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Cluster algebras

Cluster algebras were invented by Fomin and Zelevinsky in 2001
motivated by the combinatorics of dual canonical bases of Lusztig.

Fix a lattice N ∼= Z
n along with a skew-symmetric bilinear form

{·, ·} : N × N → Z.

Let M = Hom(N,Z).
A seed is a choice of ordered basis i = (e1, . . . , en) for N.
We write the dual basis as f1, . . . , fn.
We also associate to the seed a torus

Ai := Spec k[M] = Spec k[A±1
1 , . . . ,A±1

n ],

where Aiz
fi . For a seed, we obtain a corresponding

skew-symmetric matrix B with

Bij = {ei , ej}.
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Cluster algebras

We can define a mutation µk of a seed for 1 ≤ k ≤ n:
µk(i) = (e′1, . . . , e

′
n), where

e′i =

{

ei + [Bik ]+ek i 6= k

−ek i = k

where [a]+ = max(0, a).
The exchange relation defines a birational map between Ai and
Aµk(i) via the equations

AkA
′
k =

∏

j :Bkj>0

A
Bkj

j +
∏

j :Bkj<0

A
−Bkj

j ,

A′
i = Ai for i 6= k .

(Remember that B depends on the seed, so after mutating, B
changes. Here we use the B coming from the basis i.)
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Cluster algebras

We can compose these birational transformations, so if i and i
′ are

two seeds related by a sequence of mutations, we obtain a
birational transformation between Ai and Ai′ .

Gluing all these tori together via these birational transformations
gives the A-cluster variety, and the ring of functions on this variety
is the upper cluster algebra associated to the initial seed.
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Cluster algebras

Example

The classic example is to take N = Z
2, and

B =

(

0 1
−1 0

)

.

We can start with cluster variables A1,A2 and mutate µ1. With
A3 = A′

1, we get

A1A3 = A2 + 1, or A3 =
A2+1
A1

.

New set of cluster variables is {A2,A3}.
µ2:

A2A4 = A3 + 1, or A4 =
1+A1+A2

A1A2

New set of cluster variables is {A3,A4}.
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Cluster algebras

Example
µ1:

A3A5 = A4 + 1, or A5 =
1+A1
A2

µ2:
A4A6 = A5 + 1, or A6 = A1

µ1:
A5A7 = A6 + 1, or A7 = A2

so we get a cycle returning to the begininng.

Note the equations Ai−1Ai+1 = Ai + 1 for i mod 5 define an affine
del Pezzo surface of degree 5.
The cluster tori come from the five different ways of describing a
del Pezzo surface of degree 5 as a blowup of a toric surface.
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Scattering diagrams

Goal: Give an alternate description of cluster algebras motivated
by mirror symmetry.
The ideas which follow are joint work with Paul Hacking, Sean
Keel, and Maxim Kontsevich, making use of notions developed in
the pursuit of understanding mirror symmetry, namely scattering

diagrams and theta functions:

M. Kontsevich and Y. Soibelman, “Affine structures and
non-archimedean analytic spaces,” 2004.
Scattering diagrams in two dimensions.

M. Gross and B. Siebert, “From real affine geometry to
complex geometry,” 2007.
Scattering diagrams in all dimensions.

M. Gross, P. Hacking and S. Keel, “Mirror symmetry for log
Calabi-Yau surfaces I,” 2011.
Broken lines and Theta functions.
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Scattering diagrams

Continuing with the previous notation, we have

Definition

A wall in MR = M ⊗Z R is a pair (d, fd) where:

1 d ⊆ MR is a convex rational polyhedral cone of codimension
one (not necessarily strictly convex), with an element
m0 ∈ M \ {0} tangent to d.

2 fd ∈ k[M][[x1, . . . , xn]] such that

fd = 1 +
∑

k≥1

ckz
km0

where ck is a polynomial in the ideal (x1, . . . , xn).

