ==an

we observe that j(\) is invariant under the above action of S3. The content of the next
result is that this procedure determines an invariant j(V') of the elliptic curve V, called

the j-invariant, parametrizing isomorphism classes of elliptic curves.

Theorem 4.6. (a) j(\) defined above from a Legendre normal form depends only on V.
(b) Two elliptic curves Vi and Vs, are isomorphic if and only if j(V1) = j(Va).

(c) Every element of k is the j-invariant of some elliptic curve.

Proof. (a) Suppose we have two different choices of base point P; and P, on V; we then

obtain double covers 7; : V — P!, with m;(P;) = oo (i = 1,2). As in (4.4), we choose an
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automorphism o of V' with o(P;) = P», and deduce the existence of a linear automorphism
7 of P! such that m 00 = 7 o ;. Thus 7(c0) = co and 7 sends the other branch points
{0,1, A1} of m to the points {0,1, A2} of mo (in some order). As 7 is an affine linear
transformation, we deduce that A5 is related to Ay via the action of S3 defined above, and
so in particular that j(A1) = j(A2) depends only on V.

(b) For XA # 0,1, an easy calculation shows that j(A;) = j(A2) if and only if A; and A,
differ by the above action of S3. Now given V; and V5, we can take Legendre normal forms
XoX2 = X1(X1 — X0)(X1— )\ Xp) for the curves (i = 1,2). If V; is isomorphic to V5, then
it is clear that we may take Legendre normal forms with A\; = Ay, and hence j(V7) = j(V3).
Conversely, if j(V1) = j(V2), then A; and Ao are related by an element of Ss, and so after
a linear change of variable in the affine coordinate x, we may assume A\; = \g; hence V;
and V5 are isomorphic to the same projective plane cubic.

(¢c) Observe that for any j € k, we can solve for A (A # 0,1). Therefore Xo X3 =
X1(X1 — Xo)(X1 — AXp) is an elliptic curve with the required j-invariant.

We have seen therefore that the isomorphism classes of elliptic curves are parametrized
by k. So having specified the genus as g = 1, we still have a one-dimensional variety
parametrizing isomorphism classes of smooth projective curves. For genus g > 1, it can
be shown that such a parametrizing variety still exists, but in these cases its dimension is
39 — 3.

If now V is a smooth projective curve of genus g > 2, we can consider the morphism
b, 1V — P971 called the canonical map on V. Using the embedding criterion from
62, we see that the canonical map is an embedding of V if [(Ky — P — Q) = g — 2 for all
P,@Q € V. But Riemann—Roch tells us that {((P+ Q) =3 — g+ I(Ky — P — @), and hence
the canonical map is an embedding if (P + Q) = 1 for all P,Q € V. This latter condition
is however precisely the condition that V is non-hyperelliptic. If on the other hand V is
hyperelliptic of genus g > 1, then the canonical map is a double cover of P! embedded as a

twisted (g — 1)-ic in P97! (see Example Sheet III, Question 6). We have therefore shown:

Theorem 4.7. If V is a smooth projective curve of genus g > 1, the canonical map
bx, 1 V — P97 is an embedding of V as a curve of degree 2g — 2 in P9~ if and only if
V' is non-hyperelliptic.

Thus, for example, any curve V' of genus g = 2 is hyperelliptic, with the canonical map

being a double cover of P1. For g = 3 however, we see that a curve V is either hyperelliptic
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or it is embedded by the canonical map as a smooth plane quartic (which by our genus
formula from §3 does have genus 3). Moreover, (3.3) implies that for a smooth plane
quartic in P2, the canonical class is the class of a hyperplane section, and so the canonical
map is an embedding, i.e. V' cannot be hyperelliptic. This bifurcation into distinct cases,
the hyperelliptic and non-hyperelliptic cases, occurs for all genera g > 3, and enables us
to provide a classification for all curves of low genus. For g = 4 for instance, we have that
either V' is hyperelliptic, or it is isomorphic to the intersection of an irreducible quadric
and an irreducible cubic in P3. As mentioned above, the isomorphism classes of curves
of genus g > 1 are parametrized by a quasi-projective variety M, of dimension 3g — 3
(the complement of some subvariety in a projective variety Mg). Inside this variety M,
there is a subvariety of dimension 2g — 1 parametrizing the hyperelliptic curves (where
of course this subvariety is the whole of My when g = 2). For further reading on the
classification of curves, the reader is recommended Mumford’s book, Curves and their

Jacobians, University of Michigan Press 1975.
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