
Mirror symmetry is a duality between complex manifolds (or more
complicated structures) which emerged from string theory around
1990 and has developed into a rather large industry.

The goal of this talk, rather than recapping the history of the
subject, is to sketch some key concepts which have emerged in my
work with various collaborators, including Paul Hacking, Sean Keel,
Maxim Kontsevich and Bernd Siebert, which have had applications
outside of mirror symmetry, and even outside of geometry.

Mark Gross Applications of Mirror Symmetry



Mirror symmetry is a duality between complex manifolds (or more
complicated structures) which emerged from string theory around
1990 and has developed into a rather large industry.

The goal of this talk, rather than recapping the history of the
subject, is to sketch some key concepts which have emerged in my
work with various collaborators, including Paul Hacking, Sean Keel,
Maxim Kontsevich and Bernd Siebert, which have had applications
outside of mirror symmetry, and even outside of geometry.

Mark Gross Applications of Mirror Symmetry



Applications in this talk:

Generalization of toric geometry and theta functions.

Smoothing of surface singularities.

Cluster algebras.
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Toric varieties. Let M = Z
n be a lattice,

MR = M ⊗Z R, N = Hom(M, Z), NR = N ⊗Z R.

An element m ∈ M induces a character

zm : TN = N ⊗Z C
∗ → C

∗.
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Let σ ⊆ MR be a lattice polytope.

Define a map
TN → P

#σ∩M−1

defined component-wise by (zm)m∈σ∩M .

Define Pσ to be the normalization of the closure of the image of
the above map. This is a projective toric variety.
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Examples. (1) Take σ to be the triangle:

(0, 0)

Then we get the map

(x1, x2) 7→ (1 : x1 : x2),

and the closure of the image is P
2.

So Pσ = P
2.
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Examples. (2) Take σ to be the square:

(0, 0)

Then we get the map

(x1, x2) 7→ (1 : x1 : x2 : x1x2).

If coordinates on P
3 are X ,Y ,Z ,W , then the above image

satisfies the equation
XW = YZ ,

and this is the equation of Pσ in P
3.
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Examples. (3) Take σ to be

(0, 0)

The map is

(x1, x2) 7→ (1 : x1 : x2 : x1x2 : x2
1 x2 : x1x

2
2 ).

The closure has equations (with coordinates X0, . . . ,X5 on P
5)

X 2
3 − X1X5 = X2X4 − X1X5 = X2X3 − X0X5 =0

x1X3 − X0X4 = X1X2 − X0X3 = 0.

This is a (singular) surface.
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Features:

A projective toric variety Pσ is defined by binomial equations
in projective space.

A toric variety always contains a dense open set isomorphic to
the algebraic torus TN .

The monomials zm extend to sections of a line bundle OPσ
(1)

on Pσ. These are “canonical” sections.

We would like to remove the first two conditions, but retain the
last condition.
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Definition

An integral affine manifold is a real n-dimensional manifold B with
an atlas with transition functions in Aff(Zn).
An integral affine manifold with singularities is a real manifold B
with an open subset B0 ⊆ B , with ∆ := B \ B0 of codimension
≥ 2, such that B0 has the structure of an integral affine manifold.
We also allow a variant with boundary, where locally at the
boundary B is a lattice polytope.
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By flattening the edges of an icosahedron, we get a sphere with 12
singular points.
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Example.

τ

τ
S

Sσ1 σ2
σ1

σ2

(−1, 0) (0, 0) (1, 0)

(0, 1)

(−1, 0) (0, 0)

(0, 1) (1, 1)

p p

The diagram shows the affine embeddings of two charts, obtained
by cutting the union of two triangles as indicated in the two figures.
Note that the vertical line segment is an invariant direction, being
a straight line in both charts.
Following coordinates around a counterclockwise loop, one gets a
coordinate transformation

x 7→ x , y 7→ x + y .
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Question: What is the equation of the surface corresponding to
this picture?

τ

τ

XY = WZ
XY = Z 2

S

Sσ1 σ2
σ1

σ2

p p

Z YX

W

Y

Z

W

X

Which equation is the correct one?

Correct answer: choose both choices for the product XY , i.e.,

XY = Z 2 + ZW .

