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1 Isoperimetric Inequalities

“Given the size of a set, how small can its boundary be?” For example,

• in R2, circular discs are best;

• in R3, spherical balls are best;

• in S2 ⊂ R3, ‘circular caps’ are best.

For a fixed graph G and any set A ⊂ V (G), the boundary of A is the set

b(A) = {x ∈ V (G)− A : x ∼ y for some y ∈ A}.

Given |A|, how do we minimize |b(A)|? An isoperimetric inequality on G is
an inequality of the form

A ⊂ V (G), |A| = m =⇒ |b(A)| ≥ f(m)

for some function f . Equivalently, we wish to minimize the neighbourhood
N(A) of A, where N(A) = A ∪ b(A).

A good candidate for a set with small boundary is a ball, i.e. a set of the
form B(x, r) = {y ∈ G : d(x, y) ≤ r} where d(x, y) denotes the usual graph
distance (the length of a shortest x-y path).

1.1 The Discrete Cube

Let X be a set. A set system on X is a collection A ⊂ PX of subsets of X.
Usually we take X = [n] = {1, 2, . . . , n}. An example of a set system on X
is X(r) = {A ⊂ X : |A| = r}.

Make PX into a graph by joining A to B if B = A ∪ {i} for some i 6∈ A
(or vice versa). This graph is the discrete cube Qn.
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If we identify each A ∈ Qn with a 01-sequence of length n (for example, in
Q3 we make the identification ∅ ↔ 000, {1} ↔ 100, {2, 3} ↔ 011 etc.) then
Qn is identified with the unit cube in Rn. Then X(r) (the family of all r-sets)
is just a ‘slice’ through Qn.

Which sets in Qn have the smallest boundaries? In general, it seems that
balls X(≤r) = B(∅, r) = X(0) ∪X(1) ∪ · · · ∪X(r) are best. But what if |A| is
not the exact size of a ball?

A little experimentation suggests that if |X(<r)| < |A| < |X(≤r)| then it is
best to take A to be X(<r) together with an initial segment of the lex order
on X(r). (The lexicographic or lex or dictionary order on X(r) is defined
by: if x = {a1, a2, . . . , ar} (a1 < a2 < · · · < ar) and y = {b1, b2, . . . , br}
(b1 < b2 < · · · < br) then x < y if a1 < b1, or a1 = b1 and a2 < b2, or . . . or
a1 = b1, a2 = b2, . . . , ar−1 = br−1 and ar < br. Equivalently, x < y if as < bs

where s = min{t : at 6= bt}. For example, the lexicographic order on [4](2) is
12, 13, 14, 23, 24, 34.)

The simplicial ordering on Qn is defined by x < y if |x| < |y| or |x| = |y|
and x < y in lex. For example,

• on Q3: ∅, 1, 2, 3, 12, 13, 23, 123;

• on Q5: ∅, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124,
125, 134, 135, 145, 234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345,
12345.

Theorem 1 (Harper’s Theorem). Let A ⊂ Qn and let C be the first |A|
points of Qn in the simplicial order. Then |N(A)| ≥ |N(C)|. In particular,
if |A| ≥

∑r
i=0

(
n
i

)
then |N(A)| ≥

∑r+1
i=0

(
n
i

)
.

Remarks. A Hamming ball is a set A with X(<r) ⊂ A ⊂ X(≤r) for some r. If
we knew A was a Hamming ball then we would be done by Kruskal-Katona
(which says that to minimize the upper shadow ∂+A of a family A ⊂ X(r),
where ∂+A = {y ∈ X(r+1) : y ⊃ x for some x ∈ A}, take A to be an initial
segment of lex). And, conversely, Theorem 1 implies Kruskal-Katona: given
A ⊂ X(r), apply the theorem to X(<r) ∪ A.

The main idea is that of ‘compressions’. We try to transform A → A′ such
that

• |A′| = |A|;

• |N(A′)| ≤ |N(A)|; and

• A′ looks more like C than A did.

2



Ideally, we transform repeatedly A → A′ → A′′ → · · · , ending up with a
family B so similar to C that we can see directly that |N(B)| ≥ |N(C)|.

For A ⊂ Qn and 1 ≤ i ≤ n, the i-sections of A are the set-systems
A+ = A

(i)
+ and A− = A

(i)
− in P(X − i) given by

A+ = {x ∈ P(X − i) : x ∪ i ∈ A}

and
A− = {x ∈ P(X − i) : x ∈ A}.

For example, in Q4 the family A = {12, 13, 23, 124, 134} has A
(3)
− = {12, 124}

and A
(3)
+ = {1, 2, 14}.

The i-compression or codimension-1 i-compression of A is the system
Ci(A) ⊂ Qn defined by |Ci(A)+| = |A+|, |Ci(A)−| = |A−|, and Ci(A)+ and
Ci(A)− are initial segments of the simplicial order on P(X − i). Note that
|Ci(A)| = |A|. Say A ⊂ Qn is i-compressed if Ci(A) = A.

Proof (of Theorem 1). The proof is by induction on n; the case n = 1 is
trivial.

Claim. If A ⊂ Qn and 1 ≤ i ≤ n then |N(Ci(A))| ≤ |N(A)|.
Proof of claim. Write B for Ci(A). We have

|N(A)| = |N(A+) ∪ A−|+ |N(A−) ∪ A+|

and
|N(B)| = |N(B+) ∪B−|+ |N(B−) ∪B+|.

Now |B−| = |A−| and |N(B+)| ≤ |N(A+)| (by the induction hypothesis).
Also, B− is an initial segment of the simplicial order. And so is N(B+)
(because the neighbourhood of an initial segment of the simplicial order is
itself an initial segment of the simplicial order).

Hence B− and N(B+) are nested (i.e. one is contained in the other),
and so we have |N(B+) ∪ B−| ≤ |N(A+) ∪ A−|. Similarly, we also have
|N(B−) ∪B+| ≤ |N(A−) ∪ A+|. //

Define a sequence A0, A1, A2, . . . ⊂ Qn as follows: set A0 = A. Having
defined A0, A1, . . . , Ak, if Ak is i-compressed for all i then stop the se-
quence with Ak. Otherwise, there exists i with Ak not i-compressed; set
Ak+1 = Ci(Ak) and continue. This process must terminate since

∑
x∈Ak

f(x)
(where f(x) denotes the position of x in the simplicial order on Qn) is a
decreasing function of k. Thus we have B ⊂ Qn such that

• |B| = |A|;
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• |N(B)| ≤ |N(A)|; and

• B is i-compressed for all i.

So, must a set that is i-compressed for all i be an initial segment of the
simplicial order? (If so then we are done, as B = C.) Unfortunately, the
answer is no; for example, take {∅, 1, 2, 12} ⊂ Q3. However, if B ⊂ Qn is
i-compressed for all i and is not an initial segment of the simplicial order
then EITHER n is odd, say n = 2k + 1, and

B = X(≤k) ∪ {12 . . . (k + 1)} − {(k + 2)(k + 3) . . . (2k + 1)}

OR n is even, say n = 2k, and

B = X(<k)∪{x ∈ X(k) : 1 ∈ X}∪{23 . . . (k +1)}−{1(k +2)(k +3) . . . (2k)}

(by Lemma 2 below).
Having proved Lemma 2, the proof of Theorem 1 will be complete as in

each case it is clear that |N(B)| ≥ |N(C)|.

Lemma 2. Let B ⊂ Qn be i-compressed for all i but not an initial segment
of the simplicial order. Then EITHER n is odd, say n = 2k + 1, and

B = X(≤k) ∪ {12 . . . (k + 1)} − {(k + 2)(k + 3) . . . (2k + 1)}

OR n is even, say n = 2k, and

B = X(<k)∪{x ∈ X(k) : 1 ∈ X}∪{23 . . . (k +1)}−{1(k +2)(k +3) . . . (2k)}.

Proof. As B is not an initial segment of the simplicial order, we have some
x < y with x 6∈ B and y ∈ B. Fix 1 ≤ i ≤ n: can we have i ∈ x and i ∈ y?
No, as B is i-compressed. Similarly, we cannot have i 6∈ x and i 6∈ y. So
i ∈ x4y for any i. Thus y = xc.

So for each y ∈ B, at most one x < y has x 6∈ B (namely x = yc); and
for each x 6∈ B, at most one y > x has y ∈ B (namely y = xc). Thus
B = {z ∈ Qn : z ≤ y} − {x} for some y, where x is the predecessor of y and
x = yc. Which x ∈ Qn have xc the successor of x? If n is odd then x must
be the last point of X(≤(n−1)/2). If n is even then x must be the last point of
X(n/2) containing a 1.

Remarks. 1. We can also prove Theorem 1 by generalizing UV -compressions
(allowing |U | < |V |).

