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1 Isoperimetric Inequalities

“Given the size of a set, how small can its boundary be?” For example,
e in R?, circular discs are best;
e in R3, spherical balls are best;
e in S? C R?, ‘circular caps’ are best.

For a fixed graph G and any set A C V(G), the boundary of A is the set
b(A)={x € V(G) — A:x ~y for some y € A}.

Given |A|, how do we minimize |b(A)|? An isoperimetric inequality on G is
an inequality of the form

ACV(G),[A[=m = [b(A)| = f(m)

for some function f. Equivalently, we wish to minimize the neighbourhood
N(A) of A, where N(A) = AUb(A).

A good candidate for a set with small boundary is a ball, i.e. a set of the
form B(z,r) = {y € G : d(z,y) < r} where d(x,y) denotes the usual graph
distance (the length of a shortest z-y path).

1.1 The Discrete Cube

Let X be a set. A set system on X is a collection A C PX of subsets of X.
Usually we take X = [n] = {1,2,...,n}. An example of a set system on X
is X" ={ACX:|Al=r}.

Make PX into a graph by joining A to B if B = AU {i} for some i ¢ A
(or vice versa). This graph is the discrete cube Q.
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If we identify each A € @,, with a 01-sequence of length n (for example, in
()3 we make the identification () < 000, {1} < 100, {2,3} < 011 etc.) then
@, is identified with the unit cube in R”. Then X (the family of all r-sets)
is just a ‘slice’ through @,

Which sets in @),, have the smallest boundaries? In general, it seems that
balls X&) = B((),r) = X@Q U XM U... U X are best. But what if |A] is
not the exact size of a ball?

A little experimentation suggests that if [ X(<")| < |A] < | X(=7)| then it is
best to take A to be X (<" together with an initial segment of the lex order
on X, (The lezicographic or lex or dictionary order on X (") is defined
by: if x = {a1,a9,...,a,} (a1 < az < -+ < a,) and y = {by,b2,...,b.}
(by < by <---<b)then z < yif a3 < by, or ag = by and ay < by, or ... or
a; =by, a3 =109, ..., a,_1 = b,_1 and a, < b,. Equivalently, x < y if a, < b,
where s = min{¢ : a; # b;}. For example, the lexicographic order on [4]® is
12, 13, 14, 23, 24, 34.)

The simplicial ordering on @, is defined by x < y if |z| < |y| or |z| = |y|
and z < y in lex. For example,

e on Q: 0, 1,2, 3,12, 13, 23, 123;

e on Qs 0, 1,2 3, 4,5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124,
125, 134, 135, 145, 234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345,
12345.

Theorem 1 (Harper’s Theorem). Let A C Q,, and let C' be the first |A|
points of Q,, in the simplicial order. Then |N(A)| > |N(C)|. In particular,

if Al 23270 () then [IN(A)| = 37150 (5).

Remarks. A Hamming ball is a set A with X< c A ¢ X" for some r. If
we knew A was a Hamming ball then we would be done by Kruskal-Katona
(which says that to minimize the upper shadow 0% A of a family A ¢ X,
where 0t A = {y € XU+D . y D x for some x € A}, take A to be an initial
segment of lex). And, conversely, Theorem 1 implies Kruskal-Katona: given
A C X apply the theorem to X (<" U A.

The main idea is that of ‘compressions’. We try to transform A — A’ such
that

o [A'|=]A[;
o [N(A)| <|N(A)]; and
e A’ looks more like C than A did.



Ideally, we transform repeatedly A — A" — A” — ... ending up with a
family B so similar to C' that we can see directly that |N(B)| > |N(C)|.

For A C @, and 1 < ¢ < n, the i-sections of A are the set-systems
Ay =AY and A_ = AY in P(X — i) given by

Ay ={reP(X —i):zUiec A}

and
A ={zeP(X —i):ze A}

For example, in Q, the family A = {12,13,23,124, 134} has A®) = {12,124}
and AP = {1,2,14}.

The i-compression or codimension-1 i-compression of A is the system
Ci(A) C @, defined by |C;(A) 4| = |AL], |Ci(A)_| = |A_], and C;(A); and
C;(A)_ are initial segments of the simplicial order on P(X — i). Note that
|C;(A)] = |A|. Say A C Q,, is i-compressed if C;(A) = A.

Proof (of Theorem 1). The proof is by induction on n; the case n = 1 is
trivial.

Claim. If A C @), and 1 < ¢ < n then |[N(C;(A))| < |N(A4)|.
Proof of claim. Write B for C;(A). We have

IN(A)| = [N(A1) U A_| + [N(A_) U Ay

and
IN(B)| = IN(B;) U B_| +|N(B_) U By,

Now |B_| = |A_| and |N(By)| < |[N(A1)| (by the induction hypothesis).
Also, B_ is an initial segment of the simplicial order. And so is N(By)
(because the neighbourhood of an initial segment of the simplicial order is
itself an initial segment of the simplicial order).

Hence B_ and N(B,) are nested (i.e. one is contained in the other),

and so we have |[N(B;) U B_| < |[N(A+) U A_|. Similarly, we also have
IN(BL)UB,| < IN(A)UA,l. //
Define a sequence Ay, Aj, Ay, ... C @, as follows: set Ag = A. Having
defined Ay, Ay, ..., Ag, if Ag is i-compressed for all ¢ then stop the se-
quence with Aj,. Otherwise, there exists ¢ with A; not i-compressed; set
Ag1 = Ci(Ag) and continue. This process must terminate since > ., f(z)
(where f(x) denotes the position of x in the simplicial order on @,) is a
decreasing function of k. Thus we have B C @),, such that

o |Bl=Al;



o [N(B)| <[N(A)]; and
e B is i-compressed for all 7.

So, must a set that is ¢-compressed for all ¢ be an initial segment of the
simplicial order? (If so then we are done, as B = (.) Unfortunately, the
answer is no; for example, take {0,1,2,12} C Q3. However, if B C @, is
1-compressed for all ¢ and is not an initial segment of the simplicial order
then FITHER n is odd, say n = 2k + 1, and

B=XEPNu{12...(k+ 1D} —{(k+2)(k+3)...2k+1)}
OR n is even, say n = 2k, and
B=XDUu{zeXx® 1eX}u{23.. . (k+1)}—{1(k+2)(k+3)...(2k)}

(by Lemma 2 below).
Having proved Lemma 2, the proof of Theorem 1 will be complete as in
each case it is clear that |[N(B)| > |[N(C)]. O

Lemma 2. Let B C Q,, be i-compressed for all i but not an initial segment
of the simplicial order. Then EITHER n is odd, say n =2k + 1, and

B=XEu{12...(k+1D}—{(k+2)(k+3)...2k+1)}
OR n is even, say n = 2k, and
B=XPu{zeXx® . 1eXxju{23.. . (k+1)}—{1(k+2)(k+3)...(2k)}.

Proof. As B is not an initial segment of the simplicial order, we have some
r<ywithex ¢ Bandy € B. Fix 1 <¢ <n: can we have 1 € x and ¢ € y?
No, as B is i-compressed. Similarly, we cannot have ¢ ¢ x and ¢ € y. So
1 € x/Ay for any 7. Thus y = x°.

So for each y € B, at most one x < y has x ¢ B (namely x = y°); and
for each x ¢ B, at most one y > x has y € B (namely y = 2¢). Thus
B={z€@Q,:z<y}—{x} for some y, where z is the predecessor of y and
x = y°. Which x € @),, have x¢ the successor of 7 If n is odd then x must
be the last point of X (S(»=1/2) If  is even then z must be the last point of
X ®/2) containing a 1. O

Remarks. 1. We can also prove Theorem 1 by generalizing UV -compressions
(allowing |U] < |V]).

