Solutions to Example Sheet 3.

1. Take any open affine subset U C X with ZNU # (. If U = Spec A, then
ZNU = V(I) for some ideal I C A. Since V(I) = V(v/I), we can assume [ is
radical. If I is not prime, then one can find f,g € A\ I with fg € I, and then
V(H V) uVig)nV(I)) = (V(SHIuVig)nV{I)=V(fg)nV(I)=V(I),
but neither V(f)NV (I),v(g) NV (I) are V(I), violating irreducibility of Z. Thus
I is prime, corresponding to a point n € U. Then m =V(I) in U, and since Z
is irreducible, Z N U is dense in Z, so m =/ in X.

To show 7 is unique, if there exists 1,7’ € Z with {n} = {#’}, then necessarily
7' € U also, and thus 1/ = 7 since {n/} = V(I) in U.

2. (a) Let x € X be a closed point. As X is a variety, x has an open affine
neighbourhood U = Spec A with A a finitely generated k-algebra and with z
corresponding to a maximal ideal m. Then dim A, = height(m) (via one-to-one
correspondence between prime ideals contained in m and prime ideals of Ay,),
and height(m) + dim A/m = dim A. As A/m is a field, it has dimension zero,
so we can conclude that dim A = dim A,,. Thus dimU = dim A = dim A, by
the one-to-one correspondence between irreducible closed subsets of U and prime
ideals of A.

Now suppose given any two affine open subsets U = Spec A, U’" = Spec A’
of X, with both A, A" finitely generated k-algebras. Then dimU = dim A =
tr.deg.(A (o) /k) = tr.deg.(Aly /k) = dimU’, as A(q) = Aj) = K(X). Thus U, U’
have the same dimension.

In general, if {U;} is an affine open cover of any scheme X, then dim X =
sup; dim U;. Indeed, it Zy, C --- C Z, is a chain of irreducible closed subsets of
X, then ZyNU; # B for some i, so ZoNU; € --- C Z,NUj; is a chain of irreducible
closed subsets of U;, with the inequalities holding as the closure of Z; N U; is
Zj. Thus dim X < sup,dim U;. Conversely, given a chain of irreducible closed
subsets in U;, we get a chain of irreducible closed subsets in X by taking closures,
so dim X > dim U;. This gives the claim.

In our particular situation, we can choose a cover of X by spectra U; of finitely
generated k-algebras, all of the same dimension by the first two paragraphs. Thus
dim X = dim U; = dim Ox , for any closed point x.

(b) Write Y =, Y; for the decomposition of Y into irreducible closed sets, and
let 7; be the generic point of Y;, guaranteed by Question 2. Then codim(Y, X) =
inf zcy codim(Z, X) by definition, where the infinum is over all irreducible closed

subsets of Y. Since any irreducible closed subset is contained in one of the Y;’s,
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this agrees with inf; codim(Y;, X), and thus it is enough to show that codim(Y;, X) =
dim Ox,,. (Here we use the fact that if z € {n;}, then Oy, is a localization of
Ox,, so dim Oy, < dimOx,.) Now let U be an open affine set containing
7;- Then a chain Y; = Z, € --- € Z, C X of irreducible closed subsets in-
duces a chain of irreducible closed subsets UNY; =UNZy, € --- C UNZ,
and vice versa, so codim(Y;, X) = codim(Y; N U,U). On the other hand, if
U = Spec A, n; corresponds to a prime p, then clearly codim(Y; N U,U) = htp.
But htp = dim A, = dim Oy, hence the result. [Note: We have not used an
properties of finitely generated k-algebras which are dmains here, so this result
holds for all schemes.|

(c) First assume Y is irreducible, with generic point 7. Let U C X be an open
affine subset, U = Spec A with A a finitely generated k-algebra, with UNY # 0.
Then UNY = V(p) for some prime p C A, and dimY =dimUNY =dim A/p =
dim A—htp = dim X — codim(Y, X) by the discussion of (a) and (b). Now if Y =
U, Yi is a decomposition into irreducible components, we have dimY" = sup dimY;
and codim(Y, X) = inf codim(Y;, X), and since dim Y; + codim(Y;, X) = dim X,
dim Y; achieves the supremum if codim(Y;, X') achieves the infinum, and the result
follows.

(d) Cover U with open affines, and cover each of these with open affines which
are finitely generated over k (which we can do by the finite type assumption and
Question 2 on Example Sheet II). Let {U;} be this open affine cover. By the
argument in (a), dim U = sup, dim U; = dim U; = dim X.

(e) If U C X is open affine with U = Spec A with A a finitely generated k-
algebra, then dim X = dimU = dim A = tr.deg. A /k = tr.deg. K (X)/k. The
first equality is from (d), and the last is since Ay = K(X).