2. This proof also proves the Kruskal-Katona theorem directly (if de-
sired).

For A ⊂ Qn and t = 0, 1, 2, . . . , the t-neighbourhood of A is the set
A(t) = {x ∈ Qn : d(x, A) ≤ t}. So, for example, A(1) is just N(A).
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Corollary 3. Let A ⊂ Qn with |A| ≥
∑r

i=0

(
n
i

)
. Then for any t = 0, 1,

2, . . . , we have |A(t)| ≥
∑r+t

i=0

(
n
i

)
.

Proof. If |A(t)| ≥
∑r+t

i=0

(
n
i

)
then |A(t+1)| ≥

∑r+t+1
i=0

(
n
i

)
by Harper’s Theorem,

so we are done by induction.

To see the strength of Corollary 3, we need an estimate on the tail of the
binomial distribution.

Lemma 4. For 0 < ε < 1/4 we have

b(1/2−ε)nc∑
i=0

(
n

i

)
≤ 1

ε
e−ε2n/22n.

Note. This is an exponentially small function of 2n (for ε fixed).

Proof. We have
(

n
k−1

)
=

(
n
k

)
· k

n−k+1
, so for k ≤ (1/2− ε) n we have(

n
k−1

)(
n
k

) ≤ (1/2− ε) n

(1/2 + ε) n
= 1− 2ε

1/2 + ε
≤ 1− 2ε

and so
b(1/2−ε)nc∑

n=0

(
n

i

)
≤ 1

2ε

(
n

b(1/2− ε) nc

)
(sum of a geometric progression). Similarly,(

n

b(1/2− ε) nc

)
≤

(
n

b((1− ε)/2) nc

)
(1− ε)εn/2−1 ≤ 2n · 2 · e−ε2n/2

(as 1− ε ≤ e−ε), and so

b(1/2−ε)nc∑
i=0

(
n

i

)
≤ 1

2ε
· 2n · 2 · e−ε2n/2.

Combining this with the isoperimetric inequality:

Theorem 5. Let A ⊂ Qn and 0 < ε < 1
4
. Then

|A|
2n

≥ 1

2
=⇒

|A(εn)|
2n

≥ 1− 1

ε
e−ε2n/2.
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Proof. We have |A| ≥
∑dn/2−1e

i=0

(
n
i

)
and so |A(εn)| ≥

∑dn/2−1+εne
i=0

(
n
i

)
. Thus

|Ac
(εn)| ≤

n∑
i=dn/2+εne

(
n

i

)
=

bn/2−εnc∑
i=0

(
n

i

)
≤ 1

ε
e−ε2n/2 · 2n.

Remarks. 1. This says that “half-sized sets have exponentially large εn-
neighbourhoods”.

2. The same proof gives that

|A|
2n

≥ 1

ε
e−ε2n/2 =⇒

|A(2εn)|
2n

≥ 1− 1

ε
e−ε2n/2.

1.2 Concentration of Measure

A function f : Qn → R is Lipschitz (with constant 1) if |f(x) − f(y)| ≤ 1
whenever x and y are adjacent. We say that M ∈ R is a median of f if
|{x : f(x) ≤ m}| ≥ 2n−1 and |{x : f(x) ≥ m}| ≥ 2n−1.

We are now ready to show that “well-behaved” functions on Qn are
roughly constant.

Theorem 6. Let f : Qn → R be Lipschitz with median M . Then for 0 < ε < 1
4

we have
|{x : |f(x)−M | ≤ εn}|

2n
≥ 1− 2

ε
e−

ε2n
2 .

Remark. This is the “concentration of measure” phenomenon.

Proof. Let A = {x ∈ Qn : f(x) ≤ M}. Then |A|/2n ≥ 1/2, so, by Theorem
5, |A(εn)| ≥ 1 − 1

ε
e−ε2n/2. But if x ∈ A(εn) then f(x) ≤ M + εn (as f is

Lipschitz), so
|{x : f(x) ≤ M + εn}|

2n
≥ 1− 1

ε
e−ε2n/2.

Similarly,
|{x : f(x) ≥ M − εn}|

2n
≥ 1− 1

ε
e−ε2n/2

and so
|{x : M − εn ≤ f(x) ≤ M + εn}|

2n
≥ 1− 2

ε
e−ε2n/2.
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Let G be a graph of diameter D, i.e. such that D = max{d(x, y) : x, y ∈ G}.
For ε > 0, write

α(G, ε) = max

{
1−

|A(εD)|
|G|

: A ⊂ G,
|A|
|G|

≥ 1

2

}
.

So “α(G, ε) small means half-sized sets have large neighbourhoods”. A se-
quence G1, G2, G3, . . . , of graphs is called a Lévy family if α(Gn, ε) → 0 as
n → ∞ for each ε > 0. So Theorem 5 tells us that (Qn)∞n=1 forms a Lévy
family, in fact a normal Lévy family, meaning that α(G, ε) is exponentially
small in n for each ε > 0.

An analogue of Theorem 6 shows that any Lévy family exhibits concen-
tration of measure.

Remarkably, many natural families of graphs are normal Lévy families—
for example, the permutation group Sn where σ and τ are adjacent if στ−1

is a transposition.
We can also define α(G, ε) for G any metric measure space (of finite di-

ameter and finite measure). It turns out that many natural families of spaces
are Lévy families—for example, the spheres Sn. This is from the isoperimet-
ric inequality on the sphere, together with the fact that

∫ 1

ε
cosn x dx → 0 as

n →∞ for each ε > 0.
We deduced concentration of measure from the isoperimetric inequality.

Conversely:

Proposition 7. Let G be a connected graph, t > 0 and α > 0, and suppose
that any Lipschitz function f on G with median M has

|{x ∈ G : |f(x)−M | > t}| ≤ α|G|.

Then for all A ⊂ G,

|A|
|G|

≥ 1

2
=⇒

|A(t)|
|G|

≥ 1− α.

Proof. Given A ⊂ G with |A|/|G| ≥ 1/2, let f(x) = d(x, A). Then f is
Lipschitz and has 0 as a median so |{x ∈ G : d(x, A) > t}| ≤ α|G|, as
required.

1.3 Edge-Isoperimetric Inequalities

For a graph G and a set A ⊂ V (G), the edge-boundary of A is the set

∂A = {xy ∈ E(G) : x ∈ A, y 6∈ A},
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i.e. “the edges leaving A”. An edge-isoperimetric inequality on G is an in-
equality of the form

A ⊂ G, |A| = m =⇒ |∂A| ≥ f(M)

for some function f .
What happens in the cube? For example, in Q3 with |A| = 4: if A

is an initial segment in the simplicial order then |∂A| = 6; but if A is a
codimension-1 subcube then |∂A| = 4.

Experiment suggests that if |A| = 2k then it is best to take A to be a
k-dimensional subcube (say P [k]); while if, say, |A| > 2n−1 then take P [n−1]
together with some of the rest of the cube.

Say x < y in the binary ordering on Qn if max(x4y) ∈ y, or equivalently
if

∑
i∈x 2i <

∑
i∈y 2i. For example, the binary ordering on Q3 is ∅, 1, 2, 12,

3, 13, 23, 123.
Our aim is to show that initial segments in the binary order minimize

|∂A|.
For A ⊂ Qn and 1 ≤ i ≤ n, the i-binary-compression of A is the set-

system Bi(A) ⊂ Qn defined by |Bi(A)+| = |A+|, |Bi(A)−| = |A−| and
Bi(A)+, Bi(A)− are initial segments of the binary order on P(X − i).

Theorem 8 (Edge-isoperimetric inequality in the cube). Let A ⊂ Qn

and let C be the first |A| points in the binary order on Qn. Then |∂A| ≥ |∂C|.
In particular, if |A| = 2k then |∂A| ≥ (n− k)2k.

Remark. This is sometimes called the Theorem of Harper, Lindsey, Bernstein
and Hart.

Proof. The proof is by induction on n; the case n = 1 is trivial.

Claim. For any A ⊂ Qn and 1 ≤ i ≤ n we have |∂Bi(A)| ≤ |∂A|.
Proof of claim. Write B for Bi(A). Then for the set-systems A and B, we
have |∂A| = |∂A−|+|∂A+|+|A−4A+| and |∂B| = |∂B−|+|∂B+|+|B−4B+|.
Now, |∂B−| ≤ |∂A−| and |∂B+| ≤ |∂A+| (by the induction hypothesis). Also,
|B+| = |A+|, |B−| = |A−| and B+, B− are nested (as each is an initial segment
of the binary order), so |B+4B−| ≤ |A+4A−|. Thus |∂B| ≤ |∂A|. //

Define A0, A1, A2, . . . in Qn as follows. Set A0 = A. Having defined A0,
A1, . . . , Ak, if Ak is i-binary-compressed for all i then stop. If not, we have
Bi(Ak) 6= Ak for some i; set Ak+1 = Bi(Ak) and continue.

