

Logarithmic geometry

Log schemes. kato: A log structure on a scheme is a magic powder which makes it non-singular.

Def: A log scheme is a triple

$$X = (\underline{X}, M_X, \alpha_X) \text{ where}$$

• \underline{X} is a scheme

• M_X is a sheaf of (commutative) monoids on \underline{X}

(monoid = group with inverses)

• $\alpha_X: M_X \rightarrow \mathcal{O}_X$ is a homomorphism of sheaves of monoids, with the monoid structure on \mathcal{O}_X being given by multiplication.

This data satisfies one property:

$$\alpha_X^{-1}(\mathcal{O}_X^*) \xrightarrow[\cong]{\alpha} \mathcal{O}_X^*$$

A morphism $f: (\underline{X}, \mathcal{M}_X, \alpha_X) \rightarrow (\underline{Y}, \mathcal{M}_Y, \alpha_Y)$

of log schemes is data

• $f: \underline{X} \rightarrow \underline{Y}$ an ordinary morphism of schemes.

• $f^b: f^{-1}\mathcal{M}_Y \rightarrow \mathcal{M}_X$ a morphism

of sheaves of monoids

such that the following diagram is

commutative:

$$\begin{array}{ccc}
 f^{-1}\mathcal{M}_Y & \xrightarrow{f^b} & \mathcal{M}_X \\
 \downarrow f^{-1}\alpha_Y & & \downarrow \alpha_X \\
 f^{-1}\mathcal{O}_Y^* & \xrightarrow{f^\#} & \mathcal{O}_X^*
 \end{array}$$

Examples: ① The divisorial log

Structure

Let $D \subseteq X$ be

a Weil divisor, $D = X \setminus U$

(viewing D as just giving a closed subset,

i.e., if $D = \sum a_i Y_i$ with $a_i > 0$,

think of D as the closed subset

$\bigcup Y_i$)

Define M_X by, for $V \subseteq X$,

$$M_X(V) = \left\{ f \in \mathcal{O}_X^*(V) \mid f|_{U \cap V} \in \mathcal{O}_X^*(U \cap V) \right\}$$

Note that we have an obvious map

$$\alpha_X: M_X \rightarrow \mathcal{O}_X^* \quad (\text{an inclusion})$$

Also, $\mathcal{O}_X^* \subseteq M_X$ is a subleaf

$$\text{and } \mathcal{O}_X^* = \alpha^{-1}(\mathcal{O}_X^*).$$

Given (\underline{X}, D) , (\underline{Y}, E) , a morphism

of schemes

$$f: \underline{X} \rightarrow \underline{Y} \quad \text{induces}$$

a morphism of divisorial log schemes

provided that $f^{-1}(E) \subseteq D$.

This is because given $\mathcal{L} \in \mathcal{M}_Y(U)$,

this is a function away from E ,

and hence $f^\# \mathcal{L}$ is invertible away

from $f^{-1}(E)$, hence also invertible

away from D .

$$\begin{array}{ccc} f^{-1}\mathcal{M}_Y & \xrightarrow{f^\#} & \mathcal{M}_X \\ \downarrow & & \downarrow \\ f^{-1}\mathcal{O}_Y & \xrightarrow{f^\#} & \mathcal{O}_X \end{array}$$

$$N = \{0, 1, 2, \dots\}$$

② The standard log point.

$$\text{Spec } k^+ = (\text{Spec } k, k^* \oplus N, \alpha_X)$$

$$\alpha_X(r, n) = \begin{cases} r & \text{if } n=0 \\ 0 & \text{if } n>0. \end{cases}$$

$$\text{“} = \Gamma^0^n \text{”} \quad (0^0 = 1)$$

$$\alpha_X^{-1}(k^*) = k^* \oplus 0$$

Example of an "exact" morphism:

$$\text{Spec } k^+ \xrightarrow{f} (\mathbb{A}^2, V(xy))$$

$$\text{Spec } k[x, y]$$

Consider only scheme

maps with image $0 \in \mathbb{A}^2$

$$M_{A^2, 0} = f^{-1} M_{A^2} \xrightarrow{f} k^* \oplus \mathbb{N}$$

$$\mathcal{O}_{A^2, 0} = f^{-1} \mathcal{O}_{A^2} \xrightarrow{f^\#} \mathcal{O}_{\text{Spec } k} = k$$

ψ

First exercise: Make

$$M_{A^2, 0} = \left\{ \psi x^a y^b \mid \psi \in \mathcal{O}_{A^2, 0}^* \right\}$$

\uparrow
germ of an
invertible function at 0

Convince yourself the possibilities for

f are precisely maps of the

form

$$\psi x^a y^b \mapsto (\psi(0) \cdot \psi(a, b), \gamma(a, b))$$

$$\in k^* \oplus \mathbb{N}$$

where $\psi: \mathbb{N}^2 \rightarrow k^*$ is arbitrary

and $\gamma: \mathbb{N}^2 \rightarrow \mathbb{N}$ is arbitrary

of the form $\eta(a, b) = \alpha a + \beta b$

for some $\alpha, \beta > 0$.

Lots of choices.

