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Introduction. Let k be a field. Algebraic Geometry concerns itself with the zero loci in

kn of systems of polynomials in n variables. For instance, when n = 2, we might study the

solutions of a single polynomial equation f(x, y) = 0. In this formulation however, ques-

tions of arithmetic arise; in order to concentrate on the geometry, we’ll restrict ourselves

to the case of k algebraically closed (i.e. k = k̄).

There are two pieces of algebra from the Part 1B Optional course on Algebra (Groups,

Rings and Fields) which we shall need.

(a) The ring of polynomials k[X1, . . . , Xn] in n variables has unique factorization.

(b) Hilbert’s Basis Theorem : Any ideal in k[X1, . . . , Xn] is finitely generated.

It is Hilbert’s Basis Theorem which always allows us to reduce down to a finite set of

polynomial equations. For if V ⊂ kn is the zero locus of some (perhaps infinite) collection

of polynomials, we set I to be the ideal in k[X1, . . . , Xn] generated by these polynomials.

It is clear that

V = {x ∈ kn ; f(x) = 0 for all f ∈ I}.

Hilbert’s Basis Theorem tells us that I is generated by a finite set of polynomials f1, . . . , fm
say, from which it follows that V is the zero locus of this finite collection. Since each fi

can be written as a finite combination of the original polynomials (with coefficients from

the polynomial ring), we can take as the defining set for V a finite subset of the original

collection of defining polynomials.

We can however say far more about the geometry if we consider not the affine varieties

which have been described above, but instead projective varieties as defined below. In the

case of algebraic curves, a projective curve may in fact be obtained from an affine one by

adding finitely many points (see (1.3)); for instance P1(C) defined below may be obtained

by adding a single point ∞ to the affine curve C, a fact you learnt in your first term of

1A, since P1(C) may be identified as the Riemann sphere.
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§1. If W is a vector space over a field k, define the associated projective space

P(W ) = {1-dimensional subspaces of W}.

A linear subspace is a subset of the form P(U) for U a subspace ofW . If dim(W ) = n+1, we

say that P(W ) is an n-dimensional projective space and denote it by Pn. A linear subspace

P(U) ⊂ P(W ) is called a hyperplane if dim(W ) = dim(U)+1. Note that P(U1)∩P(U2) =

P(U1 ∩U2), and so the intersection of two linear subspaces is a linear subspace. Moreover,

if dimP(U1) + dimP(U2) ≥ dimP(W ), then dim(U1) + dim(U2) > dim(W ), from which it

follows that dim(U1 ∩ U2) > 0, and so in particular P(U1) ∩P(U2) 6= ∅. For instance, two

lines in P2 always meet.

An affine n-space An over k is just an n-dimensional affine subspace of a vector space

defined over k, i.e. a coset of an n-dimensional linear subspace. If we choose a point on

the affine n-space, the affine space then has the structure of a vector space, since its points

have displacement vectors from the given point which are elements of the n-dimensional

subspace.

Suppose now P(U) ⊂ P(W ) a hyperplane and let L be any coset of U not containing

the origin, an affine n-space. There exists a natural embedding L ↪→ P(W ) with comple-

ment P(U) – easy check for reader (draw a picture). Thus the complement of a hyperplane

in Pn has the natural structure of an affine n-space An over k.

By choosing a basis e0, . . . , en for W , a point of P(W ) corresponds to a equivalence

class of vectors
∑n
i=0 xiei under the relation given by non-zero scalar multiplication. Thus

a point of P(W ) is given by homogeneous coordinates (x0 : x1 : . . . : xn), where x and y

represent the same point ⇐⇒ y = λx for some λ ∈ k∗ (non-zero elements of field k).

In terms of homogeneous coordinates, a linear subspace of P(W ) is defined by homo-

geneous linear equations in the coordinates. Given a hyperplane P(U) of P(W ), we can

assume wlog that e1, . . . , en form a basis of U , and then the hyperplane is given by x0 = 0.

The complement of the hyperplane then consists of classes [v], where v = (x0 : x1 : . . . : xn)

with x0 6= 0. Taking L to be given by x0 = 1 (i.e. L = e0 + U), we have the identification

of P(W ) \P(U) with L given in terms of coordinates via

(x0 : x1 : . . . : xn) 7→ (1, x1/x0, . . . , xn/x0)

i.e. we have affine coordinates (x1/x0, . . . , xn/x0) on L, thereby identifying it with kn.

Conversely, given (y1, . . . , yn) ∈ kn, we have a corresponding point (1 : y1 : . . . : yn) ∈
P(W ) \P(U).
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A projective variety V ⊂ Pn is defined to be the zero locus of a (finite) set of homoge-

neous polynomials in X0, . . . , Xn. Let Ih(V ) denote the ideal in k[X0, . . . , Xn] generated

by homogeneous polynomials vanishing on V – observe that F ∈ Ih(V ) iff all its homoge-

neous parts are in Ih(V ). We say that V is irreducible if it cannot be written as the union

V = V1 ∪ V2 of two proper subvarieties.

Lemma 1.1. Any projective (or affine) variety V may be written as a finite union of

irreducible varieties.

Proof. If not, then by induction (and countable Axiom of Choice) we obtain a strictly

decreasing infinite sequence of subvarieties

V = V0 ⊃ V1 ⊃ V2 ⊃ . . . .

Suppose each Vi is defined by an ideal Ii and let W = ∩iVi, a subvariety of V defined

by the ideal I =
∑
i Ii. Hilbert’s Basis Theorem implies that I is generated by finitely

many (homogeneous) polynomials f1, . . . , fm. Each generator fj may be written as a

sum of elements from only finitely many Ii, and hence I =
∑
i≤N Ii for some N , and so

W = ∩i≤NVi, contradicting our assumption.

Remark. The decomposition of V into a finite union of irreducible subvarieties is unique

modulo ordering, etc. This is a nice exercise for the reader (essentially an exercise in

topological spaces), but may also be found for instance in Reid’s book.

Lemma 1.2. A projective variety V is irreducible iff Ih(V ) is a prime ideal.

Proof. Suppose first that V is reducible, say V = V1 ∪ V2; then we can find homogenous

polynomials F,G, neither of which vanish on all of V , but with F vanishing on V1 and G

vanishing on V2. The product FG therefore is in Ih(V ), implying that Ih(V ) is not prime.

The converse in similar; if Ih(V ) is not prime, we can find (not necessarily homoge-

neous) polynomials F,G which are not in Ih(V ) but whose product is. By replacing F,G

by their homogeneous parts of lowest degree not in Ih(V ), we see easily that F,G may be

assumed homogeneous and not in Ih(V ), but with a product which is. Now letting V1 be

the subvariety of V defined by the extra equation F = 0, and V2 be the subvariety given

by G = 0, the Vi are proper subvarieties of V whose union is all of V , and hence V is

reducible.
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Remark. The same (or even simpler) proof gives a similar result in the affine case. One

should add here that whilst (1.2) is of theoretical importance (as we shall now see), it will

usually be of little practical use to us for seeing if a given projective variety is irreducible.

We’ll comment on this again later in the case of algebraic curves, where a more useful test

will be given.

If V ⊂ Pn irreducible, a rational function on V is given by a quotient F/G of homo-

geneous polynomials of the same degree, G 6∈ Ih(V ), subject to the equivalence relation

R/S ∼ F/G ⇐⇒ RG − SF ∈ Ih(V ). Note that F/G represents the zero function iff

F ∈ Ih(V ). A rational function f on V is said to be regular at P ∈ V if there is a represen-

tation F/G for f with G(P ) 6= 0. If f is regular at P , we can define f(P ) in a unique way,

and in this way f induces an actual function on the subset of regular points. The set of ra-

tional functions on V forms (in an obvious way) a field k(V ), the function field of V . Note

that k(V ) is a finitely generated extension of k (if V is not contained in the hyperplane

{X0 = 0}, then k(V ) is generated by the rational functions X1/X0, . . . , Xn/X0).