This must end with some Ak, as otherwise the sequence
∑

x∈Ak
g(x),

where g(x) denotes the position of x in the binary order, is decreasing in k.
The set system B = Ak satisfies |B| = |A|, |∂B| ≤ |∂A| and Bi(B) = B for
all i. Must B be an initial segment of the binary order? No, for example
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B = {∅, 1, 2, 3} in Q3. However, if B is not an initial segment of the binary
order then we must have B = P [n− 1]∪ {n} − {123 . . . (n− 1)} (by Lemma
9 below), and it is clear in this case that |∂B| ≥ |∂C|.

Lemma 9. Let B ⊂ Qn be i-binary-compressed for all i but not an initial
segment of the binary order. Then B = P [n− 1] ∪ {n} − {123 . . . (n− 1)}.

Proof. We have x 6∈ B and y ∈ B for some x, y ∈ Qn with x < y in the
binary order. As in the proof of Lemma 2, we must have x = yc, so that
B = {z : z ≤ y in binary}∪{x}, where x is the predecessor of y in the binary
order and x = yc. Hence x is the last point with n 6∈ x and y is the first
point with n ∈ y.

Remarks. 1. It was vital for the proof that the extremal sets formed a nested
family (to get |B+4B−| ≤ |A+4A−|).

2. The proof was routine, given the idea of codimension-1 compressions.

The isoperimetric number of a connected graph G is defined by

i(G) = min

{
|∂A|
|A|

: A ⊂ V (G), |A| ≤ 1

2
|V (G)|

}
,

so “i(G) large means half-size sets have large out-degree”.

Corollary 10. The cube Qn has isoperimetric number 1.

Proof. For any C an initial segment of the binary order with |C| ≤ 2n−1, we
have C ⊂ P [n − 1] so that certainly |∂C| ≥ |C|. Hence any A ⊂ Qn with
|A| ≤ 2n−1 has |∂A| ≥ |A| (by Theorem 8). Thus i(Qn) ≥ 1. The set P [n−1]
shows that i(Qn) ≤ 1.

1.4 Inequalities in the grid

For any k = 2, 3, 4, . . . and n = 1, 2, 3, . . . , the grid or grid graph [k]n has
vertex set [k]n with x = (x1, x2, . . . , xn) adjacent to y = (y1, y2, . . . , yn) if for
some i we have |xi − yi| = 1 and xj = yj for all j 6= i. So [k]n is a ‘product’
of n paths of order k.

Do Theorems 1 and 8 generalize to the grid? (Note that the case k = 2
is Qn.)
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1.4.1 Vertex-isoperimetric inequalities in the grid

To minimize the vertex-boundary of a set in the grid, it seems best to take
sets of the form {x : |x| ≤ r}, where |x| = x1 + x2 + · · ·+ xn. The simplicial
order on [k]n is defined by x < y if |x| < |y|, or |x| = |y| and x1 > y1, or
|x| = |y| and x1 = y1 and x2 > y2, or . . . or |x| = |y| and x1 = y1 and x2 = y2

and . . . and xn−2 = yn−2 and xn−1 > yn−1. Equivalently, x < y if |x| < |y|,
or |x| = |y| and xs > ys where s = min{t : xt 6= yt}. For example:

• on [3]2: (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (3, 2), (2, 3), (3, 3);

• on [4]3: (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (2, 2, 1), (2, 1, 2),
(1, 3, 1), (1, 2, 2, ), (1, 1, 3), (4, 1, 1), (3, 2, 1), (3, 1, 2), (2, 3, 1), . . . .

Note that this agrees with the previous definition for k = 2.
Our aim is to show that initial segments of the simplicial order minimize

the neighbourhood.
For A ⊂ [k]n and 1 ≤ i ≤ n, the i-sections of A are the sets A1, A2, . . . ,

Ak ⊂ [k]n−1 defined by

At = A
(i)
t = {x ∈ [k]n−1 : (x1, . . . , xi−1, t, xi+1, . . . , xn) ∈ A}.

The i-compression Ci(A) ⊂ [k]n is defined by giving its i-sections: for t = 1,
2, . . . , k, we take |Ci(A)t| = |At| with Ci(A)t an initial segment of [k]n−1 for
all t. Note that |Ci(A)| = |A|.

We say that A is i-compressed if Ci(A) = A. (This agrees with the
previous definition for n = 2.)

Theorem 11 (Isoperimetric inequality in the grid). Let A ⊂ [k]n

and let C be the initial segment of length |A| in the simplicial order on
[k]n. Then |N(A)| ≥ |N(C)|. In particular, if |A| ≥ |{x : |x| ≤ r}| then
|N(A)| ≥ |{x : |x| ≤ r + 1}|.

Proof. The proof is by induction on n. The case n = 1 is easy: we have
|N(A)| ≥ |A|+ 1 for all A ⊂ [k]1 apart from A = ∅ and A = [k].

Claim. For any A ⊂ [k]n and 1 ≤ i ≤ n, we have |N(Ci(A))| ≤ |N(A)|.
Proof of claim. Write B for Ci(A). For any t, we have

N(A)t = N(At) ∪ At−1 ∪ At+1

(taking A0 = Ak+1 = ∅) and so

|N(A)t| = |N(At) ∪ At−1 ∪ At+1|.
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Similarly,
|N(B)t| = |N(Bt) ∪Bt−1 ∪Bt+1|.

Now, |Bt−1| = |At−1| and |Bt+1| = |At+1|, and |N(Bt)| ≤ |N(At)| by the
induction hypothesis. But Bt−1 and Bt+1 are initial segments of the sim-
plicial order, as is N(Bt). So Bt−1, Bt+1 and N(Bt) are nested, and so
|N(B)t| ≤ |N(A)t| for each t. Thus |N(B)| ≤ |N(A)|. //

Among all B ⊂ [k]n with |B| = |A| and |N(B)| ≤ |N(A)|, choose one with∑
x∈B h(x) minimal, where h(x) denotes the position of x in the simplicial

order. This B must be i-compressed for all i, otherwise Vi(B) would con-
tradict the choice of B. But, as before, we cannot deduce immediately that
B = C. Our argument now divides into two cases.

Case (i): n = 2. In this case, B is i-compressed for all i if and only if
it is a down-set (meaning if x ∈ B and yi ≤ xi for all i then y ∈ B). We
want |N(B)| ≥ |N(C)|. Suppose B 6= C. Let r = min{|x| : x 6∈ B} and let
s = max{|y| : y ∈ B}. Then r ≤ s. If r = s then clearly |N(B)| ≥ |N(C)|
so we may assume that r < s. We cannot have {x : |x| = r} ⊂ Bc or
{y : |y| = s} ⊂ B as B is a down-set.

So there exist x and x′ with |x| = |x′| = r, x 6∈ B, x′ ∈ B and
x′ = x± (e1 − e2) (where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith po-
sition); and there exist y and y′ with |y| = |y′| = s, y ∈ B, y′ 6∈ B
and y′ = y ± (e1 − e2). Let B′ = B ∪ {x} − {y}. Then |B′| = |B| and
|N(B′)| ≤ |N(B)|, contradicting the choice of B, and we are done.

Case (ii): n ≥ 3. If x ∈ B has xn > 1 then x − en + ei ∈ B for any i
with xi < k, as B is j-compressed for any j 6= i, n. (Note that this is where
we require dimension at least 3.) So N(Bt) ⊂ Bt−1 for all t ≥ 2 (where

Bt = B
(n)
t etc.). Thus

N(B)t = N(Bt) ∪Bt+1 ∪Bt−1 = Bt−1

for all t ≥ 2. So

|N(B)| = |Bk−1|+ |Bk−2|+ · · ·+ |B1|+ |N(B1)|
= |B| − |Bk|+ |N(B1)|.

Similarly,
|N(C)| = |C| − |Ck|+ |N(C1)|.

Thus it suffices to show that:

(i) |Bk| ≤ |Ck|; and

(ii) |B1| ≥ |C1|.
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Define D ⊂ [k]n by Dk = Bk and Dt = N(Dt+1) for t = k − 1, k − 2,
. . . , 1. Then D is an initial segment of the simplicial order and D ⊂ B, so
|D| ≤ |B|, so D ⊂ C and so Dk ⊂ Ck. This establishes (i).

Next define E ⊂ [k]n by E1 = B1 and Et = {x ∈ [k]n−1 : N({x}) ⊂ Et−1}
for t = 2, 3, . . . , k. Then E is an initial segment of the simplicial order and
B ⊂ E, so |E| ≥ |B| = |C|, so C ⊂ E and so E1 ⊃ C1. This establishes
(ii).

Corollary 12. Let A ⊂ [k]n with |A| ≥ |{x : |x| ≤ r}|. Then for any t = 1,
2, 3, . . . , we have |A(t)| ≥ |{x : |x| ≤ r + t}.

Proof. Induction on t.

Remark. We can check from Corollary 12 that for any fixed k, the sequence
[k]1, [k]2, [k]3, . . . forms a normal Lévy family.

1.4.2 Edge-isoperimetric inequalities in the grid

Given A ⊂ [k]n with |A| fixed, how do we minimize |∂A|? Consider what
happens in [k]2 as we vary |A|: for small |A|, we take roughly a square-shaped
set until |A| = k2/4 when a k by |A|/k column takes over; for large |A|, it is
best to take the complement of a square. Unfortunately, these extremal sets
are not nested.