2. This proof also proves the Kruskal-Katona theorem directly (if de-
sired).

For A € @Q, and t = 0, 1, 2, ..., the t-neighbourhood of A is the set
Agy ={x € Qy : d(z, A) < t}. So, for example, Ay is just N(A).
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Corollary 3. Let A C Q, with |A] > Y0 (7). Then for any t = 0, 1,
2, ..., we have |Ayy| > 3770 (7).

(2

Proof. If [Ag| > S04 (1) then [Agrn)| > Y020 (7) by Harper’s Theorem,

=0 \4
so we are done by induction. O]

To see the strength of Corollary 3, we need an estimate on the tail of the
binomial distribution.

Lemma 4. For 0 < e < 1/4 we have
La/2=e)m) 1
> () < Semenign,
— i €
Note. This is an exponentially small function of 2" (for ¢ fixed).

Proof. We have (,",) = (} so for k < (1/2 —¢)n we have

) e

and so

(sum of a geometric progression). Similarly,

(L(l/Qie) nj) = <L((1 _:)/2) nJ> (1—e)™*t<om. 2. e/

(as 1 —e <e©), and so

[(1/2—&)n] n 1
E <) S__zn_2.6752n/2.
, { 2e

Combining this with the isoperimetric inequality:
Theorem 5. Let A C Q, and 0 < e < }L. Then

|_A| > 1 _|A(€”)| >1_ 16_52"/2.

2n 7 2 2n €



Proof. We have |A] > S22 (") and so [A@n)| = S [n/etren ("). Thus

[n/2—en|

“ n n 1
A < — < —& n/22n
| (En)| Z (Z) Z (Z) = 56

i=[n/24en] =0
]

Remarks. 1. This says that “half-sized sets have exponentially large en-
neighbourhoods”.
2. The same proof gives that

|_14’ > le—agn/Q — ’A(25”)| _ le—azn/Z.

D
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1.2 Concentration of Measure

A function f: @, — R is Lipschitz (with constant 1) if |f(x) — f(y )| <1
whenever x and y are adjacent. We say that M € R is a median of f if
{o: f@) <m}| =22 and [{a : fla) = m}| > 270,

We are now ready to show that “well-behaved” functions on @, are
roughly constant.

Theorem 6. Let f: QQ,, — R be Lipschitz with median M. Then for(0 < e < i

we have
Hz: [f() = M <enj| L2 e

2n - €

Remark. This is the “concentration of measure” phenomenon.

Proof. Let A={x € Q, : f(x) < M}. Then |A|/2" > 1/2, so, by Theorem
5 [Aen| = 1 — %6*52”/2. But if z € A then f(z) < M +en (as f is
Lipschitz), so
: <
o f@) <Mt} | 1

2n - €
Similarly,
o f@) > M—endl 1
2n - €
and so
fo:M—cn<f@) < Mten} . 2 s

AL - €



Let G be a graph of diameter D, i.e. such that D = max{d(z,y) : =,y € G}.
For € > 0, write

|Aen) 1Al S }
a(G,e) =max<1— A C G, >
(G.e) { fel I

So “a(G,¢e) small means half-sized sets have large neighbourhoods”. A se-
quence Gy, Gg, Gs, ..., of graphs is called a Lévy family if a(G,,e) — 0 as
n — oo for each € > 0. So Theorem 5 tells us that (Q,)>2, forms a Lévy
family, in fact a normal Lévy family, meaning that a(G,¢) is exponentially
small in n for each £ > 0.

An analogue of Theorem 6 shows that any Lévy family exhibits concen-
tration of measure.

Remarkably, many natural families of graphs are normal Lévy families—
for example, the permutation group S,, where o and 7 are adjacent if o7~}
is a transposition.

We can also define oG, ¢) for G any metric measure space (of finite di-
ameter and finite measure). It turns out that many natural families of spaces
are Lévy families—for example, the spheres S™. This is from the isoperimet-
ric inequality on the sphere, together with the fact that fel cos" xdxr — 0 as
n — oo for each € > 0.

We deduced concentration of measure from the isoperimetric inequality.
Conversely:

Proposition 7. Let G be a connected graph, t > 0 and o > 0, and suppose
that any Lipschitz function f on G with median M has

{z € G:|f(x) - M| >t} < alG].
Then for all A C G,

Al | A

>1-
|G|—2:‘ G o

Proof. Given A C G with |A|/|G| > 1/2, let f(x) = d(z,A). Then f is
Lipschitz and has 0 as a median so [{z € G : d(z,A) > t}| < |G|, as
required. O]

1.3 Edge-Isoperimetric Inequalities

For a graph G and a set A C V(G), the edge-boundary of A is the set

0A={zy e E(G):x € Ay & A},
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i.e. “the edges leaving A”. An edge-isoperimetric inequality on G is an in-
equality of the form

ACG|Al=m = [9A] > f(M)

for some function f.

What happens in the cube? For example, in Q3 with |A| = 4: if A
is an initial segment in the simplicial order then |0A| = 6; but if A is a
codimension-1 subcube then |0A| = 4.

Experiment suggests that if |A| = 2* then it is best to take A to be a
k-dimensional subcube (say P[k]); while if, say, |A| > 2"~! then take P[n—1]
together with some of the rest of the cube.

Say = < y in the binary ordering on Q,, if max(xAy) € y, or equivalently
if 3 icn 2" < D, 2 For example, the binary ordering on Q3 is 0, 1, 2, 12,
3,13, 23, 123.

Our aim is to show that initial segments in the binary order minimize
|0A].

For A C @, and 1 < ¢ < n, the i-binary-compression of A is the set-
system B;(A) C @, defined by |B;(A)+| = |A4l], |Bi(A)-| = |A_| and
Bi(A),, B;(A)_ are initial segments of the binary order on P(X — i).

Theorem 8 (Edge-isoperimetric inequality in the cube). Let A C Q,
and let C' be the first | A| points in the binary order on Q,. Then |0A| > |0C]|.
In particular, if |A| = 2% then |0A] > (n — k)2*.

Remark. This is sometimes called the Theorem of Harper, Lindsey, Bernstein
and Hart.

Proof. The proof is by induction on n; the case n =1 is trivial.
Claim. For any A C @), and 1 < i < n we have |0B;(A)| < |0A]|.

Proof of claim. Write B for B;(A). Then for the set-systems A and B, we
have |0A| = |[0A_|+|0AL|+|A_AA, | and |0B| = |0B_|+|0B+|+|B_-AB.]|.
Now, |0B_| < |0A_| and |0B| < |0A| (by the induction hypothesis). Also,
|B.| = |A4l], |B_| =|A_|and B, B_ are nested (as each is an initial segment
of the binary order), so |[BLAB_| < |A;AA_|. Thus [0B| < |0A4]. //
Define Ay, Ay, As, ... in @, as follows. Set Ay = A. Having defined Ay,
Ay, ..., Ayg, if A is i-binary-compressed for all ¢ then stop. If not, we have
Bi(Ay) # Ay for some i; set Ay = B;(Ax) and continue.

This must end with some Ay, as otherwise the sequence > ., g(z),
where g(x) denotes the position of z in the binary order, is decreasing in k.
The set system B = A, satisfies |B| = |A|, |[0B] < |0A| and B;(B) = B for
all i. Must B be an initial segment of the binary order? No, for example
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B ={0,1,2,3} in Q3. However, if B is not an initial segment of the binary
order then we must have B = P[n —1]U{n} —{123...(n — 1)} (by Lemma
9 below), and it is clear in this case that |[0B| > |0C. O

Lemma 9. Let B C @, be i-binary-compressed for all © but not an initial
segment of the binary order. Then B = Pln—1]U{n} —{123...(n — 1)}.

