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Abstract

For each integer m > 1, consider the graph G,, whose vertex set is the
set N={0,1,2,...} of natural numbers and whose edges are the pairs zy
withy =z 4+ mory=x—mory=mzory=z/m. Our aim in this
note is to show that, for each m, the graph G, contains a Hamilton path.
This answers a question of Lichiardopol.

For each integer m > 1, consider the graph G,, whose vertex set is the set
N=1{0,1,2,...} of natural numbers and whose edges are the pairs zy with
y=x+mory=xz—mory=mzory=x/m. We show that, for each m, the
graph G, contains a Hamilton path. Here, by ‘Hamilton path’ we mean a ‘one-
way infinite Hamilton path’, i.e. a sequence zg, 21, x2, ... of vertices of G,,, such
that each vertex appears precisely once and, for all i, the vertices x; and ;1
are adjacent. We shall use this to answer a question of Lichiardopol [1] about
two-way infinite Hamilton paths in graphs defined similarly but with vertex set
the set Z of integers.

The case m = 1 is trivial so we begin at m = 2. The construction of the
Hamilton path in the graph G5 is similar in spirit to those used later, but this
case is much easier.

Proposition 1. The graph Go contains a Hamilton path.

Proof. Our approach is to define inductively a strictly increasing sequence
g, T1, T, ... of natural numbers with xy = 0, and show that, for each
1=0,1,2,..., there is a Hamilton path in Ga[z;, z;+1] from x; to z;1; putting
these paths end-to-end gives the required Hamilton path in Gs.

Now, take

e zo=0;
o 11 =3;

o 1; =2x;_1+5 (i > 2).
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Our path in Ga[zg, 1] is simply 0,2,1,3. To show that there is such a path
in Gax;, 2;41] for ¢ > 1, it suffices to exhibit a Hamilton path in Ga[z, 2z + 5]
for odd = > 0; such a path is given by

r, 20,20 —2,2x —4,... ,x+ 1,2x+2,2x+4,c+2,x +4,2+6,... ,2¢ + 5.
O

We next consider the case of even m > 2. The approach is similar to that
used for the graph G, but instead of splitting N up into intervals we need to
use slightly more complicated sets.

Proposition 2. For all even m > 2, the graph G, contains a Hamilton path.

Proof. Define inductively a strictly increasing sequence g, x1, T2, ... of natural
numbers by

e zo=0;
o I, = m(mi71 + 2) (Z > 1).

Note that each z; is divisible by m.
Fori=10,1,2,..., let GS,’) be the graph

GW) = G [([wi, wita] — mN) U ([mas, mai 1] NmN)] .

Note that, for all i, the sets V(Gg,?) and V(Ggffl)) intersect only at mx;y1;
and for all ¢ and j with |i — j| > 1, the sets V(Gg)) and V(G%)) are disjoint.
Moreover, the union of the sets V(Gsfl)) (¢t =0, 1,2, ...) is the whole of N.
Hence it is enough to construct, for each i, a Hamilton path in Gg,? from ma;
to ma;41; putting these paths end-to-end again gives a Hamilton path in G,,
as required.

So, fix i. Observe that, for each j =1, 2, ..., m — 1, there is a path P; in
GS} from m(x; + j) to m(x; 41 —m + j) whose internal vertices are precisely

those vertices of G%) which are congruent to j (mod m), namely the path
m(@i +j), @i +j,xi + m+jxi +2m+j,. o wipn —m+ j,m(@i —m+ ).

Note that the V(P;) (1 < j < m — 1) partition V(Ggfl)) except for the vertices
mx;, m(x; +m), m(x; +m~+1), m(z;+m+2), ..., m(x;41 —m), ma;+1 which
are missed. Moreover, the first (last) vertex of P; is adjacent to the first (last)
vertex of Pj11 (1 < j < m—2). Hence it is possible to join these paths together
to make the required Hamilton path in G%), namely

max;, Pr,m(x;11 —m),m(x;41 —m—1),... ,m(z; + m),
Pm—l;P_l

-1
m727Pm—3,~ c 3P2 , MTi41

(where P~! denotes the path obtained by traversing the path P in reverse). [J

This only leaves us to deal with odd m. The construction used in Propo-
sition 2 will not work here as, since m is odd, we would have to finish by
traversing the path P, forwards, and so we would be unable to reach the point



mz;11 at the end of each intermediate path. However, it turns out that it is
possible to adapt the construction by modifying the definition of our sequence
g, 1, T2, ... and changing the points where the intermediate paths end. This
is sufficient to get around the obstruction.

