Solutions to Example Sheet 4.

1. We only need to check that if F — F” is surjective, so is ['(X,F) —
T(X,F").

By the quoted fact, there exist A-modules M, M" with F = ]T/[/, F'=M". In
particular, as surjectivity of 7 — F” can be checked on stalks and (M )p = M, for
any p € Spec A, necessarily M, — M,' is surjective for all p. As a homomorphism
of A-modules being surjective is a local propery, M — M" is surjective. But

M =T(X,F), M" =T(X,F"), giving the desired result.

2. Let Z° = ker d*, so in particular F = Z,. Then the given long exact sequence

splits up into short exact sequences
(0.1) 0— 2" = F' — 2" 0.
Taking the long exact sequence of cohomology and using the assumed vanishing,
we get an exact sequence

0— HX,2") - HX,F") - H* (X, Z™) - HY(X,Z") = 0
and
(0.2) HP(X, Z) = grtl(X, 2%
for p > 1. Thus

HX,F)=HX, 2% =ker(d" : H'(X, F°) — H°(X, Z")).

However, as Z! injects into F', H°(X, Z') injects into H°(X,F'), and we can
write

H(X, F) =ker(d": H*(X, F°) — H° (X, F")),
as claimed.

Next, for p > 0, we have
Hp(X7f> = Hp(X7 ZO) = Hpil(Xv Zl) == Hl(Xa prl),

by repeated use of (0.2)). Now H°(X, Z?) = kerd? : H°(X, FP) — H°(X, Frtl),
and by (0.1), H'(X, 2P71) = cokerd?~' : H°(X, FP~') — H°(X, Z?). This gives
the desired form for H?(X, F).

3. (a) Let a: Fy — Fy and 5 : Fy — F3 be the two given maps. We begin
by observing how flabbyness is used here. Suppose given open sets Uy, Us of X
and sections t; € T'(U;, F2) with the property that 5(t1) = S(t2) on Uy N Us.
Thus by exactness of the sequence there is a section u € F;(U; N Us) such that

a(u) =t; — ty on Uy N Us. Since F is flabby, there exists a section v’ € F;(Us)
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with /g0, = u. Then (t2 + a(v))|vynv, = ti|vynu, and hence the sections t
and ty + a(u') glue to give a section of Fo(U; U Us).

Now let s € F3(U). Since f3 is surjective, therere exists an open cover {U;} of
U, and sections t; € Fo(U;) such that 5(t;) = s|y,. Pick a U;, say Uy, and let
¥ be the set of open subsets V' of U which have sections ¢ with 5(¢) = s|y and
t|lv, = to. Note Uy € X, so non-empty set. Also, every chain in 3 has an upper
bound: if V5 C V; C .- with sections t; € Fo(V;), then we can apply the result
of the first paragraph repeatedly, i.e., t; can be modified so that t, and ¢; glue,
to can be modified so it glues to this section on Vo U V;, etc. Thus we can assume
the sections t; satisfy t;|y, = t; for j < i, and hence by the sheaf gluing axiom,
all these sections glue to give a section of V' = (J, V;, and hence V' is an upper
bound.

Thus by Zorn’s lemma, ¥ has a maximal element, call it V. Suppose U # V.
Then there exists some U; € {U;} such that U; € V. Then B(t —¢;) = 0 on
V' NUj, so we can again apply the argument of the first paragraph to modify ¢;
so that ¢ and ¢; glue, contradicting maximality of V. Thus U =V, and t is the
desired section of F, over U with f(t) = s.

(b) Applying (a) to two open sets V' C U, one obtains a commutative diagram
of exact sequences

0 ——FU) —— FU) — FKU) —0

| | |

0—— F(V)——= F(V) ——= F(V) ——=0

As the first two vertical arrows are surjective since F; and JF, are flabby, the third
verical arrow is surjective by the snake lemma.
(c) Let d; : F; — Fiy1 and let Z; = kerd; = imd;_;. This gives exact sequences

0—=Fo—F1—2Z,—0

and
0—=-2Z, —=F = 211 —0

for i > 2. (note 2y = Fy and Z; = 0.) The first exact sequence tells us 2, is
flabby by (b), and the second exact sequence used repeatedly tells us all Z; are
flabbly. Thus we get short exact sequences after taking global sections, by (a),
and these can then be reassembled into the desired long exact sequence.