If m0 ∈ d, we say d is incoming, otherwise we say d is outgoing.
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Scattering diagrams

Definition

A scattering diagram D is a collection of walls such that for each
k ≥ 0, the set

{(d, fd) ∈ D | fd 6≡ 1 mod (x1, . . . , xn)
k}

is finite.
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Scattering diagrams

Given a scattering diagram D, set

SuppD =
⋃

d∈D d.

Sing(D) = locus where SuppD is not a manifold.

For a path γ : [0, 1] → MR \ Sing(D), with endpoints not in
Supp(D), we can define

θγ,D ∈ Autk[[x1,...,xn]](k[M][[x1, . . . , xn]])

called the path ordered product.
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First, if γ crosses a wall (d, fd), we associate an automorphism to
this wall crossing

θγ,d(z
m) = zmf

〈n0,m〉
d

where n0 ∈ N is defined by

n0 annihilates d;

n0 is primitive;

〈γ′(t0), n0〉 < 0 at the time t0 when γ crosses d.

θγ,D is then defined to be the (possibly infinite) composition of
such automorphisms in the order traversed.
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Scattering diagrams

The fundamental construction: Start with a seed i.
Let vi = {ei , ·} ∈ M.
Define

Din := {(e⊥i , 1 + xiz
vi ) | 1 ≤ i ≤ n}.

Theorem

There exists a scattering diagram D ⊇ Din such that D \Din

contains no incoming walls and θγ,D = id for every loop γ for

which this is defined.

This is a special case of a result of G.–Siebert generalizing a
two-dimensional result of Kontsevich and Soibelman.
D is unique up to a natural notion of equivalent scattering
diagrams.
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D is unique up to a natural notion of equivalent scattering
diagrams.
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Scattering diagrams

Examples. Take N = Z
2,

B =

(

0 ℓ

−ℓ 0

)

.

For ℓ = 1 we obtain

1 + x−1

1 + y

1 + x−1y
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Scattering diagrams

ℓ = 2

1 + x−2

1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1− x−2y2)−41 + x−2y4
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Scattering diagrams

ℓ ≥ 3.

1 + x−ℓ

1 + yℓ

· · ·

· · ·

Mark Gross Cluster algebras and mirror symmetry



Scattering diagrams

N = Z
3,

B =





0 2 −2
−2 0 2
2 −2 0
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Scattering diagrams

The structure of D in general. We will set all xi ’s to be 1 for
simplicity of discussion, but this may cause convergence issues,
which we shall ignore.
(1) C+ = {m ∈ MR | 〈ei , ·〉 > 0} does not intersect any walls of D.
(2) If we perform a mutation µk to get a seed i

′, we obtain new
scattering diagrams D′

in and D
′.

D
′ is related to D as follows.
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Scattering diagrams

Let Tk : MR → MR be defined by

Tk(m) =

{

m + 〈ek ,m〉vk 〈ek ,m〉 ≥ 0

m 〈ek ,m〉 ≤ 0

Define Tk(D) to be the scattering diagram obtained from D by

Applying Tk to each wall (might break a wall into two).

Replacing the initial wall

(e⊥k , 1 + zvk )

with
(e⊥k , 1 + z−vk ).

Then Tk(D) = D
′.

Mark Gross Cluster algebras and mirror symmetry



Scattering diagrams

Let Tk : MR → MR be defined by

Tk(m) =

{

m + 〈ek ,m〉vk 〈ek ,m〉 ≥ 0

m 〈ek ,m〉 ≤ 0

Define Tk(D) to be the scattering diagram obtained from D by

Applying Tk to each wall (might break a wall into two).

Replacing the initial wall

(e⊥k , 1 + zvk )

with
(e⊥k , 1 + z−vk ).

Then Tk(D) = D
′.

Mark Gross Cluster algebras and mirror symmetry



Scattering diagrams

Let Tk : MR → MR be defined by

Tk(m) =

{

m + 〈ek ,m〉vk 〈ek ,m〉 ≥ 0

m 〈ek ,m〉 ≤ 0

Define Tk(D) to be the scattering diagram obtained from D by

Applying Tk to each wall (might break a wall into two).