In this course we shall take k to be algebraically closed (for instance the complex

numbers C); we have not used this assumption yet, but from now on it will be needed.

The dimension dim(V ) of an irreducible projective variety V is the smallest integer n for

which there exist functions t1, . . . , tn ∈ k(V ) with k(V ) finite over k(t1, . . . , tn). Note that

dim(V ) = 0 iff V is a point – this follows from the assumption that k = k̄, and the fact

that k(V ) = k iff all rational functions (including the coordinate functions Xi/X0) are

constant on V , which in turn is true iff V is a point. We say that V is a projective curve

over k if dim(V ) = 1, i.e. k(V ) is a finite extension of the field k(t) of rational functions

in one variable. We observe that if this is the case, and s is any non-constant rational

function on V (i.e. s ∈ k(V ) \ k), then k(V ) is also a finite extension of k(s). To see this,

we note that s satisfies an equation over k[t]

an(t)sn + an−1(t)sn−1 + . . .+ a1(t)s+ a0(t) = 0

with ai(t) ∈ k[t], not all the ai being in k (the latter since s 6∈ k and k algebraically closed).

This may also be regarded as an equation for t over k[s], and so k(t, s) is finite over k(s).

Since by assumption k(V ) is finite over k(t), the assertion follows.

Suppose we have chosen homogeneous coordinates X0, . . . , Xn on Pn; the complement

of the hyperplane {X0 = 0} is an affine n-space An
0 , which has affine coordinates y1, . . . , yn

given by yi = Xi/X0. Similarly the complements of the other coordinate hyperplanes are

affine n-spaces and have corresponding affine coordinates. These n+1 affine n-spaces form
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an affine cover of Pn. If now V ⊂ Pn is a projective variety, then V0 = V ∩ An
0 is the

subset of An
0 defined by the polynomials f(y1, . . . , yn) = F (1, y1, . . . , yn) ∈ k[y1, . . . , yn]

obtained from the homogeneous polynomials defining V . Such a subset of An is called an

affine variety, and so in this way we obtain an affine covering of V by affine varieties.

If U ⊂ An is an affine variety, we define its coordinate ring k[U ] to be the ring of

polynomial functions on U , which in turn may be identified as k[U ] = k[x1, . . . , xn]/I(U),

where I(U) = {f ∈ k[x1, . . . , xn] ; f(x) = 0 for all x ∈ U}. In fact, k[U ] is a k-algebra,

which means that it contains k as a subring. If U is a non-empty affine piece of a projective

variety V ⊂ Pn, it is an easy check that I(U) is prime if Ih(V ) is prime – if fg ∈ I(U), then

X0FG ∈ Ih(V ) and hence either F or G is in Ih(V ), and so either f or g is in I(U). Hence

by (1.2), U is irreducible if V is irreducible. Under these circumstances k[U ] is an integral

domain, and its field of fractions (known as the function field of U) consists of rational

functions f/g on U , with f, g ∈ k[x1, . . . , xn], g 6∈ I(U), subject to the obvious equivalence

relation analogous to that used in the projective case. Thus if U is the affine piece of V

given by X0 6= 0, we have an isomorphism of function fields k(V ) → k(U) obtained by

‘putting X0 = 1’ in the representatives F/G of elements of k(V ) (more formally, writing

F/G as F (1, x1, . . . , xn)/G(1, x1, . . . , xn), with xi = Xi/X0 for i > 0); note here that if G

vanishes on V0 = U , then X0G ∈ Ih(V ), and thus G ∈ Ih(V ). Therefore we see (for V

irreducible) that its function field k(V ) is determined by any (non-empty) affine piece.

Lemma 1.3. If V is an irreducible algebraic (affine or projective) curve, then its only

proper subvarieties are finite.

Proof. By (1.1), proper subvarieties are finite unions of irreducible proper subvarieties.

So we need to prove that every irreducible proper subvariety W consists of a single point.

By considering a finite affine cover, we can reduce to the affine case W ⊂ V ⊂ An,

and so we have a surjective homomorphism of coordinate rings

k[V ] = k[x1, . . . , xn]/I(V )→ k[W ] = k[x1, . . . , xn]/I(W ).

Let 0 6= f ∈ k[V ] map to zero in k[W ]; if W is not a point, we can choose a non-constant

element ḡ ∈ k[W ] ⊂ k(W ), and then for any lift g ∈ k[V ] of ḡ, we check easily that f, g

are algebraically independent as elements of k(V ) over k, that is there is no polynomial

relation over k between f and g (wlog such a relation is not a multiple of f since k[V ]

integral, and then take its image in k[W ]). This then contradicts our assumption that

dim(V ) = 1 (by previous argument, neither f nor g being constant).
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When studying specific examples, the converse to (1.3) is a useful criterion for showing

that an algebraic curve is irreducible. If V is a projective or affine variety with infinitely

many points, but such that the only proper subvarieties are finite, then by (1.1) it must

be irreducible (it will in fact be a curve, but this will be clear in the examples we study).

As an example of the above ideas, let us consider the important case of V ⊂ P2

defined by a homogeneous polynomial F (X0, X1, X2) of positive degree; we have an affine

piece U of V given by a polynomial f(x, y) where x = X1/X0 and y = X2/X0. Assuming

F is not divisible by X0, we have that F is irreducible iff f is irreducible.

Lemma 1.4. Given f, g ∈ k[x, y] coprime polynomials, there exist polynomials α, β ∈
k[x, y] such that αf + βg = h, where 0 6= h ∈ k[x] is a polynomial in x only.

This lemma follows easily (essentially just eliminate inductively the variable y, or

alternatively use Gauss’s Lemma). From Lemma 1.4, it follows that if F is irreducible,

then the only proper subvarieties of V are finite sets of points. To prove this we observe

that, since V has a finite affine cover, we can reduce to the affine case U ⊂ A2, given

an irreducible (non-constant) polynomial f(x, y). Suppose now we have any g ∈ k[x, y],

g 6∈ I(U), then f and g are coprime and we can apply (1.4). In particular, if P = (u, v)

satisfies f(P ) = 0 = g(P ), then h(u) = 0, so there are only finitely many x-coordinates

for such points P ; similarly, there are only finitely many y-coordinates, and hence only

finitely many such points. However V has infinitely many points (for all but finitely many

x-coordinates, can solve for a y-coordinate), and so it follows that V must be irreducible.

Moreover, the above agument also shows that if g ∈ I(U), then f divides g; i.e. that

I(U) = (f). The function field k(V ) is then naturally isomorphic to the field of fractions

of the integral domain k[x, y]/(f), and it is also then clear that dim(V ) = 1; such a variety

V is called a plane projective curve.

Given a point P of an irreducible projective variety V , the local ring of the variety at

P is defined as OV,P = {h ∈ k(V ) : h regular at P}. This is clearly a subring of k(V )

and has a maximal ideal mV,P = {h ∈ OV,P : h(P ) = 0}. Clearly the units (invertible

elements) U(OV,P ) of the ring are precisely the elements not in the maximal ideal, i.e.

mV,P = non-units of OV,P . Since any proper ideal consists of non-units, this shows that

mV,P is the unique maximal ideal of OV,P ; in general, a ring with this property is called

a local ring. The local properties of V at P are encoded in this ring. Note that OV,P is

an integral domain with k(V ) as its field of fractions, and that if V0 is an affine piece of V
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containing P , then OV,P is determined by V0, i.e. OV,P = {f/g ; f, g ∈ k[V0], g(P ) 6= 0}.