Mark Gross Applications of Mirror Symmetry



Question: What is the equation of the surface corresponding to
this picture?

τ

τ

XY = WZ
XY = Z 2

S

Sσ1 σ2
σ1

σ2

p p

Z YX

W

Y

Z

W

X

Which equation is the correct one?

Correct answer: choose both choices for the product XY , i.e.,

XY = Z 2 + ZW .

Mark Gross Applications of Mirror Symmetry



A scattering diagram is the key notion for making consistent
choices despite the singularities of the affine structure.

A scattering diagram consists of a collection of codimension one
walls, with functions attached which instruct us how to transform
monomials across the wall.
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Example. In our running example, we use two walls, rays
emanating from the singularity.

τ

τ

1 + Z/W

1 + W /Z

S

Sσ1 σ2
σ1

σ2

p p

Z YX

W

Y

Z

W

X
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If we want to move X across the upper ray into the right-hand
triangle in order to compare it with Y , we need to apply a
wall-crossing automorphism

X 7→ X (1 + Z/W ), Z 7→ Z , W 7→ W ,

while if we cross the lower ray, we apply

X 7→ X (1 + W /Z ), Z 7→ Z , W 7→ W .

Thus if we use the left-hand diagram, let us calculate ϑXϑY , where
we use ϑX , ϑY to distinguish these from the “raw” X ,Y .
We transport X over to the right, use ϑX = X (1 + W /Z ),
ϑY = Y , so

ϑXϑY = X (1 + W /Z )Y = Z 2 + WZ .

Mark Gross Applications of Mirror Symmetry



If we want to move X across the upper ray into the right-hand
triangle in order to compare it with Y , we need to apply a
wall-crossing automorphism

X 7→ X (1 + Z/W ), Z 7→ Z , W 7→ W ,

while if we cross the lower ray, we apply

X 7→ X (1 + W /Z ), Z 7→ Z , W 7→ W .

Thus if we use the left-hand diagram, let us calculate ϑXϑY , where
we use ϑX , ϑY to distinguish these from the “raw” X ,Y .
We transport X over to the right, use ϑX = X (1 + W /Z ),
ϑY = Y , so

ϑXϑY = X (1 + W /Z )Y = Z 2 + WZ .

Mark Gross Applications of Mirror Symmetry



If we want to move X across the upper ray into the right-hand
triangle in order to compare it with Y , we need to apply a
wall-crossing automorphism

X 7→ X (1 + Z/W ), Z 7→ Z , W 7→ W ,

while if we cross the lower ray, we apply

X 7→ X (1 + W /Z ), Z 7→ Z , W 7→ W .

Thus if we use the left-hand diagram, let us calculate ϑXϑY , where
we use ϑX , ϑY to distinguish these from the “raw” X ,Y .
We transport X over to the right, use ϑX = X (1 + W /Z ),
ϑY = Y , so

ϑXϑY = X (1 + W /Z )Y = Z 2 + WZ .

Mark Gross Applications of Mirror Symmetry



Similarly, if we use the right-hand diagram and transport X
through the upper ray, so ϑX = X (1 + Z/W ), we still get

ϑXϑY = X (1 + Z/W )Y = WZ + Z 2,

and the equation stays the same.

Thus we get a projective variety which comes along with four
canonical functions

ϑX , ϑY , ϑW = W , ϑZ = Z .

We no longer have a binomial equation.
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Example.

ρ1, ρ2

ρ3

ρ4

ρ5
ρ1

σ5,1

σ2,3

ρ2

σ1,2

σ1,2

σ3,4

σ4,5
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In this case we need a scattering diagram consisting of the rays
ρ1, . . . , ρ5, with function 1 + W /Xi attached to the ray ρi . Here
X1, . . . ,X5 correspond to the vertices and W to the interior point.

There exist canonical sections ϑX1
, . . . , ϑX5

, ϑW of a line bundle on
the corresponding variety. These satisfy the relations

ϑXi−1
ϑXi+1

= ϑXi
ϑW + ϑ2

W , 1 ≤ i ≤ 5,

with indices taken modulo 5.
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So far:

Used scattering diagrams to transform monomials between
different chambers to fix inconsistency caused by singularities
of the affine structure.