Proof. We have x ¢ B and y € B for some z, y € @, with x < y in the
binary order. As in the proof of Lemma 2, we must have x = 3¢, so that
B ={z:2z <y in binary} U{z}, where x is the predecessor of y in the binary
order and x = y°. Hence x is the last point with n ¢ x and y is the first
point with n € y. O

Remarks. 1. 1t was vital for the proof that the extremal sets formed a nested
family (to get |ByAB_| < |ALAA_)).
2. The proof was routine, given the idea of codimension-1 compressions.

The isoperimetric number of a connected graph G is defined by

i(G) = min{‘%‘ CACV(G), 4] < %|V(G)|},

so “i(G) large means half-size sets have large out-degree”.
Corollary 10. The cube Q),, has isoperimetric number 1.

Proof. For any C' an initial segment of the binary order with |C] < 2"~ we
have C' C P[n — 1] so that certainly |0C| > |C|. Hence any A C @, with
|A| < 2" has |0A| > |A] (by Theorem 8). Thus i(Q,,) > 1. The set P[n—1]
shows that i(Q,) < 1. O

1.4 Inequalities in the grid

For any k =2,3,4,...and n =1, 2, 3, ..., the grid or grid graph [k]™ has
vertex set [k]" with x = (21, 2, ... ,z,) adjacent to y = (y1, ¥z, ... , yn) if for
some ¢ we have |z; —y;| = 1 and z; = y; for all j # 4. So [k]" is a ‘product’
of n paths of order k.

Do Theorems 1 and 8 generalize to the grid? (Note that the case k = 2

is Q)



1.4.1 Vertex-isoperimetric inequalities in the grid

To minimize the vertex-boundary of a set in the grid, it seems best to take
sets of the form {x : |x| < r}, where |z| = 21 + 22 + - - - + x,,. The simplicial
order on [k]" is defined by = < y if ]x\ < |y, or |z| = |y| and z1 > y;, or
|z| = |y| and x; = y; and @9 > yo, or ... or |z| = |y| and x; = y; and x5 = Yo
and ... and x, 5 = y,_2 and z, 1 > y,_1. Equivalently, z < y if |z| < |y|,
or |z| = |y| and x5 > y, where s = min{t : z; # y;}. For example:

o on [3]% (1,1), (2,1), (1,2), (3,1), (2,2), (1,3), (3,2), (2,3), (3,3);

e On [ ]3: ( 1, ), (2 1 1), (1, , ), (1,1,2), (3,1,1), (2,2,1), (2,1,2),
(1,3,1), (1,2,2,), (1,1,3), (4,1,1), (3,2,1), (3,1,2), (2,3,1), ....

Note that this agrees with the previous definition for k£ = 2.

Our aim is to show that initial segments of the simplicial order minimize
the neighbourhood.

For A C [k]™ and 1 < i < n, the i-sections of A are the sets Ay, As, ...
Ay C [k]™! defined by

Ay =AY ={z e[k (1, ..., xi1, b, ig1, ..., 20) € A},

The i-compression C;(A) C [k]™ is defined by giving its i-sections: for ¢t = 1,
, k, we take |C;(A);| = |Ay| with C;(A); an initial segment of [k]"~! for
all £. Note that |C;(A)| = |A|.
We say that A is i-compressed if C;(A) = A. (This agrees with the
previous definition for n = 2.)

Theorem 11 (Isoperimetric inequality in the grid). Let A C [k]"
and let C' be the initial segment of length |A| in the simplicial order on
[k]". Then |N(A)| > |N(C)|. In particular, if |A| > [{z : |z| < r}| then
IN(A)| = [z« || <r+ 13

Proof. The proof is by induction on n. The case n = 1 is easy: we have
IN(A)| > |A] + 1 for all A C [k]" apart from A =0 and A = [k].

Claim. For any A C [k]" and 1 <1 <mn, we have |[N(C;(A))| < |N(A)|.
Proof of claim. Write B for C;(A). For any t, we have

N(A)t — N(At) U At—l @) At+1
(taking Ag = Apy1 = 0) and so

|N(A)t| - |N(At> U At—l U At+1|'
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Similarly,
|N(B>t’ - |N<Bt) U Bt—l U Bt+1’.

Now, |B;_1| = |Ai-1] and |Byyq| = |Aigq|, and |[N(By)| < |N(A)| by the
induction hypothesis. But B;_; and B;,; are initial segments of the sim-
plicial order, as is N(B;). So B;_1, Byy1 and N(B;) are nested, and so
IN(B)¢| < |N(A)| for each t. Thus |[N(B)| < |N(A)|. //

Among all B C [k]" with |B| = |A| and |N(B)| < |N(A)|, choose one with
> zep (x) minimal, where h(z) denotes the position of z in the simplicial
order. This B must be i-compressed for all i, otherwise V;(B) would con-
tradict the choice of B. But, as before, we cannot deduce immediately that
B = C'. Our argument now divides into two cases.

Case (i): n = 2. In this case, B is i-compressed for all 7 if and only if
it is a down-set (meaning if € B and y; < xz; for all i then y € B). We
want |N(B)| > |N(C)|. Suppose B # C. Let r = min{|z| : ¢ B} and let
s =max{ly| : y € B}. Then r < s. If r = s then clearly |N(B)| > |N(C)|

so we may assume that r < s. We cannot have {z : |z| = r} C B¢ or
{y : ly| = s} C B as B is a down-set.
So there exist = and x' with |x| = [2/| = r, x € B, 2’ € B and

¥ =x+ (eg —eg) (where ¢; = (0,...,0,1,0,...,0) with 1 in the ith po-
sition); and there exist y and y' with |y| = || = s, y € B, v ¢ B
and ¢y = y £ (e1 —ea). Let B = BU{z} — {y}. Then |B’| = |B| and
|IN(B")| < |N(B)|, contradicting the choice of B, and we are done.

Case (ii): n > 3. If v € B has x, > 1 then © — e, + ¢; € B for any i
with z; < k, as B is j-compressed for any j # i, n. (Note that this is where
we require dimension at least 3.) So N(B;) C B;_; for all t > 2 (where
B; = B etc.). Thus

N(B); = N(By) UBy41 U B,y = By
for all t > 2. So

INB)[ = [Bra| + [Broa| + -+ + [Bi| + [N (B
= [B] = [Bi| + [N(By)]-

Similarly,
IN(C)] = 1C] = |Ck| + [N(CY)].

Thus it suffices to show that:
(i) |Bk| < |Cy|; and
(ii) [Bi] > [C.
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Define D C [k]™ by Dy = By and Dy = N(Dyyq) for t =k —1, k — 2,
..., 1. Then D is an initial segment of the simplicial order and D C B, so
|D| < |BJ, so D C C and so Dy C C. This establishes (i).

Next define £ C [k]* by E; = By and E; = {z € [k]""' : N({z}) C E;,_1}

fort=2,3,..., k. Then F is an initial segment of the simplicial order and
B C E,so |E| > |B| =|C|,so C C E and so Ey D Cy. This establishes
(11). O
Corollary 12. Let A C [k]™ with |A| > [{z : |x| < r}|. Then for anyt =1,
2,3, ..., we have |Awp)| > {z : |z| <r+t}.

Proof. Induction on t. n

Remark. We can check from Corollary 12 that for any fixed k, the sequence
[k]Y, [k]%, [K]?, ... forms a normal Lévy family.

