

Part III

Algebraic Geometry

Example Sheet IV, 2019. Turn in 2,4,5

1. Let $X = \text{Spec } A$ be affine, and let

$$0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0$$

be an exact sequence of quasi-coherent sheaves of \mathcal{O}_X -modules. Show that

$$0 \rightarrow \Gamma(X, \mathcal{F}') \rightarrow \Gamma(X, \mathcal{F}) \rightarrow \Gamma(X, \mathcal{F}'') \rightarrow 0$$

is exact. [You may freely use the following fact about quasi-coherent sheaves: if \mathcal{F} is a quasi-coherent sheaf on a scheme X , and $U \subseteq X$ is open affine, $U = \text{Spec } A$, then $\mathcal{F}|_U = \widetilde{M}$ for some A -module M . You may find a proof of this fact in Hartshorne II, §5, Proposition 5.4. Note II, Proposition 5.6 proves a more general statement.]

2. Let \mathcal{F} be a sheaf of abelian groups on a topological space X , and suppose given a long exact sequence

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{F}^0 \xrightarrow{d^0} \mathcal{F}^1 \xrightarrow{d^1} \dots$$

Suppose further that $H^i(X, \mathcal{F}^j) = 0$ for all $i > 0$ and all j . Show that

$$H^i(X, \mathcal{F}) = \frac{\ker d^i : \Gamma(X, \mathcal{F}^i) \rightarrow \Gamma(X, \mathcal{F}^{i+1})}{\text{im } d^{i-1}(X, \mathcal{F}^{i-1}) \rightarrow \Gamma(X, \mathcal{F}^i)}$$

for all i . Sheaves \mathcal{G} on X with $H^i(X, \mathcal{G}) = 0$ for all $i > 0$ are called *acyclic*.

3. We define a *flabby* (*flasque* in french) sheaf on a topological space X to be a sheaf \mathcal{F} such that for any inclusion $V \subseteq U$ of open sets of X , the restriction morphism $\mathcal{F}(U) \rightarrow \mathcal{F}(V)$ is surjective.

We will prove, for an open covering \mathcal{U} of a topological space X and a flabby sheaf \mathcal{F} on X , that $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p > 0$.

[Note: You may want to use Zorn's Lemma in what follows.]

a) Show that if

$$0 \rightarrow \mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0$$

is an exact sequence of sheaves on X and \mathcal{F}_1 is flabby, then $\mathcal{F}_2(U) \rightarrow \mathcal{F}_3(U)$ is surjective for any open set $U \subseteq X$.

b) Show that if

$$0 \rightarrow \mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0$$

is an exact sequence of sheaves with \mathcal{F}_1 and \mathcal{F}_2 flabby, then \mathcal{F}_3 is flabby.

c) Show that if

$$0 \rightarrow \mathcal{F}_0 \rightarrow \dots \rightarrow \mathcal{F}_{p-1} \rightarrow \mathcal{F}_p \rightarrow \mathcal{F}_{p+1} \rightarrow \dots$$

is a long exact sequence of flabby sheaves, then

$$0 \rightarrow \mathcal{F}_0(U) \rightarrow \dots \rightarrow \mathcal{F}_{p-1}(U) \rightarrow \mathcal{F}_p(U) \rightarrow \mathcal{F}_{p+1}(U) \rightarrow \dots$$

is exact.

d) If \mathcal{F} is a sheaf on X , $U \subseteq X$ an open set, denote by (as usual) $\mathcal{F}|_U$ the sheaf on X defined by $\mathcal{F}|_U(V) = \mathcal{F}(V \cap U)$. For an open covering \mathcal{U} of X , let

$$\mathcal{C}^p(\mathcal{U}, \mathcal{F}) = \prod_{i_0, \dots, i_p \in I} \mathcal{F}|_{U_{i_0} \cap \dots \cap U_{i_p}}$$

so that

$$C^p(\mathcal{U}, \mathcal{F}) = \Gamma(X, \mathcal{C}^p(\mathcal{U}, \mathcal{F})).$$

Define boundary maps $\delta : \mathcal{C}^p(\mathcal{U}, \mathcal{F}) \rightarrow \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})$ in the same manner as was done for C^p . Show that the sequence

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{C}^0(\mathcal{U}, \mathcal{F}) \rightarrow \mathcal{C}^1(\mathcal{U}, \mathcal{F}) \rightarrow \dots$$

is exact.

e) Show that if \mathcal{F} is flabby, so is $\mathcal{C}^p(\mathcal{U}, \mathcal{F})$. Combine this fact with c) and d) to conclude that $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for $p > 0$.