3. (a) Let X = Speck|x,y,z]/(xz,yz). Note that X has two irreducible
components, V' (z,y) and V(z), of dimensions one and two respectively. Thus
dim X = 2, but if p = (z,y,2 — 1) then Ox, = k[2](._1) is one-dimensional, and
p is a maximal ideal.

(c¢) Continuing with the same example, if Y is taken to be the point {p} as
above, then dimY = 0, codim(Y, X) = 1, dim X = 2, contradicting (c) in Ques-
tion 3.

(d) Let R = k[x](;). Then R has two prime ideals, (0) and (z), with the former
the generic point and (x) the closed point. Then dim X = 1 with X = Spec R,
and if U = X \ {(x)}, then U is an open subset of dimension 0.
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4. (a) With U := A} x A} = A} = Spec k[z,y|, we have C1(U) = 0. Now we
have inclusions U C P} x Al C P} x P}, using your favorite standard open affine
Al C P! [We follow the usual convention that we write x rather than X Spec k
when working with schemes defined over Spec k.] By twice making use of the exact
sequence Z — ClX — ClU — 0 proved in class, we see we have a surjection
7? — CIP' x P! with (1,0) — ¢ = P! x {oo} and (0,1) — m = {oco} x P!, where
oo is the unique point of P!\ Al. Thus Cl X is generated by ¢ and m and we
just need to show there are no relations. But suppose there is a rational function
[ € K(X)=K(U) with (f) = al + bm. Then writing f = fi(z,y)/fa(x,y) for
f1, f2 € k[z,y] relatively prime, f necessarily vanishes along the curve f; = 0
and has poles along f, = 0. In order for (f) = 0 on A%, we would thus have
to have f € k. But then (f) = 0 on X also. Thus there are no relations and
ClX =7 Zm.

(b) Let Y be the prime divisor V' (z,z) C X. Note that V(z) = V(z, z), but
these are different ideals. However, this does tell us that U := X\ Y = D(z) =
Spec(k[x,y, 2]/ (xy — 2?)). = Spec k[, 2],. (To see this, note that once we localize
at x, we can eliminate the variable y as y = 2%/z in the localized ring.) Now
klx, z], is a UFD, so C1U = 0, and Cl X is thus generated by the prime divisor
Y. We only need to determine the relations.

Suppose there is a rational function f with (f) = aY for some a # 0. Since on
U, we would have (f) = 0, f is then a regular invertible function on U. However,
the only invertible functions on U are the units in k[, z|,, which are of the form
cx™ for ¢ € k*. Thus we calculate the divisor of zeros and poles (z) of x on X, it
being of the form bY for some b. Now the stalk of Ox at the generic point of YV is
the localized ring (k[x,y, 2|/ (2y — 2?))(z.2), and since y & (z, z), y is invertible and
we can eliminate = z*/y, so this ring is isomorphic to kly, z].). Now clearly
vy (x) = vy (22 /y) = 2. Thus (z) = 2Y, (cz™) = 2nY, and we see C1 X = Z/27Z.

(c) Let Yy = V(z,z) C X; again this is a prime divisor, as (z,z) is a prime
ideal in k[x,y, z, w|/(xy — zw). (You just check this by quotienting out by this
ideal and you get k[y,w].) Similarly, let Y2 = V(x,w). Then Y; UY, = V(2)
and U = X'\ (Y1 UY3) = D(z) = Spec(k[z,y, z, w]/(zy — zw)), = Spec k[z, z, w],
pretty much as in (b). Thus Cl1U = 0 as k[z, z,w], is a UFD, and so C1 X is
generated by Y] and Y. On the other hand, the divisor of zeros and poles of x
is () = Y7 + Y3; this can be checked exactly as in (b). Thus there is a relation
Y] ~ —Y;5. We need to check there is no further relation. Suppose aY; + bY5 ~ 0.
Using Y7 ~ —Y5, we would also get a relation a'Y; +b'Yy ~ 0 with o/, > 0. Thus
there must be a regular function f with (f) = a’Y; + VY3, Such a function is
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then invertible on U, and the group of units of k[z, z, w], consists of monomials
of the form cz” for ¢ € k* nad n € Z. However, (cx™) = (2™) = n(x) = nY; +nYx.
Hence any relation is a multiple of Y} + Y5 = 0. Thus C1 X = Z, generated by
Y] ~ =Ya.

5. A morphism ¢ : P" — P™ is induced by a surjection (’)E?n(mﬂ) — L for

some line bundle £ on P". Necessarily, £ = Opr(r) for some r, again necessarily
r > 0 as H(P",Opu(r)) = 0 for r < 0. Such a morphism is then given by a
choice of m + 1 sections s, ..., s, of £ which generate L globally, i.e., at each
point z € P", at least one of the s;’s is non-vanishing, i.e., s; € m,L,. Note
that the sections s; correspond to homogeneous polynomials f; of degree r, and
the common vanishing locus of all f; is V(fo,..., fin). However, if m < n then
these polynomials will have a common zero (either by dimension theory, or think
of Bézout’s theorem), and hence sq, ..., s, cannot generate £ globally. Thus
m > n.