Proposition 3. For all odd m, the graph G, has a Hamilton path.

Proof. For convenience, we shall assume initially that m > 5. This time we

inductively define our strictly increasing sequence xg, x1, T2, ... by
o 7o =0;
e T =2m;

o x5 = m(m+ 3);
o z;, =m(z;—2+1) (1 >3).

Note that each w; is divisible by m.
Foreachi=0,1,2, ..., let Gsﬁ) be the graph

G = G [([23,xi11] — mN) U ([ma;, mai g —m] N mN)] .

Note that the sets V(Gg,i,)) (i=0,1,2,...) form a partition of N.

We shall construct a Hamilton path in G%) which for i = 0 goes from 0 to
m(m + 2), and for ¢ > 0 goes from m(z;11 —m) to ma; = x;12 — m; note that
these are genuinely distinct vertices of GSfJ as x;11 > x; +m for all i. Moreover,
the last vertex of the path we shall define in G will be adjacent to the first

vertex of the path in Gs,ifl) so it will indeed be possible to join them together
to make a Hamilton path in G,,.

Consider first the case i = 0. For each j = 1, 2, ..., m — 1, consider the
path Q; given by jm, j, m + j, m(m + j). The Q; are vertex-disjoint paths in
G;g), and, for each j =1, 2, ..., m — 2, the first (last) vertex of the path Q; is

adjacent to the first (last) vertex of the path @Q;y1. It is then easy to see that
we may take as our Hamilton path in G,(S) the path

2 —1 —1
Oanam 7Q’m—17 m—27Qm—37"' aQ4aQ3 7@2-

Now fix ¢ > 1. Similarly to the case of even m, for each j (1 < j <m —1)
we have a path P; in GY) from m(z; + j) to m(z;41 —m + j) whose internal
vertices are precisely those vertices of G%) which are congruent to j (mod m).
Here, the vertex sets V(P;) (1 < j < m — 1) partition V(GS,?) except for the
vertices max;, m(x; +m), m(z; + m+ 1), m(z; +m+2), ..., m(zi41 —m).

Again, the first (last) vertex of P; is adjacent to the first (last) vertex of
Pj11 (1 <j<m—2) and so again it is possible to join these paths together to
make the required Hamilton path in G%), namely

m(zip1 —m),m(zip1 —m—1),...,m(x; + m),
mela-P»,;inmeSw" 7Pf17mxi'

This only leaves us to consider the case m = 3. The above construction
fails only because x3 = x2 + 3. So if we can construct a Hamilton path from



0 to 3z in the graph Gs[([0,z3] — 3N) U ([0, 323 — 3] N 3N)] then we can put
this path together with the paths constructed above for i > 3 to make our
Hamilton path in G3. But what we need is simply a Hamilton path from 0
to 54 in G5 [[0,21] U {24, 27, 30, 33, 36, 39, 42,45, 48, 51, 54, 57,60}], for which we
may take

0,3,1,4,7,10,13, 16,19, 57,60, 20,17, 14, 11,8,5,2,6,9, 12, 15, 18, 21
24,27, 30, 33, 36, 39, 42, 45, 48, 51, 54.

O

So we have now constructed a Hamilton path in G, for each positive integer
m.
Lichiardopol [1] asked if the graph G,,(Z), defined similarly but with vertex
set the set Z of integers, contained a Hamilton path. We note first that it
is clear that G,,(Z) cannot contain a one-way infinite Hamilton path as the
removal of the finite subset {1,2,... ,m} of the vertices splits the graph into
two infinite components. However, turning to the more interesting question of
whether G,,,(Z) contains a two-way infinite Hamilton path, we observe that our
construction answers this question positively. Indeed, since our one-way infinite
path in G, starts at 0, we may put together two copies of it to form a two-way
infinite path in G,,(Z).
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