
Solutions to Example Sheet 4.

1. We only need to check that if F → F ′′ is surjective, so is Γ(X,F) →
Γ(X,F ′′).

By the quoted fact, there exist A-modules M,M ′′ with F = M̃ , F ′′ = M̃ ′′. In

particular, as surjectivity of F → F ′′ can be checked on stalks and (M̃)p = Mp for

any p ∈ SpecA, necessarily Mp →M ′′
p is surjective for all p. As a homomorphism

of A-modules being surjective is a local propery, M → M ′′ is surjective. But

M = Γ(X,F), M ′′ = Γ(X,F ′′), giving the desired result.

2. Let Z i = ker di, so in particular F = Z0. Then the given long exact sequence

splits up into short exact sequences

(0.1) 0→ Z i → F i → Z i+1 → 0.

Taking the long exact sequence of cohomology and using the assumed vanishing,

we get an exact sequence

0→ H0(X,Z i)→ H0(X,F i)→ H0(X,Z i+1)→ H1(X,Z i)→ 0

and

(0.2) Hp(X,Z i+1) ∼= Hp+1(X,Z i)

for p ≥ 1. Thus

H0(X,F) = H0(X,Z0) = ker(d0 : H0(X,F0)→ H0(X,Z1)).

However, as Z1 injects into F1, H0(X,Z1) injects into H0(X,F1), and we can

write

H0(X,F) = ker(d0 : H0(X,F0)→ H0(X,F1)),

as claimed.

Next, for p > 0, we have

Hp(X,F) = Hp(X,Z0) ∼= Hp−1(X,Z1) ∼= · · · ∼= H1(X,Zp−1),

by repeated use of (0.2). Now H0(X,Zp) = ker dp : H0(X,Fp) → H0(X,Fp+1),

and by (0.1), H1(X,Zp−1) = coker dp−1 : H0(X,Fp−1)→ H0(X,Zp). This gives

the desired form for Hp(X,F).

3. (a) Let α : F1 → F2 and β : F2 → F3 be the two given maps. We begin

by observing how flabbyness is used here. Suppose given open sets U1, U2 of X

and sections ti ∈ Γ(Ui,F2) with the property that β(t1) = β(t2) on U1 ∩ U2.

Thus by exactness of the sequence there is a section u ∈ F1(U1 ∩ U2) such that

α(u) = t1 − t2 on U1 ∩ U2. Since F1 is flabby, there exists a section u′ ∈ F1(U2)
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with u′|U1∩U2 = u. Then (t2 + α(u′))|U1∩U2 = t1|U1∩U2 and hence the sections t1
and t2 + α(u′) glue to give a section of F2(U1 ∪ U2).

Now let s ∈ F3(U). Since β is surjective, therere exists an open cover {Ui} of

U , and sections ti ∈ F2(Ui) such that β(ti) = s|Ui
. Pick a Ui, say U0, and let

Σ be the set of open subsets V of U which have sections t with β(t) = s|V and

t|U0 = t0. Note U0 ∈ Σ, so non-empty set. Also, every chain in Σ has an upper

bound: if V0 ⊆ V1 ⊆ · · · with sections ti ∈ F2(Vi), then we can apply the result

of the first paragraph repeatedly, i.e., t1 can be modified so that t0 and t1 glue,

t2 can be modified so it glues to this section on V0 ∪V1, etc. Thus we can assume

the sections ti satisfy ti|Vj
= tj for j < i, and hence by the sheaf gluing axiom,

all these sections glue to give a section of V =
⋃

i Vi, and hence V is an upper

bound.

Thus by Zorn’s lemma, Σ has a maximal element, call it V . Suppose U 6= V .

Then there exists some Uj ∈ {Ui} such that Uj 6⊆ V . Then β(t − tj) = 0 on

V ∩ Uj, so we can again apply the argument of the first paragraph to modify tj
so that t and tj glue, contradicting maximality of V . Thus U = V , and t is the

desired section of F2 over U with β(t) = s.