(d) This is Hartshorne, Chapter 111, Lemma 4.2.

(e) It is easy to see that a direct product of flabby sheaves is flabby, as a
direct product of surjective maps is surjective. So it is sufficient to show that
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g =F Usy N0, is flabby. Here, we view this as a sheaf on X by push-forward,
as usual. Then for VNU C X, GU) = FUNU;,N---NU,;,), G(V) = F(V N
Ui, N---NU;,), so flabbiness of G follows from flabbiness of 7. Now taking global
sections of the exact sequence of (d), we get by (c) the exact sequence

0 T(X,F) = C*(U,F).

Since this sequence is exact, we immediately conclude H?(U, F) = 0 for p > 0.

4. Set V4 = D(x) and Vo = D(y), both open subsets of X = A2. Then
Vi UV, = U, so this forms a cover of U. Further, both Vi, V5 and V; NV,
are affine (being Spec k|x,y|,, Speck|z,y|, and Speck[z,y],, respectively). So
we may use this cover to compute Cech cohomology, and this will coincide with

sheaf cohomology. We have the Cech 0-cohains
C° = klz, yl. @ kla,yl,

and 1-cochains
Cl - k?[l‘, y]:vy

with differential d(f1, f2) = fo — f1, here using the natural inclusions of k[z, y].
and k[z, y], into k[x, y].,. As the latter ring has a k-basis given by {z'y’ | i, j € Z},
k[x,yl, has a k-basis given by {2'y’ |i € Z,j € Z>o}, and k[z,y], has a k-basis
given by {z'y’ | i € Zxo,j € Z}, the cokernel of the differential clearly has a basis
{x'y? |i,j € Z-o}, as claimed.

5. The fact that U, V cover X is immediate, as P? \ (D (z1) U Dy (x2)) =
{(1,0,0)} ¢ X. Note the fact that (1,0,0) ¢ X implies that f contains a
monomial czd, which we can assume has coefficient ¢ = 1.

Let S = k[zo, z1, ¥2] be the homogeneous coordinate ring of P?, A = S/(f) the
homogeneous coordinate ring of X, each viewed as graded rings.

Now

L(U,0x) = Ay, T'(V,0x) = Ap,,

where as usual the subscript (z;) etc. means localization at x; in degree 0, while

F(U N ‘/, Ox) = A(xlwg)a
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with the restriction maps the obvious ones. It is convenient to consider the
diagram

0—— S(_d)m D S<_d)ﬂc2 L’ Swl S Sm - Am S Am —0

a i i

S(_d)mﬂ@ T) 5961962 Al‘wz

Here the notation S(—d) is a standard one which does book-keeping on degrees:
S(—d) is the graded S-module with S(—d), = S_44,. Thus multiplication by f
is a degree 0 map with this convention, and we write multiplication by f in any
of these cases as my. The vertical maps df are the Cech coboundary maps in
each case, i.e., (p,q) — p — ¢, under the obvious inclusions S,, < S,,,, etc. By
the snake lemma, we then have a long exact sequence

0 — ker d} L ker d? — ker d3 — coker d} L coker d3 — coker d3 — 0

where all maps are homogeneous of degree 0. We wish to compute the degree
zero part of ker d3 and coker d3, being H°(X, Ox) and H'(X, Ox) respectively.

It is immediate that kerd} is the intersection of S(—d),, and S(—d),, in
S(—d) 2z, which is S(—d). If we show that m; : coker dj — coker d3 is injective
in degree 0, then we see immediately that in degree 0, ker d3 = coker(ker d} —
ker d3), so that H°(X,Ox) is the degree 0 part of S/(f) = A, which is the field
k.

Note that the image of d3 is generated by monomials of the form x¢z}z§ with
a € Zsg, and either b € Z, ¢ € Zsq or b € Z>g, ¢ € Z. Thus the cokernel of d?
has a basis of monomials of the form z3xz5 with a > 0, b,c < —1. The same is
true for cokernel of d, with the shift in degree. In particular, the degree 0 part
of coker d} has a monomial basis {z5" 2z 25| b,c > 1,b4c—d > 0}, while the
degree 0 part of coker d? has a monomial basis {z3 2125 |b,c > 1,0+ ¢ > 0}.
Now suppose given an element o € coker dj of degree 0 with m;(a) = 0. Recall
f has a term xd. Let e be the largest power of xy occuring in any monomial in
a. Let o be a sum of those monomials in « for which this power is achieved,
so we can write o' = z{a” with o not divisible by e. Then the sum of those
monomials in fo with the largest power of xq is 20/, and there is no possible
cancellation with lower degree terms in . Thus m(a) = 0 implies 73 a” = 0
which implies o' = 0. Thus o = 0. This shows that H°(X,Ox) = k.

