
Solutions to Example Sheet 3.

1. Take any open affine subset U ⊆ X with Z ∩ U 6= ∅. If U = SpecA, then

Z ∩ U = V (I) for some ideal I ⊆ A. Since V (I) = V (
√
I), we can assume I is

radical. If I is not prime, then one can find f, g ∈ A \ I with fg ∈ I, and then

(V (f) ∩ V (I)) ∪ (V (g) ∩ V (I)) = (V (f) ∪ V (g)) ∩ V (I) = V (fg) ∩ V (I) = V (I),

but neither V (f)∩V (I), v(g)∩V (I) are V (I), violating irreducibility of Z. Thus

I is prime, corresponding to a point η ∈ U . Then {η} = V (I) in U , and since Z

is irreducible, Z ∩ U is dense in Z, so {η} = Z in X .

To show η is unique, if there exists η, η′ ∈ Z with {η} = {η′}, then necessarily

η′ ∈ U also, and thus η′ = η since {η′} = V (I) in U .

2. (a) Let x ∈ X be a closed point. As X is a variety, x has an open affine

neighbourhood U = SpecA with A a finitely generated k-algebra and with x

corresponding to a maximal ideal m. Then dimAm = height(m) (via one-to-one

correspondence between prime ideals contained in m and prime ideals of Am),

and height(m) + dimA/m = dimA. As A/m is a field, it has dimension zero,

so we can conclude that dimA = dimAm. Thus dimU = dimA = dimAm, by

the one-to-one correspondence between irreducible closed subsets of U and prime

ideals of A.

Now suppose given any two affine open subsets U = SpecA, U ′ = SpecA′

of X , with both A,A′ finitely generated k-algebras. Then dimU = dimA =

tr.deg.(A(0)/k) = tr.deg.(A′
(0)/k) = dimU ′, as A(0) = A′

(0) = K(X). Thus U , U ′

have the same dimension.

In general, if {Ui} is an affine open cover of any scheme X , then dimX =

supi dimUi. Indeed, if Z0 ( · · · ( Zn is a chain of irreducible closed subsets of

X , then Z0∩Ui 6= ∅ for some i, so Z0∩Ui ( · · · ( Zn∩Ui is a chain of irreducible

closed subsets of Ui, with the inequalities holding as the closure of Zj ∩ Ui is

Zj. Thus dimX ≤ supi dimUi. Conversely, given a chain of irreducible closed

subsets in Ui, we get a chain of irreducible closed subsets in X by taking closures,

so dimX ≥ dimUi. This gives the claim.

In our particular situation, we can choose a cover of X by spectra Ui of finitely

generated k-algebras, all of the same dimension by the first two paragraphs. Thus

dimX = dimUi = dimOX,x for any closed point x.

(b) Write Y =
⋃

i Yi for the decomposition of Y into irreducible closed sets, and

let ηi be the generic point of Yi, guaranteed by Question 2. Then codim(Y,X) =

infZ⊆Y codim(Z,X) by definition, where the infinum is over all irreducible closed

subsets of Y . Since any irreducible closed subset is contained in one of the Yi’s,
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this agrees with inf i codim(Yi, X), and thus it is enough to show that codim(Yi, X) =

dimOX,ηi . (Here we use the fact that if x ∈ {ηi}, then OX,ηi is a localization of

OX,x, so dimOX,ηi ≤ dimOX,x.) Now let U be an open affine set containing

ηi. Then a chain Yi = Z0 ( · · · ( Zn ⊆ X of irreducible closed subsets in-

duces a chain of irreducible closed subsets U ∩ Yi = U ∩ Z0 ( · · · ( U ∩ Zn

and vice versa, so codim(Yi, X) = codim(Yi ∩ U, U). On the other hand, if

U = SpecA, ηi corresponds to a prime p, then clearly codim(Yi ∩ U, U) = ht p.

But ht p = dimAp = dimOX,ηi , hence the result. [Note: We have not used an

properties of finitely generated k-algebras which are dmains here, so this result

holds for all schemes.]