(b) Applying (a) to two open sets V ⊆ U , one obtains a commutative diagram

of exact sequences

0 // F1(U) //

��

F2(U) //

��

F3(U) //

��

0

0 // F1(V ) // F2(V ) // F3(V ) // 0

As the first two vertical arrows are surjective since F1 and F2 are flabby, the third

verical arrow is surjective by the snake lemma.

(c) Let di : Fi → Fi+1 and let Zi = ker di = im di−1. This gives exact sequences

0→ F0 → F1 → Z2 → 0

and

0→ Zi → Fi → Zi+1 → 0

for i ≥ 2. (note Z1 = F0 and Z0 = 0.) The first exact sequence tells us Z2 is

flabby by (b), and the second exact sequence used repeatedly tells us all Zi are

flabbly. Thus we get short exact sequences after taking global sections, by (a),

and these can then be reassembled into the desired long exact sequence.

(d) This is Hartshorne, Chapter III, Lemma 4.2.

(e) It is easy to see that a direct product of flabby sheaves is flabby, as a

direct product of surjective maps is surjective. So it is sufficient to show that
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G := F|Ui0
∩···∩Uip

is flabby. Here, we view this as a sheaf on X by push-forward,

as usual. Then for V ∩ U ⊆ X, G(U) = F(U ∩ Ui0 ∩ · · · ∩ Uip), G(V ) = F(V ∩
Ui0 ∩· · ·∩Uip), so flabbiness of G follows from flabbiness of F . Now taking global

sections of the exact sequence of (d), we get by (c) the exact sequence

0→ Γ(X,F)→ C•(U ,F).

Since this sequence is exact, we immediately conclude Ȟp(U ,F) = 0 for p > 0.

4. Set V1 = D(x) and V2 = D(y), both open subsets of X = A2
k. Then

V1 ∪ V2 = U , so this forms a cover of U . Further, both V1, V2 and V1 ∩ V2
are affine (being Spec k[x, y]x, Spec k[x, y]y and Spec k[x, y]xy respectively). So

we may use this cover to compute Čech cohomology, and this will coincide with

sheaf cohomology. We have the Čech 0-cohains

C0 = k[x, y]x ⊕ k[x, y]y

and 1-cochains

C1 = k[x, y]xy

with differential d(f1, f2) = f2 − f1, here using the natural inclusions of k[x, y]x
and k[x, y]y into k[x, y]xy. As the latter ring has a k-basis given by {xiyj | i, j ∈ Z},
k[x, y]x has a k-basis given by {xiyj | i ∈ Z, j ∈ Z≥0}, and k[x, y]y has a k-basis

given by {xiyj | i ∈ Z≥0, j ∈ Z}, the cokernel of the differential clearly has a basis

{xiyj | i, j ∈ Z<0}, as claimed.

5. The fact that U , V cover X is immediate, as P2 \ (D+(x1) ∪ D+(x2)) =

{(1, 0, 0)} 6⊂ X. Note the fact that (1, 0, 0) 6∈ X implies that f contains a

monomial cxd0, which we can assume has coefficient c = 1.

Let S = k[x0, x1, x2] be the homogeneous coordinate ring of P2, A = S/(f) the

homogeneous coordinate ring of X, each viewed as graded rings.

Now

Γ(U,OX) = A(x1), Γ(V,OX) = A(x2),

where as usual the subscript (x1) etc. means localization at x1 in degree 0, while

Γ(U ∩ V,OX) = A(x1x2),
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with the restriction maps the obvious ones. It is convenient to consider the

diagram

0 // S(−d)x1 ⊕ S(−d)x2

mf //

d10
��

Sx1 ⊕ Sx2
//

d20
��

Ax1 ⊕ Ax2

d30
��

// 0

0 // S(−d)x1x2 mf

// Sx1x2
// Ax1x2

// 0

Here the notation S(−d) is a standard one which does book-keeping on degrees:

