
What is mirror symmetry?

It is a duality.

It provides an isomorphism between complex and symplectic
geometry.

The complex and symplectic manifolds involved should be
interesting.

The isomorphism between complex and symplectic geometry
should relate deformations of complex structure on the
complex geometry side to counting pseudo-holomorphic
spheres on the symplectic geometry side.
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Try 1:

V a real finite dim’l vector space V ∗ = Hom(V ,R) the dual space.

Try 2:

V × V with complex structure V × V ∗ with
J(v1, v2) = (−v2, v1) symplectic structure

ω((v1,w1), (v2,w2))
= 〈w1, v2〉 − 〈w2, v1〉

This is a very simple example of mirror symmetry.
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A vector space is not a particularly interesting example.
We can make this more interesting by choosing V to have an
integral structure, i.e.,

V = Λ ⊗Z R

where Λ ∼= Z
n. Set

Λ̌ := {w ∈ V ∗ | 〈w ,Λ〉 ⊆ Z} ⊆ V ∗

V × V /Λ with complex V × V ∗/Λ̌ with
structure J as before. symplectic structure as before.
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Alternatively view Λ as a family of lattices in the tangent bundle
TV = V × V of V and Λ̌ as a family of lattices in T ∗

V = V × V ∗.

X (V ) := TV /Λ with complex X̌ (V ) := T ∗

V /Λ̌ with
structure J as before. symplectic structure as before.

Torus bundle X (V ) → V Torus bundle X̌ (V ) → V
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Let’s make this more interesting.
We need to replace the structure Λ ⊂ V with something which
looks like this locally.
Consider a manifold B with coordinate charts {ψi : Ui → V }.
At b ∈ Ui , we obtain a lattice (ψi∗)

−1(Λ) ⊆ Tb.
We would like this lattice to be independent of the chart.
This requires that the transition functions ψi ◦ ψ−1

j are in fact
affine linear transformations v 7→ Tv + v0 for some T ∈ GL(Λ) and
v0 ∈ V .
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Definition

A tropical affine manifold is a real n-dimensional manifold B with
an atlas with transition functions in GLn(Z) ⋊ R

n.
We say a tropical affine manifold is integral if furthermore the
transition functions lie in GLn(Z) ⋊ Z

n.
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Given a tropical affine manifold B , we always obtain a family of
lattices Λ ⊆ TB and a dual family of lattices Λ̌ ⊆ T ∗

B .

X (B) := TB/Λ with complex X̌ (B) := T ∗

B /Λ̌ with
structure J as before. symplectic structure as before.

Torus bundle X (B) → B Torus bundle X̌ (B) → B

Example

B = R
n/Zn. Then X (B) is a complex torus of complex dimension

n and X̌ (B) a symplectic torus of real dimension 2n.
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What about trying to get complex and symplectic structure on
both sides? This means we want a Kähler structure on X (B) and
X̌ (B).
It is convenient to do this on X (B) using a Kähler potential which
is pulled back from the base.

Definition

A multi-valued convex function K on B is a set of functions
Ki : Ui → R on an open cover {Ui} of B with Ki − Kj affine linear
on Ui ∩ Uj and each Ki is convex.

Given f : X (B) → B , K ◦ f provides a Kähler potential, i.e.,
ω = 2i∂∂̄K is a Kähler form on X (B).
Given f : X̌ (B) → B , locally on Ui if we have tropical affine
coordinates y1, . . . , yn, let yi , x̌i be coordinates on the cotangent
bundle with x̌i given by evaluation of ∂/∂yi . Then
x̌i +

√
−1∂K/∂yi provides complex coordinates on X̌ (B).
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X (B) := TB/Λ with complex X̌ (B) := T ∗

B /Λ̌ with
structure J as before and symplectic structure as before and

Kähler form 2i∂∂̄K . complex coordinates x̌i + ∂K/∂yi .

Torus bundle X (B) → B Torus bundle X̌ (B) → B

Both these Kähler structures are Ricci-flat if K satisfies the real
Monge-Ampère equation

det(∂2K/∂yi∂yj) = constant.