Now suppose dim ¢(P") < n < m. Then one can find a point x € P™ \ ¢(P"),
which induces a linear projection 7 : P™ \ {x} — P™~!. [Thinking of P™ as the
set of one-dimensional vector spaces of a vector space V' of dimension m + 1, and
thinking of x as corresponding to W, C V one-dimensional, 7 is induced by the
projection V' — V/W,. If you are a stickler for details, convince yourself this
defines a morphism of schemes.] Now 7o ¢ : P* — P™ ! is a morphism. We
can thus continue decreasing the dimension of the target space until m < n, a

contradiction.

6. If M is an A-module, one sees immediately from the construction of the
sheaf M that M | D) = M ¢ Thus if F, G are two quasi-coherent sheaves on
X, we can find a single open affine cover {U; = Spec A;} such that Fly, = ]\AJZ
Glu, = N; for A;-modules M;, N;. This makes use of Example Sheet II, Question
2.

Note taking twiddles is a functor, so a module homomorphism M; — N; in-
duces a morphism of sheaves of Ogpec 4,-modules ]\A/fz — ]v, Conversely, such a
morphism induces an A;-module homomorphism by taking global sections, and
it is easy to check that this identifies Homoy, (]\Z, N;) and Hom 4, (M;, N;).

Thus in particular, we may reduce to the case that X = Spec A and F = M ,
g = N, and f: F — G is induced by f: M — N. Here M, N are A-modules.

Note next that taking twiddles is an exact functor, as (M )p = M, and local-
ization is an exact functor, while a sequence of maps of sheaves is exact if and



only if it is exact on stalks. From this immediately follows that

kerlez(;t/f

coker f = coker f
im f = im f
This shows that kernels, cokernels and images of morphisms of quasi-coherent
sheaves are quasi-coherent. The statement in the coherent case follows from the
fact that if A is Noetherian, then a submodule of a finitely generated module
is finitely generated (and of course in general a quotient module of a finitely
generated module is finitely generated).
Given f: X — Y, we can cover Y with open affines U on which F is given as
M, and by replacing Y by U and X by f~}(U), we can assume Y = Spec B is
affine and F = M for M a B-module. Now there is a presentation

= F—M—0
A are free modules. Then taking twiddles gives an exact

@Oy-)@@y—)f—)o.

i€l i€lp

where F; =
sequence

’iEIj

We may then apply f*, noting that f~! is an exact functor (as it preserves stalks
as it clear from the definitions) while tensoring with Oy is a right exact functor,
so that we get

PBox-@oy - fF—o.

i€l iely
Thus f*F is described as the cokernel of a morphism between quasi-coherent
sheaves, and hence is quasi-coherent. Note in particular this shows that

F*M =M ®g A
For the counter example, consider f : X = Al — Speck, F = Ox. Then f,Ox

is the k-vector space k[x], if Aj = Spec k[z]. But k[x] is not a finite dimensional

k-vector space.

7. (a) As il : Ox(U) = (i.02)(U) = O4(Z N U) is a ring homomorphism, its
kernel Z(U) is an ideal in Ox(U), proving the claim.

(b) This statement follows from Question 6 if we know that i,O is coherent.
In fact, it is not in particular difficult to show that if f : X — Y is a morphism
and F is quasi-coherent on X, then f,F is quasi-coherent on Y, which is actually

sufficient for our purposes. In particular i,z would be quasi-coherent, and so
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the kernel of Ox — 1,0z is quasi-coherent, and coherent if X is Noetherian,
since it is a sub-Ox-module of Ox.

For pedagogical reasons, I will give a harder proof, reducing the statement to
a statement that a closed subscheme of Spec A is always of the form Spec A/I for
I C A an ideal, and then proving this statement.

Let U C X be an open affine subset, U = Spec A. We first show that Z N
U = Spec A/I for some ideal I C A. To this end, we can replace X by U
and Z by Z NU, and assume that X = Spec A is affine. We have an induced
map ¢ = zﬁ A = I'(Z,0z). Let I := kerg, an ideal in A. We wish to
show Z = Spec A/I with the immersion Z — X induced by the quotient map
A— A/l

Certainly ¢ factors through the quotient map A — A/I, giving a factorization
Z — Spec A/I — Spec A. Let us now replace X = Spec A with Spec A/I, which
allows us to assume that ker ¢ is zero, i.e., ¢ is injective. We now wish to show
that in fact ¢ : Z — X is an isomorphism.