A local integral domain A with maximal ideal m is called a discrete valuation ring

(DVR) if there exists t ∈ m such that every non-zero element a ∈ A can be written in the

form a = utn for some n ≥ 0 and unit u ∈ U(A). If V is an algebraic curve and P ∈ V , we

say that P is a smooth or non-singular point of V if OV,P is a DVR; an element t ∈ mV,P

as above is called a local parameter or local coordinate at P . To motivate this definition, I

observe (without proof) that for the case k = C a local parameter t will determine a local

chart from a neighbourhood of P in V to a neighbourhood of 0 ∈ C, so that a smooth

complex curve may also be considered as a Riemann Surface (as an exercise for the reader,

I observe that a smooth complex projective curve will then be a compact Riemann surface).

If P is not a smooth point, we say that P is a singularity of V . For plane curves, these

definitions are seen (1.5) to be equivalent to the usual definitions in terms of vanishing of

partial derivatives of an irreducible defining polynomial.

Lemma 1.5. An affine plane curve U ⊂ A2 given by an irreducible polynomial f ∈ k[x, y]

is singular at P ∈ U iff ∂f/∂x (P ) = 0 = ∂f/∂y (P ).

Proof. Easily checked that the vanishing of partial derivatives (which can be defined

purely formally) is independent of the affine coordinate system chosen, and so in particular

we may assume that P is the origin (0, 0). Further, if we write f = f1 + f2 + . . . + fd,

where deg(fi) = i, then the partial derivatives vanish at the origin iff the linear part f1 is

zero. Thus the Lemma is asserting that f1 = 0 iff P is a singularity.

To see this, suppose first that P is non-singular; then there exists a local parameter

t ∈ k[U ] such that x = u1t
r and y = u2t

s, where u1, u2 are units, and at least one of r

and s, wlog s = 1 (because mU,P = (x, y) ⊂ OU,P ). Therefore x = uyr for some unit u in

OU,P , say u = v1/v2 with vi ∈ k[x, y] with vi(P ) 6= 0. Therefore v2x = v1y
r as elements

of k[U ], or as polynomials that v2x − v1yr ∈ I(U) = (f). Thus f divides the polynomial

v2x− v1yr, and hence f1 6= 0.

Conversely, suppose that f1 6= 0 and that affine coordinates have been chosen with

P = (0, 0) and f = x− y+ higher order terms. Thus f = x p(x)− y q(x, y), with p(0) 6= 0

and q(0, 0) 6= 0. In particular we note that x = vy in OU,P , with v a unit.

Claim. OU,P is a DVR with local parameter y.

Given non-zero a ∈ OU,P , write a = wg with w a unit and g = g(x, y) a polynomial. If
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g(P ) 6= 0, we are done since it is a unit in OU,P ; if not then we can use the relation x = vy

to substitute for x in g, and obtain the fact that g is a multiple of y in OU,P . Provided we

can show that g 6∈ (y(M+1)) for some M ≥ 0, we shall then be home by induction, since

the process then has to terminate. The required fact however follows from (1.4), since f, g

are coprime polynomials, and hence there exist α, β ∈ k[x, y] with αf + βg = yMh(y) for

some M ≥ 0 and some polynomial h with h(0) 6= 0. Thus h represents a unit in OU,P ,

and so yM ∈ (g) in OU,P ; i.e. yM is divisible by g, which rules out the possibility that g

is divisible by y(M+1). QED

Given the DVR OV,P , we have a well-defined function vP : k(V )∗ → Z, where

vP (utn) = n (notation as above), called the valuation at P ; this gives the order of a

zero or pole at P of a non-zero rational function. Note that vP (fg) = vP (f) + vP (g) (so

that vP is a homomorphism of abelian groups) and vP (f + g) ≥ min{vP (f), vP (g)}.

For V an irreducible projective variety, a rational map φ : V− → Pm is given by an

(m+ 1)-tuple (f0 : . . . : fm) of elements of k(V ) (not all zero) modulo that (f0 : . . . : fm)

and (h0 : . . . : hm) define the same rational map iff for some h ∈ k(V )∗, we have hi = hfi

for all i. Interpreting rational functions in terms of homogeneous polynomials, we see

that the rational map φ is given by an equivalence class of (m+ 1)-tuples of homogeneous

polynomials of the same degree (F0 : . . . : Fm), not all in Ih(V ), modulo the relation ∼,

where (F0 : . . . : Fm) ∼ (G0 : . . . : Gm) ⇐⇒ FiGj−FjGi ∈ Ih(V ) for all i, j. We say that

φ is regular at P ∈ V if it can be written in the form φ = (f0 : . . . : fm) with fi ∈ OV,P for

all i and at least one non-vanishing at P – equivalently, φ is represented by an (m+1)-tuple

(F0 : . . . : Fm) such that Fi(P ) 6= 0 for some i. We then have a well-defined image point

φ(P ). If W ⊂ Pm a projective variety, a rational map φ : V− →W is just a rational map

φ : V− → Pm such that φ(P ) ∈ W for all points P at which φ is regular. A morphism

φ : V →W is a rational map which is everywhere regular. An isomorphism φ : V →W is

a morphism with an inverse morphism ψ : W → V . Example of twisted cubic in P3 being

isomorphic to P1.

Given a morphism (or even rational map) φ : V → W of irreducible projective vari-

eties, we can define φ∗(f) = f ◦φ in an obvious way, provided the image φ(V ) is not con-

tained in a proper subvariety of W , i.e. if a homogeneous polynomial G vanishes on φ(V ),

then G ∈ Ih(W ). Namely, if φ = (h0 : . . . : hm), and f = F (Y0, . . . , Ym)/G(Y0, . . . , Ym),

with G 6∈ Ih(W ), then φ∗(f) = F (h0, . . . , hm)/G(h0, . . . , hm) ∈ k(V ); easily checked this

is well-defined. If φ∗ is an isomorphism of function fields, we say that φ is birational. An
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isomorphism induces isomorphisms of the local rings (given by composition with φ), and

intrinsic properties of the variety are not affected.

It follows immediately from the defining property of a DVR that for V a smooth

projective curve, every rational map φ : V− → Pm is a morphism. To see this, write

φ = (f0 : f1 : . . . , fm); for P ∈ V , let t be a local parameter at P , and write fi = uit
ni ,

with ui a unit in OV,P and ni ∈ Z, and then clear denominators and cancel out any

common factors of t.

Let us now consider morphisms between curves.

Lemma 1.6. If φ : V → W is a non-constant morphism between irreducible (projective)

curves, then φ has finite fibres, i.e. φ−1(Q) is finite for all Q ∈W .

Proof. For Q ∈ W , I claim that φ−1(Q) is a subvariety of V . For suppose that Q =

(a0 : . . . : am) ∈ W ⊂ Pm, then φ−1(Q) is defined by all the polynomials of the form

aiFj − ajFi, for (F0 : . . . : Fm) ranging over (m + 1)-tuples of homogeneous polynomials

of the same degree representing φ (convince yourself of this statement). This is therefore

a subvariety – remember that it doesn’t matter that we may have written down infinitely

many equations, since by Hilbert’s Basis Theorem a finite subset of equations will suffice.

If φ is non-constant, the fibre is a proper subvariety of V , and hence finite by (1.3).

In the circumstances of (1.6), the image of φ is not finite, since if it were then V

would be finite. So any homogeneous polynomial F which vanishes on the image must be

in Ih(W ). From this follows that there is an induced injective homomorphism of function

fields φ∗ : k(W ) ↪→ k(V ) given by ‘composition with φ’. It follows from the above facts

that there exist non-constant rational functions s ∈ φ∗k(W ), namely of the form s = φ∗(x)

for x a rational function on W which is non-constant on the image of φ. Since dim(V ) = 1,

we deduce that k(V ) is finite over the subfield φ∗k(W ). The degree deg(φ) of the morphism

φ is by definition the degree of the field extension [k(V ) : φ∗k(W )].

