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§0. Preliminaries on classical Algebraic Geometry and Commutative Algebra

In this section, I shall make explicit basic concepts and results that I am assuming from
elsewhere; all this material (should have) appeared in Part II Algebraic Geometry. For
more details, see [Has| or [R]. The first section on Sheaf Theory will take several lectures
and will only incidentally need any algebraic geometry, and so the reader has some time

to familiarise himself/herself with the material in §0.

A little classical algebraic geometry.

(Throughout this discussion, we take the base field k to be algebraically closed.)

Affine varieties: An affine variety V- C A™(k) (where, once one has chosen coordinates,
A"(k) = k™) is given by the vanishing of polynomials fi,..., f. € k[X1, ..., X,].
IfI={f1,...,fr) <k[X1,...,X,] is any ideal, we set

V=V(I):={zeA" : f(z)=0VYf€eT}

Projective varieties: First set P™(k) := (k"1 \ {0})/k* with homogeneous coordinates
(g :x1:...:xy). A projective variety V. C P™ is given by the vanishing of homogeneous
polynomials Fi,..., F,. € k[Xo, X1,...,X,]. If I is the ideal generated by the F; (a

homogeneous ideal, i.e. if F' € I, then so are all its homogeneous parts), we set

V=V({I):={2€P" : F(z) =0V homogeneous F € I}.

Coordinate ring of an affine variety.

fV=V({I)CA", set

I(V):={f€k[Xy,...,X,] : f(&)=0Vx eV}

Observe: V(I(V)) =V (tautology) and I(V(I)) D v/I (obvious). Recall that the radical
VT of the ideal T is defined by f € VI <= 3Im >0s.t. f™ el

Hilbert’s Nullstellensatz (note k = k): I(V(I)) = vI. ([R] §3, [AM] pp 82-3).

Coordinate ring: k[V] := k[Xy,...,X,,]/I(V). This may be regarded as the ring of
polynomial functions on V', and it is a finitely generated reduced k-algebra. Recall that a
k-algebra is a commutative ring containing k as a subring; it is finitely generated if it is

the quotient of a polynomial ring over k, and reduced if a™ =0 = a = 0.
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Given an affine subvariety W C V', have I(W) D I(V) defining an ideal of k[V], also
denoted I(W) < k[V].

Corollary of 0-satz: If m is a maximal ideal of k[V], then m = mp for some P € V,
where mp is the maximal ideal {f € k[V] : f(P) = 0}.

Proof. 0-satz implies I(V(m)) = /m = m # k[V]. So V(m) # (), since otherwise
I(V(m)) = k[V]. Choose P € V(m); then m, O m. Since m maximal, this implies

mp = m.

Observe that {P} = V(mp) = V(m), and so there exists a natural bijection

{points of affine variety V} «— {maximal ideals of k[V]} (1)

Definition. A variety W is irreducible if there do not exist proper subvarieties W7, W5 of
W with W = Wy U Whs.

Lemma 0.1. A subvariety W of an affine variety V is irreducible <— P = I[(W) is
prime, i.e. <= k[W] is an ID (integral domain).

Proof. (=) If I(W) not prime, there exist f,g ¢ I(W) such that fg € I(W). Set Wy :=
V(f)NW and Wy := V(g) N W; then Wy, Wy are proper subvarieties with W = W3 U W,

i.e. W not irreducible.

(<) If Wy, Wy are proper subvarieties with W = Wy U Wa, choose f € I(W7) \ I(W) and
g€ I(Wy)\ I(W); then fg € I(W), i.e. I(W) not prime.

For a projective variety V' C P", we let I(V') <k[Xo, X1, ..., X,] be the homogeneous

ideal of V', by definition generated by the homogeneous polynomials vanishing on V.

Exercise. Show that a projective variety V' is irreducible <= I(V) is prime.
((<) as in (0.1), (=) by considering homogeneous parts of polynomials.)

Generalizing (), for V an affine variety, we have a bijection given by W — I(WW),

{irreducible subvarieties W of an affine variety V'} <— {prime ideals of k[V]}.

Proof. Given a prime ideal P < k[V], the Nullstellensatz implies I(V(P)) = VP = P in

k[V], so there is an inverse map.