1.4.2 Edge-isoperimetric inequalities in the grid

Given A C [k]™ with |A| fixed, how do we minimize |0A|? Consider what
happens in [k]? as we vary |A|: for small |A|, we take roughly a square-shaped
set until |A| = k?/4 when a k by |A|/k column takes over; for large | 4|, it is
best to take the complement of a square. Unfortunately, these extremal sets
are not nested.

In the 3-dimensional grid [k]?, we begin with cubes [a)®, then ‘square
columns’ [a)* x [k], then ‘half-spaces’ [a] x [k]?, then complements. The
situation in n dimensions is similar.

Thus compressions cannot help us. However, this result has been proven.

1.5 Other isoperimetric problems

In general, very few isoperimetric inequalities are known. For example, con-
sider the layer X, with = adjacent to y if = y U {i} — {4} for some i and
j (i.e. x and y are adjacent if they have distance 2 in @,,). Here nothing is
known. The nicest case is the middle layer r = n/2, where it is conjectured
that sets of the form {y € X : d(z,y) < k} (for some fixed z) are best, for
example {y € X : |y {1,2,...,r} >r — k}. This is unknown!

2 Intersecting families

Say A C PX is intersecting if for all z, y € A we have z Ny # (). How large
can A be?
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We could take A = {z € PX : 1 € x}. This has [A| = 27" Tt is
impossible to beat this:

Proposition 13. Let A C PX be intersecting. Then |A| < 2771,
Proof. For each z € PX, we cannot have both z, z¢ € A. O

Remark. The extremal system is certainly not unique—for example, if n is
odd we can take {z € PX : |z]| > n/2}.

A better question is: how large can an intersecting A C X be? If r > n/2
we can take the whole of X, If r = n/2 we can take one of x, 2¢ for each
x, giving [A] = ("). So we shall focus on 7 < n/2. One obvious candidate
is A= {z € X" : 1€ x}. For example, in [8]* this has order (}) = 21, while
the family {z € [8* : |# N {1,2,3}| > 2} has order 1 + (3)(3) = 16 < 21.

Theorem 14 (Erdés-Ko-Rado Theorem). If A ¢ X™ (r < n/2) is
intersecting then |A| < ("]).

Proof. The condition x Ny # () is equivalent to ¢ y°. So writing A
for the family {z¢ : # € A}, we have 072" A disjoint from A. Suppose
Al > ("7}), so also |[A] > ("7]). We have |A] > [{x € XD : 1 € X}|,
so [0FA| > [{x € XU*+D : 1 € X} (by the Kruskal-Katona theorem), and
so, inductively, we get |07 20A| > {z € X" 1 € 2} = (" 1).
Thus inside X ™", which has size ) we have disjoint sets of sizes at least

(,1,) and greater than (1), But (") + () = (%) + () = (0)

n—r—1 . r r
a contradiction.

Remarks. 1. There are many other nice proofs.
2. The largest intersecting family has size (:"j) = Z("); the chance that
a random r-set contains 1 is ~.

2.1 t-intersecting families

We say that A C PX is t-intersecting if |x Ny| > t for all x, y € A. How
large can A be? For example, for ¢ = 2 we could take {z € PX : 1,2 € =}
or {x € PX :|z| >n/2+ 1}.

Theorem 15 (Katona’s t-intersecting theorem). Let A C PX be t-
intersecting, with n +t even. Then |A| < |XE0+0/2)|,

Proof. If [x Ny| > t then d(z,y°) > t, as there are at least ¢ points which are
in  but not in y°. So letting A = {2 : v € A}, we have that A1) and A
are disjoint.
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Now, supppose |A| > | XE0+0)/2)| = | X (<(=1/2)| Then, by Harper’s the-
orem, we have [Aq_y| > [XSCHI27D] But then |Af,_,)| > [XECHO2-0],
a contradiction. ]

Remark. The same proof gives that if n + ¢ is odd then

’A| < ‘X( (n+t+1)/2) U {SL‘ c X((n+t 1)/2) ‘n ¢ $}|

What happens for r-sets, i.e. for A € X7 In [8]®, for t = 2, the fam-
ily A = {z € B® : 1,2 € 2} has |A] = (}) = 15; but the family
B={ze[8]¥W:|xn{l1,2,3,4} > 3|} has |[B| =1+ (5)(;) = 17 > 15.

Write A, = {z € [n]" : JzN[t+2a]] > t+a} fora=0,1,2
3, .... The Frankl conjecture was that if A C X is t-intersecting then
|A| < max{|A,| : a=0,1,2,...}. This was recently proved by Ahlswede and
Khachatrian.

2.2 Covering by intersecting families

How many intersecting families do we need to cover PX — {(}7 In other
words, if PX — {0} = AjUAyU---U A, with each A; an intersecting family,
how small can s be?

We clearly need at least n families (one for each singleton); and, equally
clearly, n families will suffice—for example, take A; = {x € PX :i € z}.

What happens for r-sets? How many intersecting families do we need to
cover X ()?

If r > n/2 then X itself is intersecting. If r = n/2 then we can cover
by two intersecting families: for each x, select one of x and z¢ for A; and the
other for Ay. So we may assume that r < n/2.

We clearly need at least |n/r] as there exist [n/r] disjoint r-sets. More-
over, we need at least [n/r] families, as each intersecting family has at most
r/n of all r-sets.

Can we achieve this? Well, we can achieve n — 2r + 2 as follows: put
Ai={re XM icalforl <i<n—2r+1,and A, g5 = [n—2r+2,n|").

Our aim is to prove Kneser’s conjecture, that we need at least n — 2r + 2
intersecting families to cover X (. It turns out that the key tool will be the
Borsuk-Ulam Theorem:

Theorem 16 (Borsuk-Ulam theorem). Let f: S™ — R" be continuous.
Then there exists x € S™ with f(z) = f(—x).

14



For example, in the case n = 1, suppose we have a continuous f: S — R.
Put g(x) = f(z) — f(—=z). If g(x) > 0 then g(—x) < 0. So if g is not identi-
cally zero then there is some = with g(x) > 0 and then by the Intermediate
Value Theorem there is some y with g(y) = 0.

The result for the case n = 2 is not quite intuitively obvious.

Remark. The Borsuk-Ulam theorem trivially implies that there is no contin-
uous injection from S™ to R™, and so in particular R™! is not homeomorphic
to R"—this is the “Brouwer invariance of domain theorem” and is hard to
prove. (For example, why are R and R* not homeomorphic?)

We say that f: S™ — R" is antipodal if f(—z) = —f(x) for all z.
Theorem 17. The following are equivalent:
(1) the Borsuk-Ulam theorem;

(i) if f: S™ — R™ is an antipodal map then there is some v € S™ with
f(z) =0;

(iii) there is mno continuous antipodal map f : S™ — S"~1.

Proof. (i) = (ii). If f: S™ — R™ is antipodal then, by (i), we have
f(z) = f(—x) for some z, whence f(z) =0 (as f(—z) = —f(x)).

(i) = (i). Given a continuous f: S™ — R", define g: S* — R" by
g(x) = f(x) — f(—z). Then ¢ is antipodal, so g(x) = 0 for some =z, i.e.
f(z) = f(=x).

(ii) = (iii). If f: S™ — S™! then f(x) # 0 for all z € S™.

(iii) = (ii). Suppose f: S™ — R™ is antipodal and continuous with
f(x) #0 for all z € S™. Define g: S* — S™ ! by g(x) = f(x)/|f(2)|

(where ||z|| = \/2? + 3 + - -- + 22). Then ¢ is continuous and antipodal, a
contradiction. O
Suppose A, As, ..., A, C S™ are closed sets that cover S™ with no A;

containing an antipodal pair {x, —x}. How small can k be?
It is easy to obtain k = n + 2: take A; = {z € S" : x; > &} for
1<i<n+1, and Ays2 = {z € 8" : x; < eforalli}. This works if

e < 1/y/n.