(This observation is due to Hitchin.)

Definition

We say a tropical manifold B with a multi-valued convex function
K is affine Kähler. It is Monge-Ampère if K satisfies the above
Monge-Ampère equation.
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Example

With B = R
n/Zn and K a convex quadratic function on R

n, one
obtains a complex torus with a flat Kähler metric.
This is the only compact example! (Cheng-Yau).
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Definition

A Calabi-Yau manifold is an n-dimensional complex manifold with
a Ricci-flat Kähler metric ω and a nowhere vanishing holomorphic
n-form Ω.
Ricci-flatness is equivalent to

ωn = C · Ω ∧ Ω̄.

Theorem

(Yau’s proof of the Calabi conjecture) Any compact Kähler
manifold with c1 = 0 has a unique Ricci-flat Kähler metric in any
Kähler class.
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Given B ,K Monge-Ampère, X (B) has a nowhere-vanishing
holomorphic n-form provided that B is orientable.
In this case, the fibres of f : X (B) → B have a special property:

Definition

(Harvey-Lawson) Let X be a Calabi-Yau manifold with
dimC X = n. A real submanifold M ⊆ X is special Lagrangian if

1 dimR M = n.

2 ω|M = 0 (M is Lagrangian).

3 Im Ω|M = 0 (M is special).

Special Lagrangian submanifolds are volume minimizing within
their homology class.
The fibres of f : X (B) → B are special Lagrangian.
Thus the version of mirror symmetry we have seen so far involves
dual special Lagrangian torus fibrations f : X (B) → B and
f̌ : X̌ (B) → B .
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Conjecture

(Strominger-Yau-Zaslow, 1996) Let X and X̌ be a mirror pair of
Calabi-Yau manifolds. Then there exists special Lagrangian torus
fibrations f : X → B and f̌ : X̌ → B which are dual.

This conjecture remains unproven other than some very
straightforward cases (abelian varieties, K3 surfaces).
However, it has led to a clear philosophy for the geometry
underlying mirror symmetry, as illustrated by the “toy” version
of mirror symmetry given here.

We still haven’t fulfilled the third requirement of mirror
symmetry: torus bundles always have Euler characteristic zero,
and most interesting examples of mirror symmetry have
non-zero Euler characteristic.
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Example

Let X ⊆ CP
4 be defined by a quintic equation

x5
0 + · · · + x5

4 = 0.

Then
χ(X ) = −200.

Let G be the subgroup of Z
5
5 given by

G = {(a0, . . . , a4) |
∑

i

ai = 0}.

Then (a0, . . . , a4) ∈ G acts on X by

(x0, . . . , x4) 7→ (µa0x0, . . . , µ
a4x4)

with µ a primitive fifth root of unity.
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Example

X/G is very singular, but there is a Calabi-Yau resolution

X̌ → X/G

which is the mirror to X , with

χ(X̌ ) = 200.

How will we get an interesting Calabi-Yau manifold such as the
quintic?
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Definition

A tropical affine manifold with singularities is a real (C 0) manifold
B along with an open subset B0 ⊆ B such that ∆ := B \ B0 is of
codimension ≥ 2 and such that B0 has the structure of a tropical
affine manifold.

Example

Let Ξ ⊆ R
4 be the convex hull of the points

(−1,−1,−1,−1)

(4,−1,−1,−1)

(−1, 4,−1,−1)

(−1,−1, 4,−1)

(−1,−1,−1, 4)

Let B = ∂Ξ; this is homeomorphic to S3.
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Example

Triangulate each two-face of Ξ using only integral points as
vertices as follows:
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Example

We will take the discriminant locus ∆ ⊆ B to be contained in the
union of two-faces, looking on each two-face like:
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Example

We define an integral affine structure on B0 := B \ ∆ using
coordinate charts as follows.

For each three-face σ of Ξ, we have a natural affine chart ψσ

on Int(σ) given by the inclusion of σ in the affine hyperplane
in R

4 containing σ.