In the 3-dimensional grid [k]3, we begin with cubes [a]3, then ‘square
columns’ [a]2 × [k], then ‘half-spaces’ [a] × [k]2, then complements. The
situation in n dimensions is similar.

Thus compressions cannot help us. However, this result has been proven.

1.5 Other isoperimetric problems

In general, very few isoperimetric inequalities are known. For example, con-
sider the layer X(r), with x adjacent to y if x = y ∪ {i} − {j} for some i and
j (i.e. x and y are adjacent if they have distance 2 in Qn). Here nothing is
known. The nicest case is the middle layer r = n/2, where it is conjectured
that sets of the form {y ∈ X(r) : d(x, y) ≤ k} (for some fixed x) are best, for
example {y ∈ X(r) : |y ∩ {1, 2, . . . , r}| ≥ r − k}. This is unknown!

2 Intersecting families

Say A ⊂ PX is intersecting if for all x, y ∈ A we have x ∩ y 6= ∅. How large
can A be?

12



We could take A = {x ∈ PX : 1 ∈ x}. This has |A| = 2n−1. It is
impossible to beat this:

Proposition 13. Let A ⊂ PX be intersecting. Then |A| ≤ 2n−1.

Proof. For each x ∈ PX, we cannot have both x, xc ∈ A.

Remark. The extremal system is certainly not unique—for example, if n is
odd we can take {x ∈ PX : |x| > n/2}.
A better question is: how large can an intersecting A ⊂ X(r) be? If r > n/2
we can take the whole of X(r). If r = n/2 we can take one of x, xc for each
x, giving |A| = 1

2

(
n
r

)
. So we shall focus on r < n/2. One obvious candidate

is A = {x ∈ X(r) : 1 ∈ x}. For example, in [8]3 this has order
(
7
2

)
= 21, while

the family {x ∈ [8]3 : |x ∩ {1, 2, 3}| ≥ 2} has order 1 +
(
3
2

)(
5
1

)
= 16 < 21.

Theorem 14 (Erdős-Ko-Rado Theorem). If A ⊂ X(r) (r < n/2) is
intersecting then |A| ≤

(
n−1
r−1

)
.

Proof. The condition x ∩ y 6= ∅ is equivalent to x 6⊂ yc. So writing Ā
for the family {xc : x ∈ A}, we have ∂+(n−2r)A disjoint from Ā. Suppose
|A| >

(
n−1
r−1

)
, so also |Ā| >

(
n−1
r−1

)
. We have |A| ≥ |{x ∈ X(r) : 1 ∈ X}|,

so |∂+A| ≥ |{x ∈ X(r+1) : 1 ∈ X}| (by the Kruskal-Katona theorem), and
so, inductively, we get |∂+(n−2r)A| ≥ |{x ∈ X(n−r) : 1 ∈ x}| =

(
n−1

n−r−1

)
.

Thus inside X(n−r), which has size
(

n
r

)
, we have disjoint sets of sizes at least(

n−1
n−r−1

)
and greater than

(
n−1
r−1

)
. But

(
n−1

n−r−1

)
+

(
n−1
r−1

)
=

(
n−1

r

)
+

(
n−1
r−1

)
=

(
n
r

)
,

a contradiction.

Remarks. 1. There are many other nice proofs.
2. The largest intersecting family has size

(
n−1
r−1

)
= r

n

(
n
r

)
; the chance that

a random r-set contains 1 is r
n
.

2.1 t-intersecting families

We say that A ⊂ PX is t-intersecting if |x ∩ y| ≥ t for all x, y ∈ A. How
large can A be? For example, for t = 2 we could take {x ∈ PX : 1, 2 ∈ x}
or {x ∈ PX : |x| ≥ n/2 + 1}.

Theorem 15 (Katona’s t-intersecting theorem). Let A ⊂ PX be t-
intersecting, with n + t even. Then |A| ≤ |X(≥(n+t)/2)|.

Proof. If |x∩ y| ≥ t then d(x, yc) ≥ t, as there are at least t points which are
in x but not in yc. So letting Ā = {xc : x ∈ A}, we have that A(t−1) and Ā
are disjoint.

13



Now, supppose |A| > |X(≥(n+t)/2)| = |X(≤(n−t)/2)|. Then, by Harper’s the-
orem, we have |A(t−1)| ≥ |X(≤(n+t)/2−1)|. But then |Ac

(t−1)| ≥ |X(≤(n+t)/2−1)|,
a contradiction.

Remark. The same proof gives that if n + t is odd then

|A| ≤ |X(≥(n+t+1)/2) ∪ {x ∈ X((n+t−1)/2) : n 6∈ x}|.

What happens for r-sets, i.e. for A ⊂ X(r)? In [8](4), for t = 2, the fam-
ily A = {x ∈ [8](4) : 1, 2 ∈ x} has |A| =

(
6
2

)
= 15; but the family

B = {x ∈ [8](4) : |x ∩ {1, 2, 3, 4}| ≥ 3|} has |B| = 1 +
(
4
3

)(
4
1

)
= 17 > 15.

Write Aα = {x ∈ [n](r) : |x ∩ [t + 2α]| ≥ t + α} for α = 0, 1, 2,
3, . . . . The Frankl conjecture was that if A ⊂ X(r) is t-intersecting then
|A| ≤ max{|Aα| : α = 0, 1, 2, . . . }. This was recently proved by Ahlswede and
Khachatrian.

2.2 Covering by intersecting families

How many intersecting families do we need to cover PX − {∅}? In other
words, if PX −{∅} = A1 ∪A2 ∪ · · · ∪As with each Ai an intersecting family,
how small can s be?

We clearly need at least n families (one for each singleton); and, equally
clearly, n families will suffice—for example, take Ai = {x ∈ PX : i ∈ x}.

What happens for r-sets? How many intersecting families do we need to
cover X(r)?

If r > n/2 then X(r) itself is intersecting. If r = n/2 then we can cover
by two intersecting families: for each x, select one of x and xc for A1 and the
other for A2. So we may assume that r < n/2.

We clearly need at least bn/rc as there exist bn/rc disjoint r-sets. More-
over, we need at least dn/re families, as each intersecting family has at most
r/n of all r-sets.

Can we achieve this? Well, we can achieve n − 2r + 2 as follows: put
Ai = {x ∈ X(r) : i ∈ x} for 1 ≤ i ≤ n−2r+1, and An−2r+2 = [n−2r+2, n](r).

Our aim is to prove Kneser’s conjecture, that we need at least n− 2r + 2
intersecting families to cover X(r). It turns out that the key tool will be the
Borsuk-Ulam Theorem:

Theorem 16 (Borsuk-Ulam theorem). Let f : Sn → Rn be continuous.
Then there exists x ∈ Sn with f(x) = f(−x).

14



For example, in the case n = 1, suppose we have a continuous f : S1 → R.
Put g(x) = f(x)− f(−x). If g(x) > 0 then g(−x) < 0. So if g is not identi-
cally zero then there is some x with g(x) > 0 and then by the Intermediate
Value Theorem there is some y with g(y) = 0.

The result for the case n = 2 is not quite intuitively obvious.

Remark. The Borsuk-Ulam theorem trivially implies that there is no contin-
uous injection from Sn to Rn, and so in particular Rn+1 is not homeomorphic
to Rn—this is the “Brouwer invariance of domain theorem” and is hard to
prove. (For example, why are R3 and R4 not homeomorphic?)

We say that f : Sn → Rn is antipodal if f(−x) = −f(x) for all x.

Theorem 17. The following are equivalent:

(i) the Borsuk-Ulam theorem;

(ii) if f : Sn → Rn is an antipodal map then there is some x ∈ Sn with
f(x) = 0;

(iii) there is no continuous antipodal map f : Sn → Sn−1.

Proof. (i) =⇒ (ii). If f : Sn → Rn is antipodal then, by (i), we have
f(x) = f(−x) for some x, whence f(x) = 0 (as f(−x) = −f(x)).

(ii) =⇒ (i). Given a continuous f : Sn → Rn, define g : Sn → Rn by
g(x) = f(x)− f(−x). Then g is antipodal, so g(x) = 0 for some x, i.e.
f(x) = f(−x).

(ii) =⇒ (iii). If f : Sn → Sn−1 then f(x) 6= 0 for all x ∈ Sn.

(iii) =⇒ (ii). Suppose f : Sn → Rn is antipodal and continuous with
f(x) 6= 0 for all x ∈ Sn. Define g : Sn → Sn−1 by g(x) = f(x)/‖f(x)‖
(where ‖x‖ =

√
x2

1 + x2
2 + · · ·+ x2

n). Then g is continuous and antipodal, a
contradiction.

