

# Unique Factorization Domains

A *unique factorization domain (UFD)* is an integral domain  $R$  such that every  $a \neq 0$  in  $R$  can be written

$$a = up_1 \dots p_k$$

where  $u$  is a unit and  $p_1, p_2, \dots, p_k$  are primes in  $R$ .

Note that the factorization is essentially unique (by the same argument used to prove uniqueness of factorization in PIDs).

Note also that if  $R$  is a UFD, any finite collection  $a_1, \dots, a_n \in R$  has a highest common factor. For we can take out prime factors until we write  $a_i = rb_i$  where the  $b_1, \dots, b_n$  have no proper factors in common. Then  $r$  is the (unique up to units) highest common factor. We write  $r = \text{hcf}(a_1, \dots, a_n)$ , but note that unless  $R$  is a PID we will not in general have  $r = \lambda_1 a_1 + \dots + \lambda_n a_n$  for  $\lambda_i \in R$ .

Observe that if  $R$  is an integral domain then  $R$  is a UFD iff it satisfies the following condition:

Every  $a \neq 0$  in  $R$  can be written as a product  $a = up_1 \dots p_k$  where  $u$  is a unit and  $p_i$  is irreducible for each  $i$ . Moreover, this factorization is essentially unique in the sense that if we also have  $a = vq_1 \dots q_l$  then  $k = l$  and, after renumbering the  $q_i$ , we have  $p_i \sim q_i$  for all  $i$ .

Furthermore, every irreducible in a UFD is prime.

Our aim is to prove that the ring of polynomials over a unique factorization domain is itself a UFD. Along the way, we shall prove Gauss' Lemma that the product of primitive polynomials in a UFD is itself primitive. (Recall that a polynomial over a UFD is said to be *primitive* if the greatest common divisor of its coefficients is 1.) The proof of the main theorem takes  $R$  a UFD and considers  $F$  its field of fractions. Now,  $R[X]$  is a subring of  $F[X]$  and  $F[X]$  is a PID and so is a UFD. We show that factorization in  $R[X]$  is determined by

- (i) factorization in  $F[X]$ ; and
- (ii) factorization in  $R$ .

**Lemma 1** (Gauss). *A product of primitive polynomials is primitive.*

*Proof.* Suppose

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$$

and

$$g(X) = b_m X^m + b_{m-1} X^{m-1} + \dots + b_0$$

are primitive. Take  $p$  prime and  $i, j$  largest such that  $p \nmid a_i$  and  $p \nmid b_j$ . Now  $c_{i+j}$ , the  $(i+j)$ th coefficient of the product  $fg$  is

$$c_{i+j} = a_i b_j + (a_{i+1} b_{j-1} + \dots) + (a_{i-1} b_{j+1} + \dots),$$

a sum of  $a_i b_j$  and terms divisible by  $p$ . As  $p$  is prime,  $p \nmid a_i b_j$  and so  $p \nmid c_{i+j}$ . As  $p$  was an arbitrary prime, this shows that the product is primitive.  $\square$

**Lemma 2.** (i) If  $u$  is a unit in  $R$  then  $u$  is a unit in  $R[X]$ .

(ii) If  $p$  is a prime in  $R$  then  $p$  is a prime in  $R[X]$ .

(iii) Suppose  $f(X)$  is a primitive polynomial in  $R[X]$  which is irreducible and so prime in  $F[X]$ . Then  $f$  is prime in  $R[X]$ .

*Proof.* (i) Suppose  $u$  is a unit in  $R$ . Then there exists  $v \in R$  such that  $uv = 1$ . But then  $uv = 1$  in  $R[X]$  so  $u$  is a unit in  $R[X]$ .

(ii) The argument is the same as that used to prove Gauss' Lemma. Suppose  $p$  is prime in  $R$ . To show that  $p$  is prime in  $R[X]$ , it is enough to show that if

$$p \nmid a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$$

and

$$p \nmid b_m X^m + b_{m-1} X^{m-1} + \dots + b_0$$

then

$$p \nmid (a_n X^n + a_{n-1} X^{n-1} + \dots + a_0)(b_m X^m + b_{m-1} X^{m-1} + \dots + b_0).$$

So suppose

$$p \nmid a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$$

and

$$p \nmid b_m X^m + b_{m-1} X^{m-1} + \dots + b_0.$$

Pick  $i$  greatest such that  $p \nmid a_i$  and  $j$  greatest such that  $p \nmid b_j$ . Then, writing  $c_k$  for the coefficient of  $X^k$  in the product,

$$p \nmid c_{i+j} = \sum_{r+s=i+j} a_r b_s$$

and so

$$p \nmid c_{n+m} X^{n+m} + c_{n+m-1} X^{n+m-1} + \dots + c_0.$$

(iii) Suppose  $f(X)|g(X)h(X)$  in  $R[X]$ ; then  $f|gh$  in  $F[X]$  and so  $f|g$  or  $f|h$  in  $F[X]$ . Assume wlog  $f|g$  in  $F[X]$ , so we have  $g = fk$  with  $k \in F[X]$ . Write  $g = a\tilde{g}$  and  $k = \frac{b}{c}\tilde{k}$  where  $a, b, c \in R$  and  $\tilde{g}, \tilde{k} \in R[X]$  are primitive. Then we have  $a\tilde{g} = \frac{b}{c}f\tilde{k}$  or  $ac\tilde{g} = bf\tilde{k}$ . Now, as  $f, \tilde{g}$  and  $\tilde{k}$  (and hence  $f\tilde{k}$  by Gauss) are primitive, we have  $ac \sim b$ , i.e.  $b = uac$  for some unit  $u$ . Then  $\tilde{g} = u\tilde{k}$  and so  $g = a\tilde{g} = fu\tilde{k}$  and so  $f|g$  in  $R[X]$ . This shows that  $f$  is prime in  $R[X]$ .  $\square$

**Theorem 3.** If  $R$  is a UFD then so is  $R[X]$ , the ring of polynomials over  $R$ .

*Proof.* Take a (non-zero) polynomial  $f \in R[X]$ . We can factorize it into irreducibles=primes in  $F[X]$  (as  $F[X]$  is a PID and so a UFD), and we may as well take the irreducibles to be primitive polynomials in  $R[X]$ . So we can write

$$f(X) = \frac{r}{s} g_1(X) g_2(X) \dots g_k(X)$$

where  $g_i \in R[X]$  is primitive and irreducible in  $F[X]$  (and so prime in  $R[X]$ ). Now  $f(X) = a\tilde{f}(X)$  for some  $a \in R$  and primitive  $\tilde{f} \in R[X]$ , and so

$$a\tilde{f} = \frac{r}{s} g_1 g_2 \dots g_k$$

or

$$as\tilde{f} = rg_1g_2 \dots g_k$$

so, as  $\tilde{f}$ ,  $g_1$ ,  $g_2$ ,  $\dots$ ,  $g_k$  are primitive,  $as \sim r$  and we can write  $r = uas$  where  $u \in R$  is a unit. Then

$$f = uag_1g_2 \dots g_k.$$

But now we can factorize  $a = va_1a_2 \dots a_l$  where  $v \in R$  is a unit and  $a_i \in R$  is prime, and so we have a complete factorization:

$$f = \underbrace{(uv)}_{\text{unit by 2(i)}} \underbrace{a_1a_2 \dots a_l}_{\text{primes by 2(ii)}} \underbrace{g_1g_2 \dots g_k}_{\text{primes by 2(iii)}}.$$

□