NOTES FOR MAKE-UP LECTURE, 17 MAR., 2017

Example 0.1. Let X be a curve of genus 2. Then deg Kx =2 and ((Kx) = 2.

Lemma 0.2. Let X be any projective non-singular curve. If there exists P, Q) €
X, P+#Q with P ~ Q, then X is isomorphic to P!,

Proof. Consider the linear system |P|. Since @ € |P|, dim |P| > 1, i.e., {(P) > 2.
But we have an upper bound ¢(D) < degD + 1, so {(P) = 2. Now if Q, R € X
are any two points, then ¢(P — @ — R) = 0 since degP — Q — R = —1, so |P|
separates points, tanegent vectors, hence induces an embedding of X in P!, i.e.,
X =Pl O

We will now show that | Kx| is base-point-free in the situation that the genus is
2. If | K x| is not base-point-free, then there exists a P € X such that /(Kx—P) =
2. Since deg Kx — P = 1, this means there exists Q, R € |[Kx—P|, Q # R, Q ~ R,
and hence X = P! by the lemma, contradicting the genus assumption.

So |Kx| induces a degree 2 morphism X — PL.

Definition 0.3. A projective non-singular curve X is hyperelliptic if there exists
a degree 2 morphism X — P!,

Thus all degree 2 curves are hyperelliptic.

Theorem 0.4. Let X be a projective non-singular curve, g > 3. Then either
(1) X s hyperelliptic, or
(2) |Kx| induces an embedding X — PI~L.

Proof. |Kx| indues an embedding if and only if for all P,Q € X, {(Kx—P—Q) =
((Kx)—2=g—2. In any event,

(P+Q)—UKx—P—-Q)=deg(P+Q)+1—g=3—g.

So |Kx| induces an embedding if and only if /(P + @) = 1 for all P,Q € X.
So if | K x| does not induce an embedding, then there exists P, € X such that
({(P+Q) > 2. Note that if /(P+Q) > 3, then for R € X, {(P+Q—R) > 2, hence
there exists Ry, Ry € [P+ Q — R| with Ry ~ Ry, s0 X & PL. Thus /(P + Q) = 2.
Also, (P +@Q — R)=1for all R € X.

Thus we see that if Kx is not very ample, then |P + @] is base-point-free and

induces a degree 2 morphism X — P!, so X is hyperelliptic. O
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Example 0.5. X a genus 3 curve. If X is not hyperelliptic, then |K x| induces
an embedding in P? as a curve of degree 4.

One can show that the genus of a non-singular curve of degree d in P? is
(d —1)(d — 2)/2, and in particular, a degree 4 curve in P? is genus 3. Further,
K is the pull-back of a line.

Theorem 0.6 (The Riemann-Hurwitz formula). Let f : X — Y be a non-
constant morphism between non-singular projective curves, with K(X) separable
over K(Y'). Then

2 - 29(X) = (deg f)(2 = 29(Y)) = D> _(ep — 1).

peX

Proof. Proof omitted. Idea: pull-back forms. O

Example 0.7. Let X be a hyperelliptic curve, Y = P!, f: X — Y degree 2, so
2-29(X)=4—#{P e X|ep #1}.

or
#{P e Xl|ep# 1} =29(X) + 2.
The set here is called the set of branch points of f.

For example, consider X C P? an elliptic (i.e., genus one) curve given by
y? = (x — \)(z — Xo)(z — A3). We define a morphism X — P! by projection
from Py = (0:1:0),ie, (x:y:2)— (z:2),with (0:1:0)+— (1:0). The
branch points are A;, As, A\3,00. This morphism can be viewed as given by the

linear system [25.

Example 0.8. We can construct hyperelliptic curves of any genus as curves
in P! x P!, A curve X in P! x P! is defined by a bi-homogeneous equation
f(ug, w1, vo,v1) = 0, where f is homogeneous of degree a in the variables ug, u;
and homogeneous of degree b in the variables vy, v;. Suppose that a = 2. Then
consider the projection f : X — P! onto the second factor. Each fibre of this
morphism consists of two points (counted with multiplicity), as one just fixes vg, v;
and has to solve the (homogeneous) quadratic equation f(ug, uq,vo,v1) = 0. Note
that au? + Bugu; + yu? = 0 has a double root when the discriminant 5% — 4ary
vanishes. However, in this case, the discriminant is a polynomial of degree 2b in

Vg, v1. Hence the projection f has 2b branch points, and

g(X)=(2b—2)/2=b— 1.



