
Mirror symmetry: A brief history.

Superstring theory replaces particles moving through space-time
with loops moving through space-time.

A key prediction of superstring theory is:

The universe is 10 dimensional.
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This is reconciled with real-world observations by positing that the
universe is of the form

R
1,3 × X

where R
1,3 is usual Minkowski space-time and X is a (very small!)

six-dimensional compact manifold.

Properties of X should be reflected in properties of the observed
world.

For example, supersymmetry is a desirable phenomenon
(unfortunately not yet discovered at the LHC!)
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Supersymmetry suggests (to first approximation) that X should be
Ricci-flat, i.e., be a Calabi-Yau manifold.

This makes connections between string theory and algebraic
geometry, the study of solution sets to polynomial equations,
because Calabi-Yau manifolds can be defined using polynomial
equations in projective space.
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Example

Let
CP

4 = (C5 \ {(0, 0, 0, 0, 0)})/C∗

be four-dimensional complex projective space, with coordinates

x0, . . . , x4.

Let X be the three-dimensional complex manifold defined by the
equation

x50 + · · ·+ x54 = 0.

This is a Calabi-Yau manifold, by Yau’s proof of the Calabi
Conjecture.
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Mirror Symmetry. 1990, Greene and Plesser; Candelas, Lynker and
Schimmrigk: Calabi-Yau manifolds should come in pairs, X , X̌ ,
inducing the same physics!

One symptom of mirror symmetry:

χ(X ) = −χ(X̌ ).
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Example

Let X be the quintic, given by

x50 + · · · x54 = 0

and consider the group action of

G = {(a0, . . . , a4)|ai ∈ Z/5Z and
∑

i ai = 0}

on X given by

(x0, . . . , x4) 7→ (ξa0x0, . . . , ξ
a4x4), ξ = e2πi/5.

Then X/G is very singular, but there is a resolution X̌ → X/G .

X̌ is the mirror of the quintic discovered by Greene and Plesser.

χ(X ) = −200, χ(X̌ ) = 200.
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Enumerative geometry (19th century).
This is the study of questions of the flavor: “How many geometric
gadgets of a given sort are contained in some other gadget, or
intersect some collection of gadgets.”
For example, given two points in CP

2, there is precisely one line (a
subset defined by a linear equation) passing through two points.
(Cayley-Salmon) A smooth cubic surface in CP

3 always contains
precisely 27 lines.
e.g., the Clebsch diagonal surface

x30 + x31 + x32 + x33 = (x0 + x1 + x2 + x3)
3.
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1990: Candelas-de la Ossa-Green-Parkes: Amazing calculation,
following predictions of string theory.

Let X be the quintic three-fold.

Let N1 be the number of lines in X .

Let N2 be the number of conics in X .

Let Nd be “the number of rational curves of degree d in X”. Such
a curve is the image of a map CP

1 → CP
4 defined by

(u : t) 7→ (f0(u, t), . . . , f4(u, t))

where f0, . . . , f4 are polynomials of degree d without common
zeroes.
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N1 = 2875 (19th century, H. Schubert.)

N2 = 609250, (1986, Sheldon Katz).

N3 = 317206375, (1990, Ellingsrud and Strømme)
Candelas, de la Ossa, Green and Parkes proposed that these
numbers Nd could be computed via a completely different
calculation on X̌ . This calculation involves period integrals,
expressions of the form ∫

α
Ω,

where α is a 3-cycle in X̌ and Ω is a holomorphic 3-form on X̌ .

In this way, they gave a prediction, motivated entirely by string
theory, for all the numbers Nd .
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The formulas for Nd of Candelas et al were not proved until
1996-7, by Givental and Lian,Liu,Yau.

This work involved a direct calculation of the numbers Nd . But
what is the basic underlying geometry of mirror symmetry?

Mantra: Mirror symmetry should be a duality which interchanges
symplectic geometry (A-model) and complex geometry (B-model).
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Try 1:

V a real finite dim’l vector space V ∗ = Hom(V ,R) the dual space.

Try 2:

V × V with complex structure V × V ∗ with
J(v1, v2) = (−v2, v1) symplectic structure

ω((v1,w1), (v2,w2))
= 〈w1, v2〉 − 〈w2, v1〉

This is a very simple example of mirror symmetry.
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A vector space is not a particularly interesting example.
We can make this more interesting by choosing V to have an
integral structure, i.e.,

V = Λ⊗Z R

where Λ ∼= Z
n. Set

Λ̌ := {w ∈ V ∗ | 〈w ,Λ〉 ⊆ Z} ⊆ V ∗

X (V ) := V × V /Λ with complex X̌ (V ) := V × V ∗/Λ̌ with
structure J as before. symplectic structure as before.

While this seems like a very simplistic point of view, in fact this toy
example already exhibits rich features of mirror symmetry, which
we will explore.
A more general point of view replaces V with a more general
manifold with an affine structure, and this leads to an extensive
program (G.-Siebert) for understanding mirror symmetry in
general. We will not go down this route today.
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To continue our exploration, we need to travel to the tropics...
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Suppose L ⊆ V is a rationally defined affine linear subspace.

X (L) := L× L/(L ∩ Λ) ⊆ X (V ) X̌ (L) := L× L⊥/(L⊥ ∩ Λ̌) ⊆ X̌ (V )
holomorphic submanifold. Lagrangian submanifold.

These are not topologically very interesting. For example, if
dim L = 1, we obtain holomorphic curves which are cylinders.
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Let’s try to get a more interesting “approximate” holomorphic
curve by gluing together cylinders, taking three rays meeting at
b ∈ V :

v1

v2
v3
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We can try to glue the three cylinders by gluing in a surface
contained in the fibre f −1(b).