Projective Nullstellensatz. Suppose I is a homogeneous ideal in k[ X¢, X1, ..., X,] and
V =V (I) C P". The Projective Nullstellensatz ([R] p82) says:
If VI# (Xo,X1,...,X,) (the irrelevant ideal), then I(V) = +/T.

Proof. An easy deduction from the Affine Nullstellensatz, noting that I also defines an

affine variety in A"*! the affine cone on the projective variety V C P™.

Decomposition of variety into irreducible components.

For V' an affine or projective variety, there is a decomposition V = V; U...U Vy with

the V; irreducible subvarieties and the decomposition is essentially unique.

Proof. Suppose V is affine (similar argument for V' projective): If there does not exist such
a finite decomposition in the above form, then there exists a strictly decreasing sequence
of subvarieties

V=VhoVidDVaD....

(If V.= W UW’, then at least one of W, W’ has no such decomposition and let this be Vi;

continue in same way using Countable Axiom of Choice to obtain sequence.)

Hence in k[V], 0 = I(Vp) C I(V1) C .... Hilbert’s Basis Theorem implies that
there exists N such that I(Vny,) = I(Vy) for all » > 0. Hence Vyi, = V(I(VNyy)) =
V(I(Vyn)) =V for all r > 0, a contradiction.

An easy “topological” argument ([R] Exercise 3.8, [W]) with the Zariski topology (see

below) shows that the decomposition is essentially unique.

Zariski topology. Let V be a variety (affine or projective), then the Zariski topology is
the topology on V' whose closed sets are the subvarieties. This is the underlying topology

for this course

We check this is a topology. Wlog take V' affine. Clearly V and () are closed. Observe
that for ideals (/o )aea of k[V], we have V/(3__ 1) =),V (Ia) is closed. Finally we claim
for ideals I, J of k[V] that V(IJ) =V(I)UV(J) (=V(INJ)) is closed.

Proof. Clearly V(IJ) D V(INJ) 2 V(I)UV(J). Suppose however there exists a point
PeV({IJ)\(V(I)uV(J)): we can choose f € I such that f(P) # 0 and g € J such that
g(P) # 0. Then fg € I.J with non-zero value at P, a contradiction.

Note that V being irreducible as a topological space corresponds to the previous

definition. Also, we have a well-defined concept of connectedness.
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When V is affine, we have a basis of open sets of the form D(f) for f € k[V], where
D(f):={xz eV : f(x)+#0}; any open set is of the form V\ V(f1,..., fr) = Ui, D(fi).
If V = Al, get cofinite topology; in fact Zariski topology is only Hausdorff for a finite set
of points. For V projective, we have a basis of open sets of the form D(F) =V \ V(F),

for F' a homogeneous polynomial.

Ezxercise. The Zariski topology is compact in the usual sense (called precompact in some

terminology since it is not Hausdorff), i.e. any open cover of V' has a finite subcover.

Function fields of irreducible varieties

If V is an irreducible affine variety, then the field of rational functions or the function
field k(V') := fof k[V']. Here k[V] is an integral domain and fof denotes the field of fractions.
In fact, we define the dimension of V' by dimV := tr deg, k(V).

For V' C P™" an irreducible projective variety, we define

E(V):={F/G : F,G homogeneous polynomials of the same degree, G ¢ I(V)}/ ~

where the zero polynomial has any degree and where Fy /G1 ~ Fy /Gy <= F1Gy—F>G; €
I(V). Need V irreducible here, i.e. I(V) prime, to show that ~ is transitive, and hence

an equivalence relation.

If V. C P™ an irreducible projective variety and U a non-empty affine piece of V' (say
U =VnN{Xy # 0}), then U is an affine variety, U C A™ with affine coordinates z; = X, /X
for i = 1,...,n, the equations for U coming from those for V' by “putting X, =17. It is
an easy check now that U is irreducible and k(V') = k(U), the isomorphism being given
by “putting Xy =1".

We say that h € k(V) is regular at P € V' if it can be written as a quotient f/g with
f,g € k[V],g(P) # 0 (affine case), or F'/G with F,G homogeneous polynomials of the
same degree, G(P) # 0 (projective case).