Why do we care?

There are new morphisms which are not smooth as morphisms of schemes but are smooth as morphisms of log schemes.

$$f: \underline{\mathbb{A}^2} \longrightarrow \underline{\mathbb{A}^1}$$

$$(x, y) \mapsto x \cdot y$$

$$f^{-1}(0) = V(xy)$$

Singular!

Smooth " = " all fibres are non-singular.

$$f: (\mathbb{A}^2, V(xy)) \longrightarrow (\mathbb{A}^1, 0)$$

This morphism is log smooth.

In particular, this allows us to

put a log structure on $V(X)$

making it behave as if it is non-singular.

Gromov-Witten theory.

Classical version: X a non-singular
variety. A stable map

$f: C \rightarrow X$ is a morphism

from a curve C with at most

nodal singularities

(locally looks like
 $V(X)$)

such that f has a finite automorphism

group. An automorphism of f is an automorphism $\varphi: C \rightarrow C$ such that $f \circ \varphi = f$.

We can also consider map

$$f: (C, p_1, \dots, p_n) \rightarrow X$$

where $p_1, \dots, p_n \in C$ are distinct non-singular points of C . Now

an automorphism $\varphi: (C, p_1, \dots, p_n) \rightarrow (C, p_1, \dots, p_n)$ must satisfy $\varphi(p_i) = p_i$

Example: $X \subseteq \mathbb{P}^3$ a non-singular

curvilinear surface. $C = \mathbb{P}^1$

$f: C \rightarrow X$ a closed immersion

with image a line.

There are 27 such maps.

Gromov-Witten theory tells us that
there is a moduli space of maps

$\mathcal{M}_{g,n}(X, \beta)$ where

- g is the genus of the domain curve.
- n is the number of marked points on C
- $\beta \in H_2(X, \mathbb{Z})$ is the homology class represented by f
 $(f_*[DC])$ (or think degrees of curves.)

e.g. X the cubic surface

$\mathcal{M}_{0,0}(X, 1)$ consists of 27
points

Gromov-Witten theory gives us

a way of counting the # of points
in this moduli space.

Long Arnoux-Witten theory

(X, D) X non-compact

D is nice

We wish to consider
stable maps

$f: (C, p_1, \dots, p_n) \rightarrow (X, D)$

where we impose some orders of
tangency with irreducible components
of D at each of the marked points.

Basic problem! One wants a
compact moduli space. We have trouble

when limits of curves fall into D ,
as then it is hard to define
tangency conditions.

Log geometry scales this!

Simple example of how this works

$D \subseteq X$, X non-singular, D a

non-singular prime divisor

$f^{-1}(D) \subseteq \{P_1, P_2, P_3\}$, so we

do get a morphism of log schemes

$(C, \{P_1, P_2, P_3\}) \longrightarrow (X, D)$

Near P_1 , we can write a section of

M_X as $\varphi \cdot t^a$ where $t \neq 0$
 is the local defining equation for $D \subset X$
 and φ is invertible.

$$f^\#(\varphi \cdot t^a) = (\varphi \cdot f) \cdot (t \cdot f)^a$$

$t \cdot f$ vanishes at p_1 to order 1 because
 f is transversal to D at p_1

So if u is a local coordinate

$$\text{at } p_1 \in C, \text{ then } f^\#(\varphi \cdot t^a) = \psi \cdot u^a$$

where ψ is invertible,

At p_3 , where f is simply tangent,

$f \cdot f$ will vanish to order 2

$$\text{So } f^\#(\varphi \cdot t^a) = \psi \cdot u^{2a}$$

Recalling that $\mathcal{O}_X^* \xrightarrow{\alpha^{-1}} M_X^*$,

we define the ghost sheet of

M_X to be M_X / ∂_X^*

$$f^b : f^{-1} M_X \rightarrow M_C$$

induces $\bar{f}^b : f^{-1} \bar{M}_X \rightarrow \bar{M}_C$

At each P_i with $f(P_i) \subseteq D$,

we then obtain a map $IN \xrightarrow{\cdot \cdot} IN$

$$(f^{-1} \bar{M}_X)_{P_i} \xrightarrow{\cdot \cdot} \bar{M}_{C, P_i}$$

where c is the order of tangency of f at the point $p_i \in C$.

Algebraic stacks

Stacks are generalizations of schemes.

Moduli spaces: Fix a field k .

Consider a contravariant functor

$$F: \text{Sch}/k \rightarrow \text{Sets}$$

$$F(S) = \left\{ \begin{array}{c} C \\ \downarrow \\ S \end{array} \right. \begin{array}{l} \text{(flat)} \\ \text{a proper morphism,} \\ \text{each of whose fibers} \\ \text{is a genus } g \text{ curve} \\ \text{non-singular} \end{array}$$

$$\begin{array}{ccc} C & \xrightarrow{\quad} & C' \\ \downarrow & \leq & \downarrow \\ S & & S \end{array} \quad \text{if } \exists \text{ a commutative} \\ \text{diagram}$$

$$\begin{array}{ccc} C & \xrightarrow{\quad \leq \quad} & C' \\ & \searrow & \swarrow \\ & S & \end{array}$$

e.g. if $S \in \text{Spec } K$, this is just
 the set of isomorphism classes of
 genus g curves.