S(−d) is the graded S-module with S(−d)n = S−d+n. Thus multiplication by f

is a degree 0 map with this convention, and we write multiplication by f in any

of these cases as mf . The vertical maps di0 are the Čech coboundary maps in

each case, i.e., (p, q) 7→ p− q, under the obvious inclusions Sx1 ↪→ Sx1x2 etc. By

the snake lemma, we then have a long exact sequence

0 // ker d10
mf // ker d20 // ker d30 // coker d10

mf // coker d20 // coker d30 // 0

where all maps are homogeneous of degree 0. We wish to compute the degree

zero part of ker d30 and coker d30, being H0(X,OX) and H1(X,OX) respectively.

It is immediate that ker d10 is the intersection of S(−d)x1 and S(−d)x2 in

S(−d)x1x2 , which is S(−d). If we show that mf : coker d10 → coker d20 is injective

in degree 0, then we see immediately that in degree 0, ker d30 = coker(ker d10 →
ker d20), so that H0(X,OX) is the degree 0 part of S/(f) = A, which is the field

k.

Note that the image of d20 is generated by monomials of the form xa0x
b
1x

c
2 with

a ∈ Z≥0, and either b ∈ Z, c ∈ Z≥0 or b ∈ Z≥0, c ∈ Z. Thus the cokernel of d20
has a basis of monomials of the form xa0x

b
1x

c
2 with a ≥ 0, b, c ≤ −1. The same is

true for cokernel of d10, with the shift in degree. In particular, the degree 0 part

of coker d10 has a monomial basis {xb+c−d
0 x−b1 x−c2 | b, c ≥ 1, b+ c−d ≥ 0}, while the

degree 0 part of coker d20 has a monomial basis {xb+c
0 x−b1 x−c2 | b, c ≥ 1, b + c ≥ 0}.

Now suppose given an element α ∈ coker d10 of degree 0 with mf (α) = 0. Recall

f has a term xd0. Let e be the largest power of x0 occuring in any monomial in

α. Let α′ be a sum of those monomials in α for which this power is achieved,

so we can write α′ = xe0α
′′ with α′′ not divisible by e. Then the sum of those

monomials in fα with the largest power of x0 is xd+e
0 α′′, and there is no possible

cancellation with lower degree terms in x0. Thus mf (α) = 0 implies xd+e
0 α′′ = 0

which implies α′ = 0. Thus α = 0. This shows that H0(X,OX) ∼= k.

Now consider the degree 0 part of the cokernel of mf : coker d10 → coker d20:

this will give H1(X,OX). First note that the image in cokermf of any monomial
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of the form xa+b
0 x−a1 x−b2 representing an element of coker d20 with a+ b ≥ d can be

written in terms of monomials with smaller x0 power: indeed, f · xa+b−d
0 x−a1 x−b2

is in the image of mf , and this is of the form xa+b
0 x−a1 x−b2 + · · · where the dots

represents terms with lower degree in x0. Thus every element of the cokernel

is represented as a sum of monomials with x0 degree a + b < d. Further, any

element of the image of mf must have a monomial of the form xa+b
0 x−a1 x−b2 with

a + b ≥ d, as f has the monomial xd0. Thus in cokermf , there are no k-linear

relations between the monomials

{xa+b
0 x−a1 x−b2 | a+ b < d, a ≥ 1, b ≥ 1}.

Thus this set forms a basis for the degree zero part of the cokernel of mf . Thus

the dimension is
∑d−2

a=1 d− 1− a =
∑d−2

a=1 a = (d− 2)(d− 1)/2, as desired.