Theorem 18. The following are equivalent:
(1) the Borsuk-Ulam theorem;

(i1) if Ay, Ao, ..., Apy1 C S™ are closed sets covering S™ then some A;
contains an antipodal pair {x,—x};

15



(111) if Ay, Ag, ..., Auy1 C S™ cover S™ with each A; open or closed
then some A; contains an antipodal pair.

Proof. (i) = (ii). Define f: S™ — R" by
fz) = (d(x, Ay),d(z, Ag), ... ,d(z, Ay)).

Then f is continuous so, by (i), there exists z € S™ with d(z, A;) = d(—=x, A;)
for all 7 with 1 <i <mn. If z, —x € A, 1 then we are done. If not, we may
assume without loss of generality that x € A; for some ¢ with 1 <i < n, so
d(z, A;) = 0 whence d(—x, A;) = 0 whence —x € A; (as A; closed).
(ii) = (i). Suppose f: S™ — S™~1 is continuous and antipodal. Let A,
Asy, ..., A,q1 be closed sets covering S"! with no A; containing an antipodal
pair. Then f~1(A;), f71(Az), ..., [7}(A,;1) would be closed sets covering
S™ with none containing an antipodal pair, a contradiction.
(iii) = (ii). Trivial.
(i) = (iii). As for (i) = (ii), we get x € S™ with d(z, 4;) = d(—=x, A;)
for all 7 with 1 <i <mn. If z;, —x € A, 1 then we are done. If not, we may
assume without loss of generality that = € A; for some ¢ with 1 < i < n, so
d(xz, A;) = 0 whence d(—x, A;) = 0.

If A; is closed then —x € A,.

If A; is open then we have {y € S™ : d(x,y) < e} C A; for some ¢ > 0.
But some z with d(z, —z) < € belongs to A; (as d(—z, 4;) = 0). O

Remark. The result of (ii) in Theorem 18 is sometimes called the Lusternik-
Schnirelman theorem.

We have S™ = {z € R"" : ||z|| = 1}. We shall often regard S™ instead as
the set {z € R™: 32" |z;| = 1}. This is permissible, as the map

n+1
o {eerni Y lnl =1}~ foert el =1}
=1
X

T =
]

is a homeomorphism preserving antipodality.
Write ST = {z € S" : 11 > 0} and S” = {z € S" : z,11 < O}
Regarding R" as a subset of R"*! in the obvious way, we have S7NS" = S™~1.
A k-simplex is R™ is a set of the form [zq,xs,... ,2k11], the convex hull
{Zfill ANizi © N > 0 for all i,Zfill Ai = 1} of points xy, xo, ..., T in
general position (i.e. no (k — 1)-dimensional plane contains all of them).
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The faces of [xq, xa, ... ,xk11] are all simplices of the form [x;,, z;,, ... , ;]
for any r.
A simplicial complexr in R™ is a finite set F' of simplices such that

1. if o € F' and 7 is a face of o then 7 € F'; and
2. iffo, 7€ Fand 6 N7 # () then o N7 is a face of o.

We say that F is a simplicial decomposition of F' = |J F.
For example, we obtain a simplicial decomposition of S™ by taking

F:{[i€il,:|:€i2,... ,:I:eir]:1§T§n+1,i1<i2<---<ir}.

This is the standard simplicial decomposition of S™, denoted by F™. It is a
reqular simplicial decomposition of 5™, meaning

1. if o € F then —o € F'; and

2. for all k£ with 0 < k <mn — 1, f contains a simplicial decomposition of
Sk,

Remark. Tt is easy to obtain other regular simplicial decompositions of S™.
For example, if F' is a regular simplicial decomposition of S™ then we get
another one by subdividing each simplex of F' using the midpoints of its
faces. This is called the barycentric subdivision of F.

Let F and F’ be simplicial complexes with V(F) and V(F") their vertex-
sets (the sets of O-simplices). A simplicial map from F to F’ is a function
f: V(F) — V(F') such that whenever {1, z,...,2441} is the vertex-set of
a simplex in F' then {f(z1), f(x2), ..., f(xay1)} is the vertex-set of a simplex
in F'. (Note that f(z1), f(x2), ..., f(x4+1) need not be distinct.) We can
then extend f to a map from F to F’ that maps simplices of F linearly to
simplices of F”.

For example, the inclusion map ¢: F¥ — F" (k < n) is a simplicial map,
as is the antipodal map z — —x from F™ to F™.

We observe that a map f: V(F) — V(F") is simplicial if and only if no
I-simplex [z,y] € F has f(z) =e; and f(y) = —e; for some .

Let f: V(F) — V(F") be a simplical map, and let ¢ € F be a k-
simplex. We shall say that o is positive or positive alternating if we have
fz) = lei,, —€iy, Cigy - - (—1)keik+1]. for some i; < iy < -+ < i1, and that
o is negative if we have f(0) = [—e;,, €5, =€, ..., (=1)"e; ] for some
11 < 19 < --+ < igy1. If 0 is neither positive nor negative then we say that o
is neutral.

The ‘combinatorial heart’ of the Borsuk-Ulam theorem is:
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Lemma 19. Let F be a reqular simplicial decomposition of S*, and let
fi F — F™ be an antipodal simplicial map. Then f has a positive k-simplex.

Proof. Let p(f) denote the number of positive k-simplices in f. We shall
show, by induction on k, that p(f) is odd.

The case k = 0 is easy, for S is two antipodal points and so exactly one
maps to an e;.

So suppose k£ > 0. Then o is positive precisely when —o is negative, so
p(f) is the number of non-neutral k-simplices in S¥.

How many positive (k — 1)-simplices does a k-simplex o C S% contain? If
o is non-neutral then it contains one positive (k — 1)-simplex. If o is neutral
then it contains either two or no positive (k — 1)-simplices.

How many k-simplices in S% contain a fixed positive (k — 1)-simplex 7 in
SE? If 7 ¢ S*7! then two, and if 7 C S*7! then one. Thus, modulo 2, p(f) is
the number of positive (k—1)-simplices in S*71 i.e. p(f) = p(fls,_,) (mod 2).

O

Corollary 20. Let F be a reqular simplicial decomposition of S™*1. Then
there is no antipodal simplicial map from F to F™.

Proof. No (n + 1)-simplex can be positive. O

Proof (of Theorem 16). By Theorem 18, it is enough to show that if Ay, As,
.., Ay is a closed cover of S™ then there is some ¢ with A; containing an
antipodal pair.

So suppse that Ay, Ay, ..., A,i1 is a closed cover of S™ with no A;
containing an antipodal pair. Then A, —A;, Ay, — A, ..., A,, —A, must
cover S™; as if they miss x then they also miss —z, whence x, —x € A,11, a
contradiction. Let ¢ = min{d(A;, —A4;),d(A2, —As),... ,d(A,,—A,)}, and
let F' be a regular simplicial decomposition of S™ in which every simplex has
diameter less than ¢ (for example, we can take F' to be an iterated barycentric
subdivision of F™). Given z € S", set f(x) = (—1)"es; where (—1)" Ay is the
first of Ay, —A;, Ay, —As, ..., A,, —A, that contains . This f: F — Fn~!
is simplicial (as no [z,y] € F has x € A;, y € —A; by choice of ) and
antipodal, a contradiction. O

Theorem 21 (Kneser’s conjecture, proved by Lovéasz). Let r < n/2
and let Ay, Ay, ..., Aq be a collection of intersecting families covering [n](").
Then d > n — 2r + 2.

