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Abstract

For each integer m ≥ 1, consider the graph Gm whose vertex set is the
set N = {0, 1, 2, . . . } of natural numbers and whose edges are the pairs xy
with y = x + m or y = x − m or y = mx or y = x/m. Our aim in this
note is to show that, for each m, the graph Gm contains a Hamilton path.
This answers a question of Lichiardopol.

For each integer m ≥ 1, consider the graph Gm whose vertex set is the set
N = {0, 1, 2, . . . } of natural numbers and whose edges are the pairs xy with
y = x + m or y = x−m or y = mx or y = x/m. We show that, for each m, the
graph Gm contains a Hamilton path. Here, by ‘Hamilton path’ we mean a ‘one-
way infinite Hamilton path’, i.e. a sequence x0, x1, x2, . . . of vertices of Gm such
that each vertex appears precisely once and, for all i, the vertices xi and xi+1

are adjacent. We shall use this to answer a question of Lichiardopol [1] about
two-way infinite Hamilton paths in graphs defined similarly but with vertex set
the set Z of integers.

The case m = 1 is trivial so we begin at m = 2. The construction of the
Hamilton path in the graph G2 is similar in spirit to those used later, but this
case is much easier.

Proposition 1. The graph G2 contains a Hamilton path.

Proof. Our approach is to define inductively a strictly increasing sequence
x0, x1, x2, . . . of natural numbers with x0 = 0, and show that, for each
i = 0, 1, 2, . . . , there is a Hamilton path in G2[xi, xi+1] from xi to xi+1; putting
these paths end-to-end gives the required Hamilton path in G2.

Now, take

• x0 = 0;

• x1 = 3;

• xi = 2xi−1 + 5 (i ≥ 2).
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Our path in G2[x0, x1] is simply 0,2,1,3. To show that there is such a path
in G2[xi, xi+1] for i ≥ 1, it suffices to exhibit a Hamilton path in G2[x, 2x + 5]
for odd x > 0; such a path is given by

x, 2x, 2x− 2, 2x− 4, . . . , x + 1, 2x + 2, 2x + 4, x + 2, x + 4, x + 6, . . . , 2x + 5.

We next consider the case of even m > 2. The approach is similar to that
used for the graph G2, but instead of splitting N up into intervals we need to
use slightly more complicated sets.

Proposition 2. For all even m > 2, the graph Gm contains a Hamilton path.

Proof. Define inductively a strictly increasing sequence x0, x1, x2, . . . of natural
numbers by

• x0 = 0;

• xi = m(xi−1 + 2) (i ≥ 1).

Note that each xi is divisible by m.
For i = 0, 1, 2, . . . , let G

(i)
m be the graph

G(i)
m = Gm [([xi, xi+1]−mN) ∪ ([mxi,mxi+1] ∩mN)] .

Note that, for all i, the sets V (G(i)
m ) and V (G(i+1)

m ) intersect only at mxi+1;
and for all i and j with |i − j| > 1, the sets V (G(i)

m ) and V (G(j)
m ) are disjoint.

Moreover, the union of the sets V (G(i)
m ) (i = 0, 1, 2, . . .) is the whole of N.

Hence it is enough to construct, for each i, a Hamilton path in G
(i)
m from mxi

to mxi+1; putting these paths end-to-end again gives a Hamilton path in Gm

as required.
So, fix i. Observe that, for each j = 1, 2, . . . , m − 1, there is a path Pj in

G
(i)
m from m(xi + j) to m(xi+1 − m + j) whose internal vertices are precisely

those vertices of G
(i)
m which are congruent to j (mod m), namely the path

m(xi + j), xi + j, xi + m + j, xi + 2m + j, . . . , xi+1 −m + j, m(xi+1 −m + j).

Note that the V (Pj) (1 ≤ j ≤ m − 1) partition V (G(i)
m ) except for the vertices

mxi, m(xi +m), m(xi +m+1), m(xi +m+2), . . . , m(xi+1−m), mxi+1 which
are missed. Moreover, the first (last) vertex of Pj is adjacent to the first (last)
vertex of Pj+1 (1 ≤ j ≤ m−2). Hence it is possible to join these paths together
to make the required Hamilton path in G

(i)
m , namely

mxi, P1,m(xi+1 −m),m(xi+1 −m− 1), . . . , m(xi + m),
Pm−1, P

−1
m−2, Pm−3, . . . , P−1

2 ,mxi+1

(where P−1 denotes the path obtained by traversing the path P in reverse).

