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§0. Preliminaries on classical Algebraic Geometry and Commutative Algebra

In this section, I shall make explicit basic concepts and results that I am assuming from

elsewhere; all this material (should have) appeared in Part II Algebraic Geometry. For

more details, see [Has] or [R]. The first section on Sheaf Theory will take several lectures

and will only incidentally need any algebraic geometry, and so the reader has some time

to familiarise himself/herself with the material in §0.

A little classical algebraic geometry.

(Throughout this discussion, we take the base field k to be algebraically closed.)

Affine varieties: An affine variety V ⊆ An(k) (where, once one has chosen coordinates,

An(k) = kn) is given by the vanishing of polynomials f1, . . . , fr ∈ k[X1, . . . , Xn].

If I = 〈f1, . . . , fr〉 ⊳ k[X1, . . . , Xn] is any ideal, we set

V = V (I) := {z ∈ An : f(z) = 0 ∀f ∈ I}.

Projective varieties: First set Pn(k) := (kn+1 \ {0})/k∗ with homogeneous coordinates

(x0 : x1 : . . . : xn). A projective variety V ⊆ Pn is given by the vanishing of homogeneous

polynomials F1, . . . , Fr ∈ k[X0, X1, . . . , Xn]. If I is the ideal generated by the Fi (a

homogeneous ideal, i.e. if F ∈ I, then so are all its homogeneous parts), we set

V = V (I) := {z ∈ Pn : F (z) = 0 ∀ homogeneous F ∈ I}.

Coordinate ring of an affine variety.

If V = V (I) ⊆ An, set

I(V ) := {f ∈ k[X1, . . . , Xn] : f(x) = 0 ∀x ∈ V }.

Observe: V (I(V )) = V (tautology) and I(V (I)) ⊇
√
I (obvious). Recall that the radical√

I of the ideal I is defined by f ∈
√
I ⇐⇒ ∃m > 0 s.t. fm ∈ I.

Hilbert’s Nullstellensatz (note k = k̄): I(V (I)) =
√
I. ([R] §3, [AM] pp 82-3).

Coordinate ring: k[V ] := k[X1, . . . , Xn]/I(V ). This may be regarded as the ring of

polynomial functions on V , and it is a finitely generated reduced k-algebra. Recall that a

k-algebra is a commutative ring containing k as a subring; it is finitely generated if it is

the quotient of a polynomial ring over k, and reduced if am = 0⇒ a = 0.
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Given an affine subvariety W ⊆ V , have I(W ) ⊇ I(V ) defining an ideal of k[V ], also

denoted I(W ) ⊳ k[V ].

Corollary of 0-satz: If m is a maximal ideal of k[V ], then m = mP for some P ∈ V ,

where mP is the maximal ideal {f ∈ k[V ] : f(P ) = 0}.

Proof. 0-satz implies I(V (m)) =
√
m = m 6= k[V ]. So V (m) 6= ∅, since otherwise

I(V (m)) = k[V ]. Choose P ∈ V (m); then mp ⊇ m. Since m maximal, this implies

mP = m.

Observe that {P} = V (mP ) = V (m), and so there exists a natural bijection

{points of affine variety V } ←→ {maximal ideals of k[V ]} (†)

Definition. A variety W is irreducible if there do not exist proper subvarieties W1,W2 of

W with W =W1 ∪W2.

Lemma 0.1. A subvariety W of an affine variety V is irreducible ⇐⇒ P = I(W ) is

prime, i.e. ⇐⇒ k[W ] is an ID (integral domain).

Proof. (⇒) If I(W ) not prime, there exist f, g 6∈ I(W ) such that fg ∈ I(W ). Set W1 :=

V (f)∩W and W2 := V (g)∩W ; then W1,W2 are proper subvarieties with W =W1 ∪W2,

i.e. W not irreducible.

(⇐) If W1,W2 are proper subvarieties with W = W1 ∪W2, choose f ∈ I(W1) \ I(W ) and

g ∈ I(W2) \ I(W ); then fg ∈ I(W ), i.e. I(W ) not prime.

For a projective variety V ⊆ Pn, we let I(V ) ⊳ k[X0, X1, . . . , Xn] be the homogeneous

ideal of V , by definition generated by the homogeneous polynomials vanishing on V .

Exercise. Show that a projective variety V is irreducible ⇐⇒ I(V ) is prime.

((⇐) as in (0.1), (⇒) by considering homogeneous parts of polynomials.)

Generalizing (†), for V an affine variety, we have a bijection given by W 7→ I(W ),

{irreducible subvarieties W of an affine variety V } ←→ {prime ideals of k[V ]}.

