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Mirror symmetry: A very brief and biased history.

A search for examples of compact Calabi-Yau three-folds by Candelas,
Lynker and Schimmrigk (1990) as crepant resolutions of hypersurfaces in
weighted projective 4-space provided the following scatter plot of
invariants, with the x-axis being Euler characteristic,

χ = 2(h1,1 − h1,2)

and y -axis
h1,1 + h1,2.
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Mirror symmetry: A very brief and biased history.

(Thanks to Philip Candelas)
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Mirror symmetry: A very brief and biased history.

Independently, Greene and Plesser (1990) provided an explicit mirror X̌
to the non-singular quintic three-fold X ⊆ P

4.
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Independently, Greene and Plesser (1990) provided an explicit mirror X̌
to the non-singular quintic three-fold X ⊆ P

4.
Here

h1,1(X ) = 1, h1,2(X ) = 101.
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Mirror symmetry: A very brief and biased history.

Independently, Greene and Plesser (1990) provided an explicit mirror X̌
to the non-singular quintic three-fold X ⊆ P

4.
Here

h1,1(X ) = 1, h1,2(X ) = 101.

while
h1,1(X̌ ) = 101, h1,2(X̌ ) = 1.
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Mirror symmetry: A very brief and biased history.

1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation, following
predictions of string theory.
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Mirror symmetry: A very brief and biased history.

1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation, following
predictions of string theory.

By carrying out period calculations on the mirror quintic, they were able
to predict the “number” Nd of rational curves of degree d in X .
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1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation, following
predictions of string theory.

By carrying out period calculations on the mirror quintic, they were able
to predict the “number” Nd of rational curves of degree d in X .

Technically, these numbers are defined as Gromov-Witten invariants.
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Mirror symmetry: A very brief and biased history.

1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation, following
predictions of string theory.

By carrying out period calculations on the mirror quintic, they were able
to predict the “number” Nd of rational curves of degree d in X .

Technically, these numbers are defined as Gromov-Witten invariants.
(N1 = 2875, N2 = 609250, N3 = 317206375.)
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Mirror symmetry: A very brief and biased history.

1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation, following
predictions of string theory.

By carrying out period calculations on the mirror quintic, they were able
to predict the “number” Nd of rational curves of degree d in X .

Technically, these numbers are defined as Gromov-Witten invariants.
(N1 = 2875, N2 = 609250, N3 = 317206375.)

While these formulas have been proved in the 1990s, string theorists have
presented mathematicians with an amazing piece of complex
mathematics. We have been reverse engineering this mathematics ever
since.
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Mirror symmetry: A very brief and biased history.

There are now many proposed constructions for mirror pairs:
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Mirror symmetry: A very brief and biased history.

But do we have a definition of mirror symmetry?
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Mirror symmetry: A very brief and biased history.

But do we have a definition of mirror symmetry?

Yes, we do.
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Mirror symmetry: A very brief and biased history.

But do we have a definition of mirror symmetry?

Yes, we do.

Definition (Potter Stewart, 1964, Jacobellis vs. Ohio)

I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description, and
perhaps I could never succeed in intelligibly doing so. But I know it when
I see it...
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Mirror symmetry: A very brief and biased history.

But do we have a definition of mirror symmetry?

Yes, we do.

Definition (Potter Stewart, 1964, Jacobellis vs. Ohio)

I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description, and
perhaps I could never succeed in intelligibly doing so. But I know it when
I see it...

As in the legal world, we have agreed on tests for mirror symmetry:
mirror symmetry at genus 0, homological mirror symmetry,....

Mark Gross Mirror symmetry



Mirror symmetry: A very brief and biased history.

We would like to have a general construction.
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Mirror symmetry: A very brief and biased history.

We would like to have a general construction.

The framework I will discuss is a program developed with Bernd Siebert,
starting in 2001. In particular, I will talk about the construction of
mirrors using theta functions, as will be described in forthcoming work
with Paul Hacking, Sean Keel, and Bernd Siebert.
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Mirror symmetry: A very brief and biased history.

We would like to have a general construction.

The framework I will discuss is a program developed with Bernd Siebert,
starting in 2001. In particular, I will talk about the construction of
mirrors using theta functions, as will be described in forthcoming work
with Paul Hacking, Sean Keel, and Bernd Siebert.