(c) First assume Y is irreducible, with generic point η. Let U ⊆ X be an open

affine subset, U = SpecA with A a finitely generated k-algebra, with U ∩ Y 6= ∅.
Then U ∩Y = V (p) for some prime p ⊆ A, and dim Y = dimU ∩Y = dimA/p =

dimA−ht p = dimX−codim(Y,X) by the discussion of (a) and (b). Now if Y =⋃
i Yi is a decomposition into irreducible components, we have dimY = sup dimYi

and codim(Y,X) = inf codim(Yi, X), and since dimYi + codim(Yi, X) = dimX ,

dimYi achieves the supremum if codim(Yi, X) achieves the infinum, and the result

follows.

(d) Cover U with open affines, and cover each of these with open affines which

are finitely generated over k (which we can do by the finite type assumption and

Question 2 on Example Sheet II). Let {Ui} be this open affine cover. By the

argument in (a), dimU = supi dimUi = dimUi = dimX .

(e) If U ⊆ X is open affine with U = SpecA with A a finitely generated k-

algebra, then dimX = dimU = dimA = tr.deg.A(0)/k = tr.deg.K(X)/k. The

first equality is from (d), and the last is since A(0) = K(X).

3. (a) Let X = Spec k[x, y, z]/(xz, yz). Note that X has two irreducible

components, V (x, y) and V (z), of dimensions one and two respectively. Thus

dimX = 2, but if p = (x, y, z − 1) then OX,p = k[z](z−1) is one-dimensional, and

p is a maximal ideal.

(c) Continuing with the same example, if Y is taken to be the point {p} as

above, then dimY = 0, codim(Y,X) = 1, dimX = 2, contradicting (c) in Ques-

tion 3.

(d) Let R = k[x](x). Then R has two prime ideals, (0) and (x), with the former

the generic point and (x) the closed point. Then dimX = 1 with X = SpecR,

and if U = X \ {(x)}, then U is an open subset of dimension 0.
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4. (a) With U := A1
k × A1

k = A2
k = Spec k[x, y], we have Cl(U) = 0. Now we

have inclusions U ⊂ P1
k ×A1

k ⊂ P1
k × P1

k, using your favorite standard open affine

A1 ⊆ P1. [We follow the usual convention that we write × rather than ×Spec k

when working with schemes defined over Spec k.] By twice making use of the exact

sequence Z → ClX → ClU → 0 proved in class, we see we have a surjection

Z2 → ClP1×P1, with (1, 0) 7→ ℓ = P1×{∞} and (0, 1) 7→ m = {∞}×P1, where

∞ is the unique point of P1 \ A1. Thus ClX is generated by ℓ and m and we

just need to show there are no relations. But suppose there is a rational function

f ∈ K(X) = K(U) with (f) = aℓ + bm. Then writing f = f1(x, y)/f2(x, y) for

f1, f2 ∈ k[x, y] relatively prime, f necessarily vanishes along the curve f1 = 0

and has poles along f2 = 0. In order for (f) = 0 on A2, we would thus have

to have f ∈ k. But then (f) = 0 on X also. Thus there are no relations and

ClX = Zℓ⊕ Zm.

(b) Let Y be the prime divisor V (x, z) ⊆ X . Note that V (x) = V (x, z), but

these are different ideals. However, this does tell us that U := X \ Y = D(x) =

Spec(k[x, y, z]/(xy−z2))x = Spec k[x, z]x. (To see this, note that once we localize

at x, we can eliminate the variable y as y = z2/x in the localized ring.) Now

k[x, z]x is a UFD, so ClU = 0, and ClX is thus generated by the prime divisor

Y . We only need to determine the relations.

Suppose there is a rational function f with (f) = aY for some a 6= 0. Since on

U , we would have (f) = 0, f is then a regular invertible function on U . However,

the only invertible functions on U are the units in k[x, z]x, which are of the form

cxn for c ∈ k∗. Thus we calculate the divisor of zeros and poles (x) of x on X , it

being of the form bY for some b. Now the stalk of OX at the generic point of Y is

the localized ring (k[x, y, z]/(xy−z2))(x,z), and since y 6∈ (x, z), y is invertible and

we can eliminate x = z2/y, so this ring is isomorphic to k[y, z](z). Now clearly

νY (x) = νY (z
2/y) = 2. Thus (x) = 2Y , (cxn) = 2nY , and we see ClX = Z/2Z.