This only leaves us to deal with odd m. The construction used in Propo-
sition 2 will not work here as, since m is odd, we would have to finish by
traversing the path P2 forwards, and so we would be unable to reach the point
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mxi+1 at the end of each intermediate path. However, it turns out that it is
possible to adapt the construction by modifying the definition of our sequence
x0, x1, x2, . . . and changing the points where the intermediate paths end. This
is sufficient to get around the obstruction.

Proposition 3. For all odd m, the graph Gm has a Hamilton path.

Proof. For convenience, we shall assume initially that m ≥ 5. This time we
inductively define our strictly increasing sequence x0, x1, x2, . . . by

• x0 = 0;

• x1 = 2m;

• x2 = m(m + 3);

• xi = m(xi−2 + 1) (i ≥ 3).

Note that each xi is divisible by m.
For each i = 0, 1, 2, . . . , let G

(i)
m be the graph

G(i)
m = Gm [([xi, xi+1]−mN) ∪ ([mxi,mxi+1 −m] ∩mN)] .

Note that the sets V (G(i)
m ) (i = 0, 1, 2, . . . ) form a partition of N.

We shall construct a Hamilton path in G
(i)
m which for i = 0 goes from 0 to

m(m + 2), and for i > 0 goes from m(xi+1 −m) to mxi = xi+2 −m; note that
these are genuinely distinct vertices of G

(i)
m as xi+1 > xi +m for all i. Moreover,

the last vertex of the path we shall define in G
(i)
m will be adjacent to the first

vertex of the path in G
(i+1)
m so it will indeed be possible to join them together

to make a Hamilton path in Gm.
Consider first the case i = 0. For each j = 1, 2, . . . , m − 1, consider the

path Qj given by jm, j, m + j, m(m + j). The Qj are vertex-disjoint paths in
G

(0)
m , and, for each j = 1, 2, . . . , m− 2, the first (last) vertex of the path Qj is

adjacent to the first (last) vertex of the path Qj+1. It is then easy to see that
we may take as our Hamilton path in G

(0)
m the path

0, Q1,m
2, Qm−1, Q

−1
m−2, Qm−3, . . . , Q4, Q

−1
3 , Q2.

Now fix i ≥ 1. Similarly to the case of even m, for each j (1 ≤ j ≤ m − 1)
we have a path Pj in G

(i)
m from m(xi + j) to m(xi+1 − m + j) whose internal

vertices are precisely those vertices of G
(i)
m which are congruent to j (mod m).

Here, the vertex sets V (Pj) (1 ≤ j ≤ m − 1) partition V (G(i)
m ) except for the

vertices mxi, m(xi + m), m(xi + m + 1), m(xi + m + 2), . . . , m(xi+1 −m).
Again, the first (last) vertex of Pj is adjacent to the first (last) vertex of

Pj+1 (1 ≤ j ≤ m− 2) and so again it is possible to join these paths together to
make the required Hamilton path in G

(i)
m , namely

m(xi+1 −m),m(xi+1 −m− 1), . . . , m(xi + m),
Pm−1, P

−1
m−2, Pm−3, . . . , P−1

1 ,mxi.

This only leaves us to consider the case m = 3. The above construction
fails only because x3 = x2 + 3. So if we can construct a Hamilton path from
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0 to 3x2 in the graph G3 [([0, x3]− 3N) ∪ ([0, 3x3 − 3] ∩ 3N)] then we can put
this path together with the paths constructed above for i ≥ 3 to make our
Hamilton path in G3. But what we need is simply a Hamilton path from 0
to 54 in G3 [[0, 21] ∪ {24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}], for which we
may take

0, 3, 1, 4, 7, 10, 13, 16, 19, 57, 60, 20, 17, 14, 11, 8, 5, 2, 6, 9, 12, 15, 18, 21,

24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54.

So we have now constructed a Hamilton path in Gm for each positive integer
m.

Lichiardopol [1] asked if the graph Gm(Z), defined similarly but with vertex
set the set Z of integers, contained a Hamilton path. We note first that it
is clear that Gm(Z) cannot contain a one-way infinite Hamilton path as the
removal of the finite subset {1, 2, . . . , m} of the vertices splits the graph into
two infinite components. However, turning to the more interesting question of
whether Gm(Z) contains a two-way infinite Hamilton path, we observe that our
construction answers this question positively. Indeed, since our one-way infinite
path in Gm starts at 0, we may put together two copies of it to form a two-way
infinite path in Gm(Z).
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