Define Oy, p := {h € k(V) : h regular at P}, the local ring of V at P, with maximal
ideal my,p := {h € Oyp : h(P) = 0}, the kernel of the evaluation map Ov,p — k
given by evaluation at P. Oy, p is a local ring, i.e. my p is the unique maximal ideal.
Since Oy, p \ my, p consists of units of Oy, p and any proper ideal consists of non-units,

any proper ideal is contained in my, p, and hence my p is the unique maximal ideal.
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Morphisms of affine varieties

For V. C A™ W C A™ a morphism ¢ : V — W is a map given by elements
1y Om € Kk[V]. This yields a k-algebra homomorphism ¢* : k[W] — k[V] (where
¢*(f) = fo¢; soif y; a coordinate function on W induced from polynomial Y, we
have ¢*(y;) = ¢;). Conversely, given a k-algebra homomorphism « : k[W] — k[V],
we define a morphism o = ¢ : V. — W given by elements «(y1),...,a(ym) € k[V].
Note that ¢(P) is in W, since for all g € I(W), g(¢¥(P)) = gla(y1),-..,a(ym))(P) =
(a(g(y1s - ym)))(P) = 0 since g(y1, ..., Ym) = 0 in k[W].

Observe: For ¢ : V. — W, we have ¢** = ¢; for o : k[W] — k[V], we have o™* = «.
For v : U — V also a morphism of affine varieties, we have ¢ a morphism U — W with
(p)* = *¢*. For B : k[V] — k[U]| a morphism of k-algebras, we have (fa)* = o*5*.

We deduce that affine varieties V, W are isomorphic (i.e. there is an invertible mor-
phism between them) V = W <= k[W] = k[V] as k-algebras. Recall: the k-algebras
which occur as coordinate rings are the finitely generated reduced k-algebras. So formally,
there is an equivalence of categories between the category of affine varieties over k and
their morphisms, and the opposite of the category of finitely generated reduced k-algebras
and their morphisms, i.e. there is a contravariant equivalence between the category of

affine varieties and the category of finitely generated reduced k-algebras.

Thus affine algebraic geometry over k is a branch of commutative algebra. Commu-
tative Algebra may be interpreted as affine algebraic geometry once one has generalized

varieties to schemes.

For (irreducible) affine varieties, we can reconstruct the variety (up to isomorphism)
from its ring of everywhere regular rational functions by (0.2) below; for irreducible pro-
jective varieties, the only everywhere regular rational functions are the constants (see

Corollary 2 to Proposition 2.2).

Lemma 0.2. For V an irreducible affine variety,

{f € k(V) : f regular everywhere} = k[V].

Proof. Exercise.



A little Commutative Algebra
Let A be a commutative ring (with a 1).

Definition. A module M over A is finitely generated if dn > 0 and x1,...,x, € M such
that M = Axy +---+ Az, (<= M is a quotient of the free module A™).

Nakayama’s lemma ([AM] p21)
If M is a finitely generated module over a local ring (A, m), where m is the unique maximal
ideal of A, such that M = mM, then M = 0.

A wuseful corollary of this is with above notation and N C M a submodule with
M =mM + N, then M = N (apply Nakayama to quotient module M /N).

Rings and modules of fractions. Let A be a commutative ring, S C A a multiplicative
subset (i.e. 1 € S and s,t € S = st € S). We can define an equivalence relation ~ on
A x S by (a,s) ~ (d,s') < t(as’ —a's) =0 for some ¢t € S (easy check that ~ is an
equivalence relation). Let a/s denote the equivalence class of (a,s) and S™'A the set of
such classes a/s. Define addition and multiplication in the obvious way. Then S™1A4 is a

commutative ring and there exists a natural ring homomorphism ¢ : A — S~'A, namely
é(a) = a/1. STLA is called the ring of fractions of A w.r.t. S.

There is a universal property: If g : A — B is a homorphism of rings with ¢(5) C U(B)
(units of B), then 3! ¢’ : ST1A — B with ¢’¢ = g (namely ¢'(a/s) = g(a)g(s)™! € B).

S~1Ahasal(=1/1) and a zero (= 0/1). Then a/s =0 <= ta = 0 for some t € S;
hence ST1A=0 < 1/1=0/1 < 0€S.

The map A — S~!4 is an isomorphism <= S C U(A4) (for (<), take B = A in

universal property).

Let T C A be the set of non divisors of zero, a multiplicative subset. Set T-1A =
tot(A), the total ring of fractions — we have an injection A — tot(A). If A is an integral
domain (ID), then tot(A) = fof(A) (taking T'= A\ {0}). For a reducible affine variety
V', we should replace the function field k(V') by the ring Rat(V') := tot(k[V]) of rational

functions on V.