Replacing the initial wall

(e⊥k , 1 + zvk )

with
(e⊥k , 1 + z−vk ).

Then Tk(D) = D
′.

Mark Gross Cluster algebras and mirror symmetry



Scattering diagrams

Let Tk : MR → MR be defined by

Tk(m) =

{

m + 〈ek ,m〉vk 〈ek ,m〉 ≥ 0

m 〈ek ,m〉 ≤ 0

Define Tk(D) to be the scattering diagram obtained from D by

Applying Tk to each wall (might break a wall into two).

Replacing the initial wall

(e⊥k , 1 + zvk )

with
(e⊥k , 1 + z−vk ).

Then Tk(D) = D
′.

Mark Gross Cluster algebras and mirror symmetry



Scattering diagrams

Thus in particular the chamber C′
+ defined by the seed i

′ gives a
chamber T−1

k (C′
+) of D. Every mutation then corresponds to a

chamber of D.
Every such scattering diagram D then has a region decomposed
into a chamber structure.
If we associate the torus Spec k[M] to each such region and glue
these tori together using the wall-crossing automorphisms, we
obtain the A-cluster variety.
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Broken lines

Goal: Find a “nice” basis for the cluster algebra indexed by points
of M (a canonical basis).
Currently there are many constructions in special cases, many of
which differ. I will give a construction which we believe will give a
basis in all cases when a basis is known to exist.
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Broken lines

Fix a seed and the corresponding D.

Definition

A broken line for m0 ∈ M \ {0} with endpoint Q ∈ MR \ Supp(D)
general is

a proper piecewise linear path with a finite number of domains
of linearity

γ : (−∞, 0] → MR

a monomial cLz
mL ∈ k[M] attached to each domain of

linearity L ⊆ (−∞, 0] of γ;

such that:
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Broken lines

Definition

1 γ′(t) = −mL for t ∈ L.

2 The monomial attached to the first domain of linearity of γ is
zm0.

3 γ(0) = Q.

4 γ bends only when it crosses a wall. When γ crosses (d, fd) in
passing between domains of linearity L and L′, then cL′z

mL′ is
a term in θγ,d(cLz

mL).
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Broken lines

Definition

Let Q ∈ MR \ Supp(D) be a general choice of point.
For a broken line γ, denote by Mono(γ) the monomial attached to
the last domain of linearity of γ.
Define

LiftQ(m0) =
∑

γ

Mono(γ)

where the sum is over all broken lines for m0 with endpoint Q.
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Broken lines

Theorem

If Q, Q ′ are two general points on MR \ Supp(D), and γ is a path

joining Q and Q ′, then

θγ,D(LiftQ(m0)) = LiftQ′(m0).

Corollary

If Q ∈ C+ and LiftQ(m0) is a finite sum, then

ϑm0 := LiftQ(m0)

is an element of the cluster algebra.
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Broken lines

1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1− x−2y2)−41 + x−2y4

xy−1

xy−1

xy−1

1 + x−2

x−1y−1

xy

ϑ(1,−1) = xy−1(1 + x−2 + y2).
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Broken lines

1 + y2

· · · · · ·

1 + x−4y2

1 + x−6y3

1 + x−4y6 (1 − x−2y2)−41 + x−2y4

1 + x−2 x2y−2

x2y−2

x2y−2

x−2y−2

2y−2

x2y2

2x2

ϑ(2,−2) = x2y−2(1 + 2x−2 + 2y2 + x−4 + y−4) = ϑ2
1,−1 − 2.
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Broken lines

Features of theta functions:

If m0 lies in a chamber corresponding to a seed, then ϑm0 is a
cluster monomial on the corresponding torus.

In general ϑm0 might involve an infinite number of terms, and
canonical bases won’t exist in general. However, we are
extending the range in which we can prove theta functions
give finite sums and canonical bases.

This setup can be used to prove other conjectures in cluster
algebras, such as positivity of the Laurent phenomenon, and
give simple proofs of known results whose current proofs
involve representation theory.
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