Now consider the degree 0 part of the cokernel of my : cokerdj — coker d:

this will give H*(X, Ox). First note that the image in coker m; of any monomial
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of the form 3"z *x,” representing an element of coker d? with a4 b > d can be

written in terms of monomials with smaller xq power: indeed, f - x8+b_dx1_“x2_ b
is in the image of my, and this is of the form "’z %z;" + --- where the dots
represents terms with lower degree in xy. Thus every element of the cokernel
is represented as a sum of monomials with zy degree a +b < d. Further, any
element of the image of m; must have a monomial of the form 2™z z;" with
a+b > d, as f has the monomial zg. Thus in cokermy, there are no k-linear

relations between the monomials
{adte e la+b<dya>1,b>1}.

Thus this set forms a basis for the degree zero part of the cokernel of my. Thus
the dimension is ZZ;? d—1—a= ZZ;? a=(d—2)(d—1)/2, as desired.

Remark. The exercise asked you to carry out a direct Cech calculation. Ulti-
mately, what the above is doing is really asking you to get your hands a bit dirty
with the Cech calculation of the cohomology of P2. A much quicker way to carry
out this calculation, once one knows the cohomology of line bundles on P”, is to

observe we have an exact sequence
0 — Op2(—d) = Op2 — Ox — 0,

as Opz(—d) is isomorphic to the ideal sheaf of X in P2, Taking the long exact
sequence of cohomology, using the calculation of cohomology of line bundles on
P2, gives sequences

0 — H°(P?, Op2) — H°(X,0x) = 0

and
0 — HY(X,0x) = H*(P?, Op2(—d)) — 0,

Y

from which the exercise follows much more efficiently, as H?(P? Opz(—d)) =
HO(P? Op2(d — 3)).

6. (a) We have a homomorphism B — B ®4 B given by b — b ® 1, giving
B ®4 B a B-algebra structure, and hence I/I* has a B-module structure.

First we check the given d is a derivation. (1) If b, € B, then d(b+ V') =
1@b+V)—0b+00)®1 =db) +db). (2)dbY) =1 BY) - OV)®1 =
b1V -Ve1)+(10b-b®1)(1®V). Now working modulo I?, we
note that (1 ® 0 — 0 ®1)(1®b—-b® 1) =0 mod I?, so we can subtract this
from the above expression, and see that d(bt') = bd(V') + b'd(b), as desired. (3)
dla)=1®a—a®1=1®a—1®a =0, as the the tensor product is over A.



Now suppose given a B-module M and an A-derivation D : B — M. There is
an A-bilinear map B x B — M given by (b,b') +— b- D(l'). Thus by the universal
property of tensor product, this induces amap f: BaB — M, bb' — b-D(V).
We may restrict f to I, to get a homomorphism of B-modules f: I — M. Note
that f(1®b—0b® 1) = D(b).

I now claim that [ is generated as a B-module by elements of the form d(b).
Indeed, writing I 5 Y b;®b, = > b;(1@b,—b,®1) as Y b;b; = 0, we immediately
see this.

Thus I? is generated by elements of the form (1®b—0® 1)(1 @0 — b @ 1),
and applying f to this gives, after expanding, D(bb') —bD(b') — b’ D(b) +bb'D(1).
Since D(1) = 0 and D is a derivation, this is 0. Thus f is zero on I? and hence
induces a map f : I/I? — M. Clearly D = f od by construction. Further, this
choice of f is unique because f is determined on the elements d(b), and these
elements generate I /1.

(b) While one can compute directly from the above construction, it is easier to
just show the asserted description of €24, satisfies the universal property. The
given d is clearly a derivation, via the product rule for differentiation. Given
D : A — M a k-derivation for an A-module M, define f : Q4 — M as
an A-module homomorphism by f(dz;) = D(x;). Then for a polynomial p € A,
repeated use of the Leibniz rule shows that D(p) = > _.(0p/0z;)D(x;), from which
it immediately follows that D = f od and f is the unique such map satisfying
this.