Suppose A1, A2, . . . , Ak ⊂ Sn are closed sets that cover Sn with no Ai

containing an antipodal pair {x,−x}. How small can k be?
It is easy to obtain k = n + 2: take Ai = {x ∈ Sn : xi ≥ ε} for

1 ≤ i ≤ n + 1, and An+2 = {x ∈ Sn : xi ≤ ε for all i}. This works if
ε < 1/

√
n.

Theorem 18. The following are equivalent:

(i) the Borsuk-Ulam theorem;

(ii) if A1, A2, . . . , An+1 ⊂ Sn are closed sets covering Sn then some Ai

contains an antipodal pair {x,−x};
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(iii) if A1, A2, . . . , An+1 ⊂ Sn cover Sn with each Ai open or closed
then some Ai contains an antipodal pair.

Proof. (i) =⇒ (ii). Define f : Sn → Rn by

f(x) = (d(x, A1), d(x, A2), . . . , d(x, An)).

Then f is continuous so, by (i), there exists x ∈ Sn with d(x, Ai) = d(−x, Ai)
for all i with 1 ≤ i ≤ n. If x, −x ∈ An+1 then we are done. If not, we may
assume without loss of generality that x ∈ Ai for some i with 1 ≤ i ≤ n, so
d(x, Ai) = 0 whence d(−x, Ai) = 0 whence −x ∈ Ai (as Ai closed).

(ii) =⇒ (i). Suppose f : Sn → Sn−1 is continuous and antipodal. Let A1,
A2, . . . , An+1 be closed sets covering Sn−1 with no Ai containing an antipodal
pair. Then f−1(A1), f−1(A2), . . . , f−1(An+1) would be closed sets covering
Sn with none containing an antipodal pair, a contradiction.

(iii) =⇒ (ii). Trivial.

(i) =⇒ (iii). As for (i) =⇒ (ii), we get x ∈ Sn with d(x, Ai) = d(−x, Ai)
for all i with 1 ≤ i ≤ n. If x, −x ∈ An+1 then we are done. If not, we may
assume without loss of generality that x ∈ Ai for some i with 1 ≤ i ≤ n, so
d(x, Ai) = 0 whence d(−x, Ai) = 0.

If Ai is closed then −x ∈ Ai.
If Ai is open then we have {y ∈ Sn : d(x, y) < ε} ⊂ Ai for some ε > 0.

But some z with d(z,−x) < ε belongs to Ai (as d(−x, Ai) = 0).

Remark. The result of (ii) in Theorem 18 is sometimes called the Lusternik-
Schnirelman theorem.

We have Sn = {x ∈ Rn+1 : ‖x|| = 1}. We shall often regard Sn instead as
the set {x ∈ Rn+1 :

∑n+1
i=1 |xi| = 1}. This is permissible, as the map

θ :

{
x ∈ Rn+1 :

n+1∑
i=1

|xi| = 1

}
→ {x ∈ Rn+1 : ‖x‖ = 1}

x 7→ x

‖x‖

is a homeomorphism preserving antipodality.
Write Sn

+ = {x ∈ Sn : xn+1 ≥ 0} and Sn
− = {x ∈ Sn : xn+1 ≤ 0}.

Regarding Rn as a subset of Rn+1 in the obvious way, we have Sn
+∩Sn

− = Sn−1.
A k-simplex is Rn is a set of the form [x1, x2, . . . , xk+1], the convex hull

{
∑k+1

i=1 λixi : λi ≥ 0 for all i,
∑k+1

i=1 λi = 1} of points x1, x2, . . . , xk+1 in
general position (i.e. no (k − 1)-dimensional plane contains all of them).
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The faces of [x1, x2, . . . , xk+1] are all simplices of the form [xi1 , xi2 , . . . , xir ]
for any r.

A simplicial complex in Rn is a finite set F of simplices such that

1. if σ ∈ F and τ is a face of σ then τ ∈ F ; and

2. if σ, τ ∈ F and σ ∩ τ 6= ∅ then σ ∩ τ is a face of σ.

We say that F is a simplicial decomposition of F̄ =
⋃

F .
For example, we obtain a simplicial decomposition of Sn by taking

F = {[±ei1 ,±ei2 , . . . ,±eir ] : 1 ≤ r ≤ n + 1, i1 < i2 < · · · < ir}.

This is the standard simplicial decomposition of Sn, denoted by F n. It is a
regular simplicial decomposition of Sn, meaning

1. if σ ∈ F then −σ ∈ F ; and

2. for all k with 0 ≤ k ≤ n − 1, f contains a simplicial decomposition of
Sk.

Remark. It is easy to obtain other regular simplicial decompositions of Sn.
For example, if F is a regular simplicial decomposition of Sn then we get
another one by subdividing each simplex of F using the midpoints of its
faces. This is called the barycentric subdivision of F .

Let F and F ′ be simplicial complexes with V (F ) and V (F ′) their vertex-
sets (the sets of 0-simplices). A simplicial map from F to F ′ is a function
f : V (F ) → V (F ′) such that whenever {x1, x2, . . . , xd+1} is the vertex-set of
a simplex in F then {f(x1), f(x2), . . . , f(xd+1)} is the vertex-set of a simplex
in F ′. (Note that f(x1), f(x2), . . . , f(xd+1) need not be distinct.) We can
then extend f to a map from F̄ to F̄ ′ that maps simplices of F linearly to
simplices of F ′.

For example, the inclusion map ι : F k → F n (k ≤ n) is a simplicial map,
as is the antipodal map x 7→ −x from F n to F n.

We observe that a map f : V (F ) → V (F n) is simplicial if and only if no
1-simplex [x, y] ∈ F has f(x) = ei and f(y) = −ei for some i.

Let f : V (F ) → V (F n) be a simplical map, and let σ ∈ F be a k-
simplex. We shall say that σ is positive or positive alternating if we have
f(x) = [ei1 ,−ei2 , ei3 , . . . , (−1)keik+1

]. for some i1 < i2 < · · · < ik+1, and that
σ is negative if we have f(σ) = [−ei1 , ei2 ,−ei3 , . . . , (−1)k+1eik+1

] for some
i1 < i2 < · · · < ik+1. If σ is neither positive nor negative then we say that σ
is neutral.

The ‘combinatorial heart’ of the Borsuk-Ulam theorem is:
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Lemma 19. Let F be a regular simplicial decomposition of Sk, and let
f : F → F n be an antipodal simplicial map. Then f has a positive k-simplex.

Proof. Let p(f) denote the number of positive k-simplices in f . We shall
show, by induction on k, that p(f) is odd.

The case k = 0 is easy, for S0 is two antipodal points and so exactly one
maps to an ei.

So suppose k > 0. Then σ is positive precisely when −σ is negative, so
p(f) is the number of non-neutral k-simplices in Sk

+.
How many positive (k−1)-simplices does a k-simplex σ ⊂ Sk

+ contain? If
σ is non-neutral then it contains one positive (k− 1)-simplex. If σ is neutral
then it contains either two or no positive (k − 1)-simplices.

How many k-simplices in Sk
+ contain a fixed positive (k− 1)-simplex τ in

Sk
+? If τ 6⊂ Sk−1 then two, and if τ ⊂ Sk−1 then one. Thus, modulo 2, p(f) is

the number of positive (k−1)-simplices in Sk−1, i.e. p(f) ≡ p(f |Sk−1
) (mod 2).

Corollary 20. Let F be a regular simplicial decomposition of Sn+1. Then
there is no antipodal simplicial map from F to F n.

Proof. No (n + 1)-simplex can be positive.

Proof (of Theorem 16). By Theorem 18, it is enough to show that if A1, A2,
. . . , An+1 is a closed cover of Sn then there is some i with Ai containing an
antipodal pair.

So suppse that A1, A2, . . . , An+1 is a closed cover of Sn with no Ai

containing an antipodal pair. Then A1, −A1, A2, −A2, . . . , An, −An must
cover Sn, as if they miss x then they also miss −x, whence x, −x ∈ An+1, a
contradiction. Let ε = min{d(A1,−A1), d(A2,−A2), . . . , d(An,−An)}, and
let F be a regular simplicial decomposition of Sn in which every simplex has
diameter less than ε (for example, we can take F to be an iterated barycentric
subdivision of F n). Given x ∈ Sn, set f(x) = (−1)res where (−1)rAs is the
first of A1, −A1, A2, −A2, . . . , An, −An that contains x. This f : F → F n−1

is simplicial (as no [x, y] ∈ F has x ∈ Ai, y ∈ −Ai by choice of ε) and
antipodal, a contradiction.

Theorem 21 (Kneser’s conjecture, proved by Lovász). Let r < n/2
and let A1, A2, . . . , Ad be a collection of intersecting families covering [n](r).
Then d ≥ n− 2r + 2.