If now φ : V →W is a non-constant morphism between irreducible smooth projective

curves, it also satisfies an important additional property called finiteness :

Finiteness Theorem. If φ : V →W is a non-constant morphism of smooth (irreducible)

projective curves, then φ is surjective, and for any point Q ∈ W and local parameter t at

Q, we have
∑
P∈φ−1(Q) vP (φ∗(t)) = deg(φ).
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The proof is omitted here (it may be found for instance in Shafarevich, pages 141-143)

and is non-examinable. I shall issue an Appendix containing the proof for those who

are interested, but my initial recommendation is to take the result on trust. Over the

complex numbers, the theorem may be alternatively proved using the (analytic) theory of

Riemann Surfaces. In summary, the theorem says that, counting multiplicities, the number

of points in each fibre is a constant finite number, equal to the degree of the morphism.

From Question 9 on the first Example Sheet, it will be seen that both the conditions

smooth and projective on the curves are needed for such a statement to be true.

§2. We now introduce some tools for the study of smooth projective curves. The first of

these is the concept of divisors, the terminology taken from Algebraic Number Theory. Let

V be a smooth projective curve; a divisor D on V is a formal finite sum D =
∑
niPi with

Pi ∈ V and ni ∈ Z. The degree of D is just deg(D) =
∑
ni. It is convenient to extend

the notation of valuations to divisors by defining vP (D) = ni if P = Pi, and vP (D) = 0

otherwise.

For V a smooth irreducible curve and f ∈ k(V )∗, we can write f = F/G with F,G

homogeneous polynomials of the same degree, neither of which is in Ih(V ). It therefore

follows from (1.3) that f has only finitely many zeros and poles, i.e. that vP (f) = 0 for all

but finitely many points P ∈ V . We define the divisor of f to be (f) =
∑
P∈V vP (f)P .

Such a divisor is called a principal divisor. Observe that (fg) = (f) + (g) and that (f) = 0

if f ∈ k∗. We remark that our notations are consistent in that vP ((f)) = vP (f) for all

P ∈ V . Two divisors D1, D2 are called linearly equivalent if the difference D1 − D2 is a

principal divisor. The linear equivalence classes of divisors form a group under addition,

called the divisor class group Cl(V ). For example, when V = P1, a divisor D has degree

0 iff it is principal, and so Cl(P1) = Z.

More generally, for any smooth irreducible projective curve V and non-constant ra-

tional function f , we have a rational map (and hence a morphism) φ = (1 : f) : V → P1.

Let A1 be the affine piece of P1 given by X0 6= 0, affine coordinate x = X1/X0. Then x

is a local parameter at 0 = (1 : 0) and 1/x a local parameter at ∞ = (0 : 1). Observe that

φ∗(x) = f . But then, using the Finiteness Theorem,

deg (f) =
∑

P∈φ−1(0)

vP (φ∗(x))−
∑

P∈φ−1(∞)

vP (φ∗(1/x)) = deg(φ)− deg(φ) = 0

i.e. any principal divisor has degree 0. Hence there is an induced homomorphism of abelian

groups deg : Cl(V )→ Z.
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For a smooth projective curve V ⊂ Pn, any hyperplane not containing V cuts out a

divisor D on V in an obvious way; namely, if the hyperplane is given by a homogeneous

linear form L(X0, . . . , Xn), then for P in the affine piece Vi given by Xi 6= 0, we have

vP (D) = vP (L/Xi) – clearly well-defined. We also write D = (L). Any two such divisors

are linearly equivalent and so have the same degree; we call this the degree of V in Pn.

Similarly, forG homogeneous of degreem, we obtain a divisor (G) on V of degreem.deg(V ).

The twisted cubic V ⊂ P3, defined to be the image of the morphism φ : P1 → P3 given

by (s3 : s2t : st2 : t3), has degree 3. If V ⊂ P2 is defined by an irreducible homogeneous

polynomial F of degree d, then easily seen that for a line H given a homogeneous linear

polynomial L, the degree of (L) on V equals the degree of (F ) on H, and hence that

deg(V ) = d.

We say that a divisor D =
∑
niPi is effective , written D ≥ 0, if ni ≥ 0 for all i.

Given any divisor D on V , define the vector space

L(D) = {f ∈ k(V )∗ : (f) +D ≥ 0} ∪ {0}

i.e. if D =
∑
niPi, then 0 6= f ∈ L(D) ⇐⇒ vPi(f) ≥ −ni for all i and vP (f) ≥ 0 for all

P 6= Pi. For example, if V = P1 with affine coordinate x = X1/X0 and point P∞ = (0 : 1)

at infinity, and if D = nP∞, then L(D) consists precisely of polynomials in x of degree at

most n.

We note that if D1 ∼ D2, then L(D1) ∼= L(D2) (if D1 −D2 = (g), then isomorphism

given by multiplication by g). We let l(D) denote the dimension of L(D); note that

l(D) > 0 ⇐⇒ ∃ D′ ≥ 0 s.t. D′ ∼ D. Also note that for V projective, l(D) =

0 whenever deg(D) < 0, since effective divisors have non-negative degree and linearly

equivalent divisors have the same degree. Moreover L(0) = k, i.e. l(0) = 1, since 0 is the

only effective divisor of degree 0.

Lemma 2.1. For D a divisor on a smooth projective curve V , l(D − P ) ≥ l(D)− 1.

Proof. Let n = vP (D) and t a local parameter at P . Define a linear map of vector spaces

over k,

θ : L(D)→ OV,P /(t) ∼= k

by θ(f) = (tnf)(P ). The kernel of θ is then L(D − P ), and so the quotient space

L(D)/L(D − P ) has dimension at most one.
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If D is an effective divisor on V , it follows from (2.1) by induction on the degree that

l(D) ≤ deg(D) + 1. Since l(D) depends only on the linear eqivalence class of D, it is true

that l(D) ≤ deg(D) + 1 whenever l(D) > 0.

Given a divisor D with l(D) > 0, we can choose a basis f0, . . . , fm for L(D) and define

a rational map (and hence a morphism) φD : V → Pm by φD = (f0 : . . . : fm); we can in

fact define φD without choosing a basis as a map φD : V → P(L(D)∗) to the projective

space associated to the dual of L(D), but don’t worry about this unless you wish to. We

note however that φD depends only on the divisor class of D, since if D′ = D − (g), then

gf0, . . . , gfm is a basis of L(D′). In particular, suppose that V ⊂ Pn is not contained

in any hyperplane and D is a fixed hyperplane section of V , wlog given by X0 = 0. We

therefore have linearly independent elements 1, X1/X0, . . . , Xn/X0 of L(D). If these also

span, then

φD = (1 : X1/X0 : . . . : Xn/X0) = (X0 : X1 : . . . : Xn)

is the original embedding, and deg(V ) = deg(D) by definition. In this situation, a general

non-zero element of L(D) has the form L(X0, . . . , Xn)/X0 where L is a linear homogeneous

form. Thus we obtain a bijection between the projective space P(L(D)) and the hyperplane

sections of V , with the multiples of h 6= 0 corresponding to the hyperplane section D+(h).

Under this correspondence, the subspace L(D − P ) corresponds to hyperplane sections

containing P and L(D − P − Q) to those containing both P and Q (or if P = Q, the

hyperplanes which are tangent at P – i.e. when P ∈ V ∩ {Xi 6= 0}, hyperplanes L = 0

with vP (L/Xi) > 1). This latter interpretation is left as an exercise for the reader. It

is clear here that for any P,Q ∈ V (not necessarily distinct), l(D − P − Q) ≤ l(D) − 2,

and hence from (2.1) we have equality. The extremely useful Embedding Criterion gives a

converse to this, where D is a divisor on a smooth projective curve V .

Embedding Criterion. If l(D − P − Q) = l(D) − 2 for all P,Q ∈ V (not necessarily

distinct), then φD : V → Pl(D)−1 is an embedding, that is an isomorphism of V onto a

subvariety W of Pl(D)−1, where the image W has degree deg(D).

This result is also one we don’t fully prove, but let us prove that the conditions do

imply that φD is injective, and then indicate how the rest of the proof proceeds.