Reading:

Fukaya, “Multivalued Morse theory, asymptotic analysis and mirror
symmetry,” (2001).

Kontsevich and Soibelman, “Affine structures and non-archimedean
analytic spaces,” (2004).
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Mirror symmetry: A very brief and biased history.

G., Siebert, “From real affine geometry to complex geometry,” (2007).

Carl, Pumperla, Siebert, “A tropical view on Landau-Ginzburg models,”
(2010).

G., Hacking, Keel, “Mirror symmetry for log Calabi-Yau surfaces I”
(2011).

G., Siebert, “Theta functions and mirror symmetry” (2012).

G., Siebert, “Local mirror symmetry in the tropics” (2014).
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Mirror symmetry: A very brief and biased history.

G., Siebert, “From real affine geometry to complex geometry,” (2007).

Carl, Pumperla, Siebert, “A tropical view on Landau-Ginzburg models,”
(2010).

G., Hacking, Keel, “Mirror symmetry for log Calabi-Yau surfaces I”
(2011).

G., Siebert, “Theta functions and mirror symmetry” (2012).

G., Siebert, “Local mirror symmetry in the tropics” (2014).

There will be a number of forthcoming papers developing the subject as
discussed in the remainder of the talk.
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The general setup

Three “standard” situations we would like to consider.
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I. (X ,D) a log Calabi-Yau pair with maximal boundary.
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The general setup

Three “standard” situations we would like to consider.

I. (X ,D) a log Calabi-Yau pair with maximal boundary.
For simplicity in our situation, we will take this to mean a compact
non-singular variety X along with a reduced normal crossings divisor
D, such that KX + D = 0.
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The general setup

Three “standard” situations we would like to consider.

I. (X ,D) a log Calabi-Yau pair with maximal boundary.
For simplicity in our situation, we will take this to mean a compact
non-singular variety X along with a reduced normal crossings divisor
D, such that KX + D = 0.

“Maximal” means that D has a 0-dimensional stratum, i.e., an
intersection of a subset of irreducible components of D is
0-dimensional.
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The general setup

Three “standard” situations we would like to consider.

I. (X ,D) a log Calabi-Yau pair with maximal boundary.
For simplicity in our situation, we will take this to mean a compact
non-singular variety X along with a reduced normal crossings divisor
D, such that KX + D = 0.

“Maximal” means that D has a 0-dimensional stratum, i.e., an
intersection of a subset of irreducible components of D is
0-dimensional.

(More generally: allow singularities of the minimal model program,
or toroidal crossings boundary)
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The general setup

II. X → SpecC[[t]] is a maximally unipotent degeneration of

Calabi-Yau varieties. This is a flat morphism, with generic fibre Xη a
non-singular Calabi-Yau manifold. For simplicity, we assume this is a
normal crossings degeneration and relatively minimal
(KX/ SpecC[[t]] = 0).

Mark Gross Mirror symmetry



The general setup

II. X → SpecC[[t]] is a maximally unipotent degeneration of

Calabi-Yau varieties. This is a flat morphism, with generic fibre Xη a
non-singular Calabi-Yau manifold. For simplicity, we assume this is a
normal crossings degeneration and relatively minimal
(KX/ SpecC[[t]] = 0).

(More generally: allow singularities of the minimal model program,
Hacon-Xu and Birkar, or toric degenerations, G.-Siebert)
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The general setup

III. The hybrid situation: A flat family of pairs (X ,D) → SpecC[[t]], a
maximal degeneration of log Calabi-Yau varieties. For simplicity, we
will assume that D and the morphism are normal crossings, and the
family is relatively minimal (KX/ SpecC[[t]] + D = 0).
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The general setup

III. The hybrid situation: A flat family of pairs (X ,D) → SpecC[[t]], a
maximal degeneration of log Calabi-Yau varieties. For simplicity, we
will assume that D and the morphism are normal crossings, and the
family is relatively minimal (KX/ SpecC[[t]] + D = 0).

The advantage of this is it allows a generic fibre (Xη,Dη) where Dη

is not maximal.
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The general setup

III. The hybrid situation: A flat family of pairs (X ,D) → SpecC[[t]], a
maximal degeneration of log Calabi-Yau varieties. For simplicity, we
will assume that D and the morphism are normal crossings, and the
family is relatively minimal (KX/ SpecC[[t]] + D = 0).