For each integral point v of a two-face, we can choose an
open neighbourhood Uv ⊆ B \ ∆ of v such that

{Int(σ) |σ a 3-face} ∪ {Uv | v an integral point}

forms an open cover of B0 and so that Uv ∩Uv ′ = ∅ if v 6= v ′.
Then define charts

ψv : Uv → R
4/Rv

by projection.
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Example

We now have a compactification problem, needing diagrams

X (B0)

��

⊆ X (B)

��

B0 ⊆ B

X̌ (B0)

��

⊆ X̌ (B)

��

B0 ⊆ B
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This compactification problem can be thought about at three
levels:

1 Can X (B0) and X̌ (B0) be compactified topologically in a
useful way?

2 Can X̌ (B0) be compactified as a symplectic manifold?

3 Can X (B0) be compactified as a complex manifold?
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Answers: Yes, yes, no.

Theorem

(G., 1999) X (B0) and X̌ (B0) can be compactified topologically to
get six-manifolds homeomorphic to the mirror quintic and the
quintic respectively.

Let’s look at the additional fibres added over the discriminant
locus.
There are three types of singular fibres, fibres over a smooth point
of ∆, and fibres over two types of vertices, which we call positive
and negative vertices.
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1 Over smooth points of ∆, the fibre takes the form I1 × S1,
where I1 is a pinched two-torus.

2 Over a positive vertex, the fibre is a pinched 3-torus, i.e., of
the form S1 × S1 × S1/ ∼, where (a1, b1, c1) ∼ (a2, b2, c2) if
c1 = c2 = 1 ∈ S1 or (a1, b1, c1) = (a2, b2, c2).

3 Over a negative vertex, the fibre has a figure eight singular
locus, given by of the form S1 × S1 × S1/ ∼, where
(a1, b1, c1) ∼ (a2, b2, c2) if a1 = a2 = 1, b1 = b2;
a1 = a1, b1 = b2 = 1; or (a1, b1, c1) = (a2, b2, c2).
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The Euler characteristic of a positive fibre is +1, of a negative fibre
is −1, and these are interchanged between X (B) and X̌ (B).
This gives a local explanation for the change of sign of the Euler
characteristic.
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What about symplectic or complex compactifications?

Results of Castaño-Bernard and Matessi give a symplectic
compactification of X̌ (B0). In addition, Wei-Dong Ruan
constructed a Lagrangian torus fibration on the quintic.

There is no holomorphic compactification of X (B) because
the complex structure on X (B0) is not precisely correct.

Crucial point: The complex structure on X (B0) has to be
perturbed before it can be compactified. This perturbation is
what makes mirror symmetry truly interesting, and is
responsible for the relationship between complex deformation
theory on one side and curve counting on the other.
We usually describe this pertubation as given by “instanton
corrections.”
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We now need to travel to the tropics...
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Suppose L ⊆ B is a rationally defined affine linear subspace (i.e.,
TL,b is a rationally defined subspace of TB,b for b ∈ L.)

TL/(TL ∩ Λ) ⊆ X (B) T ⊥

L /(T ⊥

L ∩ Λ̌) ⊆ X̌ (B)
holomorphic submanifold. Lagrangian submanifold.
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Again, these are not topologically very interesting. For example, if
dimL = 1, we obtain holomorphic curves which are either cylinders
or tori.
Let’s try to get a more interesting “approximate” holomorphic
curve by gluing together cylinders, taking three rays meeting at
b ∈ B :

v1

v2
v3
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We can try to glue the three cylinders by gluing in a surface
contained in the fibre f −1(b).

Noting that H1(f
−1(b),Z) = Λb, the tangent vectors v1, v2 and v3

represent the boundaries of the three cylinders in H1(f
−1(b),Z).

Thus the three circles bound a surface if

v1 + v2 + v3 = 0.