Lemma 2.2. If D is a divisor on a smooth projective curve V such that l(D− P −Q) =

l(D)− 2 for all points P 6= Q on V , then φD is an injective morphism.
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Proof. Required to prove that if P 6= Q, then φD(P ) 6= φD(Q). We show first that we

can find D′ ∼ D with vP (D′) = 0 = vQ(D′). Wlog, we can assume that both P and Q

are in the affine piece V0 = V ∩ {X0 6= 0}. Letting xi = Xi/X0 (i = 1, . . . , n) be the

affine coordinates on V0, we have mV,P = (x1 − x1(P ), . . . , xn − xn(P )) in OV,P . If L is a

homogeneous linear form in X0, . . . , Xn with L(P ) = 0, we have that vP (L/X0) = 1 for all

such L outside a codimension one subspace (viz. the kernel of the map to mP /m
2
P
∼= k).

By choosing such an L with L(Q) 6= 0, we obtain a local coordinate t1 at P which is a unit

in OV,Q. Similarly, we obtain a local coordinate t2 at Q which is a unit in OV,P . If now

vP (D) = a and vQ(D) = b, the required divisor D′ is D− (ta1t
b
2). Since however φD = φD′ ,

we may assume wlog that D′ = D, i.e. that vP (D) = 0 = vQ(D).

The assumption from the Lemma together with (2.1) implies that l(D−P ) = l(D)−1,

and l(D − P − Q) = l(D) − 2. If we write down a basis f0, . . . , fm−2 for L(D − P − Q),

extend to a basis f0, . . . , fm−1 for L(D − P ), and then to a basis f0, . . . , fm of L(D), it

follows that the fi are regular at both P and Q for all i, that fm(P ) 6= 0, fm−1(P ) = 0

and fm−1(Q) 6= 0. Hence φD(P ) 6= φD(Q), and φD is injective as claimed.

The proof of the Embedding Criterion then proceeds roughly as follows.

(a) Show that φD(V ) = W ⊂ Pm is a subvariety – this follows using ideas from the

Appendix on the Finiteness Theorem, and in particular needs Hilbert’s Nullstellensatz.

(b) Show that W is a smooth curve – one shows that φ∗D : OV,φ(P ) → OV,P is an

isomorphism, using fact that l(D − 2P ) = l(D)− 2 and an argument similar to the proof

of Claim 2 from the Appendix.

(c) Since φD : V → W is now an injective morphism between smooth projective curves,

it follows easily from the Finiteness Theorem that it is an isomorphism.

(d) Verify that a hyperplane section onW corresponds on V to an effective divisor linearly

equivalent to D; hence deg(W ) = deg(D) as claimed.

As a corollary of the Embedding Criterion, we note that if P 6= Q ∈ V with P ∼ Q,

then l(P ) > 1. It follows that l(P ) = 2 and φP : V → P1 is an isomorphism. This however

can be proved without recourse to the Theorem - see Example Sheet II, Question 5.

§3. The second tool we introduce is that of Kähler differentials. For V an irreducible

smooth projective curve, we define the vector space Ω1
k(V )/k over k(V ) of rational differ-

entials on V to consist of finite sums
∑
fidgi (with fi, gi ∈ k(V )) subject to the relations

that
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(i) da = 0 for all a ∈ k.

(ii) d(f + g) = df + dg for all f, g ∈ k(V ).

(iii) d(fg) = fdg + gdf for all f, g ∈ k(V ).

As an easy exercise, it follows that d(f/g) = (gdf − fdg)/g2 for f ∈ k(V ), g ∈ k(V )∗.

For V a curve and t ∈ k(V ) non-constant, we know that k(V ) is a finite extension

of k(t). If char k = p > 0, we would need a further fact, that t can be chosen such that

k(V ) is a separable extension of k(t); i.e. any y ∈ k(V ) satisfies an irreducible polynomial

H ∈ k(t)[Y ] which is not a polynomial in Y p, or in other words with ∂H/∂Y 6≡ 0. Assuming

standard results on separability from the Galois Theory course, this is not hard to prove

(we suppose k(V ) = k(x1, . . . , xn) and prove that one of the xi must have the required

property). In a first course on Algebraic Curves however, I believe that it is better not to

get tied up with the details for characteristic p > 0, and so from now on we shall assume

that char k = 0. The main results of the course remain valid for characteristic p > 0 (for

hyperelliptic curves one should assume p 6= 2, for elliptic curves that p 6= 2 or 3, and for the

Riemann-Hurwitz Formula that p does not divide the degree n of the map), and the really

assiduous reader would be able to rewrite the notes below so that the proofs included the

case of positive characteristic.

For any non-constant element t ∈ k(V ), we have (in characteristic zero) that k(V ) is

a finite separable extension of k(t). From this it follows that Ω1
k(V )/k is 1-dimensional over

k(V ) with generator dt (any g ∈ k(V ) satisfies a separable polynomial equation over k(t);

taking d of this equation gives dg in terms of dt).

Given a non-zero rational differential ω on V and P ∈ V , choose a local parameter

t ∈ mV,P . Writing ω = fdt, we define vP (ω) = vP (f).

Lemma 3.1. (i) The numbers vP (dh) for h ∈ OV,P are bounded below.

(ii) vP (dh) ≥ 0 for all h ∈ OV,P .

(iii) vP (dt′) = 0 for any local parameter t′ at P .

Proof. (i) Wlog we can assume V ⊂ An affine. An element of OV,P has the form

h = f(x1, . . . , xn)/g(x1, . . . , xn), where g(P ) 6= 0 and xi ∈ OV,P is the ith coordinate

function on V . Therefore

dh = (gdf − fdg)/g2 =
∑

αi dxi for suitable αi ∈ OV,P .

Thus vP (dh) is bounded below by min {vP (dxi) : i = 1, . . . , n }.
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(ii) Let m ≥ 0 be the minimum integer such that vP (dh) ≥ −m for all h ∈ OV,P ; such

an m exists because of (i). We show that m = 0.

Suppose we have h ∈ OV,P with vP (dh) = −m < 0. Observe that dh = d(h−h(P )) =

d(th1) for some h1 ∈ OV,P . Thus dh = h1dt+ tdh1, and since vP (dh1) ≥ −m, we deduce

that vP (dh) > −m, contrary to assumption. The claim therefore follows.

(iii) Write t′ = ut with u a unit in OV,P . Therefore

dt′ = udt+ tdu = (u+ th)dt

for some h ∈ OV,P with du = hdt. By (ii), we know that vP (h) = vP (du) ≥ 0, and hence

that vP (dt′) = vP (u+ th) = 0. QED

In particular, we deduce from (iii) that vP (ω) does not depend on the choice of local

parameter t, since for any other local parameter t′, the rational differential dt′ is a multiple

of dt by a unit in OV,P . We say that ω is regular at P if vP (ω) ≥ 0.

Lemma 3.2. If V a smooth irreducible projective curve and ω a non-zero rational differ-

ential, then vP (ω) = 0 for all but finitely many points P on V .

Proof. Reduce to the affine case and consider the differential dx1 for x1 = X1/X0 an

affine coordinate function on the curve. Sufficient then to prove the result for dx1. Clearly

dx1 has only finitely many poles (using (3.1)), and we show that it has only finitely many

zeros by considering the finite extension of fields k(V )/k(x1). Each coordinate function

xi satisfies an irreducible polynomial equation fi(x1, xi) = 0 in k(V ), for which ∂fi/∂xi

defines a non-zero function on V . More precisely, by (1.3) there are only finitely many

points P with ∂fi/∂xi(P ) = 0. This is true for all i, and so can reduce down to considering

points P with ∂fi/∂xi(P ) 6= 0 for all i > 1. For such points P , we must have vP (dx1) = 0

– to see this, observe that ∂fi/∂x1 dx1 + ∂fi/∂xi dxi = 0 in Ω1
k(V )/k for i > 1. Thus

if vP (dx1) > 0, we would have vP (dxi) > 0 for all i, contradicting the fact that P is a

smooth point, since one of the functions xi − xi(P ) must then be a local parameter at P ,

and hence in particular vP (dxi) = 0 for some i.