The advantage of this is it allows a generic fibre (Xη,Dη) where Dη

is not maximal.

(More generally: allow singularities of the minimal model program,
or toric degenerations.)
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The general setup

I will focus on the log Calabi-Yau case.
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The general setup

I will focus on the log Calabi-Yau case.

Fix (X ,D), and a saturated finitely generated submonoid P ⊂ H2(X ,Z)
such that:
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I will focus on the log Calabi-Yau case.

Fix (X ,D), and a saturated finitely generated submonoid P ⊂ H2(X ,Z)
such that:

P contains the classes of all effective curves.
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The general setup

I will focus on the log Calabi-Yau case.

Fix (X ,D), and a saturated finitely generated submonoid P ⊂ H2(X ,Z)
such that:

P contains the classes of all effective curves.

p,−p ∈ P if and only if p = 0.
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The general setup

Let k be a field of characteristic zero, and let

k [P] :=
⊕

p

kzp

denote the monoid ring defined by P .
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The general setup

Let k be a field of characteristic zero, and let

k [P] :=
⊕

p

kzp

denote the monoid ring defined by P .

This has a maximal monomial ideal

m = 〈zp | p ∈ P \ {0}〉
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The general setup

Let k be a field of characteristic zero, and let

k [P] :=
⊕

p

kzp

denote the monoid ring defined by P .

This has a maximal monomial ideal

m = 〈zp | p ∈ P \ {0}〉

Let k̂ [P] denote the completion of k [P] with respect to m.
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The general setup

Let k be a field of characteristic zero, and let

k [P] :=
⊕

p

kzp

denote the monoid ring defined by P .

This has a maximal monomial ideal

m = 〈zp | p ∈ P \ {0}〉

Let k̂ [P] denote the completion of k [P] with respect to m.

Goal: Produce a “mirror family” X̌ → Spf k̂ [P].
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The construction of the mirror to (X ,D)

Let (B,Σ) be the dual intersection complex of the pair (X ,D). Here B is
a topological space and Σ is a decomposition of B into cones.
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The construction of the mirror to (X ,D)

Let (B,Σ) be the dual intersection complex of the pair (X ,D). Here B is
a topological space and Σ is a decomposition of B into cones.

If D =
⋃p

i=1 Di is the decomposition of D into irreducible components,
each cone of Σ can be viewed as a subset of Rp, with basis e1, . . . , ep.
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The construction of the mirror to (X ,D)

Let (B,Σ) be the dual intersection complex of the pair (X ,D). Here B is
a topological space and Σ is a decomposition of B into cones.

If D =
⋃p

i=1 Di is the decomposition of D into irreducible components,
each cone of Σ can be viewed as a subset of Rp, with basis e1, . . . , ep.

Then Σ contains a cone
∑q

j=1 R≥0eij if and only if Di1 ∩ · · · ∩ Diq 6= ∅.

(For simplicity, we assume such intersections are always irreducible.)
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The construction of the mirror to (X ,D)

Let (B,Σ) be the dual intersection complex of the pair (X ,D). Here B is
a topological space and Σ is a decomposition of B into cones.

If D =
⋃p

i=1 Di is the decomposition of D into irreducible components,
each cone of Σ can be viewed as a subset of Rp, with basis e1, . . . , ep.

Then Σ contains a cone
∑q

j=1 R≥0eij if and only if Di1 ∩ · · · ∩ Diq 6= ∅.

(For simplicity, we assume such intersections are always irreducible.)

Then
B =

⋃

σ∈Σ

σ.
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The construction of the mirror to (X ,D)

Example (Running example)

Consider P1 × P1, with toric boundary

D̄ = ({0,∞}× P
1) ∪ (P1 × {0,∞}).