(c) Let X = A}. Recall that the sheaf of differentials was defined to be the
conormal bundle Z/Z?, where Z is the ideal of the diagonal embedding of X in
X X X. With A as in part (b), note that X x; X = Spec A ®;, A, the diagonal
morphism A : X — X X, X is induced by A ®, A — A taking a ® 1 — a,
1 ® a — a, which is the map introduced in part (a). The ideal in A ®; A defining
the closed subscheme A(X) C X x; X is precisely I, i.e., I'(X %, X,Z) = I.
Similarly, T'(X x X,Z?) = I?. Using problem 1 above, one concludes that
D(X %, X,T/I?) =I/I* = Quyp,. Thus dzy, ..., dx, form a basis of global sections
of Qx/,. We stated in lecture that (2x/ is locally free of rank n = dim X, and
the dx; are easily checked to be linearly independent on stalks (the stalk of {2y,
agrees with (4, /x at a point p € Spec A, as can easily be checked), and thus the
dx; generate (0x . as a free sheaf of Ox-modules.

7. First note in general that if X is genus g, then Riemman-Roch says

dim H°(X,wx) — dim H°(X,wx ® wy') =deg Kx +1—g.
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Asdim H°(X,wx) = g by definition, dim H°(X, Ox) = 1, (the only global regular
functions on X are constant), one gets deg Ky = 2g — 2. Thus in the case g = 2,
deg Kx = 2. Applying Riemann-Roch to D and noting that dim H°(X, Ox(Kx —
D)) =0 as deg Kx — D < 0, we see that

dim H*(X,Ox (D)) =degD +1—g=4.

Thus the linear system |D| is dimension three, and hence, using the fact D is
very ample, we obtain an embedding f : X — P3.
We now have an exact sequence

0—=Zx = Ops - Ox — 0
and after tensoring with Ops(n), we get the exact sequence
0— Zx(n) = Ops(n) - Ox(n) — 0

(where the sheaves on the left and right are defined using this tensor product).
Exactness on the left follows from Ops(n) being locally free.

Note that H°(P?,Ops(n)) is the space of homogeneous polynomials in four
3
variables of degree n, and this space has dimension n—;— . Note further that

H°(P3,Zx(n)) = ker H*(P3, Ops(n)) — H°(P?, Ox(n)), and the latter morphism
is given by restriction. Thus this kernel can be viewed as the vector space of
homogeneous polynomials of degree n which vanish on X. Further, we know the
dimension of H°(P3,Ox(n)) for n > 1 by Riemann-Roch. Note here use the
convention that a sheaf on X is viewed as a sheaf on P? via push-forward, but
we don’t write the push-forward explicitly. So in particular, H°(P?, Ox(n)) =
H°(X,0x(nD)), and as deg Kx — nD < 0 for n > 1, we have

dim H°(X,Ox(nD)) = 5n — 1
by Riemann-Roch.

Now necessarily X is not contained in a plane in P3, as otherwise | D| would be

a two-dimensional linear system (alternatively, X would be genus 6 by question
5). Thus H°(P3,Zx(1)) = 0. On the other hand, consider the dimensions of the

vector spaces in the exact sequence
0 — HY(P? Zx(2)) — H°(P?, Ops(2)) — H(P?, Ox(2)).
5
By the above discussion, the second and third spaces have dimensions <2> =10

and 5 -2 — 1 = 9 respectively. Thus the kernel is at least one-dimensional, so
there is at least one quadric surface containing X. On the other hand, there
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can’t be two distinct quadric surfaces containing X, as, since X is not contained
in a plane, each quadric surface must be irreducible, and the intersection of two
irreducible quadric surfaces is a curve of degree 4 by Bézout’s theorem. Thus X
is contained in a unique irreducible quadric surface.

Now consider similarly
0 — H°(P°, Ix(3)) — H°(P?, Ops(3)) — H°(P?, Ox(3)).
The second and third spaces have dimensions 20 and 14 respectively, so
dim H°(P?, Zx (3)) > 6.

Furthermore, if f, is the equation of the quadric surface containing X, then
certainly foxo, ..., foxs are linearly independent cubic polynomials vanishing on
X, and any reducible cubic surface containing X necessarily has equation lying
in the span of these four polynomials. Since 6 > 4, there must be an irreducible
cubic containing X, as desired.