This is the tropical balancing condition.
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This leads us to the notion of a tropical curve in a tropical affine
manifold:

Definition

A parameterized tropical curve in a tropical manifold B is a graph
Γ (possibly with non-compact edges with zero or one adjacent
vertices) along with

a weight function w associating a non-negative integer to
each edge;

a proper continuous map h : Γ → B

satisfying the following properties:

Mark Gross Mirror symmetry and the SYZ conjecture



This leads us to the notion of a tropical curve in a tropical affine
manifold:

Definition

A parameterized tropical curve in a tropical manifold B is a graph
Γ (possibly with non-compact edges with zero or one adjacent
vertices) along with

a weight function w associating a non-negative integer to
each edge;

a proper continuous map h : Γ → B

satisfying the following properties:

Mark Gross Mirror symmetry and the SYZ conjecture



This leads us to the notion of a tropical curve in a tropical affine
manifold:

Definition

A parameterized tropical curve in a tropical manifold B is a graph
Γ (possibly with non-compact edges with zero or one adjacent
vertices) along with

a weight function w associating a non-negative integer to
each edge;

a proper continuous map h : Γ → B

satisfying the following properties:

Mark Gross Mirror symmetry and the SYZ conjecture



Definition

(cont’d.)

1 If E is an edge of Γ and w(E ) = 0, then h|E is constant;
otherwise h|E is a proper embedding of E into B as a line
segment, ray or line of rational slope.

2 The balancing condition. For every vertex of Γ with adjacent
edges E1, . . . ,En, let v1, . . . , vn ∈ Λh(V ) be primitive tangent
vectors to h(E1), . . . , h(En) pointing away from h(V ). Then

n
∑

i=1

w(Ei )vi = 0.
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Example

Take B = R
2. Here is a tropical curve:

This can be interpreted as a curve of genus 1 or genus 0,
depending on which domain we use to paramaterize the curve.
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Example

This curve can be viewed as an approximation to a curve of degree
3 in CP

2.
Mikhalkin showed that curves in CP

2 through a given number of
points can in fact be counted by counting tropical curves of this
nature.
This gave the first hint that curve-counting can really be
accomplished using tropical geometry.
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Example

Take B = R
2/((1, 2)Z + (2, 1)Z). We have a genus two tropical

curve
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When B has singularities, the definition of tropical curve should be
modified to allow univalent vertices at singular points.
A simple example of this is a two-dimensional situation where B
has one rather simple singularity known as a focus-focus singularity.
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Locally, the singularity can be described via two charts, as depicted:

τ

τ
S

Sσ1 σ2
σ1

σ2

(−1, 0) (0, 0) (1, 0)

(0, 1)

(−1, 0) (0, 0)

(0, 1) (1, 1)

p p

The diagram shows the affine embedings of two charts, obtained by
cutting the union of two triangles as indicated in the two figures.
Note that the vertical line segment is an invariant direction, being
a straight line in both charts.

The monodromy about the singularity in Λ is

(

1 0
1 1

)

.
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In this case, the SYZ fibration over B has a singular fibre over the
singular point of B , a pinched torus, and the total space of the
fibration over B has two holomorphic disks, one as depicted:
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x
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This disk corresponds to a tropical curve on B of the form:

The tropical curve must enter the singularity along the invariant
direction.
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Example

The following is a depiction of a tropical affine manifold with
singularities corresponding to a cubic surface in CP

3:
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Example

The following tropical curve corresponds to a line on the cubic
surface, and there are 27 such!

Mark Gross Mirror symmetry and the SYZ conjecture



How do we prove a correspondence theorem between tropical
curves and holomorphic curves?
This is a significant part of a program I began with Bernd Siebert
in 2001. The goal is to understand mirror symmetry by studying
degenerations of the complex manifolds involved.
For a very simple example, consider a degeneration of a cubic
surface

X := {tf3 + x0x1x2 = 0} ⊆ A
1 × CP

3.

The total space X has nine singular points at

{f3 = 0} ∩ Sing({x0x1x2 = 0}).
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Schematically the central fibre looks like

P2

P2

P2
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Which lines on the central fibre deform to lines on the general
fibre?