We first show the underlying map ¢ is a homeomorphism. We know that it
is injective (being a closed immersion) and closed (i.e., closed sets are mapped
to closed sets, again being a closed immersion). So we just need to show it is
surjective. If it is not surjective, then, as i(Z) is closed, there exists an a € A such
that Z C V(a) # Spec A. Now let V' C Z be an open affine subset Spec B. We
write V'(.J) C Spec B for an ideal J C B (to distinguish from other occurences of
V(-) above). Then V C i ' (V(a)) NV = V'((¢(a)]y)). Thus p(a)|y is nilpotent
in B, so p(a")|ly = 0 for some N > 0. By quasi-compactness, we can cover
Z by a finite number of open affines of this form, so we can take N sufficiently
large to work for all affines V' in this cover. Thus ¢(a”) = 0 by the first sheaf
axiom, and so a” = 0 by injectivity of ¢. From this we conclude that a € /0
and V' ((a)) = Spec A. Thus in fact Z is not contained in a proper closed subset
of Spec A, showing the desired surjectivity. Thus Z — X is a homeomorphism.

It remains to show that the homomorphism i# : Ox — Oy is bijective. It is sur-
jective by assumption, and we test injectivity on stalks. For z € X, Ox, = A,_,
where p, is the prime ideal corresponding to z. It is enough to show that every
element of ker(Ox, — Oz,) of the form ¢g/1 € A, is zero in this localization.
Indeed, the kernel is an ideal, and if g/s lies in the kernel for s & p,, then so does
g/1, and s is a unit in the ring. Thus if g/1 =0, g/s = 0 also. Given g € A, cover
Z = U UJ,c; Ui be an affine open cover of Z by a finite number of open sets
(quasi-compactness again) such that © € U, = ¢ U; for any U;, and ¢(g)|y = 0.
(Such a U exists because ¢(g)/1 is assumed to be zero in the stalk Oy ).
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Choose s € A with x € D(s) C U. Note s ¢ p,. If we can show that
©0(sNg) = 0 for some N, then by injectivity of o, s¥g = 0, and thus g/1 = 0
in A,,, as desired. But ¢(g)|y = 0 by assumption, so p(sVg)ly = 0. Now
Dy, (p(s)|y,) = D(s)NU; C UNU; (here Dy, denotes D for the affine open subset
U;), so we get ©(9)|py, (s(s)p,) = 0. Thus, the image of (g) in the localization
L(Us, Oz) (o)1,

large to work for all i, we get (s g) = 0 for some N. By injectivity of ¢, we see

is zero, i.e., p(sVg)ly, = 0 for some N. Taking N sufficiently

sVg=0s0g/1=0in Ox,, as desired.

Having now shown that ¢ induces an isomorphism between Z and Spec A/, it
is immediate that i,Oy = ;47/1 , giving the desired coherence of i, O.

¢) We have already seen that a closed immersion i : Z < X gives rise to a quasi-
coherent sheaf of ideals Z with 1,0, = Ox/Z by construction of Z. Conversely,
suppose given Z a quasi-coherent sheaf of ideals. Then consider

Z =suppOx /I :={z € X |(Ox/I), # 0}.

This is in fact a closed set. Indeed, 1 € I'(X,Ox) must generate the stalk
(Ox/I),, and so the stalk is zero if and only if 1 = 0 in this stalk. However,
if this holds in the stalk, it also holds in an open neighbourhood of x, so the
complement of supp Ox /Z is open.

Now let i : Z < X be the inclusion, and set Oy = i~ '(Ox/Z). We wish to
show (Z,0y) is a closed subscheme of X. To do so, we may test this on open
affines on which Z is the twiddle of a module. So assume X = Spec A, 7 = I
Note that as Z C Oy, I = I'(X,Z) is a sub-module of ['(X,Ox) = A, ie., I is
an ideal in A.

Let us write p, € A for the prime ideal corresponding to x € A. The localiza-
tions I,, agree with the stalks Z, for x € X. In particular, x € Z if and only if
I, # A, if and only if p, DO I, and thus Z = V(I). Now note that O, agrees
with the structure sheaf of Spec A/I. Indeed, this follows from the construction
of both. We know that Ox /7 = ;1\//], and we may represent a section of i 'Ox /T
on an open set U C Z via (V,s) with s a section of Oy /Z over V open in X and
U C V. However, as the topology on Z is induced by that on X, we may assume
VN Z = U. Then one sees that giving a section of ;1\//] over V is precisely the
same as giving a section of Ogpeca/r over U, by the construction of both. This
shows that O; = Ogpec a/r-

Thus (Z,Oy) is a closed subscheme of X.

9. See II Proposition 7.3 of Hartshorne.