Let p : X → P1 × P1 be the blow-up at a non-singular point of D̄ , and let
D be the proper transform of D̄.

m

m

ℓ − Eℓ

m − E
E

(B,Σ)

We can take P to be generated by the classes ℓ− E , m − E and E .
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The construction of the mirror to (X ,D)

Set
B(Z) = B ∩ Z

p ,

the integral points of B.
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The construction of the mirror to (X ,D)

Set
B(Z) = B ∩ Z

p ,

the integral points of B.
For any n ≥ 0, we shall construct an An := k [P]/mn+1-algebra

Rn :=
⊕

p∈B(Z)

Anϑp.
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The construction of the mirror to (X ,D)

Set
B(Z) = B ∩ Z

p ,

the integral points of B.
For any n ≥ 0, we shall construct an An := k [P]/mn+1-algebra

Rn :=
⊕

p∈B(Z)

Anϑp.

This is easy for n = 0. We define

ϑp · ϑq =

{
ϑp+q if p, q lie in the same cone of B;

0 otherwise.
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The construction of the mirror to (X ,D)

Set
B(Z) = B ∩ Z

p ,

the integral points of B.
For any n ≥ 0, we shall construct an An := k [P]/mn+1-algebra

Rn :=
⊕

p∈B(Z)

Anϑp.

This is easy for n = 0. We define

ϑp · ϑq =

{
ϑp+q if p, q lie in the same cone of B;

0 otherwise.

X̌n := SpecRn → SpecAn will be our n-th order family.
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The construction of the mirror to (X ,D)

Note that for n = 0, SpecRn is just a union of affine spaces glued
together as dictated by the combinatorics of B.

Example (Running example)

A
2

A
2

X̌0:

A
2

A
2

⊆ A
4
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The construction of the mirror to (X ,D)

For n > 0, the construction can be viewed on three levels:
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The construction of the mirror to (X ,D)

For n > 0, the construction can be viewed on three levels:

1 Construct an n-th order deformation X̌ ◦
n of an open subset X̌ ◦

0 of X̌0

obtained by deleting all codimension ≥ 2 strata of X̌0. There are
many such deformations, but the correct one is controlled by the
Gromov-Witten theory of the pair (X ,D).
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The construction of the mirror to (X ,D)

For n > 0, the construction can be viewed on three levels:

1 Construct an n-th order deformation X̌ ◦
n of an open subset X̌ ◦

0 of X̌0

obtained by deleting all codimension ≥ 2 strata of X̌0. There are
many such deformations, but the correct one is controlled by the
Gromov-Witten theory of the pair (X ,D).

2 We then take
X̌n = Spec Γ(X̌ ◦

n ,OX̌◦

n
).

For this to be a (partial) compactification of X̌ ◦
n , there must be

enough regular functions. These are the theta functions, constructed
using a logarithmic analogue of Maslov index two disks. These will
be the ϑp ’s.
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The construction of the mirror to (X ,D)

For n > 0, the construction can be viewed on three levels:

1 Construct an n-th order deformation X̌ ◦
n of an open subset X̌ ◦

0 of X̌0

obtained by deleting all codimension ≥ 2 strata of X̌0. There are
many such deformations, but the correct one is controlled by the
Gromov-Witten theory of the pair (X ,D).

2 We then take
X̌n = Spec Γ(X̌ ◦

n ,OX̌◦

n
).

For this to be a (partial) compactification of X̌ ◦
n , there must be

enough regular functions. These are the theta functions, constructed
using a logarithmic analogue of Maslov index two disks. These will
be the ϑp ’s.

3 . . .
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The construction of the mirror to (X ,D)

1 . . .

2 . . .

3 Finally, the multiplication rule for theta functions can be described
in terms of a logarithmic analogue of pairs of pants. We can avoid
the first two steps by simply defining the multiplication rule in terms
of (X ,D), but we lose some refined information visible in the first
two steps.
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The construction of the mirror to (X ,D)

I will focus largely on the third point, as this can be done with minimal
technical baggage.
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The construction of the mirror to (X ,D)

I will focus largely on the third point, as this can be done with minimal
technical baggage.

This construction should be related to symplectic cohomology, see e.g.,
forthcoming work of Ganatra-Pomerleano for direct comparisons in some
very special cases.
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Logarithmic Gromov-Witten invariants

Logarithmic Gromov-Witten invariants were developed by G.-Siebert
(2011), Chen (2010), Abramovich-Chen (2011).
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Logarithmic Gromov-Witten invariants

Logarithmic Gromov-Witten invariants were developed by G.-Siebert
(2011), Chen (2010), Abramovich-Chen (2011).