Remark. The exercise asked you to carry out a direct Čech calculation. Ulti-

mately, what the above is doing is really asking you to get your hands a bit dirty

with the Čech calculation of the cohomology of P2. A much quicker way to carry

out this calculation, once one knows the cohomology of line bundles on Pn, is to

observe we have an exact sequence

0→ OP2(−d)→ OP2 → OX → 0,

as OP2(−d) is isomorphic to the ideal sheaf of X in P2. Taking the long exact

sequence of cohomology, using the calculation of cohomology of line bundles on

P2, gives sequences

0→ H0(P2,OP2)→ H0(X,OX)→ 0

and

0→ H1(X,OX)→ H2(P2,OP2(−d))→ 0,

from which the exercise follows much more efficiently, as H2(P2,OP2(−d)) ∼=
H0(P2,OP2(d− 3)).

6. (a) We have a homomorphism B → B ⊗A B given by b 7→ b ⊗ 1, giving

B ⊗A B a B-algebra structure, and hence I/I2 has a B-module structure.

First we check the given d is a derivation. (1) If b, b′ ∈ B, then d(b + b′) =

1 ⊗ (b + b′) − (b + b′) ⊗ 1 = d(b) + d(b′). (2) d(bb′) = 1 ⊗ (bb′) − (bb′) ⊗ 1 =

(b ⊗ 1)(1 ⊗ b′ − b′ ⊗ 1) + (1 ⊗ b − b ⊗ 1)(1 ⊗ b′). Now working modulo I2, we

note that (1 ⊗ b′ − b′ ⊗ 1)(1 ⊗ b − b ⊗ 1) ≡ 0 mod I2, so we can subtract this

from the above expression, and see that d(bb′) = bd(b′) + b′d(b), as desired. (3)

d(a) = 1⊗ a− a⊗ 1 = 1⊗ a− 1⊗ a = 0, as the the tensor product is over A.
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Now suppose given a B-module M and an A-derivation D : B →M . There is

an A-bilinear map B×B →M given by (b, b′) 7→ b ·D(b′). Thus by the universal

property of tensor product, this induces a map f : B⊗AB →M , b⊗b′ 7→ b·D(b′).

We may restrict f to I, to get a homomorphism of B-modules f : I →M . Note

that f(1⊗ b− b⊗ 1) = D(b).

I now claim that I is generated as a B-module by elements of the form d(b).

Indeed, writing I 3
∑
bi⊗b′i =

∑
bi(1⊗b′i−b′i⊗1) as

∑
bib
′
i = 0, we immediately

see this.

Thus I2 is generated by elements of the form (1 ⊗ b − b ⊗ 1)(1 ⊗ b′ − b′ ⊗ 1),

and applying f to this gives, after expanding, D(bb′)− bD(b′)− b′D(b) + bb′D(1).

Since D(1) = 0 and D is a derivation, this is 0. Thus f is zero on I2 and hence

induces a map f : I/I2 → M . Clearly D = f ◦ d by construction. Further, this

choice of f is unique because f is determined on the elements d(b), and these

elements generate I/I2.

(b) While one can compute directly from the above construction, it is easier to

just show the asserted description of ΩA/k satisfies the universal property. The

given d is clearly a derivation, via the product rule for differentiation. Given

D : A → M a k-derivation for an A-module M , define f : ΩA/k → M as

an A-module homomorphism by f(dxi) = D(xi). Then for a polynomial p ∈ A,

repeated use of the Leibniz rule shows that D(p) =
∑

i(∂p/∂xi)D(xi), from which

it immediately follows that D = f ◦ d and f is the unique such map satisfying

this.

(c) Let X = An
k . Recall that the sheaf of differentials was defined to be the

conormal bundle I/I2, where I is the ideal of the diagonal embedding of X in

X ×k X. With A as in part (b), note that X ×k X = SpecA⊗k A, the diagonal

morphism ∆ : X → X ×k X is induced by A ⊗k A → A taking a ⊗ 1 7→ a,

1⊗ a 7→ a, which is the map introduced in part (a). The ideal in A⊗k A defining

the closed subscheme ∆(X) ⊆ X ×k X is precisely I, i.e., Γ(X ×k X, I) = I.