We can now define the divisor (ω) of ω in the obvious way: (ω) =
∑
P∈V vP (ω)P ; such

a divisor is called a canonical divisor, usually denoted KV . Any other non-zero rational

differential ω′ is of the form ω′ = hω for some h ∈ k(V )∗, and so (ω′) = (h) + (ω), i.e. we

have a uniquely defined divisor class on V , also denoted KV , the canonical class on V .
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For V a smooth projective curve, we can consider the vector space over k of rational

differentials which are regular everywhere, i.e. (ω) ≥ 0. If ω0 is a fixed non-zero rational

differential with (ω0) = KV , then an arbitrary rational differential ω = hω0 is regular

everywhere iff (hω0) = (h) + KV ≥ 0, i.e. h ∈ L(KV ). The space of global regular

differentials on V is therefore isomorphic to L(KV ) and has dimension l(KV ); by definition

this is the genus g(V ) of V , the basic invariant of the curve. The genus is invariant under

isomorphisms. Recall that an isomorphism of smooth projective curves φ : V → W

induces an isomorphism of function fields φ∗ : k(W ) → k(V ), and isomorphisms of the

local rings φ∗ : OW,φ(P ) → OV,P for all P ∈ V . The obvious induced isomorphism

φ∗ : Ω1
k(W )/k → Ω1

k(V )/k given by φ∗(
∑
fidgi) =

∑
(φ∗fi)d(φ∗gi), has the property that

vP (φ∗ω) = vφ(P )(ω) for all P ∈ V , and hence g(V ) = g(W ) as claimed. A closely related

basic invariant is the degree of the canonical class (well defined since principal divisors

have degree zero, and also clearly invariant under isomorphisms); we shall see from the

Riemann–Roch Theorem below that this number is just 2g(V )− 2.

We now consider various examples. An easy argument shows that g(P1) = 0. An

irreducible curve V is said to be rational if its function field k(V ) ∼= k(t). In the case of

smooth projective curves, this translates into the condition that V is isomorphic to P1

(since rational maps between smooth projective curves are morphisms). Thus any smooth

projective rational curve V has g(V ) = 0. In §4 we shall see that the converse holds. A

smooth plane conic is clearly rational. We now look at an example of a non-rational curve.

Example. Let V be the smooth plane cubic with equation X0X
2
2 = X1(X1−X0)(X1−

λX0), λ 6= 0, 1. Let V0 denote the affine piece with affine equation y2 = x(x− 1)(x− λ) =

f(x).

Observe that 2ydy = f ′(x)dx in Ω1
k(V )/k.

If y 6= 0, then vP (dx) = 0 (since if vP (dx) > 0, then also vP (dy) > 0, a contradiction).

When y = 0, we have a point P = (a, 0), where f(a) = 0 and hence f ′(a) 6= 0. The above

equation implies that vP (dx) > 0, and so we must have vP (dy) = 0.

Claim. vP (dx/y) = 0 for all P ∈ V0.

Proof. For y 6= 0, vP (dx/y) = vP (dx) = 0. For P with y-coordinate zero, vP (dx/y) =

vP (2dy/f ′(x)) = vP (dy) = 0. Thus the Claim is true.

The point at infinity on V is the point P∞ = (0 : 0 : 1). We need to calculate
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v∞(dx/y). Consider the affine piece given by X2 6= 0, with affine coordinates z = 1/y

and w = x/y. The affine curve V2 then has equation z = w(w − z)(w − λz). Since both

v∞(z) and v∞(w) > 0, we see from the equation that v∞(z) ≥ 3, and hence that w is a

local parameter at P∞ (since one of z, w must be), i.e. v∞(w) = 1. We therefore have

v∞(z) = 3, and so v∞(y) = −3 and v∞(x) = −2. From this it follows that v∞(dx) = −3,

and v∞(dx/y) = v∞(dx)− v∞(y) = −3 + 3 = 0.

The canonical divisor KV = (dx/y) is therefore the zero divisor. The genus of V is

just g(V ) = l(0) = 1 by (2.1).

Definition. A curve of genus one is called elliptic. We’ll see in §4 that any elliptic curve

can be embedded in P2 with equation of the above type.

Note that the curve V with equation X0X
2
2 = X1(X1 − X0)(X1 − λX0), λ 6= 0, 1,

admits a degree 2 morphism π : V → P1 (viz. π = (X0 : X1)), ‘branched’ over the four

points 0, 1, λ,∞.

More generally, a smooth projective curve V is called hyperelliptic is there is a degree

2 morphism π : V → P1, or equivalently that k(V ) is a degree 2 extension of k(P1) = k(t).

It will follow from the Riemann-Hurwitz formula in §4 that π is ‘branched’ over 2n points

and that g(V ) = n− 1.

Finally, we consider the case of an arbitrary smooth projective plane curve V ⊂ P2

defined by an irreducible homogeneous polynomial of degree d.

Proposition 3.3. If V is a smooth plane projective curve defined by an irreducible ho-

mogeneous polynomial F (X0, X1, X2) of degree d > 0, then KV ∼ (d − 3)HV , where

HV = (X0) is the divisor cut out on V by the hyperplane X0 = 0. In particular,

deg(KV ) = d(d− 3).

Proof. Choose homogeneous coordinates so that (0 : 0 : 1) 6∈ V . Let U be the affine piece

of V given by X0 6= 0. On U , we have affine coordinate functions yi = Xi/X0, i = 1, 2,

and U ⊂ A2 is defined by f ∈ k[y1, y2] of degree d, where f(y1, y2) = X−d0 F (X0, X1, X2).

In Ω1
k(V )/k we have

0 = df = ∂f/∂y1 dy1 + ∂f/∂y2 dy2. (∗)

Let Ui = {P ∈ U : ∂f/∂yi(P ) 6= 0}, i = 1, 2. Since U smooth, U = U1 ∪ U2. For all

P ∈ U1, we deduce using (∗) that vP (dy1) = vP (−∂f/∂y2 dy2) ≥ vP (dy2). Since at least

one of yi − yi(P ), i = 1, 2, is a local parameter at P , we must have vP (dy2) = 0 for all
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P ∈ U1. Similarly, vP (dy1) = 0 for all P ∈ U2. Now consider

ω = −(∂f/∂y1)−1dy2 = (∂f/∂y2)−1dy1 ∈ Ω1
k(V )/k.

This has vP (ω) = 0 for all P ∈ U = U1 ∪ U2. We now need to consider ω at points at

infinity.

Denote by W the affine piece of V given by X1 6= 0. By assumption, V = U ∪W .

On W , we have affine coordinate functions z1 = 1/y1 and z2 = y2/y1, and W ⊂ A2

is defined by g ∈ k[z1, z2] of degree d, where g(z1, z2) = zd1f(1/z1, z2/z1). Observe that

dy1 = −z−2
1 dz1 and ∂g/∂z2 = zd−1

1 ∂f/∂y2. We deduce that ω = zd−3
1 ω0, where

ω0 = −(∂g/∂z2)−1dz1 = (∂g/∂z1)−1dz2 ∈ Ω1
k(V )/k,

the second equality following from the analogous identity to (∗) for g. An analogous

argument to that employed on U shows that vP (ω0) = 0 for all P ∈ W , and thus that

(ω) = (zd−3
1 ) on W . Since (0 : 0 : 1) 6∈ V , and z1 = X0/X1, we deduce that (ω) =

(d− 3)HV , as required.

