

Euclidean Domains

A *Euclidean domain* is an integral domain R which can be equipped with a function

$$d : R \setminus \{0\} \rightarrow \mathbb{N}$$

such that for all $a \in R$ and $b \neq 0, b \in R$ we can write

$$a = qb + r$$

for some $q, r \in R$ with $r = 0$ or $d(r) < d(b)$.

For example, \mathbb{Z} with $d(n) = |n|$ is a Euclidean Domain; also, for any field k , $k[X]$ with $d(f) = \deg(f)$ is a Euclidean Domain. (WARNING: In the second example above, it is essential that k be a field.)

We shall prove that every Euclidean Domain is a Principal Ideal Domain (and so also a Unique Factorization Domain). This shows that for any field k , $k[X]$ has unique factorization into irreducibles. As a further example, we prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean Domain.

Proposition 1. *In a Euclidean domain, every ideal is principal.*

Proof. Suppose R is a Euclidean domain and $I \triangleleft R$. Then EITHER $I = \{0\} = (0)$ OR we can take $a \neq 0$ in I with $d(a)$ least; then for any $b \in I$, we can write $b = qa + r$ with $r = 0$ or $d(r) < d(a)$; but $r = q - ba \in I$ and so by minimality of $d(a)$, $r = 0$; thus $a|b$ and $I = (a)$. \square

Corollary 2. *If k is a field then every ideal in $k[X]$ is principal.*

Corollary 3. *Let k be a field. Then every polynomial in $k[X]$ can be factorized into primes=irreducibles, and the factorization is essentially unique.*

Corollary 4. *Every element of the ring $\mathbb{Z}[\sqrt{-2}]$ can be factorized into primes=irreducibles, and the factorization is essentially unique.*

Proof. By Theorem 1, it is enough to show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean Domain. To this end, define $N : \mathbb{Z}[\sqrt{-2}] \rightarrow \mathbb{N}$ by

$$N(a + b\sqrt{-2}) = a^2 + 2b^2 \left(= |a + b\sqrt{-2}|^2\right) \quad (a, b \in \mathbb{Z}).$$

Note that we can extend N to a function $N : \mathbb{Q}[\sqrt{-2}] \rightarrow \mathbb{Q}$ defined similarly by

$$N(a + b\sqrt{-2}) = a^2 + 2b^2 \left(= |a + b\sqrt{-2}|^2\right) \quad (a, b \in \mathbb{Q}).$$

Note also that given any $a + b\sqrt{-2}, c + d\sqrt{-2} \in \mathbb{Q}[\sqrt{-2}]$ we have

$$N((a + b\sqrt{-2})(c + d\sqrt{-2})) = N(a + b\sqrt{-2})N(c + d\sqrt{-2}).$$

Now, suppose we are given $a + b\sqrt{-2}, c + d\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ with $c + d\sqrt{-2} \neq 0$. Then

$$\frac{a + b\sqrt{-2}}{c + d\sqrt{-2}} = \frac{(a + b\sqrt{-2})(c - d\sqrt{-2})}{c^2 + 2d^2} = e + f\sqrt{-2} \in \mathbb{Q}[\sqrt{-2}].$$

Pick $g, h \in \mathbb{Z}$ such that $|e - g|, |f - h| \leq \frac{1}{2}$ and set

$$\begin{aligned} q &= g + h\sqrt{-2} \\ r &= a + b\sqrt{-2} - q(c + d\sqrt{-2}). \end{aligned}$$

Then $a + b\sqrt{-2} = q(c + d\sqrt{-2}) + r$ and

$$\begin{aligned} N(r) &= N\left((c + d\sqrt{-2})((e - g) + (f - h)\sqrt{-2})\right) \\ &= N(c + d\sqrt{-2})N((e - g) + (f - h)\sqrt{-2}) \\ &\leq \frac{3}{4}N(c + d\sqrt{-2}) \\ &< N(c + d\sqrt{-2}). \end{aligned}$$

□