Without going into any technical detail, log GW invariants allow the
counting of a kind of stable map from marked curves

(C , p1, . . . , pn) → X

with orders of tangency with components of D specified at each pi . This
generalizes relative invariants of Li-Ruan, Ionel-Parker, and Jun Li.
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Logarithmic Gromov-Witten invariants

For example, the crucial data for constructing the correct deformation of
X̌ ◦
0 involves counts of “A1-curves.” These are maps (C , p) → X with C

a rational curve and some non-trivial specified tangency condition at p.

Example (Running example)

m

m

ℓ − Eℓ

m − E
E

The two red curves are both A1-curves. In addition, multiple covers of
each of these totally ramified over the intersection points with D also
occur.
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Logarithmic Gromov-Witten invariants

While this allows the completion of Step 1, it is insufficient to complete
steps 2 or 3.
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Logarithmic Gromov-Witten invariants

While this allows the completion of Step 1, it is insufficient to complete
steps 2 or 3.

In G.-Hacking-Keel (2011), covering the case of surfaces, we were able to
apply the main result of G.-Pandharipande-Siebert (2009) which gives an
alternative description of these counts, and combine this with a result of
Carl-Pumperla-Siebert (2010) in order to carry out Steps 2 and 3 at a
tropical level.

Mark Gross Mirror symmetry



Logarithmic Gromov-Witten invariants

While this allows the completion of Step 1, it is insufficient to complete
steps 2 or 3.

In G.-Hacking-Keel (2011), covering the case of surfaces, we were able to
apply the main result of G.-Pandharipande-Siebert (2009) which gives an
alternative description of these counts, and combine this with a result of
Carl-Pumperla-Siebert (2010) in order to carry out Steps 2 and 3 at a
tropical level.

In higher dimension, we need punctured invariants, to be defined in
forthcoming work of Abramovich-Chen-G.-Siebert.
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Logarithmic Gromov-Witten invariants

While this allows the completion of Step 1, it is insufficient to complete
steps 2 or 3.

In G.-Hacking-Keel (2011), covering the case of surfaces, we were able to
apply the main result of G.-Pandharipande-Siebert (2009) which gives an
alternative description of these counts, and combine this with a result of
Carl-Pumperla-Siebert (2010) in order to carry out Steps 2 and 3 at a
tropical level.

In higher dimension, we need punctured invariants, to be defined in
forthcoming work of Abramovich-Chen-G.-Siebert.

Intuitively, we allow “negative orders of tangency at points.”
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Logarithmic Gromov-Witten invariants

For example, suppose (C , p1, . . . , pn) is a non-singular marked curve with
assigned orders of tangency di ∈ Z, i = 1, . . . , n, and (X ,D) is a pair
with D a smooth divisor.
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Logarithmic Gromov-Witten invariants

For example, suppose (C , p1, . . . , pn) is a non-singular marked curve with
assigned orders of tangency di ∈ Z, i = 1, . . . , n, and (X ,D) is a pair
with D a smooth divisor.

If any of the di is negative, the only allowable “punctured maps”
f : C → X have image contained in D. The log structure carries
additional data, which in this case is a non-zero meromorphic section of
f ∗ND/X , defined up to scaling, non-vanishing except at the pi , with the
order of zero at pi given by di (pole if di < 0).
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Logarithmic Gromov-Witten invariants

From Jun Li’s expanded degeneration point of view, these curves can be
viewed as follows:
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Logarithmic Gromov-Witten invariants

From Jun Li’s expanded degeneration point of view, these curves can be
viewed as follows:

Mark Gross Mirror symmetry



The construction of the mirror to (X ,D)

We need to define the structure constants for the algebra:

ϑp · ϑq =
∑

r∈B(Z)

αpqrϑr ,

with αpqr ∈ An.
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The construction of the mirror to (X ,D)

We can view p ∈ B(Z) as representing a tangency condition. If p lies in
the interior of a cone

σ =

q∑

j=1

R≥0eij ,

we can write

p =

q∑

j=1

njeij ,

nj > 0.
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The construction of the mirror to (X ,D)

We can view p ∈ B(Z) as representing a tangency condition. If p lies in
the interior of a cone

σ =

q∑

j=1

R≥0eij ,

we can write

p =

q∑

j=1

njeij ,

nj > 0.
We can interpret this as a tangency condition at a point on a curve
which is tangent to the divisor Dij to order nj .
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The construction of the mirror to (X ,D)