Want: A scheme M_g which represents
 this functor, i.e., for each S ,
 we have a bijection

$$F(S) \rightarrow \text{Hom}_K(S \rightarrow M_g).$$

(i.e., an isomorphism of functors
 $F \simeq h_{M_g}$.)

Such a scheme should have a universal

curve \mathcal{C} given by the identity

$$1_{M_g} \in \text{Hom}(M_g, M_g) = h_{M_g}(M_g)$$

with the property that for any

$$\begin{matrix} C \\ \downarrow \\ S \end{matrix}$$

$C \in \mathcal{F}(S)$, $\exists !$ morphisms

$S \rightarrow \mathcal{M}_g$ such that

the diagrams

$$\begin{matrix} C \\ \downarrow \\ S \end{matrix} \longrightarrow \begin{matrix} C \\ \downarrow \\ \mathcal{M}_g \end{matrix}$$

gives an isomorphism $C \xrightarrow{\cong} S \times_{\mathcal{M}_g} C$.

$\boxed{\text{Forget + neutrino:}}$

$$\mathcal{F}(S_1 \rightarrow S_2) : \mathcal{F}(S_2) \rightarrow \mathcal{F}(S_1)$$

is given by

$$\begin{matrix} C_2 \\ \downarrow \\ S_2 \end{matrix} \xrightarrow{\quad} \begin{matrix} C_2 \times_{S_2} S_1 \\ \downarrow \\ S_1 \end{matrix}$$

This is a way of going from a family of curves over S_2 to a family of curves over S_1 .]

Problem: F is not representable.

Consider a curve C with an automorphism $\varphi: C \rightarrow C$ with $\varphi^2 = \text{id}$

Let $S = \text{Spec}^1 \mathcal{O}_X \setminus \{0\} = \mathbb{A}^1 \setminus \{0\} = \mathbb{K}^* = \mathbb{K}^k$

Family ①: $C \times_{\text{Spec} \mathbb{K}} S$

\downarrow

S

(every fibre is isomorphic to C .)

Family ②: $(C \times S) / \mathbb{Z}_2$

\downarrow

$S / \mathbb{Z}_2 \cong S$

where $1 \in \mathbb{Z}_2$ acts on $C \times S$

by $(c, s) \mapsto (c, s^{-1})$

Here $s \mapsto s^{-1}$ is the morphism
 $S \rightarrow S$ induced by $k[x, x^{-1}] \rightarrow k[x, x^{-1}]$

$$x \longrightarrow x^{-1}$$
$$x^{-1} \longleftarrow k$$

$1 \in \mathbb{Z}_2$ acts on S by $s \mapsto s^{-1}$.

All fibres are isomorphic C , but
this is a different family!

Suppose M_g was representable. We
should get two maps

$S \rightarrow M_g$ corresponding

to these two different families.

$B \dashv$ the images of these two maps
is the same point of M_g , corresponding
to the curve C .

$B \dashv$ only exists one such map,
so we can't get two different functors!

$B \dashv: M_g$ is represented by a stack.

Deligne - Mumford.

Basic idea! replace the set $F(S)$
with category, in particular, a groupoid.
A groupoid is a category all of whose
morphisms are isomorphisms.

A stack \mathcal{F} is a category fibred
in groupoids over Sch/k with a long
list of extra properties.

This means \mathcal{F} is a category with
a covariant functor $\mathcal{Q}: \mathcal{F} \rightarrow \text{Sch}/k$
such that if $x, y \in \text{ob } \mathcal{F}$
with $\mathcal{Q}(x) = \mathcal{Q}(y)$, then every element
of $\text{Hom}(x, y)$ is an isomorphism.

Example: \mathcal{M}_g : category whose objects
are families of genus g curves

 as before and whose morphisms

are commutative diagrams

$C_1 \rightarrow C_2$ $\downarrow \quad \downarrow$ $S_1 \rightarrow S_2$

indicating an isomorphism $C_1 \xrightarrow{\cong} S_1 \times_{S_2} C_2$

Algebraic stacks are such categories

which have a smooth cover by schemes.

Example: Let G be a ~~finite~~^{algebraic} group.

We define BG to be the category

whose objects are G -torsors

E for S a scheme.

 \downarrow S

Here being a G -torsor means

that G acts on E via

commutative diagrams (for $g \in G$)

and locally on S , \mathcal{E} is isomorphic

to $S \times G$

$$BG \rightarrow \text{Sch}_\alpha$$

$$(\mathcal{E} \rightarrow S) \mapsto S$$

If G acts on a scheme X ,

we have a stack $[X/G]$ whose

objects are diagrams

$$\mathcal{E} \xrightarrow{\ell} X$$

with $g \cdot \ell(e)$

$= \ell(g \cdot e)$

for $g \in G$,

$$e \in \mathcal{E}.$$

Canonical applications is the construction
of the moduli space M_g .

Most accessible reference:

Olsason: Algebraic spaces and stacks.