Proof. Suppose d = n − 2r + 1. Let x1, x2, . . . , xn be points in general
position in Sd ⊂ Rd+1 (i.e. no d-dimensional subspace through the origin
contains d + 1 of the xi). Identify [n] with {x1, x2, . . . , xn}. For x ∈ Sd,
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write Hx = {y ∈ Sd : 〈x, y〉 > 0}. For 1 ≤ i ≤ d, let Ci be the set of x ∈ Sn

with Hx containing an r-set from Ai. Let Cd+1 = Sd − (C1 ∪ C2 ∪ · · · ∪ Cd),
so that Cd+1 is the set of x ∈ Sd with Hx containing at most r − 1 of x1,
x2,. . . , xn. Then C1, C2, . . . , Cd are open and Cd+1 is closed, so some Ci

contains an antipodal pair {x,−x}. We cannot have 1 ≤ i ≤ d since Hx

and H−x are disjoint whence Ai would contain two disjoint r-sets. Thus
i = d + 1, so Hx ∪H−x contains at most 2(r − 1) of x1, x2, . . . , xn, whence
{y ∈ Sd : 〈x, y〉 = 0} contains at least n− 2(r− 1) = d + 1 of x1, x2, . . . , xn,
a contradiction.

The Kneser graph K(n, r) (r < n/2) is the graph on vertex set [n](r) with
x joined to y if x ∩ y = ∅. For example K(5, 2) is the Petersen graph. So an
intersecting family in [n](r) is an independent set in K(n, r). And, for any
graph G, colouring G with k colours is equivalent to partitioning G into k
independent sets. So Theorem 21 can be rephrased as:

Theorem 22. χ(K(n, r)) = n− 2r + 2.

Note. The chromatic number χ is large even though there are huge indepen-
dent sets (containing n/r of all vertices).

2.3 Modular intersection theorems

If A ⊂ [n](r) is intersecting, i.e. |x ∩ y| 6= 0 for x, y ∈ A, we know that
|A| ≤

(
n−1
r−1

)
. What if, instead, we do not allow |x ∩ y| ≡ 0 modulo some

number?
Say, for example, r is odd and A ⊂ [n](r) has |x ∩ y| odd for all x, y ∈ A.

We can achieve |A| =
(b(n−1)/2c

(r−1)/2

)
by taking A to consist of all sets containing

1 and (r − 1)/2 of the pairs 23, 45, . . . (finishing at (n− 1)n if n is odd and
(n− 2)(n− 1) if n is even).

How about r odd, A ⊂ [n](r) such that |x ∩ y| is even for all x, y ∈ A
with x 6= y? We could take {x ∈ [n](r) : 1, 2, . . . , r − 1 ∈ x}, which has
|A| = n− r + 1. Amazingly:

Theorem 23. Let r be odd, and let A ⊂ [n](r) have |x ∩ y| even for all x,
y ∈ A with x 6= y. Then |A| ≤ n.

Proof. Our main idea is to write down |A| linearly independent points in an
n-dimensional vector space.

View Qn as Zn
2 by identifying x ∈ P [n] with x̄ ∈ Zn

2 where

x̄i =

{
1 if i ∈ x
0 if i 6∈ x

.
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For example, if x = {1, 3, 5} then x̄ = (1, 0, 1, 0, 1, 0, 0, . . . ); this is simply
the usual identification.

For x ∈ A, we have 〈x̄, x̄〉 = 1 (as |x| is odd). For x, y ∈ A with x 6= y,
we have 〈x̄, ȳ〉 = 0 (as |x ∩ y| is even). So the set {x̄ : x ∈ A} is linearly
independent over Z2: if

∑
x∈A λxx̄ = 0 then, by taking the inner product

with x̄, we see that λx = 0 for each x ∈ A.

What happens if r is even?
For A ⊂ [n](r) with |x ∩ y| even for all x, y ∈ A, we can get A large, for

example |A| =
(bn/2c

r/2

)
. For A ⊂ [n](r) with |x ∩ y| odd for all x, y ∈ A with

x 6= y, we must have |A| ≤ n + 1, because we may set A′ ⊂ [n + 1](r+1) to be
{x ∪ {n + 1} : x ∈ A} and apply Theorem 23.

So our conclusion is that to get very small bounds on |A| for A ⊂ [n](r)

we should forbid |x ∩ y| ≡ r (mod 2) for x, y ∈ A with x 6= y. Does this
generalize?

We shall now show that ‘s allowed values for |x ∩ y| modulo p implies
|A| ≤

(
n
s

)
’.

Theorem 24 (Frankl, Wilson). Let p be a prime. Let A ⊂ [n](r) be such
that there are some integers λ1, λ2, . . . , λs, no λi ≡ r (mod p), for which
given any x, y ∈ A with x 6= y, we have |x ∩ y| ≡ λi (mod p) for some i.
Then |A| ≤

(
n
s

)
. In particular, if A ⊂ [n](r) satisfies |x ∩ y| 6≡ r (mod p) for

all distinct x, y ∈ A, then |A| ≤
(

n
p−1

)
.

Remarks. 1.
(

n
s

)
is a polynomial independent of r.

2. In general, we cannot improve on
(

n
s

)
; for example, we can take

A = [n](s) if r = s. If r > s, we can take A = {x ∈ [n](r) : 1, 2, . . . , r − s ∈ x};
this gives |A| =

(
n−r+s

s

)
, which is very close to

(
n
s

)
(for fixed r).

3. If we allow |x ∩ y| ≡ r (mod p) then there is no polynomial bound:
taking r = a + λp (0 ≤ a < p), we can obtain |A| =

(b(n−a)/pc
λ

)
(by taking A

to consist of all sets containing the points 1, 2, . . . , a together with λ of the
blocks [a + 1, a + p], [a + p + 1, a + 2p], . . . , [a + (λ− 1)p + 1, a + λp]—this
grows with r.

Proof. We seek a vector space V of dimension at most
(

n
s

)
and |A| linearly

independent vectors in V . We may assume without loss of generality that
r > s.

For i < j, let N(i, j) be the
(

n
i

)
×

(
n
j

)
matrix, with rows indexed by [n](i)

and columns indexed by [n](j), given by

N(i, j)xy =

{
1 if x ⊂ y
0 otherwise

.
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So N(s, r) has
(

n
s

)
rows. Let V be their linear span over R. Then we have

dim V ≤
(

n
s

)
.

Consider N(i, s)N(s, r) for any 0 ≤ i ≤ s. Its rows belong to V . Also,

(N(i, s)N(s, r))xy =

{ (
r−i
s−i

)
x ⊂ y

0 otherwise

(as N(i, s)N(s, r) is simply the number of s-sets z with x ⊂ z ⊂ y). So
N(i, s)N(s, r) =

(
r−i
s−i

)
N(i, r), whence N(i, r) has rows in V .

Now consider M(i) = N(i, r)T N(i, r). It has rows in V . But M(i)xy is

the number of i-sets z with z ⊂ x and z ⊂ y, i.e. M(i)xy =
(|x∩y|

i

)
. ‘So we

can get any polynomial in |x ∩ y|.’
Write the polynomial (X−λ1)(X−λ2) · · · (X−λs) as

∑s
i=0 ai

(
X
i

)
, where

a0, a1, . . . , as ∈ Z; this is possible as, for each i, i!
(

X
i

)
is monic. Let

M =
∑s

i=0 aiM(i). All its rows are in V . Then

Mxy is

{
0 (mod p) when |x ∩ y| ≡ λi (mod p) for some i = 1, 2, . . . , s
6≡ 0 (mod p) otherwise

.

Consider the submatrix whose rows and columns are indexed by A. This
submatrix has |A| rows, which are linearly independent over Zp and so are
certainly linearly independent over R. Hence we have |A| linearly indepen-
dent rows of M and so |A| ≤

(
n
s

)
.

Remark. The theorem fails if p is not prime. Grolmusz constructed, for each
n, a value r ≡ 0 (mod 6) and a set system |A| ⊂ [n](r) such that for any
distinct x, y ∈ A, we have |x ∩ y| 6≡ 0 (mod 6), but with |A| ≥ nc log n/ log log n

(for some c). There is a similar construction for any non-prime modulus.

If we have some half-size sets, we expect the intersections to have size around
n/4, but they are very unlikely to have size exactly n/4. Nevertheless:

Corollary 25. Let p be prime and let A ⊂ [4p](2p) with |x ∩ y| 6= p for any
distinct x, y ∈ A. Then |A| ≤ 2

(
4p

p−1

)
.

Remark. Note that this bound is very small:
(

n
n/4

)
≤ 4e−n/32 · 2n (whereas(

n
n/2

)
∼ (c/

√
n) · 2n).

Proof. By halving the size of A if necessary, we may assume that there is no
pair {x, xc} ⊂ A. Then if x, y ∈ A with x 6= y we have |x ∩ y| 6= 0, p, so
|x ∩ y| 6≡ 0 (mod p), and so |A| ≤

(
4p

p−1

)
.
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2.4 Borsuk’s Conjecture

Suppose we have S ⊂ Rn of diameter d. How many pieces do we need to
break S into so that each piece has diameter strictly less than d?

For example, in R2, taking the vertices of an equilateral triangle shows
that we need at least 3 pieces. Similarly, in Rn, a regular n-simplex shows
that we need at least n + 1 pieces.