(c) Let Y1 = V (x, z) ⊆ X ; again this is a prime divisor, as (x, z) is a prime

ideal in k[x, y, z, w]/(xy − zw). (You just check this by quotienting out by this

ideal and you get k[y, w].) Similarly, let Y2 = V (x, w). Then Y1 ∪ Y2 = V (x)

and U = X \ (Y1∪Y2) = D(x) ∼= Spec(k[x, y, z, w]/(xy− zw))x = Spec k[x, z, w]x
pretty much as in (b). Thus ClU = 0 as k[x, z, w]x is a UFD, and so ClX is

generated by Y1 and Y2. On the other hand, the divisor of zeros and poles of x

is (x) = Y1 + Y2; this can be checked exactly as in (b). Thus there is a relation

Y1 ∼ −Y2. We need to check there is no further relation. Suppose aY1 + bY2 ∼ 0.

Using Y1 ∼ −Y2, we would also get a relation a′Y1+b′Y2 ∼ 0 with a′, b′ ≥ 0. Thus

there must be a regular function f with (f) = a′Y1 + b′Y2. Such a function is
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then invertible on U , and the group of units of k[x, z, w]x consists of monomials

of the form cxn for c ∈ k∗ nad n ∈ Z. However, (cxn) = (xn) = n(x) = nY1+nY2.

Hence any relation is a multiple of Y1 + Y2 = 0. Thus ClX = Z, generated by

Y1 ∼ −Y2.

5. A morphism ϕ : Pn → Pm is induced by a surjection O⊕(m+1)
Pn → L for

some line bundle L on Pn. Necessarily, L = OPn(r) for some r, again necessarily

r ≥ 0 as H0(Pn,OPn(r)) = 0 for r < 0. Such a morphism is then given by a

choice of m + 1 sections s0, . . . , sm of L which generate L globally, i.e., at each

point x ∈ Pn, at least one of the si’s is non-vanishing, i.e., si 6∈ mxLx. Note

that the sections si correspond to homogeneous polynomials fi of degree r, and

the common vanishing locus of all fi is V (f0, . . . , fm). However, if m < n then

these polynomials will have a common zero (either by dimension theory, or think

of Bézout’s theorem), and hence s0, . . . , sm cannot generate L globally. Thus

m ≥ n.

Now suppose dimϕ(Pn) < n ≤ m. Then one can find a point x ∈ Pm \ ϕ(Pn),

which induces a linear projection π : Pm \ {x} → Pm−1. [Thinking of Pm as the

set of one-dimensional vector spaces of a vector space V of dimension m+1, and

thinking of x as corresponding to Wx ⊆ V one-dimensional, π is induced by the

projection V → V/Wx. If you are a stickler for details, convince yourself this

defines a morphism of schemes.] Now π ◦ ϕ : Pn → Pm−1 is a morphism. We

can thus continue decreasing the dimension of the target space until m < n, a

contradiction.

6. If M is an A-module, one sees immediately from the construction of the

sheaf M̃ that M̃ |D(f) = M̃f . Thus if F , G are two quasi-coherent sheaves on

X , we can find a single open affine cover {Ui = SpecAi} such that F|Ui
= M̃i,

G|Ui
= Ñi for Ai-modules Mi, Ni. This makes use of Example Sheet II, Question

2.

Note taking twiddles is a functor, so a module homomorphism Mi → Ni in-

duces a morphism of sheaves of OSpecAi
-modules M̃i → Ñi. Conversely, such a

morphism induces an Ai-module homomorphism by taking global sections, and

it is easy to check that this identifies HomOSpecAi
(M̃i, Ñi) and HomAi

(Mi, Ni).

Thus in particular, we may reduce to the case that X = SpecA and F = M̃ ,

G = Ñ , and f̃ : F → G is induced by f : M → N . Here M,N are A-modules.