Proof. Given a prime ideal P ⊳ k[V ], the Nullstellensatz implies I(V (P)) =
√
P = P in

k[V ], so there is an inverse map.
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Projective Nullstellensatz. Suppose I is a homogeneous ideal in k[X0, X1, . . . , Xn] and

V = V (I) ⊆ Pn. The Projective Nullstellensatz ([R] p82) says:

If
√
I 6= 〈X0, X1, . . . , Xn〉 (the irrelevant ideal), then I(V ) =

√
I.

Proof. An easy deduction from the Affine Nullstellensatz, noting that I also defines an

affine variety in An+1, the affine cone on the projective variety V ⊆ Pn.

Decomposition of variety into irreducible components.

For V an affine or projective variety, there is a decomposition V = V1 ∪ . . .∪ VN with

the Vi irreducible subvarieties and the decomposition is essentially unique.

Proof. Suppose V is affine (similar argument for V projective): If there does not exist such

a finite decomposition in the above form, then there exists a strictly decreasing sequence

of subvarieties

V = V0 ⊃ V1 ⊃ V2 ⊃ . . . .

(If V =W ∪W ′, then at least one of W,W ′ has no such decomposition and let this be V1;

continue in same way using Countable Axiom of Choice to obtain sequence.)

Hence in k[V ], 0 = I(V0) ⊆ I(V1) ⊆ . . .. Hilbert’s Basis Theorem implies that

there exists N such that I(VN+r) = I(VN ) for all r ≥ 0. Hence VN+r = V (I(VN+r)) =

V (I(VN )) = VN for all r ≥ 0, a contradiction.

An easy “topological” argument ([R] Exercise 3.8, [W]) with the Zariski topology (see

below) shows that the decomposition is essentially unique.

Zariski topology. Let V be a variety (affine or projective), then the Zariski topology is

the topology on V whose closed sets are the subvarieties. This is the underlying topology

for this course

We check this is a topology. Wlog take V affine. Clearly V and ∅ are closed. Observe

that for ideals (Iα)α∈A of k[V ], we have V (
∑

α Iα) =
⋂

α V (Iα) is closed. Finally we claim

for ideals I, J of k[V ] that V (IJ) = V (I) ∪ V (J) (= V (I ∩ J)) is closed.

Proof. Clearly V (IJ) ⊇ V (I ∩ J) ⊇ V (I) ∪ V (J). Suppose however there exists a point

P ∈ V (IJ) \ (V (I)∪ V (J)): we can choose f ∈ I such that f(P ) 6= 0 and g ∈ J such that

g(P ) 6= 0. Then fg ∈ IJ with non-zero value at P , a contradiction.

Note that V being irreducible as a topological space corresponds to the previous

definition. Also, we have a well-defined concept of connectedness.
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When V is affine, we have a basis of open sets of the form D(f) for f ∈ k[V ], where

D(f) := {x ∈ V : f(x) 6= 0}; any open set is of the form V \ V (f1, . . . , fr) =
⋃r

i=1
D(fi).

If V = A1, get cofinite topology; in fact Zariski topology is only Hausdorff for a finite set

of points. For V projective, we have a basis of open sets of the form D(F ) = V \ V (F ),

for F a homogeneous polynomial.

Exercise. The Zariski topology is compact in the usual sense (called precompact in some

terminology since it is not Hausdorff), i.e. any open cover of V has a finite subcover.

Function fields of irreducible varieties

If V is an irreducible affine variety, then the field of rational functions or the function

field k(V ) := fof k[V ]. Here k[V ] is an integral domain and fof denotes the field of fractions.

In fact, we define the dimension of V by dimV := tr degk k(V ).

For V ⊆ Pn an irreducible projective variety, we define

k(V ) := {F/G : F,G homogeneous polynomials of the same degree, G 6∈ I(V )}/ ∼

where the zero polynomial has any degree and where F1/G1 ∼ F2/G2 ⇐⇒ F1G2−F2G1 ∈
I(V ). Need V irreducible here, i.e. I(V ) prime, to show that ∼ is transitive, and hence

an equivalence relation.

If V ⊆ Pn an irreducible projective variety and U a non-empty affine piece of V (say

U = V ∩{X0 6= 0}), then U is an affine variety, U ⊆ An with affine coordinates xi = Xi/X0

for i = 1, . . . , n, the equations for U coming from those for V by “putting X0 = 1”. It is

an easy check now that U is irreducible and k(V ) ∼= k(U), the isomorphism being given

by “putting X0 = 1”.

We say that h ∈ k(V ) is regular at P ∈ V if it can be written as a quotient f/g with

f, g ∈ k[V ], g(P ) 6= 0 (affine case), or F/G with F,G homogeneous polynomials of the

same degree, G(P ) 6= 0 (projective case).

Define OV,P := {h ∈ k(V ) : h regular at P}, the local ring of V at P , with maximal

ideal mV,P := {h ∈ OV,P : h(P ) = 0}, the kernel of the evaluation map OV,P → k

given by evaluation at P . OV,P is a local ring, i.e. mV,P is the unique maximal ideal.