Similarly, Γ(X ×k X, I2) = I2. Using problem 1 above, one concludes that

Γ(X×kX, I/I2) = I/I2 = ΩA/k. Thus dx1, . . . , dxn form a basis of global sections

of ΩX/k. We stated in lecture that ΩX/k is locally free of rank n = dimX, and

the dxi are easily checked to be linearly independent on stalks (the stalk of ΩX/k

agrees with ΩAp/k at a point p ∈ SpecA, as can easily be checked), and thus the

dxi generate ΩX/k as a free sheaf of OX-modules.

7. First note in general that if X is genus g, then Riemman-Roch says

dimH0(X,ωX)− dimH0(X,ωX ⊗ ω−1X ) = degKX + 1− g.
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As dimH0(X,ωX) = g by definition, dimH0(X,OX) = 1, (the only global regular

functions on X are constant), one gets degKX = 2g− 2. Thus in the case g = 2,

degKX = 2. Applying Riemann-Roch to D and noting that dimH0(X,OX(KX−
D)) = 0 as degKX −D < 0, we see that

dimH0(X,OX(D)) = degD + 1− g = 4.

Thus the linear system |D| is dimension three, and hence, using the fact D is

very ample, we obtain an embedding f : X → P3.

We now have an exact sequence

0→ IX → OP3 → OX → 0

and after tensoring with OP3(n), we get the exact sequence

0→ IX(n)→ OP3(n)→ OX(n)→ 0

(where the sheaves on the left and right are defined using this tensor product).

Exactness on the left follows from OP3(n) being locally free.

Note that H0(P3,OP3(n)) is the space of homogeneous polynomials in four

variables of degree n, and this space has dimension

(
n+ 3

3

)
. Note further that

H0(P3, IX(n)) = kerH0(P3,OP3(n))→ H0(P3,OX(n)), and the latter morphism

is given by restriction. Thus this kernel can be viewed as the vector space of

homogeneous polynomials of degree n which vanish on X. Further, we know the

dimension of H0(P3,OX(n)) for n ≥ 1 by Riemann-Roch. Note here use the

convention that a sheaf on X is viewed as a sheaf on P3 via push-forward, but

we don’t write the push-forward explicitly. So in particular, H0(P3,OX(n)) =

H0(X,OX(nD)), and as degKX − nD < 0 for n ≥ 1, we have

dimH0(X,OX(nD)) = 5n− 1

by Riemann-Roch.

Now necessarily X is not contained in a plane in P3, as otherwise |D| would be

a two-dimensional linear system (alternatively, X would be genus 6 by question

5). Thus H0(P3, IX(1)) = 0. On the other hand, consider the dimensions of the

vector spaces in the exact sequence

0→ H0(P3, IX(2))→ H0(P3,OP3(2))→ H0(P3,OX(2)).

By the above discussion, the second and third spaces have dimensions

(
5

2

)
= 10

and 5 · 2 − 1 = 9 respectively. Thus the kernel is at least one-dimensional, so

there is at least one quadric surface containing X. On the other hand, there
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can’t be two distinct quadric surfaces containing X, as, since X is not contained

in a plane, each quadric surface must be irreducible, and the intersection of two

irreducible quadric surfaces is a curve of degree 4 by Bézout’s theorem. Thus X

is contained in a unique irreducible quadric surface.

Now consider similarly

0→ H0(P3, IX(3))→ H0(P3,OP3(3))→ H0(P3,OX(3)).

The second and third spaces have dimensions 20 and 14 respectively, so

dimH0(P3, IX(3)) ≥ 6.

Furthermore, if f2 is the equation of the quadric surface containing X, then

certainly f2x0, . . . , f2x3 are linearly independent cubic polynomials vanishing on

X, and any reducible cubic surface containing X necessarily has equation lying

in the span of these four polynomials. Since 6 > 4, there must be an irreducible

cubic containing X, as desired.