Note next that taking twiddles is an exact functor, as (M̃)p = Mp and local-

ization is an exact functor, while a sequence of maps of sheaves is exact if and
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only if it is exact on stalks. From this immediately follows that

ker f̃ = k̃er f

coker f̃ = c̃oker f

im f̃ = ĩm f

This shows that kernels, cokernels and images of morphisms of quasi-coherent

sheaves are quasi-coherent. The statement in the coherent case follows from the

fact that if A is Noetherian, then a submodule of a finitely generated module

is finitely generated (and of course in general a quotient module of a finitely

generated module is finitely generated).

Given f : X → Y , we can cover Y with open affines U on which F is given as

M̃ , and by replacing Y by U and X by f−1(U), we can assume Y = SpecB is

affine and F = M̃ for M a B-module. Now there is a presentation

F1 → F0 → M → 0

where Fj =
⊕

i∈Ij
A are free modules. Then taking twiddles gives an exact

sequence ⊕

i∈I1

OY →
⊕

i∈I0

OY → F → 0.

We may then apply f ∗, noting that f−1 is an exact functor (as it preserves stalks

as it clear from the definitions) while tensoring with OX is a right exact functor,

so that we get ⊕

i∈I1

OX →
⊕

i∈I0

OY → f ∗F → 0.

Thus f ∗F is described as the cokernel of a morphism between quasi-coherent

sheaves, and hence is quasi-coherent. Note in particular this shows that

f ∗M̃ = M̃ ⊗B A.

For the counter example, consider f : X = A1
k → Spec k, F = OX . Then f∗OX

is the k-vector space k[x], if A1
k = Spec k[x]. But k[x] is not a finite dimensional

k-vector space.

7. (a) As i#U : OX(U) → (i∗OZ)(U) = OZ(Z ∩ U) is a ring homomorphism, its

kernel I(U) is an ideal in OX(U), proving the claim.

(b) This statement follows from Question 6 if we know that i∗OZ is coherent.

In fact, it is not in particular difficult to show that if f : X → Y is a morphism

and F is quasi-coherent on X , then f∗F is quasi-coherent on Y , which is actually

sufficient for our purposes. In particular i∗OZ would be quasi-coherent, and so
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the kernel of OX → i∗OZ is quasi-coherent, and coherent if X is Noetherian,

since it is a sub-OX -module of OX .

For pedagogical reasons, I will give a harder proof, reducing the statement to

a statement that a closed subscheme of SpecA is always of the form SpecA/I for

I ⊆ A an ideal, and then proving this statement.

Let U ⊆ X be an open affine subset, U = SpecA. We first show that Z ∩
U ∼= SpecA/I for some ideal I ⊆ A. To this end, we can replace X by U

and Z by Z ∩ U , and assume that X = SpecA is affine. We have an induced

map ϕ := i#X : A → Γ(Z,OZ). Let I := kerϕ, an ideal in A. We wish to

show Z ∼= SpecA/I with the immersion Z → X induced by the quotient map

A → A/I.

Certainly ϕ factors through the quotient map A → A/I, giving a factorization

Z → SpecA/I → SpecA. Let us now replace X = SpecA with SpecA/I, which

allows us to assume that kerϕ is zero, i.e., ϕ is injective. We now wish to show

that in fact i : Z → X is an isomorphism.

We first show the underlying map i is a homeomorphism. We know that it

is injective (being a closed immersion) and closed (i.e., closed sets are mapped

to closed sets, again being a closed immersion). So we just need to show it is

surjective. If it is not surjective, then, as i(Z) is closed, there exists an a ∈ A such

that Z ⊂ V (a) 6= SpecA. Now let V ⊆ Z be an open affine subset SpecB. We

write V ′(J) ⊆ SpecB for an ideal J ⊂ B (to distinguish from other occurences of

V (·) above). Then V ⊂ i−1(V (a)) ∩ V = V ′((ϕ(a)|V )). Thus ϕ(a)|V is nilpotent

in B, so ϕ(aN)|V = 0 for some N > 0. By quasi-compactness, we can cover

Z by a finite number of open affines of this form, so we can take N sufficiently

large to work for all affines V in this cover. Thus ϕ(aN ) = 0 by the first sheaf

axiom, and so aN = 0 by injectivity of ϕ. From this we conclude that a ∈
√
0

and V ((a)) = SpecA. Thus in fact Z is not contained in a proper closed subset

of SpecA, showing the desired surjectivity. Thus Z → X is a homeomorphism.