E.g., p = e1 + e2:
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The construction of the mirror to (X ,D)

We define
αpqr =

∑

β∈H2(X ,Z)

Nβ
pqrz

β

where Nβ
pqr is the count of three-pointed stable punctured curves

representing the homology class β

f : (C , xp , xq, xr ) → (X ,D)

with tangency conditions at xp and xq specified as above by p, q ∈ B(Z).
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The construction of the mirror to (X ,D)

r , however, is interpreted as a punctured point, and if r =
∑

j njeij with
nj > 0 for all j , then we require tangency order −nj at xr . Furthermore,
we fix a point

x ∈
⋂

j

Dij

and require xr to map to x .
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The construction of the mirror to (X ,D)

r , however, is interpreted as a punctured point, and if r =
∑

j njeij with
nj > 0 for all j , then we require tangency order −nj at xr . Furthermore,
we fix a point

x ∈
⋂

j

Dij

and require xr to map to x .
This problem has virtual dimension zero.
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The construction of the mirror to (X ,D)

Intuition: we are counting holomorphic disks with boundary on a fibre of
the SYZ fibration which look like:
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The construction of the mirror to (X ,D)

Theorem (Forthcoming)

The above structure constants define a commutative An-algebra structure

on Rn, lifting the given algebra structure on R0.
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The construction of the mirror to (X ,D)

Example

Returning to the running example of P1 × P1 blown up in one point, let
p1, . . . , p4 be the points of B(Z) which are generators of the rays
corresponding to the four boundary divisors, starting with ℓ − E and
proceeding counterclockwise.
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The construction of the mirror to (X ,D)

Example

ϑp1 · ϑp2 = ϑp1+p2 .

m

m

ℓ − Eℓ

m − E
E
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The construction of the mirror to (X ,D)

Example

ϑp1 · ϑp3 = zmϑ0 = zm.

m

m

ℓ − Eℓ

m − E
E
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The construction of the mirror to (X ,D)

Example

ϑp2 · ϑp4 = zℓ + zℓ−Eϑp1

m

m

ℓ − Eℓ

m − E
E
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The construction of the mirror to (X ,D)

Example

ϑp2 · ϑp4 = zℓ + zℓ−Eϑp1

m

m

ℓ − Eℓ

m − E
E
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The construction of the mirror to (X ,D)

Example

In this example, the construction works over the non-completed ring

A = k [P] = k [zℓ−E , zm−E , zE ].
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The construction of the mirror to (X ,D)

Example

In this example, the construction works over the non-completed ring

A = k [P] = k [zℓ−E , zm−E , zE ].

We then have

R =
A[ϑp1 , ϑp2 , ϑp3 , ϑp4 ]

(ϑp1ϑp3 − zm, ϑp2ϑp4 − zℓ − zℓ−Eϑp1)
.
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The construction of the mirror to (X ,D)

Example

In this example, the construction works over the non-completed ring

A = k [P] = k [zℓ−E , zm−E , zE ].

We then have

R =
A[ϑp1 , ϑp2 , ϑp3 , ϑp4 ]

(ϑp1ϑp3 − zm, ϑp2ϑp4 − zℓ − zℓ−Eϑp1)
.

This gives the family of mirrors.
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Generalizations

A similar construction works for degenerations of Calabi-Yau
manifolds X → Spec k [[t]], essentially by working with the pair
(X ,X0). We then get the homogeneous coordinate ring of the
mirror.

Mark Gross Mirror symmetry



Generalizations

A similar construction works for degenerations of Calabi-Yau
manifolds X → Spec k [[t]], essentially by working with the pair
(X ,X0). We then get the homogeneous coordinate ring of the
mirror.

We can also start, in this case, with a DLT relatively minimal model
and an snc resolution, embedding the dual intersection complex of
the DLT model in the dual intersection complex of the snc
resolution, with image being the Kontsevich-Soibelman skeleton
(Nicaise-Xu). This allows us to get away from the snc assumption.
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Questions

Independence of model?

When is the generic fibre of the mirror smooth?

Actual computations and comparison with previous mirror
constructions.

Homological mirror symmetry?

Genus 0 (or higher genus) mirror symmetry?

. . .
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