Proof. Suppose d = n — 2r + 1. Let xy, 29, ..., x, be points in general
position in S C R (i.e. no d-dimensional subspace through the origin
contains d + 1 of the x;). Identify [n] with {z1,29,... ,2,}. For x € S9,
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write H, = {y € S%: (z,y) > 0}. For 1 <i < d, let C; be the set of x € S"
with H, containing an r-set from A;. Let Cyiq = S — (CLUCL U ---U Cy),
so that Cy, is the set of x € S¢ with H, containing at most r — 1 of z,
Zoy. .., T,. Then Cy, Cy, ..., Cyq are open and Cyyq is closed, so some C;
contains an antipodal pair {z, —z}. We cannot have 1 < i < d since H,
and H_, are disjoint whence A; would contain two disjoint r-sets. Thus

i=d+1,s0 H, UH_, contains at most 2(r — 1) of xy, xs, ..., x,, whence
{y € S%: {x,y) = 0} contains at least n —2(r — 1) = d+1 of 2y, w9, ..., Ty,
a contradiction. O

The Kneser graph K(n,r) (r < n/2) is the graph on vertex set [n]") with
x joined to y if z Ny = (). For example K (5,2) is the Petersen graph. So an
intersecting family in [n]™ is an independent set in K (n,r). And, for any
graph G, colouring GG with k colours is equivalent to partitioning G into k
independent sets. So Theorem 21 can be rephrased as:

Theorem 22. x(K(n,r)) =n—2r+ 2.

Note. The chromatic number y is large even though there are huge indepen-
dent sets (containing n/r of all vertices).

2.3 Modular intersection theorems

If A C [n]" is intersecting, i.e. [t Ny| # 0 for z, y € A, we know that
|A] < ("7]). What if, instead, we do not allow |z N y| = 0 modulo some
number?

Say, for example, 7 is odd and A C [n]") has |2 Ny| odd for all z, y € A.
We can achieve |A| = (L((Zjll))gJ) by taking A to consist of all sets containing
1 and (r — 1)/2 of the pairs 23, 45, ... (finishing at (n — 1)n if n is odd and
(n—2)(n — 1) if n is even).

How about 7 odd, A C [n]™ such that |z Nyl is even for all z, y € A
with  # y? We could take {z € [n]") : 1,2,... ,r — 1 € z}, which has

|A| =n —r+ 1. Amazingly:

Theorem 23. Let r be odd, and let A C [n]™) have |z Ny| even for all x,
y € A with x #y. Then |A| <n.

Proof. Our main idea is to write down |A| linearly independent points in an
n-dimensional vector space.
View @, as Zj by identifying x € P[n] with z € Z} where

__J 1 ifiex
YTVl 0 ifiga
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For example, if x = {1,3,5} then z = (1,0,1,0,1,0,0,...); this is simply
the usual identification.

For x € A, we have (z,z) = 1 (as |z| is odd). For x, y € A with = # y,
we have (Z,7) = 0 (as |[x Ny| is even). So the set {Z : x € A} is linearly
independent over Z?2: if Y sea e = 0 then, by taking the inner product
with Z, we see that A\, = 0 for each z € A. n

What happens if r is even?

For A C [n]™) with |z Ny| even for all 7, y € A, we can get A large, for
example |A| = (L:@J) For A C [n]™) with |z Ny| odd for all , y € A with
x # 7y, we must have |A| < n + 1, because we may set A’ C [n+ 1]+ to be
{rU{n+1}:2 € A} and apply Theorem 23.

So our conclusion is that to get very small bounds on |A| for A C [n]™)
we should forbid |z Ny| = r (mod 2) for z, y € A with  # y. Does this
generalize?

We shall now show that ‘s allowed values for |z N y| modulo p implies

A< (2"

Theorem 24 (Frankl, Wilson). Let p be a prime. Let A C [n]™ be such
that there are some integers Ay, Ay, ..., Xs, no \; = r (mod p), for which
given any z, y € A with x # y, we have |x Ny| = A; (mod p) for some i.
Then |A| < (7). In particular, if A C [n]") satisfies |z Ny| # r (mod p) for
all distinct x, y € A, then |A| < (pfl).

Remarks. 1. (’;) is a polynomial independent of 7.

2. In general, we cannot improve on (:), for example, we can take
A=[n]®ifr=s1Ifr >s wecantake A = {z € [n]" : 1,2,... ,r — s € x};
this gives [A] = ("777*), which is very close to () (for fixed r).

3. If we allow |z Ny| = r (mod p) then there is no polynomial bound:
taking 7 = a+ A\p (0 < a < p), we can obtain |A| = (L("f)‘\l)/pj) (by taking A
to consist of all sets containing the points 1, 2, ..., a together with A of the
blocks [a+1,a+p|, [a+p+1,a+2p], ..., [a+(N—1)p+1,a+ \p]—this
grows with r.

Proof. We seek a vector space V' of dimension at most (Z) and |A| linearly
independent vectors in V. We may assume without loss of generality that
r>s.

For i < j, let N(i,j) be the (%) X (?) matrix, with rows indexed by [n]®
and columns indexed by [n]"), given by

1 ifxCy
0 otherwise °

NG, f)ay = {
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So N(s,r) has (:) rows. Let V' be their linear span over R. Then we have
dimV < (Z)
Consider N (i,s)N(s,r) for any 0 < ¢ < s. Its rows belong to V. Also,

| _[ (D) wcy
(N(Z,S)N(SJ’)):cy_{ 0  otherwise

(as N(i,s)N(s,r) is simply the number of s-sets z with x C z C y). So
N(i,s)N(s,r) = ({_})N(i,r), whence N(i,r) has rows in V.

Now consider M (i) = N(i,7)"N(i,7). Tt has rows in V. But M(i),, is
the number of i-sets z with 2 C = and z C y, i.e. M (i) = (l$?y|). ‘So we
can get any polynomial in |z N yl.’

Write the polynomial (X — A)(X —Xg) -+ (X —X;) as D5y a; (), where
ap, ai, ..., as € 7Z; this is possible as, for each 1, z‘(f) is monic. Let
M =357 a;M(i). All its rows are in V. Then

Mo is 0 (mod p) when |zNy| = \; (mod p) for somei=1,2, ..., s
w # 0 (mod p) otherwise .

Consider the submatrix whose rows and columns are indexed by A. This
submatrix has |A| rows, which are linearly independent over Z, and so are
certainly linearly independent over R. Hence we have |A| linearly indepen-
dent rows of M and so [A] < (7). O

Remark. The theorem fails if p is not prime. Grolmusz constructed, for each
n, a value r = 0 (mod 6) and a set system |A| C [n]") such that for any
distinct z, y € A, we have |z Ny| # 0 (mod 6), but with |A| > ncloen/loglogn
(for some ¢). There is a similar construction for any non-prime modulus.

If we have some half-size sets, we expect the intersections to have size around
n/4, but they are very unlikely to have size exactly n/4. Nevertheless:

Corollary 25. Let p be prime and let A C [4p]®P) with |z N y| # p for any
distinct x, y € A. Then |A] < 2(p4_pl).

Remark. Note that this bound is very small: (nT/L ) < 4e /322" (whereas
(n72) ~ (c/y/n) - 2").

Proof. By halving the size of A if necessary, we may assume that there is no
pair {z,2¢} C A. Then if z, y € A with 2 # y we have |z Ny| # 0, p, so
|z Ny| # 0 (mod p), and so [A] < (). O

p—1
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2.4 Borsuk’s Conjecture

Suppose we have S C R” of diameter d. How many pieces do we need to
break S into so that each piece has diameter strictly less than d?