Noting that H1(f
−1(b),Z) = Λb, the tangent vectors v1, v2 and v3

represent the boundaries of the three cylinders in H1(f
−1(b),Z).

Thus the three circles bound a surface if

v1 + v2 + v3 = 0.

This is the tropical balancing condition.
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This leads us to the notion of a tropical curve in V :

Definition

A parameterized tropical curve in V is a graph Γ (possibly with
non-compact edges with zero or one adjacent vertices) along with

a weight function w associating a non-negative integer to
each edge;

a proper continuous map h : Γ → V

satisfying the following properties:
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Definition

(cont’d.)

1 If E is an edge of Γ and w(E ) = 0, then h|E is constant;
otherwise h|E is a proper embedding of E into V as a line
segment, ray or line of rational slope.

2 The balancing condition. For every vertex of Γ with adjacent
edges E1, . . . ,En, let v1, . . . , vn ∈ Λ be primitive tangent
vectors to h(E1), . . . , h(En) pointing away from h(V ). Then

n∑
i=1

w(Ei )vi = 0.
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Example

Take V = R
2. Here is a tropical curve:

This can be interpreted as a curve of genus 1 or genus 0,
depending on which domain we use to paramaterize the curve.
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Example

This curve can be viewed as an approximation to a curve of degree
3 in CP

2.
Mikhalkin showed that curves in CP

2 through a given number of
points can in fact be counted by counting tropical curves of this
nature.
This gave the first hint that curve-counting can really be
accomplished using tropical geometry.
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Mirror symmetry for CP2.

In 1994, Givental gave a mirror for CP2. This description was
enhanced by Barannikov in 1999 to allow mirror calculations to
answer the question: “How many rational curves of degree d pass
through 3d − 1 points in the complex plane?”

The mirror is a Landau-Ginzburg model, the variety (C∗)2 along
with a function

W : (C∗)2 → C

given by
W = x + y + z ,

where x , y are coordinates on (C∗)2 and xyz = 1.
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To extract enumerative predictions, one needs to consider a family
of potentials which are perturbations of the above potential, e.g.,

Wt := t0 + (1 + t1)W + t2W
2,

and calculate oscillatory integrals of the form

∫
Γ

eWt/~f (x , y , t, ~)
dx ∧ dy

xy
,

where Γ runs over suitably chosen (possibly unbounded) 2-cycles in
(C∗)2, f is a carefully chosen function which puts the above
integrals in some “normalized” form, and the result needs to be
expanded in a power series of some specially chosen coordinates on
t-space.

The desired numbers will appear as some of the coefficients of this
power series.

Mark Gross Mirror symmetry and tropical geometry



To extract enumerative predictions, one needs to consider a family
of potentials which are perturbations of the above potential, e.g.,

Wt := t0 + (1 + t1)W + t2W
2,

and calculate oscillatory integrals of the form

∫
Γ

eWt/~f (x , y , t, ~)
dx ∧ dy

xy
,

where Γ runs over suitably chosen (possibly unbounded) 2-cycles in
(C∗)2, f is a carefully chosen function which puts the above
integrals in some “normalized” form, and the result needs to be
expanded in a power series of some specially chosen coordinates on
t-space.

The desired numbers will appear as some of the coefficients of this
power series.

Mark Gross Mirror symmetry and tropical geometry



A better conceptual approach (G., 2009) uses tropical techniques
to construct the “right” perturbation of W directly, so that the
integral manifestly is counting curves.

Construct infinitesimal perturbations of the potential by counting
tropical disks; these are genus zero tropical curves which just end
at a point:

Mark Gross Mirror symmetry and tropical geometry



A better conceptual approach (G., 2009) uses tropical techniques
to construct the “right” perturbation of W directly, so that the
integral manifestly is counting curves.

Construct infinitesimal perturbations of the potential by counting
tropical disks; these are genus zero tropical curves which just end
at a point:

Mark Gross Mirror symmetry and tropical geometry



Choose points P1, . . . ,Pk ,Q ∈ R
2 general, and consider all rigid

tropical disks passing through some subset of P1, . . . ,Pk and
terminating at Q.
Label each end with the variable x , y or z , and each Pi with a
variable ui with u2i = 0. Build potential Wk as a sum of
monomials over all tropical disks.
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xQ

P1

P2

xyz = κ

W2 = x
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Q

P1

P2

xyz = κ

y

W2 = x + y
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Q

P1

P2

xyz = κ

z

W2 = x + y + z
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Q

P1

P2

xyz = κ

xu1

z

W2 = x + y + z + u1xz
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Q

P1

P2

xyz = κ

z

xu2

W2 = x + y + z + u1xz + u2xz
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Q

P1

P2

xyz = κ

z

xu2

xu1

W2 = x + y + z + u1xz + u2xz + u1u2x
2z
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Take Γ ⊂ (C∗)2 to be the compact torus

Γ = {|x | = |y | = 1}.

Calculate the integral

1

(2πi)2

∫
Γ

eWk/~
dx ∧ dy

xy

via a Taylor series expansion of the exponential and residues.
Via residues, the only terms which contribute are constant on
(C∗)2, i.e., with the same power of x , y and z , using xyz = κ.
The power series expansion selects a set of tropical disks which
then must glue at Q to give a tropical curve, the balancing
condition being enforced by the integration.
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e.g., k = 2:

1

(2πi)2

∫
Γ

(1 + ~
−1(x + y + z + (u1 + u2)xz + u1u2x

2z)

+ ~
−2(x + y + z + (u1 + u2)xz + u1u2x

2z)2/2 + · · · )
dx ∧ dy

xy

= 1 + κ~−2(u1 + u2) + O(~−3).
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So we see precisely the contribution from one line (the coefficient
of κ~−2(u1 + u2)).

Q

P1

P2

z

xu2

xu1

y
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