Borsuk conjectured that n + 1 pieces suffice.
Borsuk’s conjecture is true for n = 1, 2, 3, and for S smooth, and for S

symmetric. However, it is massively false.

Theorem 26 (Kahn, Kalai). For any n, there is a set S ⊂ Rn such that
to partition S into pieces of smaller diameter requires at least c

√
n pieces (for

some constant c > 1).

Notes. 1. Our proof will show that Borsuk’s conjecture is false for n around
2000.

2. We shall prove Theorem 26 for n of the form
(
4p
2

)
for p prime. We are

then done as, for example, for all n there is a prime p with n/2 ≤ p ≤ n.

Proof. We shall construct S ⊂ Qn ⊂ Rn with S ⊂ [n](r) for some r.
For x, y ∈ [n](r), we have d(x, y)2 = 2(r − |x ∩ y|). So d(x, y) increases

as |x ∩ y| decreases. So we seek S ⊂ [n](r), say with minimum intersection
size k, but such that any subset of S with minimum intersection size greater
than k is much smaller than S.

Identify [n] with [4p](2)—the edges of K4p, the complete graph on [4p].
For each x ∈ [4p](2p), let Gx be the complete bipartite graph on vertex-classes
x, xc. Let S = {Gx : x ∈ [4p](2p)} ⊂ [n](4p2). Then |S| = 1

2

(
4p
2p

)
.

Now, |Gx∩Gy| = k2 +(2p−k)2, where k = |x∩y|, which is minimized at
k = p. Thus if we have a piece of S, say {Gx : x ∈ A}, of diameter smaller
than the diameter of S, then we cannot have |x∩y| = p for any x, y ∈ A. So
|A| ≤

(
4p

2p−1

)
by Corollary 25. Thus the number of pieces needed is at least

1
2

(
4p
2p

)(
4p

p−1

) ≥
c · 24p/

√
p

4 · e−p/8 · 24p
(for some constant c)

≥ c′p (for some constant c′ > 1)

≥ c′′
√

n (for some constant c′′ > 1).
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3 Projections

Let A ⊂ PX and let Y ⊂ X. The projection or trace of A on Y is
A|Y = {x ∩ Y : x ∈ A}; thus A|Y ⊂ PY —‘project A onto the coordinates
corresponding to Y ’.

Say A covers or shatters Y if A|Y = PY . The trace number of A is
tr A = max{|Y | : Y shattered by A}.

Given |A|, how small can tr A be? Equivalently, how large can |A| be
given tr A < k?

We could take A = X(<k). This clearly does not shatter any k-set (as if
|Y | = k then Y 6∈ A|Y ). Our aim is to show that we cannot do better than
|X(<k)|.

The main idea is that this is trivial if A is a down-set (i.e. if whenever
x ∈ A and y ⊂ x then also y ∈ A), since a down-set A with tr A < k must
have A ⊂ X(<k).

For A ⊂ PX and 1 ≤ i ≤ n, the i-down-compression of A is the set-
system Di(A) ⊂ PX defined by

Di(A)+ = A+ ∩ A−,

Di(A)− = A+ ∪ A−,

i.e. we “compress A downwards in direction i”. Note that |Di(A)| = |A|. We
say that A is i-down-compressed if Di(A) = A.

Remark. Di is a 1-dimensional compression.

Theorem 27 (Sauer-Shelah Lemma). If A ⊂ PX with |A| ≥ |X(<k)|+ 1
then tr A ≥ k.

Proof. Claim. For any A ⊂ PX and 1 ≤ i ≤ n, we have tr Di(A) ≤ tr A.

Proof of claim. Write A′ for Di(A). Suppose A′ shatters y; we shall show
that A also shatters y.

If i 6∈ Y then A′|Y = A|Y , and so we are done.
So suppose i ∈ Y . Then for z ⊂ Y with i 6∈ z we have z ∪ {i} ∈ A′|Y , so

there exists z ∈ A′ with x ∩ Y = z ∪ {i}. But then i ∈ x, so x, x− {i} ∈ A
(by definition of A′). Thus z ∪ {i}, z ∈ A|Y . Hence A|Y = PY . //

Set B = Dn(Dn−1(Dn−2(. . . (D1(A)) . . .))). Then |B| = |A|, tr B ≤ tr A,
and B is a down-set. But |B| > |X(<k)|, so B contains some k-set, whence
tr B ≥ k.

In general, if we have upper bounds on some projections |A|Yi|, do we
get upper bounds on |A|? For example, the Sauer-Shelah lemma says that if
|A|Y | ≤ 2k − 1 for all k-sets Y , then |A| ≤ |X(<k)|.
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A brick or box in Rn is a set of the form [a1, b1] × [a2, b2] × · · · × [an, bn]
where ai ≤ bi for all i. A body S ⊂ Rn is a finite union of bricks. The volume
of S is written |S| or m(S).

Remarks. 1. In fact, everything will go through for a general compact
S ⊂ Rn.

2. A set system A ⊂ Qn gives a body

S =
⋃
x∈A

[x1, x1 + 1]× [x2, x2 + 1]× · · · × [xn, xn + 1]

with |A| = m(S).

For a body S ⊂ Rn and Y ⊂ [n], the projection of S onto the span of
{ei : i ∈ Y } is denoted by SY . For example, if S ⊂ R3 then S1 is the
projection of S onto the x-axis:

S1 = {x1 ∈ R : (x1, x2, x3) ∈ S for some x2, x3 ∈ R};

and S12 is the projection of S onto the xy-plane:

S12 = {(x1, x2) ∈ R2 : (x1, x2, x3) ∈ S for some x3 ∈ R}.

We have that SA ⊂ R|A|.
What bounds on |S| do we get given bounds on some SY ?
For example, let S be a body in R3. Then trivially |S| ≤ |S1||S2||S3| as

S ⊂ S1 × S2 × S3. Similarly, |S| ≤ |S12||S3| as S ⊂ S12 × S3.
What if |S12| and |S13| are known? This tells us nothing—for example,

consider S = [0, 1/n]× [0, n]× [0, n].
What if |S12|, |S13| and |S23| are known?

Proposition 28. Let S be a body in R3. Then |S|2 ≤ |S12||S13||S23|.

Remark. We have equality if S is a brick.

For S ⊂ Rn, the n-sections are the sets S(x) ⊂ Rn−1 for each x ∈ R defined
by

S(X) = {(x1, x2, . . . , xn−1) ∈ Rn−1 : (x1, x2, . . . , xn−1, x) ∈ S}.

Proof (of Proposition 28). Consider first the case when each 3-section is a
square, i.e. when S(x) = [0, f(x)] × [0, f(x)]. Then |S12| = M2, where
M = maxx∈R f(x). Also, |S13| = |S23| =

∫
f(x) dx, and |S| =

∫
f(x)2 dx.

Thus we want: (∫
f(x)2 dx

)2

≤ M2

(∫
f(x) dx

)2

.
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But
∫

f(x)2 dx ≤ M
∫

f(x) dx as f(x) ≤ M for all x, so this indeed holds.
For the general case, define a body T ⊂ R3 by

T (x) = [0,
√
|S(x)|]× [0,

√
|S(x)|].

Then |T | = |S| and |T12| ≤ |S12| (as |T12| = maxx∈R |T (x)|).
Let f(x) = |S(x)1| and g(x) = |S(x)2|. Then

|T23| = |T13| =
∫ √

|S(x)| dx ≤
∫ √

f(x)g(x) dx.

Also, |S13| =
∫

f(x) dx and |S23| =
∫

g(x) dx. So we need(∫ √
f(x)g(x) dx

)2

≤
(∫

f(x) dx

) (∫
g(x) dx

)
,

i.e. ∫ √
f(x)

√
g(x) dx ≤

(∫
f(x) dx

)1/2 (∫
g(x) dx

)1/2

,

which is just the Cauchy-Schwarz inequality.

We say that sets Y1, Y2, . . . , Yr cover [n] if
⋃r

j=1 Yj = [n]. They are a
k-uniform cover if each i ∈ [n] belongs to exactly k of the Yj. For example,
for n = 3: {1}, {2}, {3} is a 1-uniform cover, as is {1}, {2, 3}; {1, 2}, {1, 3},
{2, 3} is a 2-uniform cover; {1, 2}, {1, 3} is not uniform.

Our aim is to show that if Y1, Y2, . . . , Yr form a k-uniform cover then
|S|k ≤ |SY1||SY2| · · · |SYr |.

Let C = {Y1, Y2, . . . , Yr} be a k-uniform cover of [r]. Note that C is a
multiset, i.e. repetitions are allowed—for example, {12, 12, 3, 3} is a 2-uniform
cover of [3]. Put C− = {Yi : n 6∈ Yi} and C+ = {Yi − n : n ∈ Yi} (as usual),
so C− ∪ C+ is a k-uniform cover of [n− 1].