For example, in R2, taking the vertices of an equilateral triangle shows
that we need at least 3 pieces. Similarly, in R”, a regular n-simplex shows
that we need at least n + 1 pieces.

Borsuk conjectured that n + 1 pieces suffice.

Borsuk’s conjecture is true for n = 1, 2, 3, and for S smooth, and for S
symmetric. However, it is massively false.

Theorem 26 (Kahn, Kalai). For any n, there is a set S C R™ such that
to partition S into pieces of smaller diameter requires at least V™ pieces (for
some constant ¢ > 1).

Notes. 1. Our proof will show that Borsuk’s conjecture is false for n around
2000.

2. We shall prove Theorem 26 for n of the form (427J ) for p prime. We are
then done as, for example, for all n there is a prime p with n/2 < p <n.

Proof. We shall construct S C Q,, C R™ with S C [n]™ for some 7.

For z, y € [n]™, we have d(z,y)? = 2(r — |z Ny|). So d(x,y) increases
as |x Ny| decreases. So we seek S C [n](™, say with minimum intersection
size k, but such that any subset of S with minimum intersection size greater
than k is much smaller than S.

Identify [n] with [4p]®—the edges of Kj,, the complete graph on [4p).
For each x € [4p](2p), let G, be the complete bipartite graph on vertex-classes
z, ¢ Let S = {G, : x € [4p|®)} C [n]*"). Then |S| = %(32)'

Now, |G.NG,| = k*+ (2p—k)?, where k = |z Ny|, which is minimized at
k = p. Thus if we have a piece of S, say {G, : © € A}, of diameter smaller
than the diameter of S, then we cannot have |z Ny| = p for any x, y € A. So
|A] < (Q;f 1) by Corollary 25. Thus the number of pieces needed is at least

4
) ey

1
(p4_1) — 4.eP/8.924

(for some constant c)

P (for some constant ¢’ > 1)

(AVARAVS

"™V (for some constant ¢ > 1).
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3 Projections

Let A C PX and let Y C X. The projection or trace of A on Y is
AlY ={zNY 1z € A}; thus A|Y C PY —‘project A onto the coordinates
corresponding to Y.

Say A covers or shatters Y if A|Y = PY. The trace number of A is
tr A = max{|Y| : Y shattered by A}.

Given |A|, how small can tr A be? Equivalently, how large can |A| be
given tr A < k?

We could take A = X(<*). This clearly does not shatter any k-set (as if
Y| =k then Y ¢ A|Y). Our aim is to show that we cannot do better than
| X (<B)].

The main idea is that this is trivial if A is a down-set (i.e. if whenever
x € A and y C x then also y € A), since a down-set A with tr A < k must
have A C X(<h),

For A ¢ PX and 1 < ¢ < n, the i-down-compression of A is the set-
system D;(A) C PX defined by

Di(A)y = A NA_,
Dz(‘A)— = A+UA—7

i.e. we “compress A downwards in direction ¢”. Note that |D;(A)| = |A|. We
say that A is i-down-compressed if D;(A) = A.

Remark. D; is a 1-dimensional compression.

Theorem 27 (Sauer-Shelah Lemma). If A C PX with |A] > | X(<P| +1
then tr A > k.

Proof. Claim. For any A C PX and 1 <i < n, we have tr D;(A) < tr A.

Proof of claim. Write A’ for D;(A). Suppose A’ shatters y; we shall show
that A also shatters y.

If i ¢ Y then A'|Y = A]Y, and so we are done.

So suppose i € Y. Then for z C Y with ¢ € z we have zU {i} € A'|Y, so
there exists z € A’ with 2 NY = zU {i}. But theni € z,s0z, v — {i} € A
(by definition of A’). Thus zU{i}, z € A|Y. Hence A|Y =PY. //

Set B = Dp(Dp—1(Dp—o(...(D1(A))...))). Then |B| = |A|, tr B < trA,
and B is a down-set. But |B| > |X(<¥)| so B contains some k-set, whence
tr B > k. ]

In general, if we have upper bounds on some projections |A]Y;|, do we
get upper bounds on |A|? For example, the Sauer-Shelah lemma says that if
|A]Y| < 2F — 1 for all k-sets Y, then |A] < |X (<P,
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A brick or box in R™ is a set of the form [a1,b1] X [ag, ba] X -+ X [an, by]
where a; < b; for all i. A body S C R" is a finite union of bricks. The volume
of S is written |S| or m(95).

Remarks. 1. In fact, everything will go through for a general compact
S CR™
2. A set system A C @,, gives a body

S = U[Il,l'l—i-l] X [1'2,£C2+1] X oo X [xn,xn—i—l]
€A

with |A] = m(S).

For a body S € R™ and Y C [n], the projection of S onto the span of
{e; : i € Y} is denoted by Sy. For example, if S C R? then S is the
projection of S onto the x-axis:

Sy ={x € R: (21, 29,23) € S for some xq,x3 € R};
and Sis is the projection of S onto the zy-plane:
Sio = {(x1,22) € R? : (z1, 19, 23) € S for some 23 € R},

We have that S, C R4l

What bounds on |S| do we get given bounds on some Sy ?

For example, let S be a body in R3. Then trivially |S| < |S1]|S2|]S3| as
S C Sl X SQ X Sg. Similarly, |S’ < |512||53‘ as S C 512 X 53.

What if |Si2| and |S;3| are known? This tells us nothing—for example,
consider S = [0,1/n] x [0,n] x [0, n].

What if |Sy2], |S13| and |Sas| are known?

Proposition 28. Let S be a body in R3. Then |S|* < |S12||S1s|[Sas].
Remark. We have equality if S is a brick.

For S C R™, the n-sections are the sets S(x) C R"™! for each x € R defined
by

S(X) = {(xlax%' - axn—1> € Rn_l : (x17$27' . 7-7371—173:) S S}

Proof (of Proposition 28). Consider first the case when each 3-section is a
square, i.e. when S(x) = [0, f(x)] x [0, f(z)]. Then |Si2|] = M?, where
M = maxger f(z). Also, |Si3] = [Ses| = [ f(z)dz, and |S| = [ f(x)*d.

Thus we want:
(/f(x)zdm)Q < M? </f(m) dx>2.
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But [ f(z)?dx < M [ f(z)dx as f(z) < M for all z, so this indeed holds.
For the general case, define a body 7' C R? by

T(x) = [0, V[S(@)[] x [0, VIS ()]

Then |T| = |S| and |T12| < [S12] (as |T12] = max,cr |T(z)]).
Let f(z) = |S(z)1] and g(x) = |S(x)2|. Then

Toa] = T3] = / VIs@)dz < / Vi@g@) de.

Also, |Si3] = [ f(z)dz and |Sas| = [ g(x) dz. So we need

(] ) = ([ o) ().

ie. " "
[Viava s ([ roa) ( [owa)
which is just the Cauchy-Schwarz inequality. n
We say that sets Y1, Vs, ..., Y, cover [n] if (J;_, Y; = [n]. They are a

k-uniform cover if each ¢ € [n] belongs to exactly k of the Y;. For example,
for n = 3: {1}, {2}, {3} is a 1-uniform cover, as is {1}, {2,3}; {1, 2}, {1, 3},
{2,3} is a 2-uniform cover; {1,2}, {1,3} is not uniform.

Our aim is to show that if Y7, Y5, ..., Y, form a k-uniform cover then
[SIF < 1%y - - Sy,

Let C = {Y1,Ys,...,Y,} be a k-uniform cover of [r]. Note that C is a
multiset, i.e. repetitions are allowed—for example, {12,12, 3,3} is a 2-uniform
cover of [3]. Put C_ ={Y;:n €Y} and C; = {Y; —n:n €Y;} (as usual),
so C_ UCy is a k-uniform cover of [n — 1].