Answer:

P2

P2

P2
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To properly answer this question, one needs to introduce
logarithmic geometry of Illusie, Fontaine and Kato.
This is a fundamental tool whenever we want to study
degenerations.
Log structures on schemes or analytic spaces is a “magic powder”
which allows one to treat certain singular schemes as being
non-singular.

Theorem

(G.-Siebert, Abramovich-Chen 2011) There is a theory of
logarithmic Gromov-Witten invariants which allows calculations of
Gromov-Witten invariants on the general fibre of a degeneration by
calculating logarithmic Gromov-Witten invariants of the singular
fibre of a degeneration.
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There is a direct connection between logarithmic and tropical
geometry: in fact there is a functor from the category of log
schemes to a “tropical” category, which we call the tropicalization
functor.
In the example of the cubic surface, the tropicalization of the
central fibre with its induced log structure is precisely B as drawn
before, and the tropicalization of the stable log map as drawn
before. Here B can be thought of as the “dual intersection graph”
of the degeneration.
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The summary of the picture so far:

Curve-counting

Tropical
geometry

Complex

deformations
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At the heart of my program with Siebert is an approach to
connecting tropical geometry with complex deformations. This
approach gives a very general mirror construction.
We wish to construct a complex manifold from B . What we will in
fact construct is, with the choice of some extra data, a
degenerating flat family

X̌

��

Spec k[[t]]

The extra data is a polyhedral decomposition of B and a log
structure on a singular scheme constructed by interpreting B as an
interection complex.
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Example

Our old friend B interpreted as an intersection complex:

A1 × P1

A1 × P1

A1 × P1

P2
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Call the central fibre X̌0.

Theorem

(G.-Siebert, 2011) There is a construction of a smoothing
X → Spec k[[t]] of X0 controlled by tropical disks on B.

The tropical disks, counted in the right way, instruct us how to
glue various pieces together to construct the smoothing.
This gives an algorithm for constructing mirrors:

1 Start with a“nice” degenerating family X → S and let B be
the dual integersection complex of this family.

2 Reinterpret B as an intersection complex and using the above
theorem, build a mirror family X̌ → Spec k[[t]].

Morally, the tropical disks governing the smoothing
X̌ → Spec k[[[t]] correspond to holomorphic disks in a fibre Xs of
X → S whose boundary lies in a fibre of an SYZ fibration Xs → B .
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In the case of a simple focus-focus singularity, we have the
following picture:

One modifies the gluing of two charts by wall-crossing
automorphisms determined by whether we cross the upper disk or
the lower disk. The difference between the two gluing
automorphisms removes the ambiguity produced by the
monodromy.
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In more complicated situations, we might have:

Here a procedure originally introduced by Kontsevich and
Soibelman in 2004 instructs us to add some additional rays with
new associated wall-crossing automorphisms, but
G.-Pandharipande-Siebert (2009) gave an enumerative
interpretation for this procedure which reinforces the notion that
we are really counting disks.
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We have now obtained a symmetric picture:

Curve-counting

Tropical
geometry

Complex

deformations

log
geometry
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Remarks.

These 2007 techniques work when B has “nice” singularities,
where we have a good local model for the deformation we are
trying to construct, and we just need to glue together these
local models.

More recently, with P. Hacking and S. Keel, we introduced a
notion of “theta function” (generalizing the notion of theta
function on abelian varieties) which allow us to construct
mirrors without local models. So far, this was done in a 2011
paper for the case of a mirror of a rational surface Y equipped
with a cycle of rational curves in the anti-canonical linear
system. However, we hope the use of theta functions will
allow a generalization of Gross-Siebert to give the strongest
possibly mirror construction.
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Even this general two-dimensional construction gives
applications of mirror symmetry to other subjects — we
proved a 1981 conjecture of Looijenga giving a criterion for
smoothability of surface cusp singularities.

More recently, we have applied this technology to get new
insights into canonical bases for cluster algebras.

Nevertheless, there is still much work to do before mirror
symmetry at genus zero is proved!
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