Since OV,P \mV,P consists of units of OV,P and any proper ideal consists of non-units,

any proper ideal is contained in mV,P , and hence mV,P is the unique maximal ideal.
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Morphisms of affine varieties

For V ⊆ An, W ⊆ Am, a morphism φ : V → W is a map given by elements

φ1, . . . , φm ∈ k[V ]. This yields a k-algebra homomorphism φ∗ : k[W ] → k[V ] (where

φ∗(f) = f ◦ φ; so if yj a coordinate function on W induced from polynomial Yj , we

have φ∗(yj) = φj). Conversely, given a k-algebra homomorphism α : k[W ] → k[V ],

we define a morphism α∗ = ψ : V → W given by elements α(y1), . . . , α(ym) ∈ k[V ].

Note that ψ(P ) is in W , since for all g ∈ I(W ), g(ψ(P )) = g(α(y1), . . . , α(ym))(P ) =

(α(g(y1, . . . , ym)))(P ) = 0 since g(y1, . . . , ym) = 0 in k[W ].

Observe: For φ : V → W , we have φ∗∗ = φ; for α : k[W ] → k[V ], we have α∗∗ = α.

For ψ : U → V also a morphism of affine varieties, we have φψ a morphism U → W with

(φψ)∗ = ψ∗φ∗. For β : k[V ]→ k[U ] a morphism of k-algebras, we have (βα)∗ = α∗β∗.

We deduce that affine varieties V,W are isomorphic (i.e. there is an invertible mor-

phism between them) V ∼= W ⇐⇒ k[W ] ∼= k[V ] as k-algebras. Recall: the k-algebras

which occur as coordinate rings are the finitely generated reduced k-algebras. So formally,

there is an equivalence of categories between the category of affine varieties over k and

their morphisms, and the opposite of the category of finitely generated reduced k-algebras

and their morphisms, i.e. there is a contravariant equivalence between the category of

affine varieties and the category of finitely generated reduced k-algebras.

Thus affine algebraic geometry over k is a branch of commutative algebra. Commu-

tative Algebra may be interpreted as affine algebraic geometry once one has generalized

varieties to schemes.

For (irreducible) affine varieties, we can reconstruct the variety (up to isomorphism)

from its ring of everywhere regular rational functions by (0.2) below; for irreducible pro-

jective varieties, the only everywhere regular rational functions are the constants (see

Corollary 2 to Proposition 2.2).

Lemma 0.2. For V an irreducible affine variety,

{f ∈ k(V ) : f regular everywhere} = k[V ].

Proof. Exercise.
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A little Commutative Algebra

Let A be a commutative ring (with a 1).

Definition. A module M over A is finitely generated if ∃n > 0 and x1, . . . , xn ∈ M such

that M = Ax1 + · · ·+Axn (⇐⇒ M is a quotient of the free module An).

Nakayama’s lemma ([AM] p21)

IfM is a finitely generated module over a local ring (A,m), wherem is the unique maximal

ideal of A, such that M = mM , then M = 0.

A useful corollary of this is with above notation and N ⊆ M a submodule with

M = mM +N , then M = N (apply Nakayama to quotient module M/N).

Rings and modules of fractions. Let A be a commutative ring, S ⊆ A a multiplicative

subset (i.e. 1 ∈ S and s, t ∈ S ⇒ st ∈ S). We can define an equivalence relation ∼ on

A × S by (a, s) ∼ (a′, s′) ⇐⇒ t(as′ − a′s) = 0 for some t ∈ S (easy check that ∼ is an

equivalence relation). Let a/s denote the equivalence class of (a, s) and S−1A the set of

such classes a/s. Define addition and multiplication in the obvious way. Then S−1A is a

commutative ring and there exists a natural ring homomorphism φ : A → S−1A, namely

φ(a) = a/1. S−1A is called the ring of fractions of A w.r.t. S.

There is a universal property: If g : A→ B is a homorphism of rings with g(S) ⊆ U(B)

(units of B), then ∃! g′ : S−1A→ B with g′φ = g (namely g′(a/s) = g(a)g(s)−1 ∈ B).

S−1A has a 1 (= 1/1) and a zero (= 0/1). Then a/s = 0 ⇐⇒ ta = 0 for some t ∈ S;
hence S−1A = 0 ⇐⇒ 1/1 = 0/1 ⇐⇒ 0 ∈ S.

The map A → S−1A is an isomorphism ⇐⇒ S ⊆ U(A) (for (⇐), take B = A in

universal property).

Let T ⊂ A be the set of non divisors of zero, a multiplicative subset. Set T−1A =

tot(A), the total ring of fractions — we have an injection A →֒ tot(A). If A is an integral

domain (ID), then tot(A) = fof(A) (taking T = A \ {0}). For a reducible affine variety

V , we should replace the function field k(V ) by the ring Rat(V ) := tot(k[V ]) of rational

functions on V .