4. Let $X = \mathbb{A}_k^2 = \text{Spec } k[x, y]$, $U = X \setminus \{(x, y)\}$ (removing the maximal ideal corresponding to the origin). By choosing a suitable affine cover of U , show that $H^1(U, \mathcal{O}_U)$ is naturally isomorphic to the infinite dimensional k -vector space with basis $\{x^i y^j \mid i, j < 0\}$. Thus in particular U is not affine.

5. Let X be a subscheme of \mathbb{P}_k^2 defined by a single homogeneous polynomial $f(x_0, x_1, x_2) = 0$. Assume that $(1, 0, 0) \notin X$. Then show X can be covered by the two affine open subsets $U = X \cap D_+(x_1)$, $V = X \cap D_+(x_2)$. Now compute the Čech complex explicitly and show that

$$\begin{aligned}\dim H^0(X, \mathcal{O}_X) &= 1 \\ \dim H^1(X, \mathcal{O}_X) &= (d-1)(d-2)/2\end{aligned}$$

where d is the degree of f . What does this say about the genus of X if X is a non-singular curve?

6. (a) Let B be an A -algebra, M a B -module. An A -derivation of B into M is a map $d : B \rightarrow M$ such that (1) d is additive; (b) $d(bb') = bd(b') + b'd(b)$ for all $b, b' \in B$; (c) $d(a) = 0$ for all $a \in A$. The module of relative differentials of B over A is a B -module $\Omega_{B/A}$ equipped with a derivation $d : B \rightarrow \Omega_{B/A}$ which is universal, i.e., for any $d' : B \rightarrow M$ a derivation, there exists a B -module homomorphism $f : \Omega_{B/A} \rightarrow M$ such that $d' = f \circ d$.

We construct $\Omega_{B/A}$ as follows. Let $f : B \otimes_A B \rightarrow B$ be the A -algebra homomorphism given by $f(b \otimes b') = bb'$, $I = \ker f$. Set $\Omega_{B/A} = I/I^2$ and $d : B \rightarrow I/I^2$ given by $db = 1 \otimes b - b \otimes 1$. Show that $\Omega_{B/A}, d$ satisfies the above universal property.

(b) Calculate $\Omega_{A/k}$, where $A = k[x_1, \dots, x_n]$. Show that this is the free A -module generated by symbols dx_1, \dots, dx_n and $d(f) = \sum_i (\partial f / \partial x_i) dx_i$.

(c) Conclude that $\Omega_{\mathbb{A}_k^n / \text{Spec } k}$ is the free rank n $\mathcal{O}_{\mathbb{A}^n}$ -module generated by symbols dx_1, \dots, dx_n .

7. Let X be a non-singular projective curve of genus 2, and let D be a divisor of degree 5. It is not difficult to show using techniques from Part II Algebraic Geometry that D is very ample, i.e., the complete linear system $|D|$ embeds X into projective space. Determine the dimension m of the linear system $|D|$, so that this complete linear system determines an embedding $f : X \rightarrow \mathbb{P}^m$ as a curve of degree 5 in \mathbb{P}^m . By using the exact sequence

$$0 \rightarrow \mathcal{I}_X(n) \rightarrow \mathcal{O}_{\mathbb{P}^m}(n) \rightarrow \mathcal{O}_X(n) \rightarrow 0,$$

for various n , where $\mathcal{I}_X(n) := \mathcal{I}_X \otimes_{\mathcal{O}_{\mathbb{P}^m}} \mathcal{O}_{\mathbb{P}^m}(n)$ and $\mathcal{O}_X(n) = f^* \mathcal{O}_{\mathbb{P}^m}(n)$, and appropriately interpreting global sections of $\mathcal{I}_X(n)$, show that X must be contained in an intersection of an irreducible quadric hypersurface and an irreducible cubic hypersurface.