In particular, we note that any smooth plane cubic is elliptic, and that a smooth

projective plane curve is rational iff its degree is 1 or 2. Of course singular plane curves of

degree > 2 may be rational (for instance the nodal cubic X0X
2
2 = X2

1 (X1 + X0) and the

cuspidal cubic X0X
2
2 = X3

1 ). The above formula translates into the statement that the

genus g(V ) = 1
2 (d− 1)(d− 2), once one has the identity deg(KV ) = 2g − 2 from §4. Thus

the genus of a smooth projective plane curve is always a ‘triangular number’. Thus for

many values of the genus g, there is no hope of embedding a smooth projective curve of

genus g as a plane projective curve. It is in fact true however that any smooth projective

curve may be embedded as a curve in P3.

§4. The central result in the theory of algebraic curves is the Riemann–Roch Theorem.

Unlike other results which have been stated only (whose proofs have been omitted through

lack of time), the proof of this theorem is definitely too hard for a Part II course, but this

should not prevent us understanding its statement and being able to use it.

Riemann–Roch Theorem. Given a smooth projective curve V of genus g and a divisor

D on V , l(D) = 1− g + deg(D) + l(KV −D).

If we set D = KV in Riemann-Roch, we obtain deg(KV ) = 2g − 2, a highly useful

alternative characterization of the genus.
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As another immediate consequence of Riemann–Roch, we note that if g = 0 and

P ∈ V , then l(P ) = 2 and V is rational (see comment at the end of §2 ).

Given a non-constant morphism φ : V →W of smooth projective curves, the inclusion

of function fields φ∗ : k(W ) ↪→ k(V ) yields obvious homomorphisms on the spaces of

rational differentials and of global regular differentials (i.e. if ω =
∑
fidgi, then φ∗ω =∑

φ∗(fi)d(φ∗gi)), which are clearly injective; this latter statement stops being true in

characteristic p. The existence of a non-constant morphism therefore implies that g(W ) ≤
g(V ) – for a stronger statement, see Riemann–Hurwitz below. We can now deduce the

geometric form of Lüroth’s Theorem, that if φ : V → W is a non-constant morphism of

smooth projective curves with V rational, then W is also rational (since V rational implies

that g(V ) = 0 and hence g(W ) = 0 and therefore W rational). Once one knows the

existence of smooth projective models for any curve, this implies the algebraic version of

Lüroth over k: if K ⊂ k(t) is a finite extension, then K is a pure transcendental extension

of k. Both forms of Lüroth are however proved more easily by a direct argument.

We now look at the case of elliptic curves. Let V be a smooth projective curve of

genus 1 and P0 ∈ V some fixed point. Let Cl0(V ) denote the divisor class group, the

abelian group whose elements are the linear equivalence classes of degree 0. For D a

divisor of degree 0 on V , we note that the divisor KV −D− P0 has degree −1, and hence

l(KV −D−P0) = 0. Therefore Riemann–Roch implies that l(D+P0) = 1− 1 + 1 + 0 = 1,

and hence there exists a unique point P ∈ V such that D + P0 ∼ P , or equivalently such

that D ∼ P − P0. Hence the following result has been proved.

Proposition 4.1. The map V → Cl0(V ) given by P 7→ class(P − P0) is a bijection

between the points of V and the divisor classes of degree 0.

The abelian group structure on Cl0(V ) therefore induces an abelian group structure on

the points of V , with identity element the point P0. By Riemann–Roch and the embedding

criterion stated in §2, we observe that φ3P0 : V ↪→ P2 embeds V as a smooth plane cubic,

with P0 an inflexion point (i.e. 3P0 is cut out by a line). We note that three points P,Q,R

add to zero in the group law on V iff (P −P0) + (Q−P0) + (R−P0) = 0 in Cl0(V ), i.e. iff

P + Q + R ∼ 3P0 as divisors on V . Since l(3P0) = 3, the hyperplane sections of V ⊂ P2

are precisely the effective divisors linearly equivalent to 3P0, and thus we see that three

points P,Q,R add to zero in the group law on V iff the divisor P +Q+R is cut out by a

line, i.e. the three points are ‘collinear’.
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We note moreover by Riemann–Roch that l(2P0) = 2 and l(3P0) = 3; thus we can

choose a basis {1, x} for L(2P0) and extend to a basis {1, x, y} for L(3P0), and take the

embedding φ3P0 = (1 : x : y) : V ↪→ P2. Since L(6P0) is six dimensional and contains

the seven rational functions {1, x, y, x2, xy, x3, y2}, they are linearly dependent over k, and

this relation must involve both x3 and y2, these being the only ones with a 6-fold pole

at P0. This relation then says that the image of V under φ3P0 = (1 : x : y) satisfies a

cubic equation which involves both X3
1 and X0X

2
2 . By making an obvious linear change of

variables (corresponding to different choices of x and y), we may take this cubic equation

to be in Legendre normal form X0X
2
2 = X1(X1 −X0)(X1 − λX0) (λ 6= 0, 1) (cf. §3). In

particular, this exhibits V as a double cover of P1 branched over the four points 0, 1, λ,∞,

where the double cover map is just π = φ2P0 = (1 : x).

As promised, we return to the case of a non-constant morphism φ : V →W of smooth

projective curves, and the precise relation between g(V ) and g(W ). For P ∈ V , we define

the ramification index eP as follows: Let Q = φ(P ) and t be a local parameter on W at

Q, and define eP to be vP (φ∗(t)), clearly independent of the choice of t. If eP > 1, we say

that φ is ramified at P and that Q is a branch point. If eP = 1, we say that φ is unramified

at P . In §3 we saw that φ induces an injection φ∗ on rational differentials, and that ω

regular at Q = φ(P ) implies that φ∗ω is regular at P . If s is now a local parameter at P

and t a local parameter at Q, then φ∗(t) = useP with u a unit in OV,P . Thus

φ∗dt = d(φ∗t) = ePus
eP−1ds+ seP du

and hence that vP (φ∗dt) = eP −1, a fact not true in characteristic p. Thus φ is unramified

at P iff vP (φ∗dt) = 0 for any local parameter t at Q. Since φ∗dt is a non-zero rational

differential on V (cf. §3), we deduce that φ has only finitely many ramification points. By

analysing the order of poles and zeros of φ∗ω for a rational differential ω on W , and using

the fact that the degree of the divisor (ω) is 2g(W )−2 and that of (φ∗ω) is 2g(V )−2, it is

straightforward to deduce the following precise relation, the Riemann–Hurwitz Formula.

Recall that we are assuming char(k) = 0, although the formula (and proof) remains valid

in characteristic p, so long as p does not divide the degree n or any of the ramification

indices.

Riemann–Hurwitz Formula. If φ : V → W is a non-constant morphism of degree n

between smooth projective curves, then

2g(V )− 2 = n(2g(W )− 2) +
∑
P∈V

(eP − 1) .
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This result enables us to interpret the genus topologically (non-examinable). A smooth

complex projective curve is also a compact Riemann surface, which in turn is a compact

orientable 2-manifold. Topologically, these are spheres with a certain number of handles

(see Algebraic Topology course), and the topological genus is just the number of such

handles. Note the complex projective line corresponds to the Riemann sphere and so has

topological genus zero. One can however prove the Riemann–Hurwitz Formula in the same

form but with the topological genus (this is essentially done in Kirwan’s book - see Remark

4.23 there). Given any smooth complex projective curve V , we can choose a non-constant

rational function on V , which therefore exhibits V as a branched cover of P1(C). From

the two forms of Riemann–Hurwitz, we deduce that, over the complex numbers, the genus

that we have been using in this course is precisely the same as the topological genus.

Returning now to the case of π : V → P1 a double cover (e.g. V hyperelliptic), it

follows from Riemann–Hurwitz that π is branched over 2g(V ) + 2 points of P1.

Proposition 4.2. Suppose π : V → P1 is a morphism of degree 2 from a smooth projec-

tive curve of genus g(V ) > 0. If P ∈ V is a ramification point of π, then up to a (linear)

automorphism of P1, we have π = φ2P .