Relevant examples

(1) If f ∈ A, let fN = {1, f, f2, . . .} = S. Write Af for S−1A in this case.

(2) If P is a prime ideal of A, then S = A\P is a multiplicative subset. Write AP for S−1A,
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called the localisation of A at P, a local ring with unique maximal ideal PAP consisting

of elements a/s with a ∈ P, s 6∈ P (all the other elements of AP are units).

If now M is an A-module, S ⊆ A a multiplicative subset, the module of fractions

S−1M (both an A-module and an S−1A-module) is defined analogously, with m/s =

m′/s′ ⇐⇒ t(s′m − sm′) = 0 for some t ∈ S. The S−1A-module structure is defined via

(a/s).(m/t) = (am)/(st).

Tensor products

Definition, The tensor productM⊗AN of A-modulesM and N is an A-module equipped

with an A-bilinear map g :M ×N →M ⊗A N with the following universal property:

Given any A-bilinear map f :M ×N → P , ∃! morphism of A-modules h : M ⊗A N → P

which factorizes f = hg.

M ⊗A N is defined up to isomorphism by this property (easy application of universal

property). The existence of such a module is straightforward and unenlightening (see

[AM] p 24) — take the free module F over A on the set M ×N and quotient out by the

appropriate submodule of bilinear relations. We omit the subscript A where no confusion

would result in doing so. We denote by x⊗ y the image of (x, y) in M ⊗A N .

Elementary properties (all proved from universal property, [AM] p 26)

If M,N, P are A-modules, there exist isomorphisms of A-modules

• M ⊗N ∼= N ⊗M , where x⊗ y 7→ y ⊗ x.

• (M ⊗N)⊗ P ∼=M ⊗ (N ⊗ P ), where (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z).

• (M ⊕N)⊗ P ∼= (M ⊗ P )⊕ (N ⊗ P ), where (x, y)⊗ z 7→ (x⊗ z, y ⊗ z).

• A⊗M ∼=M , where a⊗ x 7→ ax.

Change of ring: Given a morphism of rings f : A → B (NB f(1) = 1), we call B an

A-algebra – this generalises previous concept of k-algebras. Given an A-algebra structure

on B, f : A → B, and an A-module M , set MB := B ⊗A M ; this is also a B-modules in

an obvious way with B acting on the first factor.

Proposition 0.2. Let M be an A-module.

(a) If I ⊳ A and B = A/I, then B ⊗A M ∼=M/IM .
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(b) If S ⊆ A is a multiplicative subset and B = S−1A, then B ⊗A M ∼= S−1M (this is

therefore an alternative definition).

Proof. (a) The obvious bilinear map (A/I)×M →M/IM induces (using universal prop-

erty) a morphism of A-modules (A/I)⊗A M →M/IM , where for any a ∈ A, x ∈ M , we

have ā ⊗ x 7→ ax. The inverse morphism M/IM → (A/I) ⊗A M is given by x̄ 7→ 1 ⊗ x
(check well-defined).

(b) Use universal properties of both S−1 and ⊗A — see [AM] p 40.

Proposition 0.3. If M , N are A-modules, I ⊳ A, S a multiplicative subset of A, then

(a) (A/I)⊗A (M ⊗A N) ∼= (M/IM)⊗A/I (N/IN),

(b) S−1(M ⊗A N) ∼= S−1M ⊗S−1A S
−1N .

Proof. Exercise.

For instance, if P a prime ideal of A, then (M ⊗A N)P ∼= MP ⊗AP
NP (where we

define MP = (A \ P)−1M , etc.).

R-algebras. Given a commutative ring R and R-algebras θ1 : R → A, θ2 : R → B,

a morphism A → B of R-algebras is given by morphism of rings f : A → B such that

fθ1 = θ2. Given R-algebras A and B, the tensor product A⊗R B has the structure of an

R-algebra:

• Multiplication given by (a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′), and extend linearly.

• The ring homomorphism R→ A⊗R B given by r 7→ θ1(r)⊗ 1 = 1⊗ θ2(r).

Also have R-algebra morphisms α : A → A ⊗R B and β : B → A ⊗R B given by

a 7→ a ⊗ 1, respectively b 7→ 1 ⊗ b. These satisfy a universal property that, given any R-

algebra morphisms α′ : A → C and β′ : B → C, ∃! R-algebra morphism φ : A⊗R B → C

such that α′ = φα and β′ = φβ. Moreover A⊗R B is determined (up to isomorphism) by

this universal property (check).

Using this, we can deduce for R-algebras A,B,C that A⊗R (B⊗RC) ∼= (A⊗RB)⊗RC

etc. are naturally isomorphic as R-algebras (rather than just R-modules).
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