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Example 0.1. Let X be a curve of genus 2. Then degKX = 2 and ℓ(KX) = 2.

Lemma 0.2. Let X be any projective non-singular curve. If there exists P,Q ∈

X, P 6= Q with P ∼ Q, then X is isomorphic to P
1.

Proof. Consider the linear system |P |. Since Q ∈ |P |, dim |P | ≥ 1, i.e., ℓ(P ) ≥ 2.

But we have an upper bound ℓ(D) ≤ degD + 1, so ℓ(P ) = 2. Now if Q,R ∈ X

are any two points, then ℓ(P − Q − R) = 0 since degP − Q − R = −1, so |P |

separates points, tanegent vectors, hence induces an embedding of X in P
1, i.e.,

X ∼= P
1. �

We will now show that |KX | is base-point-free in the situation that the genus is

2. If |KX | is not base-point-free, then there exists a P ∈ X such that ℓ(KX−P ) =

2. Since degKX−P = 1, this means there exists Q,R ∈ |KX−P |, Q 6= R, Q ∼ R,

and hence X ∼= P
1 by the lemma, contradicting the genus assumption.

So |KX | induces a degree 2 morphism X → P
1.

Definition 0.3. A projective non-singular curve X is hyperelliptic if there exists

a degree 2 morphism X → P
1.

Thus all degree 2 curves are hyperelliptic.

Theorem 0.4. Let X be a projective non-singular curve, g ≥ 3. Then either

(1) X is hyperelliptic, or

(2) |KX | induces an embedding X → P
g−1.

Proof. |KX | indues an embedding if and only if for all P,Q ∈ X , ℓ(KX−P−Q) =

ℓ(KX)− 2 = g − 2. In any event,

ℓ(P +Q)− ℓ(KX − P −Q) = deg(P +Q) + 1− g = 3− g.

So |KX | induces an embedding if and only if ℓ(P + Q) = 1 for all P,Q ∈ X .

So if |KX | does not induce an embedding, then there exists P,Q ∈ X such that

ℓ(P+Q) ≥ 2. Note that if ℓ(P+Q) ≥ 3, then for R ∈ X , ℓ(P+Q−R) ≥ 2, hence

there exists R1, R2 ∈ |P +Q−R| with R1 ∼ R2, so X ∼= P
1. Thus ℓ(P +Q) = 2.

Also, ℓ(P +Q−R) = 1 for all R ∈ X .

Thus we see that if KX is not very ample, then |P +Q| is base-point-free and

induces a degree 2 morphism X → P
1, so X is hyperelliptic. �
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Example 0.5. X a genus 3 curve. If X is not hyperelliptic, then |KX | induces

an embedding in P
2 as a curve of degree 4.

One can show that the genus of a non-singular curve of degree d in P
2 is

(d − 1)(d − 2)/2, and in particular, a degree 4 curve in P
2 is genus 3. Further,

KX is the pull-back of a line.

Theorem 0.6 (The Riemann-Hurwitz formula). Let f : X → Y be a non-

constant morphism between non-singular projective curves, with K(X) separable

over K(Y ). Then

2− 2g(X) = (deg f)(2− 2g(Y ))−
∑

p∈X

(eP − 1).

Proof. Proof omitted. Idea: pull-back forms. �

Example 0.7. Let X be a hyperelliptic curve, Y = P
1, f : X → Y degree 2, so

2− 2g(X) = 4−#{P ∈ X | eP 6= 1}.

or

#{P ∈ X | eP 6= 1} = 2g(X) + 2.

The set here is called the set of branch points of f .

For example, consider X ⊆ P
2 an elliptic (i.e., genus one) curve given by

y2 = (x − λ1)(x − λ2)(x − λ3). We define a morphism X → P
1 by projection

from P0 = (0 : 1 : 0), i.e., (x : y : z) 7→ (x : z), with (0 : 1 : 0) 7→ (1 : 0). The

branch points are λ1, λ2, λ3,∞. This morphism can be viewed as given by the

linear system |2P0|.

Example 0.8. We can construct hyperelliptic curves of any genus as curves

in P
1 × P

1. A curve X in P
1 × P

1 is defined by a bi-homogeneous equation

f(u0, u1, v0, v1) = 0, where f is homogeneous of degree a in the variables u0, u1

and homogeneous of degree b in the variables v0, v1. Suppose that a = 2. Then

consider the projection f : X → P
1 onto the second factor. Each fibre of this

morphism consists of two points (counted with multiplicity), as one just fixes v0, v1
and has to solve the (homogeneous) quadratic equation f(u0, u1, v0, v1) = 0. Note

that αu2

0
+ βu0u1 + γu2

1
= 0 has a double root when the discriminant β2 − 4αγ

vanishes. However, in this case, the discriminant is a polynomial of degree 2b in

v0, v1. Hence the projection f has 2b branch points, and

g(X) = (2b− 2)/2 = b− 1.