It remains to show that the homomorphism i# : OX → OZ is bijective. It is sur-

jective by assumption, and we test injectivity on stalks. For x ∈ X , OX,x = Apx ,

where px is the prime ideal corresponding to x. It is enough to show that every

element of ker(OX,x → OZ,x) of the form g/1 ∈ Apx is zero in this localization.

Indeed, the kernel is an ideal, and if g/s lies in the kernel for s 6∈ px, then so does

g/1, and s is a unit in the ring. Thus if g/1 = 0, g/s = 0 also. Given g ∈ A, cover

Z = U ∪ ⋃
i∈I Ui be an affine open cover of Z by a finite number of open sets

(quasi-compactness again) such that x ∈ U , x 6∈ Ui for any Ui, and ϕ(g)|U = 0.

(Such a U exists because ϕ(g)/1 is assumed to be zero in the stalk OZ,x).
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Choose s ∈ A with x ∈ D(s) ⊆ U . Note s 6∈ px. If we can show that

ϕ(sNg) = 0 for some N , then by injectivity of ϕ, sNg = 0, and thus g/1 = 0

in Apx , as desired. But ϕ(g)|U = 0 by assumption, so ϕ(sNg)|U = 0. Now

DUi
(ϕ(s)|Ui

) = D(s)∩Ui ⊆ U ∩Ui (here DUi
denotes D for the affine open subset

Ui), so we get ϕ(g)|DUi
(ϕ(s)|Ui

) = 0. Thus, the image of ϕ(g) in the localization

Γ(Ui,OZ)ϕ(s)|Ui
is zero, i.e., ϕ(sNg)|Ui

= 0 for some N . Taking N sufficiently

large to work for all i, we get ϕ(sNg) = 0 for some N . By injectivity of ϕ, we see

sNg = 0 so g/1 = 0 in OX,x, as desired.

Having now shown that i induces an isomorphism between Z and SpecA/I, it

is immediate that i∗OZ = Ã/I, giving the desired coherence of i∗OZ .

c) We have already seen that a closed immersion i : Z →֒ X gives rise to a quasi-

coherent sheaf of ideals I with i∗OZ
∼= OX/I by construction of I. Conversely,

suppose given I a quasi-coherent sheaf of ideals. Then consider

Z := suppOX/I := {x ∈ X | (OX/I)x 6= 0}.
This is in fact a closed set. Indeed, 1 ∈ Γ(X,OX) must generate the stalk

(OX/I)x, and so the stalk is zero if and only if 1 = 0 in this stalk. However,

if this holds in the stalk, it also holds in an open neighbourhood of x, so the

complement of suppOX/I is open.

Now let i : Z →֒ X be the inclusion, and set OZ = i−1(OX/I). We wish to

show (Z,OZ) is a closed subscheme of X . To do so, we may test this on open

affines on which I is the twiddle of a module. So assume X = SpecA, I = Ĩ.

Note that as I ⊆ OX , I = Γ(X, I) is a sub-module of Γ(X,OX) = A, i.e., I is

an ideal in A.

Let us write px ∈ A for the prime ideal corresponding to x ∈ A. The localiza-

tions Ipx agree with the stalks Ix for x ∈ X . In particular, x ∈ Z if and only if

Ipx 6= Apx if and only if px ⊇ I, and thus Z = V (I). Now note that OZ agrees

with the structure sheaf of SpecA/I. Indeed, this follows from the construction

of both. We know that OX/I ∼= Ã/I, and we may represent a section of i−1OX/I
on an open set U ⊆ Z via (V, s) with s a section of OX/I over V open in X and

U ⊆ V . However, as the topology on Z is induced by that on X , we may assume

V ∩ Z = U . Then one sees that giving a section of Ã/I over V is precisely the

same as giving a section of OSpecA/I over U , by the construction of both. This

shows that OZ = OSpecA/I .

Thus (Z,OZ) is a closed subscheme of X .

9. See II Proposition 7.3 of Hartshorne.