Relevant examples

()IffeAlet fN={1,f f?...} =S5. Write Ay for S™' A in this case.

(2) If P is a prime ideal of A, then S = A\ P is a multiplicative subset. Write Ap for S™1A4,

7



called the localisation of A at P, a local ring with unique maximal ideal PAp consisting

of elements a/s with a € P, s € P (all the other elements of Ap are units).

If now M is an A-module, S C A a multiplicative subset, the module of fractions
S™1M (both an A-module and an S~!A-module) is defined analogously, with m/s =
m'/s' < t(s'm —sm') =0 for some t € S. The S~!A-module structure is defined via

(a/s).(m/t) = (am)/(st).

Tensor products

Definition, The tensor product M ® 4 N of A-modules M and N is an A-module equipped
with an A-bilinear map g : M x N - M ® 4 N with the following universal property:

Given any A-bilinear map f: M x N — P, 3! morphism of A-modules h: M @ N — P
which factorizes f = hg.

M ®4 N is defined up to isomorphism by this property (easy application of universal
property). The existence of such a module is straightforward and unenlightening (see
[AM] p 24) — take the free module F' over A on the set M x N and quotient out by the
appropriate submodule of bilinear relations. We omit the subscript A where no confusion

would result in doing so. We denote by x ® y the image of (z,y) in M ® 4 N.
Elementary properties (all proved from universal property, [AM] p 26)

If M, N, P are A-modules, there exist isomorphisms of A-modules

o M®NZ=ZN®M, where z @y — y ® x.

e (M@N)®PXM® (N®P), where (zQy)®z— 1 (y® 2).

e (M®N)®@P=(M®P)®(N®P), where (z,y) @2z (2 ® 2,y ® 2).

e AR M = M, where a ® x — ax.

Change of ring: Given a morphism of rings f : A — B (NB f(1) = 1), we call B an
A-algebra — this generalises previous concept of k-algebras. Given an A-algebra structure
on B, f: A— B, and an A-module M, set Mp := B ®4 M; this is also a B-modules in

an obvious way with B acting on the first factor.
Proposition 0.2. Let M be an A-module.

(a) f I«Aand B= A/I,then B®4 M = M/IM.
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(b) If S C A is a multiplicative subset and B = S™'A, then B ®4 M = S™'M (this is

therefore an alternative definition).

Proof. (a) The obvious bilinear map (A/I) x M — M/IM induces (using universal prop-
erty) a morphism of A-modules (A/I) ®4 M — M/IM, where for any a € A, x € M, we
have @ ® © — az. The inverse morphism M/IM — (A/I) ®a M is given by Z — 1 ®@ z
(check well-defined).

(b) Use universal properties of both S™1 and ® 4 — see [AM] p 40.
Proposition 0.3. If M, N are A-modules, I <A, S a multiplicative subset of A, then
() (A/T) @ (M @4 N) = (M/IM) 041 (N/IN),
(b) STY(M @4 N) = S™IM ®g-14 STIN.
Proof. Exercise.
For instance, if P a prime ideal of A, then (M ®4 N)p = Mp @4, Np (where we

define Mp = (A\ P)"1 M, etc.).

R-algebras. Given a commutative ring R and R-algebras 6, : R — A, 0 : R — B,
a morphism A — B of R-algebras is given by morphism of rings f : A — B such that
f01 = 05. Given R-algebras A and B, the tensor product A ® g B has the structure of an
R-algebra:

e Multiplication given by (a ® b)(a’ ® V') = (aad’) ® (bb'), and extend linearly.
e The ring homomorphism R — A ®g B given by r — 01(r) ® 1 =1 ® 05(r).

Also have R-algebra morphisms a: A - A®r B and f: B - A ®pr B given by
a+— a® 1, respectively b — 1 ® b. These satisfy a universal property that, given any R-
algebra morphisms o : A — C and ' : B — C, 3! R-algebra morphism ¢ : A ®@r B — C
such that o/ = ¢a and B’ = ¢f. Moreover A ® B is determined (up to isomorphism) by
this universal property (check).

Using this, we can deduce for R-algebras A, B, C' that AQr(B®rC) = (AQrB)®rC

etc. are naturally isomorphic as R-algebras (rather than just R-modules).