Note that if n ∈ Y then |SY | =
∫
|S(x)Y−n|dx (e.g. if S ⊂ R3 then

|S13| =
∫
|S(x)1|dx), and this holds even if Y = [n]. Also, if n 6∈ Y then

|S(x)Y | ≤ |SY | for all x (e.g. |S12| ≥ |S(x)12| for all x).
In the proof of Proposition 28 we used the Cauchy-Schwarz inequality:∫

fg ≤
(∫

f 2

)1/2 (∫
g2

)1/2

.

Here, we’ll need Hölder’s inequality:∫
fg ≤

(∫
|f |p

)1/p (∫
|g|q

)1/q
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for (1/p) + (1/q) = 1, whence, iterating, we get∫
f1f2 · · · fk ≤

(∫
|f1|k

)1/k (∫
|f2|k

)1/k

· · ·
(∫

|f1|k
)1/k

.

Theorem 29 (Uniform covers theorem). Let S be a body in Rn, and let
C be a k-uniform cover of [n]. Then

|S|k ≤
∏
Y ∈C

|SY |.

Proof. The proof is by induction on n; the case n = 1 is trivial.
Given a body S ⊂ Rn for n ≥ 2, we have

|S| =

∫
|S(x)| dx

≤
∫ ∏

Y ∈C+

|S(x)Y |1/k
∏

Y ∈C−

|S(x)Y |1/k dx

≤
∏

Y ∈C−

|SY |1/k

∫ ∏
Y ∈C+

|S(x)Y |1/k dx

≤
∏

Y ∈C−

|SY |1/k
∏

Y ∈C+

(∫
|S(x)Y | dx

)1/k

=
∏

Y ∈C−

|SY |1/k
∏

Y ∈C+

|SY ∪n|1/k

=
∏
Y ∈C

|SY |1/k.

Corollary 30 (Loomis-Whitney theorem). Let S be a body in Rn. Then

|S|n−1 ≤
n∏

i=1

|S[n]−i|.

Proof. The family [n]− 1, [n]− 2, . . . , [n]− n is an (n− 1)-uniform cover of
[n].

Remark. The case n = 3 of the Loomis-Whitney theorem is Proposition 28.

Corollary 31. Let A ⊂ Qn, and let C be a k-uniform cover of [n]. Then

|A|k ≤
∏
Y ∈C

|A|Y |.
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In particular, if C is a uniform cover with |A|Y | ≤ 2c|Y | for all y ∈ C then
|A| ≤ 2cn.

Proof. For the first part, consider the body

S =
⋃
x∈A

[x1, x1 + 1]× [x2, x2 + 1]× · · · × [xn, xn + 1].

Then m(S) = |A| and m(S|Y ) = |A|Y | for all Y .
For the second part, suppose that C is a k-cover. Then

|A|k ≤
∏
Y ∈C

|A|Y | ≤
∏
Y ∈C

2c|Y | = 2c
∑

Y ∈C |Y | = 2ckn.

Our next aim is to prove the ‘Bollobás-Thomason box theorem’, that for
any body S there is a box B with |B| = |S| and |BY | ≤ |SY | for all Y .
This theorem has no right to be true. For example, we can then read off all
possible projection theorems—just check them for boxes.

A uniform cover C of [n] is irreducible if we cannot write C = C ′ ∪ C ′′
where C ′ and C ′′ are uniform covers. For example, if n = 3 then 12, 13, 23
form an irreducible cover but 1, 2, 3, 12, 13, 23 do not.

Lemma 32. There are only finitely many irreducible uniform covers of [n].

Proof. Suppose C1, C2, C3, . . . , are distinct irreducible covers. List P [n] as
E1, E2, . . . , E2n . Choose a subsequence Ci1 , Ci2 , Ci3 on which the number
of copies of E1 is increasing (not necessarily strictly). Repeating for E2,
then E3, then . . . , then E2n , we obtain a subsequence Cj1 , Cj2 , Cj3 , . . . , on
which the number of copies of Ei is increasing for all i. But then Cj2 is not
irreducible (as Cj2 ⊃ Cj1), a contradiction.

Theorem 33 (Bollobás-Thomason box theorem). Let S be a (non-
empty) body in Rn. Then there is a box B ∈ Rn with |B| = |S| and
|BY | ≤ |SY | for all Y ⊂ [n].

Proof. We may assume without loss of generality that |S| > 0 and n ≥ 2.
Take real variables xY for each Y ∈ P [n] with Y 6= ∅, [n], with constraints:

(i) 0 ≤ xY ≤ |SY | for all Y ;

(ii) xY ≤
∏

i∈Y xi for all Y with |Y | ≥ 2; and

(iii) |S|k ≤
∏

Y ∈C xY for each k-uniform irreducible cover C 6= {[n]}.
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Note that if (iii) is satisfied for all irreducible covers, then it is satisfied for
all uniform covers. We denote the condition (iii) for all uniform covers by
(iii)′. We ‘want a minimal solution’.

We have a solution, namely xY = |SY | for all Y . The solution set is
compact, so there exists a solution with minimal

∑
Y xY . We must have

xY > 0 for all Y , because every Y occurs in some uniform cover, whence
(iii)′ gives |xY | > 0 (as |S| > 0).

Claim. For 1 ≤ i ≤ n, xi appears on the RHS of an inequality from (iii) in
which equality holds.

Proof of claim. We must have xi on the RHS of some constraint for
which equality holds, as otherwise we could decrease xi (as the set of con-
straints is finite). It is not an inequality from (i) as (xi > 0). If it is an
inequality from (iii) then we are done. If it is an inequality from (ii), then
xY =

∏
j∈Y xj for some Y with {i} ∈ Y . We must have xY on the RHS of an

inequality that is an equality (by minimality of xY ), which must be of type
(iii). So |S|k =

∏
Z∈C xZ , for some irreducible cover C with Y ∈ C. Then

C − {Y } ∪ {{j} : j ∈ Y } is also a uniform cover with equality in (iii)′, and
{i} belongs to this cover. Now take any irreducible cover C ′ from this cover
which includes {i}. //

Thus for each i, we have a uniform cover Ci with equality in (iii) and with
{i} ∈ Ci. Consider C =

⋃n
i=1 Ci. Then C is a uniform cover with equality in

(iii)′, and {1}, {2}, . . . , {n} ∈ C. Put C ′ = C − {{1}, {2}, . . . , {n}}. Then
C ′ is also a uniform cover, say a k-cover, and we have |S|k ≤

∏
Y ∈C′ xY and

|S|k+1 =
∏

Y ∈C′ xY

∏n
i=1 xi. Thus |S| =

∏n
i=1 xi. Now for any Y , consider the

uniform cover {Y, Y c} of [n]. We have

|S| ≤ xY xY c ≤
( ∏

i∈Y

xi

)( ∏
i∈Y c

xi

)
= |S|,

so xY =
∏

i∈Y xi. Thus B = [0, x1]× [0, x2]× · · · × [0, xn] will do.

3.1 Intersecting families of graphs

What happens to intersecting families if we have more structure in our ground
set?

One natural example is to take our ground set to be [n](2), the edges of

the complete graph on [n]. There are a total of 2(n
2) graphs on [n].

How many graphs can we find such that any two intersect in something
containing P2, the path of length 2? We want to find max |A| subject to

G, H ∈ A =⇒ G ∩ H ⊃ P2. Clearly |A| ≤ (1/2)2(n
2) (as we cannot have
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both G ∈ A and Gc ∈ A for any graph G). We can get |A| ∼ (1/2)2(n
2) by

fixing x ∈ [n] and taking

A =
{

G : dG(x) ≥ n

2
+ 1

}
;

this has

|A| ∼
(

1

2
− c√

n

)
2(n

2).

Similarly, we can get |A| ∼ (1/2)2(n
2) for G ∩H containing a star.

Conjecture 34. If G, H ∈ A =⇒ G ∩ H contains a triangle, then

|A| ≤ (1/8)2(n
2).

Note that we can obtain |A| = (1/8)2(n
2) by taking A to consist of all

graphs G which contain some fixed triangle.

Theorem 35. Let A ⊂ P
(
[n](2)

)
be such that if G, H ∈ A then G ∩ H

contains a triangle. Then |A| ≤ (1/4)2(n
2)

Proof. We want |A| ≤ 2(n
2)−2 = 2(n

2)(1−2/(n
2)), so it is enough to find a uniform

cover C of [n](2) such that for all Y ∈ C we have |A ∩ Y | ≤ 2c|Y |, where
c = 1− 4/(n(n− 1)).

For n even, take all Y of the form B(2) ∪ (Bc)(2) with |B| = |A|/2. This
is clearly a uniform cover. Now for any such Y , G ∩H is not bipartite and
so G and H meet on Y . Thus A|Y is intersecting, whence

|A|Y | ≤ (1/2)2|Y | = 22(n/2
2 )−1 = 22(n/2

2 )(1−1/(2(n/2
2 ))),

so we need

1− 1

2
(

n/2
2

) ≤ 1− 4

n(n− 1)
.

For n odd, we do the same thing but with |B| = (n− 1)/2.
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