Note that if n € Y then |Sy| = [[S(2)y_n|dz (e.g. if S C R?® then
1S13] = [|S(2)1|dz), and this holds even if Y = [n]. Also, if n ¢ Y then
|S(z)y| < |Sy| for all x (e.g. |S12] > |S(2)12| for all z).

In the proof of Proposition 28 we used the Cauchy-Schwarz inequality:

[ros (7))

Here, we’ll need Holder’s inequality:

o= (fir) ()
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for (1/p) + (1/q) = 1, whence, iterating, we get

[ (/\fﬂ’“)l/k (/\fz!’“)l/k-“ (/w’“)w.

Theorem 29 (Uniform covers theorem). Let S be a body in R", and let
C be a k-uniform cover of [n]. Then

S < T 1Sv-
YeC

Proof. The proof is by induction on n; the case n =1 is trivial.
Given a body S C R" for n > 2, we have

S| = [Is@)ds

< [ I1 s@vl™ T ISl do
vecy Yec.
< [T s [ 1 ISt o
YeC_ YeCy
1/k
< H |5y | M/ H (/]S(x)ﬂd:c)
Yec- Yec,
_ H |Sy|1/k H |SYUn|1/k
YeC_— YeCt
= J1IsvI""
YeC

[
Corollary 30 (Loomis-Whitney theorem). Let S be a body in R™. Then

1S < T 1Sl
i=1
Proof. The family [n] — 1, [n] —2, ..., [n] —n is an (n — 1)-uniform cover of
[n]. O
Remark. The case n = 3 of the Loomis-Whitney theorem is Proposition 28.

Corollary 31. Let A C Q,, and let C be a k-uniform cover of [n]. Then

A" < TT 1AL

YeC
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In particular, if C is a uniform cover with |AlY| < 2¢Y1 for all y € C then
|A| <27,

Proof. For the first part, consider the body

S = U[azl,xl—i—l] X [T, ke + 1] X -+ X |2y, 2, + 1].
€A

Then m(S) = |A] and m(S|Y) = |A]Y| for all Y.
For the second part, suppose that C is a k-cover. Then

|A|k < H |AlY| < H oYl — 9cXyec Yl — gckn
YeC yec

[]

Our next aim is to prove the ‘Bollobas-Thomason box theorem’, that for
any body S there is a box B with |B| = |S| and |By| < |Sy| for all Y.
This theorem has no right to be true. For example, we can then read off all
possible projection theorems—just check them for boxes.

A uniform cover C of [n] is irreducible if we cannot write C = C" U C”
where C’ and C” are uniform covers. For example, if n = 3 then 12, 13, 23
form an irreducible cover but 1, 2, 3, 12, 13, 23 do not.

Lemma 32. There are only finitely many irreducible uniform covers of [n].

Proof. Suppose Cy, Ca, Cs, ..., are distinct irreducible covers. List P[n] as
Ey, Es, ..., Eyn. Choose a subsequence C;,, C;,, C;, on which the number
of copies of Ej is increasing (not necessarily strictly). Repeating for Fj,
then Es, then ..., then Es., we obtain a subsequence C;, Cj,, Cj,, ..., on
which the number of copies of E; is increasing for all ¢. But then Cj, is not

irreducible (as C;, D C;,), a contradiction. O

Theorem 33 (Bollobas-Thomason box theorem). Let S be a (non-
empty) body in R™. Then there is a boxr B € R™ with |B| = |S| and
|By| < |Sy| for allY C [n].

Proof. We may assume without loss of generality that |S| > 0 and n > 2.
Take real variables xy for each Y € P[n] with Y # (), [n], with constraints:

(i) 0 <xy < |Sy| for all Y;
(ii) zy < [liey @ for all Y with |Y| > 2; and

(iii) |S|* < [Iycc @y for each k-uniform irreducible cover C # {[n]}.

27



Note that if (iii) is satisfied for all irreducible covers, then it is satisfied for
all uniform covers. We denote the condition (iii) for all uniform covers by
(iii)’. We ‘want a minimal solution’.

We have a solution, namely zy = |Sy| for all Y. The solution set is
compact, so there exists a solution with minimal ), zy. We must have
xy > 0 for all Y, because every Y occurs in some uniform cover, whence
(iii)" gives |zy| > 0 (as |S]| > 0).

Claim. For 1 <i < n, z; appears on the RHS of an inequality from (iii) in
which equality holds.

Proof of claim. We must have x; on the RHS of some constraint for
which equality holds, as otherwise we could decrease z; (as the set of con-
straints is finite). It is not an inequality from (i) as (x; > 0). If it is an
inequality from (iii) then we are done. If it is an inequality from (ii), then
zy = [[ ey x; for some Y with {i} € Y. We must have zy on the RHS of an
inequality that is an equality (by minimality of xy ), which must be of type
(iii). So |S|* = [Iec 2, for some irreducible cover C with Y € C. Then
C—{Y}U{{j}:j €Y} is also a uniform cover with equality in (iii)’, and
{i} belongs to this cover. Now take any irreducible cover C’ from this cover
which includes {i}. //

Thus for each i, we have a uniform cover C; with equality in (iii) and with
{i} € C;. Consider C = |J;_, C;. Then C is a uniform cover with equality in
(iii)’, and {1}, {2}, ..., {n} € C. Put C’' =C — {{1},{2},... ,{n}}. Then
C' is also a uniform cover, say a k-cover, and we have |S|* <[], .. zy and
|S|F = [Ty e @y [Ty 2. Thus |S| =[], ;. Now for any Y, consider the
uniform cover {Y,Y*°} of [n]. We have

S| < wywye < (Hx) ( 11 z) = 9],

€Y i€Y*

50 2y = [[;ey @i Thus B = [0, 1] x [0, 22) X -+ x [0, 2,,] will do. O

3.1 Intersecting families of graphs

What happens to intersecting families if we have more structure in our ground
set?
One natural example is to take our ground set to be [n]®), the edges of

the complete graph on [n]. There are a total of 2(3) graphs on [n].
How many graphs can we find such that any two intersect in something
containing P,, the path of length 2?7 We want to find max |A| subject to

n

G, He A = GNH D P, Clearly |A| < (1/2)2(2> (as we cannot have
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both G € A and G°¢ € A for any graph G). We can get |A| ~ (1/2)2(3) by
fixing « € [n] and taking

A:{G:dg(x)zg—i-l};

- (-5

n
2

Similarly, we can get |A| ~ (1/2)2< ) for GNH containing a star.

this has

Conjecture 34. If GGH €¢ A =— G N H contains a triangle, then
4] < (1/8)2(5).

Note that we can obtain |A| = (1/8)2@) by taking A to consist of all
graphs G which contain some fixed triangle.

Theorem 35. Let A C P ([n]®) be such that if G, H € A then GNH
contains a triangle. Then |A| < (1/4)2(79

Proof. We want |A| < 2(3)-2 = 2(3)(1_2/(3)), so it is enough to find a uniform
cover C of [n]® such that for all Y € C we have [ANY| < 2°¥1 where
c=1—4/(n(n-1)).

For n even, take all Y of the form B® U (B°)® with |B| = |A|/2. This
is clearly a uniform cover. Now for any such Y, G N H is not bipartite and
so G and H meet on Y. Thus A|Y is intersecting, whence

IA|Y| < (1/2)2Y1 = 22(797) -1 = 92("") (-1 ("))

Y

so we need
1 <1 4
2("%) ~ nn—1)
For n odd, we do the same thing but with |B| = (n —1)/2. O
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