Proof. Let π(P ) = Q = (q0 : q1) ∈ P1. Choose any non-constant t ∈ L(Q), e.g. t =

(r1x0 − r0x1)/(q1x0 − q0x1) with (r0 : r1) 6= (q0 : q1). Then 1/t is a local parameter at Q,

and hence vP (π∗(1/t)) = 2, and hence π∗(t) ∈ L(2P ). Since l(2P ) ≤ 2 (Example Sheet II,

Question 5), we have a basis {1, π∗(t)} for L(2P ). Setting φ2P = (1 : π∗(t)), we deduce

that φ2P = ψt ◦ π, where ψt = (1 : t) = (q1x0 − q0x1 : r1x0 − r0x1) : P1 → P1 is a (linear)

automorphism of P1.

We return to the case of elliptic curves and smooth plane cubics.

Lemma 4.3. Let V ⊂ P2 be a smooth plane cubic, and R ∈ V a fixed point. The map

V → V given by sending each point P to the third point of intersection of the line RP with

V (with obvious interpretations when R = P , etc.) is an morphism ψ of the projective

curve V to itself.

Proof. It is easily checked that there is an explicit rational map, and hence morphism, ψ,

such that the image of P 6= R is in fact ψ(P ). Let Q denote the third point of intersection

of the tangent line at R with V ; it then follows that ψ(V \ {R}) = V \ {Q}. Since however

the morphism ψ is surjective (Finiteness Theorem), we deduce that ψ(R) = Q also.
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The morphism ψ in (4.3) is its own inverse, and in particular is an isomorphism of V

to itself, i.e. an automorphism of V . It then follows easily, from the geometric description

of the group law on an elliptic curve V , that the map from V to itself given by adding

a fixed point Q is an automorphism of V . Hence the group of automorphisms of V is

transitive. This contrasts with the case when g(V ) > 1, in which case it can be shown that

the automorphism group is always finite.

Proposition 4.4. Given an elliptic curve V and two double covers π1 : V → P1 and

π2 : V → P1, there is an automorphism σ of V and a (linear) automorphism τ of P1 such

that π2 ◦ σ = τ ◦ π1.

Proof. Let P1 be a ramification point for π1 : V → P1, and P2 a ramification point for

π2 : V → P1. Now choose an automorphism σ of V with σ(P1) = P2. Thus π2◦σ : V → P1

is also a double cover, with P1 a ramification point. Since, by (4.2), a ramification point

determines the double cover V → P1 up to a (linear) automorphism of P1, there are

(linear) automorphisms τ1 and τ2 of P1 with τ1π1 = φ2P1 = τ2π2σ. Hence the existence of

a (linear) automorphism τ of P1 such that π2 ◦ σ = τ ◦ π1.

From this, we show that the number λ ∈ k appearing in the Legendre normal form

for V is determined up to the well-known action of S3 on k \ {0, 1}; namely, if α ∈
S3 and λ ∈ k \ {0, 1}, permute 0, 1, λ according to α and then apply the unique linear

transformation of k sending the first number to 0 and the second to 1, and define α(λ)

to be the image of the third number. We show (Lemma 5.5) that the orbit of λ is then

{λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}. If we define

j(λ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2

we observe that j(λ) is invariant under the above action of S3. The content of the next

result is that this procedure determines an invariant j(V ) of the elliptic curve V , called

the j-invariant, parametrizing isomorphism classes of elliptic curves.

Theorem 4.6. (a) j(λ) defined above from a Legendre normal form depends only on V .

(b) Two elliptic curves V1 and V2 are isomorphic if and only if j(V1) = j(V2).

(c) Every element of k is the j-invariant of some elliptic curve.

Proof. (a) Suppose we have two different choices of base point P1 and P2 on V ; we then

obtain double covers πi : V → P1, with πi(Pi) = ∞ (i = 1, 2). As in (4.4), we choose an
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automorphism σ of V with σ(P1) = P2, and deduce the existence of a linear automorphism

τ of P1 such that π2 ◦ σ = τ ◦ π1. Thus τ(∞) = ∞ and τ sends the other branch points

{0, 1, λ1} of π1 to the points {0, 1, λ2} of π2 (in some order). As τ is an affine linear

transformation, we deduce that λ2 is related to λ1 via the action of S3 defined above, and

so in particular that j(λ1) = j(λ2) depends only on V .

(b) For λ 6= 0, 1, an easy calculation shows that j(λ1) = j(λ2) if and only if λ1 and λ2

differ by the above action of S3. Now given V1 and V2, we can take Legendre normal forms

X0X
2
2 = X1(X1−X0)(X1−λiX0) for the curves (i = 1, 2). If V1 is isomorphic to V2, then

it is clear that we may take Legendre normal forms with λ1 = λ2, and hence j(V1) = j(V2).

Conversely, if j(V1) = j(V2), then λ1 and λ2 are related by an element of S3, and so after

a linear change of variable in the affine coordinate x, we may assume λ1 = λ2; hence V1

and V2 are isomorphic to the same projective plane cubic.

(c) Observe that for any j ∈ k, we can solve for λ (λ 6= 0, 1). Therefore X0X
2
2 =

X1(X1 −X0)(X1 − λX0) is an elliptic curve with the required j-invariant.

We have seen therefore that the isomorphism classes of elliptic curves are parametrized

by k. So having specified the genus as g = 1, we still have a one-dimensional variety

parametrizing isomorphism classes of smooth projective curves. For genus g > 1, it can

be shown that such a parametrizing variety still exists, but in these cases its dimension is

3g − 3.

If now V is a smooth projective curve of genus g ≥ 2, we can consider the morphism

φKV
: V → Pg−1, called the canonical map on V . Using the embedding criterion from

§2, we see that the canonical map is an embedding of V if l(KV − P −Q) = g − 2 for all

P,Q ∈ V . But Riemann–Roch tells us that l(P +Q) = 3− g+ l(KV − P −Q), and hence

the canonical map is an embedding if l(P +Q) = 1 for all P,Q ∈ V . This latter condition

is however precisely the condition that V is non-hyperelliptic. If on the other hand V is

hyperelliptic of genus g > 1, then the canonical map is a double cover of P1 embedded as a

twisted (g − 1)-ic in Pg−1 (see Example Sheet III, Question 6). We have therefore shown:

Theorem 4.7. If V is a smooth projective curve of genus g > 1, the canonical map

φKV
: V → Pg−1 is an embedding of V as a curve of degree 2g − 2 in Pg−1 if and only if

V is non-hyperelliptic.

Thus, for example, any curve V of genus g = 2 is hyperelliptic, with the canonical map

being a double cover of P1. For g = 3 however, we see that a curve V is either hyperelliptic
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or it is embedded by the canonical map as a smooth plane quartic (which by our genus

formula from §3 does have genus 3). Moreover, (3.3) implies that for a smooth plane

quartic in P2, the canonical class is the class of a hyperplane section, and so the canonical

map is an embedding, i.e. V cannot be hyperelliptic. This bifurcation into distinct cases,

the hyperelliptic and non-hyperelliptic cases, occurs for all genera g ≥ 3, and enables us

to provide a classification for all curves of low genus. For g = 4 for instance, we have that

either V is hyperelliptic, or it is isomorphic to the intersection of an irreducible quadric

and an irreducible cubic in P3. As mentioned above, the isomorphism classes of curves

of genus g > 1 are parametrized by a quasi-projective variety Mg of dimension 3g − 3

(the complement of some subvariety in a projective variety Mg). Inside this variety Mg,

there is a subvariety of dimension 2g − 1 parametrizing the hyperelliptic curves (where

of course this subvariety is the whole of M2 when g = 2). For further reading on the

classification of curves, the reader is recommended Mumford’s book, Curves and their

Jacobians, University of Michigan Press 1975.
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