Each chamber in this picture corresponds to a copy of an
algebraic torus, and walls tell us how to glue tori.

We were lucky that transforming monomials gave well-defined
functions on each torus, which then could be used to embed
into projective space.

In general, we are not so lucky. However, we have a
combinatorial construction of globally defined functions in a
formal setting.
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Theorem

(G.-Siebert, 2007, G.-Hacking-Keel-Siebert, forthcoming) Suppose
given a compact integral affine manifold with singularities B, a
decomposition P of B into lattice polytopes, and a “multi-valued
convex piecewise linear function with integral slopes.” Given a
“consistent” scattering diagram, there exists a projective family

X → Spec k[[t]]

such that the special fibre satisfies

X0 =
⋃

σ∈Pmax

Pσ

and the generic fibre is irreducible. Furthermore, X carries a
relatively ample line bundle OX (1) with a canonical basis of
sections

{ϑp | p ∈ B a point with integral coordinates}.
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Examples. (1) Going back to the simplest example of an affine
manifold with singularities, take P to consist of the two triangles.
Then with suitable choice of PL function, we get the degeneration

ϑXϑY = tϑZ (ϑW + ϑZ ).

For t = 0, we get the union of two planes.

(2) B = R
n/Γ where Γ ⊆ Z

n is a lattice. Choose P and a PL
function. The scattering diagram can be taken to be empty. Then
our construction reproduces the degeneration of abelian varieties
X → Spec k[[t]] constructed by Mumford, and our theta functions
coincide with classical theta functions.
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The problem in general is to construct “consistent” scattering
diagrams, which can be quite difficult.

This problem was solved for relatively nice singularities
(generalizations of our simple two-dimensional example) in
G.-Siebert (2007) following a 2004 solution to the problem by
Kontsevich and Soibelman.

G.-Hacking-Keel (2011) deals with an affine version of a much
more general two-dimensional singularity.
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Let Y be a non-singular rational projective surface and let D be a
cycle of P

1’s in Y representing the anti-canonical class.

Then we can construct an integral affine manifold with one
singularity B homemorphic to R

2, with the singularity at the
origin, from this data, a kind of “generalized fan.”

If D is contractible, this affine manifold is constructed as follows,
for some T .

Let T ∈ SL2(Z) with Tr T > 2.

Then T has two real distinct eigenvalues. Let σ ⊆ R
2 be a cone

generated by two eigenvectors.

We take B0 = Int(σ)/TZ and B = B0 ∪ {0}.
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GHK gives a construction of a consistent scattering diagram using
Gromov-Witten theory (curve counts) of Y !

In the above case, the scattering diagram is extremely complicated:
every ray of rational slope appears, with a formal power series
attached.

Again, in the above case, we can extend the family analytically so
that it includes a smoothing of a cusp singularity, resolving a
conjecture of Looijenga about deformation theory of cusp
singularities, telling us precisely when a cusp singularity is
smoothable.
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attached.
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The basic idea behind the construction of theta functions comes
from tropical geometry.
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Here is an example of a consistent scattering diagram in B = R
2

arising from cluster algebras:

1 + x−2

1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1 − x−2y2)−41 + x−2y4
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1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1 − x−2y2)−41 + x−2y4

xy−1

xy−1

xy−1

1 + x−2

x−1y−1

xy

ϑ(1,−1) = xy−1(1 + x−2 + y2).
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1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1 − x−2y2)−41 + x−2y4

1 + x−2 x2y−2

x2y−2

x2y−2

x−2y−2

2y−2

x2y2

2x2

ϑ(2,−2) = x2y−2(1 + 2x−2 + 2y2 + x−4 + y−4) = ϑ2
1,−1 − 2.
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In fact, there is a scattering diagram associated to every cluster
algebra (of geometric type).

This allows us (G.-Hacking-Keel-Kontsevich) to prove some of the
major conjectures in the theory of cluster algebras, including
positivity of the Laurent phenomenon. This follows from the fact
that cluster variables are theta functions, and the corresponding
scattering diagrams all have walls with attached functions having
positive coefficients.
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